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Abstract—Over the years, the computer vision and machine
learning disciplines have considerably advanced the field of
automated visual inspection for Printed Circuit Board (PCB)
assurance. However, in practice, the capabilities and limitations
of these advancements remain unknown because there are few
publicly accessible datasets for PCB visual inspection and even
fewer that contain images that simulate realistic application
scenarios. To address this need, we propose a publicly available
dataset, FICS-PCB 1, to facilitate the development of robust
methods for automated PCB visual inspection. The proposed
dataset includes challenging cases from four variable aspects:
PCB manufacturing, illumination, scale, and image sensor. The
FICS-PCB dataset consists of 8,685 images of 31 PCB samples
and contains 75,965 annotated components. This paper reviews
the existing datasets and methodologies used for PCB visual
inspection, discusses problem challenges, describes the proposed
dataset, and presents baseline performances using feature-based
and deep learning methods for automated PCB component visual
inspection.

Index Terms—PCB Dataset, Automated Visual Inspection

I. INTRODUCTION

In recent years, outsourcing Printed Circuit Board (PCB)
manufacturing indeed improves the availability of electronics
in modern life. Despite the profits it brings, this outsourcing
could lead to severer security breaches, such as functional
failure of the device (e.g., sensor failure in a self-driving car
[1]), user data leakage [2], or partial/full system control taken
by adversaries [3]. Therefore, it is critical to inspect PCBs
before they are deployed.

PCBs provide functional support to electronics by connect-
ing electrical components, traces, and vias. The main focus
of existing PCB inspection methods is to find the defects
or modifications thereof, where these methods fall into two
categories: electrical testing and automated visual inspection.
Electrical testing, which involves checking design parameters
at specified points [4], is efficient in PCB inspection; however,
it requires extra resources, huge time cost, and it cannot detect
malicious implants that do not alter the PCB function at the
tested locations. Automated visual inspection provides solu-
tions to address these issues. It involves the use of computer
vision and machine learning algorithms to compare an image
of a manufactured PCB with the design file or an image of a
golden (trusted) PCB. Previous state-of-the-art methods have

1The link for accessing FICS-PCB dataset will be released upon acceptance.
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Fig. 1: Example of PCB image with annotated components
and other PCB elements.

demonstrated high reliability and efficiency with focuses on
defect detection of traces and vias, component localization,
and component recognition [5]–[8]. However, many of these
methods are evaluated only on private datasets, which makes
performance comparison between methods difficult. Although
a few large datasets [9]–[12] are publicly available, they
lack variances that can simulate real-world scenarios, e.g.,
illumination and scale variations, which are necessary for
developing robust approaches. Therefore, a large, publicly
available dataset that better represents such nonideal condi-
tions is needed to facilitate research in the area of automated
PCB visual inspection.

To this end, a dataset that could be used to evaluate and
improve methods for automated PCB visual inspection is pro-
posed. This dataset consists of PCB images featuring multiple
types of components and various image conditions to aid
performance evaluation in specific challenging scenarios that
could be encountered in practice. Preliminary experiments on
PCB component classification were conducted to demonstrate
the effect of these image variations on the performance of
automated PCB visual inspection.

The rest of the paper is organized as follows: Section
II reviews the existing PCB datasets and methodologies of
automated PCB visual inspection, and discusses the problem
challenges. Section III described the proposed dataset in detail.



TABLE I: Summary of Publicly Available Datasets

Datasets #
Images

Inspected Object Sensor Type Sensor Capability Subset
CharacteristicObject # Types # Objects megapixels px/cm

DeepPCB [9] 1,500 Trace 1 - CCD 25.6 480 -
PCBA-defect [10] 1,386 Trace 1 - Dgital microscope 16.2 - PCB rotation
PCB-DSLR [11] 748 Components 1 9,313 DSLR 16.2 87.4 PCB rotation
PCB-Metal [12] 984 Components 4 12,231 DSLR 30.4 - PCB rotation

Proposed 8,685 Components 6 75,965 Digital microscope
and DSLR

10 and
45.7

462-921
and 118

Intensity variation
and scale variation

Section IV breifly introduces the experiment methodologies,
and the performances on PCB component classification are
presented in Section V. Finally, the conclusion and future work
are summarized in Section VI.

II. RELATED WORK AND CHALLENGES

This section reviews publicly available datasets and existing
methods for PCB inspection, and discusses the challenging that
could encountered in real inspection scenario.

A. Previous Datasets

As mentioned earlier, a few publicly available datasets have
been proposed to provide benchmark for PCB inspection, a
summary of these dataset is presented in Table I.

PCB-defect [10] and DeepPCB [9] are intended for trace
and via defect detection. Both datasets provide images with
synthesized PCB defects, but they have different original
(defect-free) images of bare PCBs. The images in PCB-defect
are obtained from a digital microscope and contain RGB
values, while the images in DeepPCB are collected from
an industrial charge-coupled device (CCD) camera and are
binarized.

PCB-DSLR [11] and PCB-Metal [12] are two datasets
designed for PCB component inspection. Both datasets are
collected from DSLR cameras and provide variation in PCB
orientation. In PCB-DSLR, 165 PCBs were placed on a black
conveyor belt and imaged with a reflection-suppressed lighting
system. It contains records of integrated circuit (IC) locations
and the registration of on-component markings for certain
PCBs. The smallest IC in this dataset is 15mm2, and other
smaller components, such as resistors and capacitors, are not
included due to resolution limitations. Among the 165 PCBs,
137 of them contain fewer than 20 ICs. PCB-Metal consists
of 984 images acquired from 123 PCBs that were placed on a
white, lined paper under constant illumination. Since its DSLR
has a higher resolution than the one used in PCB-DSLR,
it records the locations of more component types, including
ICs, capacitors, resistors, and inductors. According to their
statistics, the majority of the PCBs in their dataset have less
than 20 ICs and capacitors.

To summarize, these publicly available datasets are large
in size, however, they do not simulate the wide variability in
real-world scenarios that could challenge the performance of
PCB inspection.

B. Existing Methods

Research on automated PCB visual inspection were con-
ducted with focuses on trace and via defect detection, compo-
nent defect detection, and component classification. Methods
have been presented for each of these three aspects show
promising performance on private datasets, and they mainly
fall into three categories: image matching, feature-based learn-
ing, and deep learning.

For trace and via defect detection on bare PCBs, logical
operators such as XOR and subtraction are commonly applied
to compare an image of a PCB to a reference image of an
ideal PCB [5], [13], [14]. However, in each of these studies,
the sizes of the test sets are unknown. Other features such as
RGB color values, are extracted for trace and via in Liao et
al.’s work [15]. Here, features were extracted from 400 PCB
images and then used to train a support vector machine.

Component defects include component absence, rotation,
shifting, or substitution. Substantial work on recognizing these
defects were conducted using image matching approaches
with logical operators [16]–[19]. Among these studies, the
largest test set contained 100 PCB images taken from a digital
microscope [17]. In this study, Sundara et al. detected missing
capacitors and resistors using background subtraction and
reported an accuracy greater than 90%. Another commonly-
used method for comparing PCB images is image correlation.
Crispin et al. correlated six Canny edge-detected images [20]
while Cho et al. correlated 25 wavelet-transformed images
[21]. Both methods were able to recognize all types of
component defects, and reported a best accuracy of 75% and
86%, respectively. Component defects can also be detected
using feature-based methods. As opposed to image matching
methods, which operate on images of entire PCBs, feature-
based methods use only a small inspected area. Mello et al.
detected component substitutions in 30 component images by
using Fourier shape descriptors for classification. They also
determined other defects by thresholding features describing
the rotation angles and center coordinates of components
[22]. Wu et al. used RGB color values to detect component
substitutions, and binary image projections to detect other
defects [23], [24]. Their work is evaluated on a private dataset
that has 651,000 images.

Previous works on classifying components were conducted
using feature-based methods and deep neural networks. Guerra
et al. reconstructed the three-dimensional shape of 4,840 com-
ponents and reported a best classification accuracy of 100%
[25]. Youn et al. trained on 83 component images and tested



on 154 component images with histograms of HSI images
as well as Canny edge-detected images, and they reported an
averaged 97.6% classification accuracy [26]. Lim et al. trained
a convolutional neural network (CNN) with 7,659 semantic
labeled component images and achieved an average accuracy
of 90.8% on a test set that contained 4,822 images [6].
The Siamese network with VGG16 and AlexNet backbones
was used in Reza et al.’s work for IC image classification
[27]. They collected 8,000 IC images online for training and
reported a best accuracy of 92.31% on 572 test samples.

Promising performance is shown for the aforementioned
PCB component inspection methods. However, it is unclear
how robust these algorithms are due to the limited information
provided on the private datasets. First, the properties of the
PCB samples (e.g., size and density of components) in these
private datasets are unknown. Since there are a wide variety
of PCBs, the properties can challenge the capabilities of these
algorithms. Second, the quality of the obtained images may
vary between lab environment and practical inspection. Hence,
component classification methods should account for increased
variation. Aspects where high variation appears in practice are
elaborated on in the following section.

C. Challenges in Automated PCB Visual Inspection

As stated above, it is essential to highlight the uniqueness
and high variability of the PCB images, which present chal-
lenges in developing robust and efficient methods. Below, we
discuss three aspects that greatly affect the content of the
PCB images: PCB components, PCB boards, and the imaging
modality.

PCB components vary in color, texture, shape, orientation,
and size depending on their functions and materials. However,
the appearance of a component is not perfectly correlated with
its type. Examples can be seen in Figure 3, two resistors
may vary in color while a black resistor may appear very
similar to a black inductor. Moreover, as shown in Figure
1, the IC is much larger than small components such as
resistors and capacitors. In digital microscope images, a large
magnification (scale) allows for finer image detail, but large
ICs are easily cropped due to field-of-view (FOV) limitations
of the imaging system. In some cases, the microscope mag-
nification with the largest FOV still cannot capture the entire
IC. Additionally, advancements in transistor technologies have
allowed PCBs to include smaller, more compact components.
Tiny components that are represented by a few pixels lack
discriminating features and may be overshadowed by larger
components. Furthermore, the presence of multiple, densely-
packed tiny components may be falsely detected as a single,
larger component.

Similarly, the PCB board, itself, can also vary in color,
material, size, and shape. For example, a black PCB board
with black ICs and resistors presents challenges for component
segmentation methods that incorporate color-based features.
Meanwhile, due to the existence of traces, vias, and markings
on the board, the PCB board has a higher complexity com-
pared to the images commonly used for developing existing

computer vision algorithms, i.e., road image segmentation and
car detection. This may result in performance degradation of
these algorithms.

As shown in Table I, PCB image collection can be achieved
with a variety of image modalities, which each capture
different types of information. Moreover, specific imaging
devices can have various adjustable parameters, which further
increases the variability in the PCB images. Furthermore,
collection setups vary depending on the choice of imaging
modality. For examples, a digital microscope has a built-in
lighting system, whereas a DSLR camera must use outsourced
light. Lighting differences also result in different information
being captured, such as image artifacts from reflective materi-
als and shadowing from large components. The images from
different modalities could have image properties that challenge
the computer vision algorithms.

For an accurate evaluation of developed methods to be
performed, it is essential to use the proposed dataset that
incorporates instances of challenging cases.

III. DESCRIPTION OF DATABASE

A. Data Acquisition

The FICS-PCB dataset is designed to support evaluation on
different challenge cases. It is collected at the SeCurity and
AssuraNce (SCAN) Lab at the University of Florida, and it is a
part of an on-going multi-modality PCB data collection effort.
The dataset currently consists of 8,685 images acquired from
31 PCB boards that were purchased online or disassembled
from various devices, including hard drive controllers, audio
amplifiers, monitors, etc. Four board colors, green, red, blue,
and black, are currently represented. The smallest board is
7.2cm2, and the largest board is 523.2cm2. So far, two
imaging sensor types have been used for data collection: digital
microscope and DSLR camera.

1) Digital Microscope Subset: Digital microscopy offers
precise, quantitative control of illumination and scale and is
widely-used in PCB quality control and failure analysis [28].
This subset is collected using a Leica DVM6 model with FOV
43.75. It has a fixed lens and a movable stage, which are shown
in Figure 2 (a). It takes a set of images within a 70mm×50mm

(a) Digital Microscope Collection Setup (b) DSLR Collection Setup

Fig. 2: Setup for digital microscope subset collection and
DSLR subset collection.



area (stage travel range area), and these images are in pixel
size of 1600×1200. During image collection, if the size of the
board exceeds the travel range, the PCB is manually moved for
additional data collection until the entire board is imaged, and
the overlap between images of adjacent parts of the board is set
to 10%. To ensure the FICS-PCB dataset includes samples that
represent variations in illumination, images are collected using
three different intensities from the microscope’s built-in ring
light: 20, 40, and 60 [29], where 60 represents the brightest
illumination. In addition, variations in scale are included by
using three scales: 1×, 1.5×, and 2×, where 1× represents
the largest FOV. Other parameters of the digital microscope
are fixed as follows: 101ms exposure, 5 gain (amplification
of image sensor), 20 saturation, and RGB color mode. Images
that do not contain components are not included in the dataset,
which results in a total of 8,634 “TIF” formatted images.

2) DSLR Subset: The setup for DSLR collection, shown in
Figure 2 (b), incorporates a Nikon D850 camera, a 105mm
macro lens, and a tripod which stabilizes the camera with the
lens facing down toward the PCB. Data collection is conducted
in batches in the lab environment for consistent imaging. The
exposure delay mode is set to prevent images from being
affected by camera vibration from manual handling. Other
parameters are set as follows: 1000 ISO sensitivity, f/3.5
aperture, and 1/160 second shuttering speed. The distance
between the camera and the samples (image distance) is
adjusted for each board such that most of the PCBs are
captured in one image. For large boards, multiple images
are taken to keep small components in-focus. Images of the
backside of boards that do not contain components are not
included in the dataset, which results in a total of 51 “TIF”
formatted images in 8256 × 5504 pixel size.

3) Annotation: Dataset annotation is completed using the
open-source VGG image annotator [30], [31]. The annotation
files are stored in “.CSV” format with the image name,
component location, component type, text on component, and
logo recorded for each component. Each row of the annotation
file contains information for one component, where the “image
name” is the filename of the annotated image containing the
component, “component location” is the pixel coordinates to
localize the component’s bounding box, “component type” is
the component type (IC, capacitor, resistor, inductor, transistor,
diode, or other), “text on component” is the on-component

TransistorInductorResistorCapacitor Diode IC

Fig. 3: Examples of annotated components.

marking, and the “logo” is a binary record of the presence of
any on-component logos. For the digital microscope subset,
which contains multiple images using three different intensities
of the same regions of the board, images for only one intensity
are annotated. An example of an annotated image is shown
in Figure 1 and examples of PCB components are shown
in Figure 3. In addition, we also provide component images
extracted from the PCB images, and two Python scripts for
database usage. One script extracts component images based
on the annotation files. The other script randomly generates
training, validation, and test sets from the extracted compo-
nents.

B. Database Statistics

In addition to the dataset summary presented in Table I,
the number of annotated components is presented in Table II.
These components vary in size, where the physical area of
the smallest capacitor is 0.5mm2 and the largest capacitor is
256mm2. Also, the component density is counted for each
subset in the dataset, shown in Table III. Among the PCB
samples, 11 PCBs have more than 200 components. Since
some of the large PCBs were collected in multiple images,
the component density is defined as the number of intact
components in one image. The component density indicates
the image complexity and counts the number of components
that need to be detected and classified correctly. For instance,
a maximum of 478 components in one DSLR image of a large
PCB board would require detection.

TABLE II: Number of Samples in Datasets

Database IC Capacitor Resistor Inductor Transistor Diode

PCB-DSLR 9,313 - - - - -
PCB-Metal 5,844 3,175 2,670 542 - -
Proposed 2,971 36,112 32,766 1,163 1,349 1,604

TABLE III: Components Density in Subsets of FICS-PCB

Modals Subsets Mean Maximum Minimum

Microscope
1x 13 101 1

1.5x 8 90 1
2x 6 49 1

DSLR - 134 478 13

In summary, to help evaluate and improve automated vi-
sual inspection techniques, the proposed dataset, FICS-PCB,
includes variation in imaging modality, scale, and illumina-
tion. To demonstrate the effect of these variations on the
performance of automated PCB visual inspection methods,
various tests were performed on the proposed dataset, which
are presented in the next section.

IV. EXPERIMENTS METHODOLOGIES

As mentioned earlier, previous methods related to PCB
inspection fall into three categories: image matching, con-
ventional feature representation, and deep learning. In this



work, experiments were conducted on the proposed dataset
to evaluate the performance change of using the latter two
state-of-the-art methods for PCB component classification on
the variable data.

Several feature-based methods have been proposed for PCB
component classification using color features, shape features,
or a combination of the two. Prominent feature representations
include those proposed by Wu et al. [23], [24], Mello et al.
[22], and Youn et al. [26]. These methods incorporate, respec-
tively, RGB color, Fourier shape, and color/edge histograms
as features. Each method is trained with their corresponding
reported classifiers.

In [23], [24], RGB color features are fed into a Naı̈ve
Bayes classifier, where the R, G, and B color channel values
are extracted from the center square of the component body.
In this work, the center square is a 10× 10 pixel area and the
expression of this feature is defined as: x = (xR, xG, xB)

T ,
in which each color channel is represented by a vector that
consists of 100 pixel values, v, as: x = [v1, v2, ..., v100].

A Fourier descriptor is used to represent component shape
features in [22]. For preprocessing, watershed segmentation
and Canny edge detection are applied to extract N contour
signatures as complex numbers cn = xn + jyn (n ∈ N ).
Then the Fourier coefficient is obtained by using the discrete
complex Fourier transform:

ak =
1

N

N−1∑
n=0

cn exp
−j2πnk/N (1)

As in Mello et al.’s work, k = 6 was selected to represent
sufficient shape detail [22]. The Fourier coefficients are then
fed into a multi-layer perceptron (MLP).

A combined feature that concatenates both color and shape
feature vectors is used in [26]. The color features are extracted
from a binarized n bin-histogram of the Hue channel from the
HSI color-transformed image. The histogram is expressed as
S = [s1, s2, ..., sn], and binarization is based on a threshold
T such that:

xi =

{
1 for si ≥ T
0 for si < T

(2)

Similarly, the shape features are also extracted from a bi-
narized histogram. Canny edge detection is applied on the
RGB image, and the edge image is then projected vertically
and horizontally. Next, a shape histogram with m bins is
computed for both projections to obtain V = [v1, v2, ..., vm]
and H = [h1, h2, ..., hm], respectively. The binarization is
accomplished using threshold as in equation (2). Then, the
three feature vectors are concatenated and used to train a MLP
classifier for PCB component recognition.

Deep neural networks such as the modified AlexNet and
ResNet were used in Lim et al.’s work to classify images
with semantic labels [6], however, the label type is not the
same as this work. Siameses network was adopted in Reza
et al.’s research with AlexNet and VGG16 backbones [27],
yet, they are only trained for classifying IC pairs. Meanwhile,
since the detailed network architecture and training procedure

used in these two works are not accessible, two basic deep
neural networks, AlexNet [32] and Inception-v3 [33], are im-
plemented in this work. AlexNet is a well-established network
that has simple structure yet has shown high accuracy in many
image classification tasks. The Inception-v3 network reported
a superior performance on the “ImageNet” classification chal-
lenge [34] with fewer parameters and a shallower network
architecture. Both networks are adapted from the structures
described in [32] and [33]. In this work, both networks
were tested by training with and without “ImageNet” pre-
trained weights, and tested with fine-tuning the last layer and
fine-tuning all layers. Among these experiments, significant
performance improvement was found in Inception-v3 when
fine-tuning all layers with pre-trained weights, and slightly
better performance was found in AlexNet using the same
training procedure. Thus, the results obtained by fine-tuning all
layers with pre-trained weights are presented in the following
section to represent the performance of these two networks.

V. PRELIMINARY RESULTS

Four experiments were conducted on the proposed dataset to
evaluate the performance change of state-of-the-art methods on
variations, including manufacturing, illumination, image scale,
and image sensor. In this work, only the binary classification
accuracy on capacitors and resistors are presented because: 1)
they are the most common components inspected in previous
research, and 2) the performance of multi-class (all com-
ponents) classification suffers from a significant degradation
during the experiments. The number of training and testing
samples in all experiments is in the ratio of 4:1, and the pre-
sented accuracy was averaged from ten-fold cross-validation.
For brevity, the names of the digital microscope subsets are
abbreviated as “scale value”-“intensity value” subset, e.g.,
1.5x-40 subset, in this section.

A. Baseline Performance

Exp-1 is designed to establish a baseline performance of
the classification methods on the proposed dataset, where
the training and testing are conducted on the same subset
as experiments in previous literature. Meanwhile, it explores
the influence of adding more components variations from
different PCB manufacturers. To control for variation, nine
digital microscope subsets, where each has one intensity and
one scale, are evaluated separately. The DSLR subset, which
has a fixed illumination and scale, is also assessed.

In Figure ?? Exp-1, the accuracy reported in previous work,
if available, are presented along with the highest accuracy
among all subsets. The presented best performances highlight
that all feature representation methods have shown significant
performance degradation when they are employed on the
proposed dataset. Recall from literature (Section ??), the
Fourier descriptor and the combination feature are evaluated
on small test sets while the RGB color feature is evaluated
on a large dataset but with unknown sample variation. Thus,
their performance on a large dataset with known variation was
previously unknown. Two deep neural networks outperform



Fig. 4: Performance accuracy changes on varying inspection scenarios from aspects of manufacturers, lighting conditions, image
scales, and image sensors. The values labeled on the plot are the percentage of performance degradation of the experimental
groups comparing to the reference groups.

that the accuracies are both above 97%, which shows a
promising research direction of using deep neural networks
is a promising direction for future research, but both networks
need to be improved in their inspection capability. When it
is required to classify all collected components in the dataset
as commonly required in real-world application scenarios, an
approximate 35% performance degradation comparing to only
classify capacitors and resistors is observed in both networks.

B. Illumination Variation

The presence of varying illumination is one of the most
common factors existing between different inspection envi-
ronments and could impact the robustness of an automated
PCB visual inspection algorithm. Exp-2 is conducted on sam-
ples from the digital microscope 1.5x-20 subset and 1.5x-60
subset to evaluate the performance changes with variations on
illumination. The reference result is obtained by training and
testing on images from the same 1.5x-20 or 1.5x-60 subsets.
The illumination-varied result is obtained by training with the
1.5x-20 subset and testing on the 1.5x-60 subset.

The influence of illumination variation can be observed in
Figure ?? Exp-2. Among feature representations, illumination
variation affected the RGB color feature the most, and the
Fourier shape descriptor the least. Note, existing research
applied RGB color features images shown with uniform il-
lumination, and it no image preprocessing techniques was
applied to address this variation; it is reasonable to observe
this degradation. Meanwhile, although the shape feature has
the least degradation, the accuracy of the reference group is
very low (less than 60%). Among the two deep networks,
Inception-v3 outperforms AlexNet in Experiment-2 with a
slightly decreased classification accuracy.

C. Scale Variation

In practice, scale variation can be caused by many factors,
such as the choice of image device, the size difference of
the inspected PCBs, etc. Exp-3 is conducted on the digital
microscope subset with a fixed intensity to depict the influence
of scale variation on classification performance. The reference
group is trained and tested on the 2x-40 subset, and the scale-



varied group is trained on the 2x-40 subset and tested on the
1x-40 subset.

As shown in Figure ?? Exp-3, performance degradation is
observed when varying the scale of the test images. For a
more detailed comparison, the Fourier descriptor in Exp-e has
the most degradation (around 13%), which implies that the
scale change is impacting the shape features. A scale-invariant
algorithm is necessary for a more robust automated PCB visual
inspection. On the other hand, though all methods show an
accuracy decrease when scale is varied, the amount of decrease
is generally not as drastic compared to the decrease when
illumination is varied.

D. Image Sensor Variation

As summarized earlier, digital microscopes, DSLR cameras,
and CCD cameras have been used in previous research.
However, the effects of changing the image sensor on the
performance of automated PCB visual inspection methods
have not been extensively explored. Exp-4 is designed to
simulate application scenarios in which automated PCB visual
inspection algorithms are developed using once sensor modal-
ity, but an application scenario requires the use of another.
Since the accuracies from the baseline performance (Exp-1)
are all from the digital microscope subsets, they are used as
the reference, and the DSLR subset is used as the sensor-varied
set.

According to Figure ?? Exp-4, the RGB color feature and
combination feature are significantly impacted by changing the
image sensor, while the Fourier shape feature is less sensitive
to this variation. The trend of these performance changes
are similar to the results shown in the illumination-varied
experiment (Exp-2). One possible reason is that the intensity
profile of DSLR subset is different from the digital microscope
since the former is collected under lab ceiling light and the
latter is collected under device built-in light. Two deep neural
networks outperformed the conventional feature representation
methods in Exp-4, but improvements are required as the reason
discussed in Exp-1.

As the results show in the above four experiments, variations
in component manufacturing, illumination, scale, and the im-
age sensor all significantly affect the component classification
performance of exisitng automated PCB visual inspection
approaches. Subsequently, a dataset that incorporates these
variances is required by the research community to develop
a robust PCB inspection system.

VI. CONCLUSION

Although the high accuracy performance of automated PCB
visual inspection may be achieved with the adaptation recently
developed computer vision methods, the question remains on
how to achieve this with more reliability when using images
exhibiting dissimilar characteristics. According to the results
of the conducted experiments, it can be concluded that the
existing approaches for automated PCB visual inspection are
not sufficiently addressing variations in PCB images that are
likely to be encountered in real-life application scenarios such

as changes in illumination, scale, and image sensor. If such
variability is not accounted for, this could result in the missed
detection of security/hardware threats. To provide a more
realistic representation of these challenges, the FICS-PCB
dataset is proposed to allow researchers the opportunity to test
and compare methods against a standard to better understand
the benefits and limitations of existing and novel algorithms.

Future work will involve the continued expansion of the
FICS-PCB dataset to include additional images of current PCB
technology. As in the current version of the proposed dataset,
variances in scale, illumination, and sensor modality will still
be included. Also, the dataset will incorporate other modalities
such as terahertz and 3D imaging for the development of multi-
modal methods. Detailed image ground-truth information will
be included in later versions of the proposed dataset to
assist researchers with the evaluation of segmentation-based
algorithms. The currently proposed and expanded version
of the dataset will prove invaluable to the computer vision
research community in addressing the problem of automated
PCB visual inspection.
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