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Abstract

Given a vectorial function F : Fn
2 7→ Fm

2 , the indicator 1GF of its graph
GF = {(x, F (x));x ∈ Fn

2 } allows to express the algebraic degree of F in a
simple way. Exploiting the formula, obtained in a previous paper, for the
graph indicator of a composite function G ◦ F , that involves only a sum
of products of 1GF and 1GG , we deduce bounds on the algebraic degree
of G ◦ F , whose efficiency comes from the fact that the algebraic degree
of the product of two Boolean functions is bounded above by the sum of
their algebraic degrees, while for a composition, it is bounded above by
their product. One of these bounds, that depends on the algebraic degrees
of G and 1GF , is tight, general, simple, and most often efficient (for the
case where it is not efficient, we give an improved bound, that is a little
more complex). As far as we know, it is the first efficient upper bound
ever found, that works without any condition on the vectorial functions.
It provides a new criterion for the choice of S-boxes in block ciphers. It
implies as a corollary a known bound assuming the divisibility of the Walsh
transform values by a power of 2. It gives a better view why this latter
bound works. Our results nicely generalize to more than two functions.
When F is a permutation, our expression of the algebraic degree of G ◦F
simplifies into a formula involving the algebraic degrees of the products
of a coordinate function of G and coordinate functions of F−1. This
implies and improves another known bound showing that the algebraic
degree of F−1 has more impact on that of G ◦ F than that of F itself,
and providing a criterion for the choice of S-boxes in block ciphers when
they are permutations: both algebraic degrees of F and F−1 should be as
large a possible. Our approach by graph indicators gives an explanation
to this interesting fact. Our results include all the known efficient bounds
as particular cases, and clarify the reasons why they work. We also deduce
the exact expression of the algebraic degree of the composition of three
functions, leading to a bound that is much more efficient than what we
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obtain by applying the known bound two times. We also obtain two
bounds on the algebraic degree of G ◦ F , given the divisibility by powers
of 2 of coefficients in the numerical normal forms of component functions
of F−1, and their sums with a coordinate function of G. We study their
consequences and generalizations.

Index Terms: vectorial Boolean function, composition, algebraic degree.

1 Introduction

Vectorial functions (that is, for some positive integers n and m, mappings from
Fn2 to Fm2 , that we shall also call (n,m)-functions) play a central role in stream
ciphers (as filter functions) and in block ciphers (as substitution boxes; in brief,
S-boxes). Their role is to provide confusion, see [14]. They also play a role in
coding theory, see [13].
When m = 1, we speak of Boolean functions. In the model of block cipher called
substitution-permutation network (SPN), we have m = n and these vectorial
functions should be permutations (i.e. bijective).
All known block ciphers are the iterations, called rounds, of a transformation
depending on a round key, acting on blocks of plaintext, and including at least
one well chosen nonlinear vectorial function (S-box) in its design. Such iter-
ations make that the output of the i-th round is the composition of vectorial
functions, among which at least i are non-affine.
Every Boolean (resp. vectorial) function has a unique representation as a poly-
nomial in F2[x1, . . . , xn]/(x21 − x1, . . . , x

2
n − xn) (resp. Fm2 [x1, . . . , xn]/(x21 −

x1, . . . , x
2
n − xn)), called its algebraic normal form (ANF), that we shall define

more in detail in the next section. The degree of this unique polynomial in
n variables is called the algebraic degree of the function; we shall denote the
algebraic degree of a function F by dalg(F ). It is important for the designer of
a block cipher that the algebraic degree of the output of a series of rounds has
an algebraic degree as large as possible, since otherwise, distinguishing attacks
may be possible.
Several representations of a vectorial function are possible: the ANF of the
function is not the only option, the ANF of the indicator of the graph GF =
{(x, F (x)); x ∈ Fn2} of F is a second possible one. This latter representation,
already studied in [6], will play an important role in the present paper. Note
that the graph is at the origin of an important notion of equivalence known
for vectorial functions, called the CCZ equivalence [8, 2]: two (n,m)-functions
are called CCZ equivalent if their graphs correspond to each other by an affine
permutation. This equivalence is the most general known which preserves the
two main parameters of vectorial functions quantifying their resistance to the
main attacks (the differential attack and the linear attack): their differential
uniformity and their nonlinearity (we refer to [5] and to the more recent [7] for
more details). The CCZ equivalence does not preserve the algebraic degree (we
will say more about that in Subsection 5.2.3).
Every Boolean function has also a unique representation as a polynomial in
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Z[x1, . . . , xn]/(x21 − x1, . . . , x
2
n − xn) called its numerical normal form (NNF)

[9]. The degree of this unique polynomial in n variables is called the nu-
merical degree of the function and is related to the Walsh transform values
Wf (a) =

∑
x∈Fn2

(−1)f(x)+a·x (associated to some inner product “·” in Fn2 ), see

more in Section 2.
It has been shown in [1] that, when F is a permutation, the algebraic degree of
the compositional inverse F−1 of F plays an important role with respect to the
algebraic degree of the composition of F by other functions: for every function
G, the algebraic degree dalg(G ◦F ) of the composite function G ◦F is bounded

above by n−
⌊
n−1−dalg(G)
dalg(F−1)

⌋
. This shows that the choice of bijective S-boxes in

block ciphers should try to maximize both their algebraic degree and the alge-
braic degree of their compositional inverse. The proof in [1] of this important
result has some technicality and does not provide a quite simple view of the
reasons why this happens. Moreover, this bound applied for the composition of
more than two functions seems rather weak and there is then room for improve-
ment. It is also shown in [3] that if the Walsh transform values of F are divisible
by 2k, then we have dalg(G◦F ) ≤ n−k+dalg(G) for every G. This latter result
is rather specific, and its proof gives the impression that some property is hidden
behind the stage. It would then be good to find a general bound, which would
give a global view on these two particular bounds, and would clarify them, and
possibly improve upon them. It would also be important to be able to handle
more simply and more efficiently the compositions of more than two functions.
In the present paper, we exploit some of the results of [6], to bound the algebraic
degree of composite vectorial functions. We consider the ANF of the indicator
(i.e. the characteristic function) 1GF of the graph GF = {(x, F (x)); x ∈ Fn2} of
any vectorial function F , and we relate the algebraic degree of F to the degree
of a part of the ANF of this graph indicator. This provides an upper bound on
dalg(F ) by means of dalg(1GF ), which is often weak but not always since it is
tight. We observed in [6] that the graph indicator of a composite function G◦F
can be expressed by means of 1GF and 1GG , with a formula involving additions
and multiplications only (no composition). This provides relations between the
coordinate functions of G ◦ F and those of F and G, and it leads to a bound
on dalg(G ◦ F ) which is most often better than the naive (or trivial) bound
dalg(G ◦ F ) ≤ (dalg(F )) (dalg(G)) (which comes from the observation that,
when calculating the ANF of G ◦ F by substituting the coordinate functions of
F for the input coordinates to G, at most dalg(G) coordinate functions of F are
multiplied). This second bound is tight as well, but still often weak. We derive
then an expression of dalg(G ◦ F ) leading to a third and much better upper
bound (see Theorem 1) by the algebraic degree of 1GF added with the algebraic
degree of G, minus the number of variables of G (i.e. of output bits of F ). This
latter bound is general, tight and simple, and it is efficient (we show that it can
be much stronger than the bound of [1], in some cases). In fact, it seems to be
the first time that an efficient upper bound on the algebraic degree of composite
functions is found with no condition on the functions (the naive bound has also
this latter property, but it is most often inefficient). It has also the interest of
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involving parameters of F and G separately and provides a new criterion for the
choice of S-boxes: the algebraic degree of the graph indicator minus the number
of output bits should be large enough. Our bound directly implies the bound
of [3] on those vectorial functions whose Walsh transform values are divisible
by some power of 2 (which is then a particular case of a much more general
bound), thanks to the well-know result that if all the Fourier-Hadamard trans-
form values of a Boolean function are divisible by 2k then its algebraic degree is
bounded above by the number of its variables minus k. Moreover, we generalize
this bound to the composition of more than two functions.
It is shown in [6] that, when F is a permutation, the expression of 1GG◦F sim-
plifies. We show that this leads to an exact expression of dalg(G ◦ F ) by means
of the algebraic degrees of the products of one coordinate function of G and
of coordinate functions of F−1. This exact value leads to an upper bound on
dalg(G◦F ) which is a slightly stronger bound than the one obtained in [1], that
we recalled above, and it provides an alternative and more enlightening proof.
All this clarifies the reasons why the algebraic degree of F−1 plays a stronger
role than that of F itself, and it strengthens the observations of [1]. We gener-
alize this bound to the composition of more than two functions.
We also obtain an upper bound on dalg(G ◦F ) by means of the divisibility by a
power of 2 of the coefficients of the highest degree term in the numerical normal
forms of component functions of F−1, and their sums with one coordinate func-
tion of G. The coefficients of numerical normal forms being related to values
of Walsh transforms, this bound and the bound of [3] have some similarity; we
show that they are neither comparable from the viewpoint of their hypotheses,
nor from the viewpoint of the limits they impose to the algebraic degree; they are
then complementary. We prove a second bound, dealing with the coefficients of
the numerical normal forms of component functions of F−1. This latter bound
proves again the bound of [3]. Its hypothesis includes that F is a permutation
but, except for this restriction, is lighter than the hypothesis of the bound of
[3]. It is then complementary to the bound of [3] as well. We finally study the
extensions of these bounds to the composition of three functions.

2 Preliminaries

In this paper, some representations of Boolean functions will involve sums in F2,
and some others will involve sums in Z (i.e. not modulo 2). We shall then need
to distinguish between the sums in Z, that we shall denote by +, and the sums
modulo 2, that we shall denote by ⊕. However, instead of denoting the addition
in Fn2 by ⊕, we shall denote it by +, because Fn2 will sometimes be identified
with the field F2n , in which the addition is traditionally denoted by +. This
will create no problem of confusion in the reading. We denote by wH(u) the
Hamming weight of an element u of Fn2 . The functions from Fn2 to Fm2 are called
(n,m)-functions. Such function F being given, the n-variable Boolean functions
f1, . . . , fm defined at every x ∈ Fn2 by F (x) = (f1(x), . . . , fm(x)), are called the
coordinate functions of F . When the numbers m and n are not specified, (n,m)-
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functions are called vectorial Boolean functions or simply vectorial functions.
Vectorial functions (in practice, (n,m)-functions where n and m are most often
even, for reasons of efficiency, and are between 4 and 8 for the same reason)
play a central role in the security of block ciphers, where they provide the
necessary confusion (see [14]) and are called in such framework substitution
boxes (S-boxes). An S-box needs to allow resistance to the two main known
attacks and their variants: the differential attack (for which the S-boxes need
to have low differential uniformity, see below) and the linear attack (for which
they need to have large nonlinearity, see below as well). Such S-boxes are in
general concatenated in substitution layers. The linear combinations over F2,
with non-all-zero coefficients, of the coordinate functions of a vectorial function
are called its component functions and play a major role in the security of the
block cipher in which it is involved; the nonlinearity of a function is the minimum
nonlinearity of its components (see below).
The whole cipher, made of the iteration of rounds that are the combinations
of S-boxes, diffusion layers (whose role is to spread the influence of every input
bit) and round-key additions, must ensure sufficient complexity after several
rounds. In particular, the algebraic degree (see the definition below) of the
global vectorial function whose input is the plaintext (or the private key, or
both) and whose output is given by the r-th round, must be large enough as
soon as r is large enough.
For m = 1, we call support of a Boolean function1 f the set supp(f) = {x ∈
Fn2 ; f(x) = 1} (and Hamming weight the size of this support), while the support
of a vector x ∈ Fn2 equals {i ∈ {1, . . . , n};xi = 1}. We summarize below the
definitions and properties that shall be needed in the proofs of this paper, and
we refer to [4, 5, 7] for more details.

The truth-table of a Boolean function and the look-up table of a vectorial
function, that is, the table of all pairs of an element of Fn2 (on which an ordering
is chosen) and of the value of the function at this input, gives some information
on their cryptographic properties (like the Hamming weight in the former case
and the balancedness in the latter) but not enough. The already mentioned
algebraic normal form (ANF), which is the unique n-variable multivariate poly-
nomial representation in F2[x1, . . . , xn]/(x21 + x1, . . . , x

2
n + xn) in the case of

Boolean functions and in Fm2 [x1, . . . , xn]/(x21 + x1, . . . , x
2
n + xn) in the case of

(n,m)-functions, allows defining an important parameter, the algebraic degree.
The ANF writes:

f(x) =
⊕

I⊆{1,...,n}

aI

(∏
i∈I

xi

)
=

⊕
I⊆{1,...,n}

aI x
I ; aI ∈ F2, (1)

F (x) =
∑

I⊆{1,...,n}

aI

(∏
i∈I

xi

)
=

∑
I⊆{1,...,n}

aI x
I ; aI ∈ Fm2 , (2)

1We shall use lowercase letters for denoting Boolean functions and capital letters to denote
multi-output vectorial functions.
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where xI =
∏
i∈I xi is called a monomial. The values of the function are given

by the binary Möbius transform of the coefficients of the ANF:

f(x) =
⊕

I⊆supp(x)

aI , (3)

where supp(x) denotes the support of x. Conversely, the coefficients of the ANF
are given by the binary Möbius transform of the values of the function:

∀I ⊆ {1, . . . , n}, aI =
⊕

x∈Fn2 ; supp(x)⊆I

f(x). (4)

The same formulas are valid for vectorial functions.
The degree of the ANF shall be denoted by dalg(f) (resp. dalg(F )) and is called
the algebraic degree of the function: dalg(f) = max{|I|; aI 6= 0}, dalg(F ) =
max{|I|; aI 6= (0, . . . , 0)}, where |I| denotes the size of I (with the convention
that the zero function has algebraic degree 0, so that the algebraic degree can
be invariant under translation of the output). This makes sense thanks to the
existence and uniqueness of the ANF.
Note that the algebraic degree of an (n,m)-function equals the maximal algebraic
degree of the coordinate functions of F and also equals the maximal algebraic
degree of the component functions. It is an affine invariant (that is, its value
does not change when we compose F , on the right or on the left, by an affine
automorphism). According to Relation (4), we have:

Proposition 1 For every n-variable Boolean function f , we have dalg(f) = n
if and only if wH(f) is odd. More generally, for every (n, n)-function F , we
have dalg(F ) = n if and only if

∑
x∈Fn2

F (x) 6= (0, . . . , 0).

There is a representation with uniqueness of Boolean functions similar to the
ANF but over Z instead of being over F2, which is called the numerical normal
form (NNF) and will be a useful tool for proving some bounds below. It rep-
resents Boolean functions by elements of the quotient ring Z [x1, . . . , xn]/(x21 −
x1, . . . , x

2
n − xn):

f(x) =
∑

I⊆{1,...,n}

λI

(∏
i∈I

xi

)
=

∑
I⊆{1,...,n}

λI x
I ; λI ∈ Z, (5)

where the addition is in Z. The NNF of f can be directly deduced from its ANF
since we have:

f(x) =
⊕

I⊆{1,...,n}

aI x
I ⇐⇒ (−1)f(x) =

∏
I⊆{1,...,n}

(−1)aI x
I

⇐⇒ 1− 2 f(x) =
∏

I⊆{1,...,n}

(1− 2 aI x
I) (6)

and expanding (6) gives the NNF of f(x).
We call the degree of the NNF of a Boolean function f its numerical degree
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and denote it by dnum(f). Since the ANF of a Boolean function is the mod
2 version of its NNF, the numerical degree is always bounded below by the
algebraic degree (and determining all the Boolean functions for which these two
degrees are equal is an open problem).
Applying Relation (6) when f(x) is a linear function and with Boolean functions
f1, . . . , fk instead of variables, we deduce the formula:

k⊕
i=1

fi =
∑

∅6=I⊆{1,...,k}

(−2)|I|−1
∏
i∈I

fi. (7)

Inverting Relation (7) is obtained by applying it to every J ⊆ {1, . . . , k} in the
place of {1, . . . , k} and making linear combinations of the resulting equalities so
as to eliminate all products of less than k functions. This provides an expression
of the product of the fi’s by means of their linear combinations in BFn, which
will play a role in the sequel:

l∏
i=1

fi =
1

2l−1

∑
∅6=J⊆{1,...,l}

(−1)|J|−1

(⊕
i∈J

fi

)
. (8)

Note that this relation can be easily checked by starting from the right-hand
side of (8), applying (7) to

⊕
i∈J fi (instead of

⊕k
i=1 fi), and observing that,

for every ∅ 6= I ⊆ {1, . . . , k},
∑
J; I⊆J⊆{1,...,l}(−1)|J|−1 equals (−1)l−1 if I =

{1, . . . , l} and is null otherwise.
Relation (8) has been originally obtained in [3], but it was proved in a more
complex (and purely calculative) way.
Recall that Fn2 can be endowed with the structure of the finite field F2n , since
the latter is an n-dimensional vector space over F2. Any (n, n)-function, now
viewed as a function from F2n to itself, admits a unique representation as a
univariate polynomial over F2n in one variable and of (univariate) degree at
most 2n − 1:

F (x) =

2n−1∑
i=0

δix
i; δi ∈ F2n . (9)

Note that this works more generally for any (n,m)-function where m divides
n, since such function is a particular case of an (n, n)-function, because F2m

is a subfield of F2n (note that this includes the case m = 1). The alge-
braic degree of F can be directly read on this representation as well; it equals
maxj=0,...,2n−1; δj 6=0 w2(j), where w2(j) is the Hamming weight of the binary
expansion of j (see e.g. [5, 7]).
For n even, an (n, n/2)-function (or more generally an (n,m)-function where m
divides n/2) can also be viewed as a function from F2

2n/2
to F2n/2 and repre-

sented in bivariate form:
∑

0≤i,j≤2n/2−1 ai,jx
iyj , where ai,j ∈ F2n/2 .

The Fourier-Hadamard transform of the functions ϕ from Fn2 to R (called
pseudo-Boolean functions) is the R-linear mapping which maps ϕ to the func-
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tion ϕ̂ defined on Fn2 by:

ϕ̂(u) =
∑
x∈Fn2

ϕ(x) (−1)u·x, (10)

where “·” is some chosen inner product in Fn2 . Given an n-variable Boolean func-
tion f , we have two associated transforms: the Fourier-Hadamard transform of f
where f is then viewed as a function from Fn2 to {0, 1} and the Walsh transform
of f which is the Fourier-Hadamard transform of the sign function (−1)f :

Wf (u) =
∑
x∈Fn2

(−1)f(x)⊕u·x.

We have:
Wf = 2n δ0 − 2f̂ , (11)

where δ0 denotes the Dirac (or Kronecker) symbol, i.e. the indicator of the
singleton {(0, . . . , 0)}, defined by δ0(u) = 1 if u is the null vector and δ0(u) = 0
otherwise.
The following result (see e.g. [4, 7]) will play a role in the sequel:

Proposition 2 Let f be an n-variable Boolean function (n ≥ 2), and let 1 ≤
l ≤ n. Assume that the Walsh transform values of f are all divisible by 2l (i.e.,
according to Relation (11), that its Fourier-Hadamard transform takes values
divisible by 2l−1). Then f has algebraic degree at most n− l + 1.

There is (see e.g. [4, 7] as well), a direct relationship between the values of the
Walsh transform of a Boolean function and the coefficients of its NNF: for every
u 6= (0, . . . , 0), we have:

Wf (u) = 2(−1)wH(u)+1
∑

I⊆{1,...,n}; supp(u)⊆I

2n−|I|λI , (12)

and, for I 6= ∅, we have:

λI = 2−n(−2)|I|−1
∑

u∈Fn2 ; I⊆supp(u)

Wf (u). (13)

This implies that f has numerical degree at most d if and only if Wf (u) = 0 for
every vector u of Hamming weight strictly larger than d.

For vectorial functions, we define the Walsh transform as follows:

WF (u, v) = Wv·F (u) =
∑
x∈Fn2

(−1)v·F (x)⊕u·x; u ∈ Fn2 , v ∈ Fm2 .

In fact, the Walsh transform of F equals the Fourier-Hadamard transform of
1GF . Applying Proposition 2 to 1GF , we have then that, if the Walsh transform
values of F are all divisible by 2l, then 1GF has algebraic degree at most n+m−l.
This latter property is stronger than Proposition 2 applied to the coordinate
functions of F (or to its component functions), thanks to a bound that we shall
obtain below in (17).
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3 State of the art on the algebraic degree of
composite functions

There does not exist a general upper bound, except the naive (or trivial) bound
seen in introduction (which is inefficient, except in some particular cases, such
as when one of the functions is affine).
Two bounds exist in restricted frameworks.
The first bound, shown in [3], needs a very strong hypothesis for being ef-
ficient: if the Walsh transform WF has all its values divisible by 2l, then
dalg(G ◦ F ) ≤ n − l + dalg(G). We shall call this bound the Canteaut-Videau
bound. Because of its rather restrictive assumption, it is more useful as an
indication, for cryptographers, on those S-boxes which should be avoided in a
block cipher (like almost bent functions, see e.g. [5, 7]).
The second bound, shown in [1], does not apply to all functions either, but its
assumption is always satisfied when dealing with the model of block ciphers
called Substitution-Permutation networks: for every (n, n)-permutation F and

any (n, r)-function G, we have dalg(G ◦ F ) ≤ n −
⌊
n−1−dalg(G)
dalg(F−1)

⌋
. This upper

bound, that we shall call the Boura-Canteaut bound, shows that the algebraic
degree of the computational inverse of a permutation plays a role in the alge-
braic degree of the iterated rounds implementing it. This is a precious indica-
tion for the designer of a block cipher. Let us then recall how it is proved in
[1]. Firstly, the authors show by calculation that, for every (n, n)-permutation
F and every integers k, l, the maximal algebraic degree of the product of at

most k coordinate functions of F , that we shall denote by d
[k]
alg(F ), satisfies:

d
[k]
alg(F ) < n − l ⇐⇒ d

[l]
alg(F

−1) < n − k (we shall see that this can be ob-
tained as a direct consequence of Relation (21) below, which will illustrate how
graph indicators allow to simply prove and explain properties, that seem ob-

scure without them). Secondly, the basic bound dalg(G ◦ F ) ≤ d
[dalg(G)]
alg (F )

implies that dalg(G ◦F ) ≤ n−
⌊
n−1−dalg(G)
dalg(F−1)

⌋
, by application of the equivalence

d
[dalg(G)]
alg (F ) < n− l⇐⇒ d

[l]
alg(F

−1) < n−dalg(G) with l =
⌊
n−1−dalg(G)
dalg(F−1)

⌋
, using

that d
[l]
alg(F

−1) ≤ l dalg(F−1).
This proof does not give much insight on the reasons why this bound works
(except for the important fact that it proves it, of course). Moreover, the bound
is not very efficient when applying it iteratively, even with just one iteration
(as we shall show in Subsection 5.2.4) and this is a limitation to its practical
impact. It would then be useful to find an approach which would also apply
efficiently to the composition of more than two functions, and this requires to
understand what structure and properties are behind the bound.
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4 ANF and bivariate representation of the graph
indicator of a vectorial function

Denoting by 1GF (x, y) the indicator (i.e. the characteristic function) of the graph
GF = {(x, F (x)); x ∈ Fn2} of an (n,m)-function F , whose value is 1 if F (x) = y
and 0 otherwise, we have:

Proposition 3 [6] Let F be any (n,m)-function and let f1, . . . , fm be its coor-
dinate functions. Denoting {1, . . . ,m} \ J by Jc, we have:

1GF (x, y) =

m∏
j=1

(yj ⊕ fj(x)⊕ 1) =
⊕

J⊆{1,...,m}

ϕF,J(x)yJ ,

where
ϕF,J(x) =

∏
j∈Jc

(fj(x)⊕ 1). (14)

This is easily proved by observing that, for every y, y′ ∈ Fm2 , we have y = y′ if
and only if

∏m
j=1(yj ⊕ y′j ⊕ 1) = 1, and applying it with y′ = F (x). We deduce

then:

Corollary 1 Let F be any (n,m)-function, then with the notation of Proposi-
tion 3, we have:

dalg(1GF ) = max
J⊆{1,...,m}

(
dalg

(
ϕF,J(x)

)
+ |J |

)
, (15)

dalg(F ) = max
|J|=m−1

dalg(ϕF,J(x)) (16)

≤ dalg(1GF )− (m− 1). (17)

Relations (15), (16) and (17) are valid for every vectorial function F thanks to
our convention that the zero Boolean function has same algebraic degree 0 as
the constant function 1.
The upper bound in (17) is tight. For instance, it is an equality when F is affine,
since the graph indicator has then algebraic degree m. It is also achieved with
equality when F is the multiplicative inverse function, that is, has univariate
form F (x) = x2

n−2, x ∈ F2n , since dalg(F ) equals then n−1, and we know from

[6] that 1GF (x, y) equals then x2
n−1 + y2

n−1 +
∑2n−2
j=0 (xy)j , and has algebraic

degree 2n− 2.

The following result, that is a straightforward consequence of Relation (15),
is not very strong, but it may be useful in some particular cases:

Corollary 2 For every (n,m)-function F such that, for each j = 1, . . . ,m,
the j-th coordinate function fj of F has algebraic degree at least 1, we have
dalg(1GF ) ≤

∑m
j=1 dalg(fj).

10



If F (x) is given in univariate representation, then we have, for every x, y ∈ F2n ,
that

1GF (x, y) = 1 + (y + F (x))2
n−1 = 1 +

2n−1∑
j=0

y2
n−1−j(F (x))j , (18)

and then we have:

dalg(1GF ) = max
0≤j≤2n−1

[
dalg

(
(F (x))j

)
+ n− w2(j)

]
.

4.1 Case where F is bijective

4.1.1 Representation by the ANF

If F is a permutation (assuming m = n), then we have 1GF (x, y) = 1GF−1 (y, x),

where F−1 is the compositional inverse of F , and thus, as observed in [6], if we
use the alternative decomposition:

1GF (x, y) =
⊕

I⊆{1,...,n}

ψF,I(y)xI , (19)

(that is valid for every function) we have, when F is bijective:

ψF,I(y) =
∏

i∈{1,...,n}\I

(f ′i(y)⊕ 1), (20)

where f ′i is the i-th coordinate function of F−1.
We have then the following relation between the coordinate functions of F and
F−1:⊕
J⊆{1,...,m}

yJ
∏

j∈{1,...,m}\J

(fj(x)⊕ 1) =
⊕

I⊆{1,...,n}

xI
∏

i∈{1,...,n}\I

(f ′i(y)⊕ 1). (21)

This directly implies that d
[k]
alg(F ) < n−l⇐⇒ d

[l]
alg(F

−1) < n−k, by considering
I such that |I| = n− l and J such that |J | = n− k, since

∏
j∈{1,...,n}\J(fj(x)⊕

1) =
⊕

J′⊆{1,...,n}\J
∏
j∈J′ fj(x) has algebraic degree at most d

[n−|J|]
alg (F ).

4.1.2 Representation in bivariate form

As already observed in [6], we have:

1GF (x, y) = 1GF−1 (y, x) = 1 +

2n−1∑
j=0

x2
n−1−j(F−1(y))j . (22)

11



5 Related bounds on the algebraic degree of com-
posite functions

In this section, we shall first recall what is known on the graph indicators of
composite functionsG◦F . Then in Subsection 5.1, we shall derive simple bounds
on the algebraic degree of G◦F for general functions, by means of the algebraic
degrees of the graph indicators of the functions and of those of the functions
themselves. One of these bounds is very efficient. It is deduced from an exact
expression of dalg(G ◦F ) that we shall derive and which has its own interest. It
implies the Canteaut-Videau bound as a simple corollary. We shall generalize
these results to three functions. Subsequently, in Subsection 5.2, we shall study
the case where F is a permutation and prove a bound which slightly improves
upon the Boura-Canteaut bound. Our approach will give insight on the reasons
why this bound is true. We will generalize the approach to the compositions
of three functions and obtain bounds more efficient than the iteration of the
Boura-Canteaut bound and its slight improvement.
We start with the following formula from [6], expressing the graph indicator
of G ◦ F by means of those over F and G, and involving only additions and
multiplications: for every (n,m)-function F and every (m, r)-function G, we
have:

1GG◦F (x, z) =
∑
y∈Fm2

1GF (x, y)1GG(y, z) =
⊕
y∈Fm2

1GF (x, y)1GG(y, z). (23)

According to Relation (23) and to Proposition 3, and using Relation (19) and
Proposition 1, we have then:

1GG◦F (x, z) =
⊕

I⊆{1,...,n}
K⊆{1,...,r}

xIzK

⊕
y∈Fn2

(
ψF,I(y)ϕG,K(y)

)
=

⊕
I⊆{1,...,n},K⊆{1,...,r};

dalg(ψF,I (y)
∏
k∈Kc (gk⊕1)(y))=m

xIzK , (24)

where Kc = {1, . . . , r} \K and the gk’s are the coordinate functions of G. This
implies:

dalg (1GG◦F ) =

max

{
|I|+ |K|; I ⊆ {1, . . . , n}

K ⊆ {1, . . . , r} ; dalg

(
ψF,I(y)

∏
k∈Kc

(gk ⊕ 1)

)
= m

}
. (25)

Relation (25) provides an efficient information for deriving bounds on the al-
gebraic degree, because it deals with a multiplication instead of a composition,
and the algebraic degree of the product of two Boolean functions is bounded
above by the sum of their algebraic degrees while the algebraic degree of the
composition of two vectorial functions is bounded above by the product of their
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algebraic degrees.
For being able to exploit Relation (25), we need to have an expression of ψF,I(y).
A first observation is that, according to Relation (4) applied to 1GF (x, y) =⊕

I⊆{1,...,n} ψF,I(y)xI , we have:

ψF,I(y) =
⊕

x∈Fn2 ; supp(x)⊆I

1GF (x, y) = |F−1(y) ∩ EI | [mod 2], (26)

where EI = {x ∈ Fn2 ; supp(x) ⊆ I}. This relation has the interest of being
completely general. But when F is bijective, we shall derive a more exploitable
one. This is why we shall treat the case where F is a permutation apart.

5.1 Algebraic degree of composite functions in general

5.1.1 Case of two functions

We observe first that Relation (23) implies that:

dalg(1GG◦F ) ≤ dalg(1GF ) + dalg(1GG).

Note the similarity with the bound dalg(fg) ≤ dalg(f) + dalg(g) on general
Boolean functions. But this latter bound is tight while the former is not, except
in some extreme cases, and we have dalg(1GF )+dalg(1GG) ≥ m+r, which implies
that m needs to be small enough, for the bound to be useful. This comes from
the fact that the Hamming weights of the exponents of y are taken into account
when calculating dalg(1GF ) and dalg(1GG), while they are not when calculating
the algebraic degree of the function (x, z) 7→

⊕
y∈Fm2

1GF (x, y)1GG(y, z).

We deduce by using (17) that, for every (n,m)-function F and every (m, r)-
function G, we have:

dalg(G ◦ F ) ≤ dalg(1GF ) + dalg(1GG)− (r − 1). (27)

Relation (27) is often better than the naive (or trivial) bound dalg(G ◦ F ) ≤
(dalg(F )) (dalg(G)), but it is also most often too weak for giving any information
(when its right hand side term is larger than n).

We shall show now that we can obtain a much better bound, after deriving
an exact expression of dalg(G ◦ F ). Relation (24), and Relation (16) applied to
G ◦ F instead of F , imply:

dalg(G ◦ F ) =

max
k∈{1,...,r}

(max {|I|; I ⊆ {1, . . . , n}; dalg ((gk ⊕ 1)ψF,I) = m}) . (28)

Remark. According to Proposition 1 and to Relation (26), and because of the
equality

⋃
y∈g−1

k (0) F
−1(y) = F−1(g−1k (0)), we have then:

dalg(G ◦ F ) = max
k∈{1,...,r}

(
max

{
|I|; I ⊆ {1, . . . , n}; |F−1(g−1k (0)) ∩ EI | odd

})
,

13



where EI is defined after Relation (26), and this is also what gives Relation (4)
applied to G ◦ F . 2

Relation (28) leads to the following bound:

Theorem 1 For every (n,m)-function F and every (m, r)-function G, we have:

dalg(G ◦ F ) ≤ dalg(1GF ) + dalg(G)−m.

Proof. The equality 1GF (x, y) =
⊕

I⊆{1,...,n} ψF,I(y)xI implies that, for ev-

ery I ⊆ {1, . . . , n}, we have dalg(ψF,I) ≤ dalg(1GF ) − |I|. The condition
dalg ((gk ⊕ 1)ψF,I) = m in Relation (28) implies then that m ≤ dalg(1GF ) −
|I| + dalg(gk), that is, |I| ≤ dalg(1GF ) + dalg(gk) −m. Relation (28) completes
the proof. 2

Strengths and weaknesses of the bound of Theorem 1:
1. The bound is simple and general. Thanks to (17) applied to G, with r

instead of m, it is always much better than the bound in (27). Let us study its
tightness. It is easily seen that it is achieved with equality when F is an affine
automorphism, since dalg(1GF ) equals then n. It is also achieved with equality
when F is the multiplicative inverse function and G is an affine automorphism,
since we have seen that dalg(1GF ) equals then 2n − 2 and since dalg(F ) equals
n − 1. Let us give now an example where none of the functions has algebraic
degree 1: we have seen in [6], when studying the so-called switching method,
that taking an (n,m)-function F = (f1, . . . , fm) and an n-variable Boolean
function f , and denoting Ff = (f1, . . . , fm−1, fm ⊕ f), F ′ = (f1, . . . , fm−1) and
y′ = (y1, . . . , ym−1), we have 1GFf (x, y) = 1GF (x, y) + f(x) 1GF ′ (x, y

′). If F is

affine and f is non-affine then dalg(1GFf ) = dalg(f)+m−1. Note thatG◦Ff (x) =

G◦F (x)+f(x)D(0,...,0,1)G(x). If dalg(D(0,...,0,1)G) = dalg(G)−1, then for every
f such that dalg(f(x)D(0,...,0,1)G(x)) = dalg(f) + dalg(D(0,...,0,1)G), the bound
of Theorem 1 for G ◦ Ff is an equality.

2. The bound, that has also the interest of depending on F and G separately,
provides an important tool for designers when they choose S-boxes supposed to
increase the algebraic degree of functions by composition:

Function F must have a graph indicator of algebraic degree significantly larger
than m (more precisely, as close to n+m− 1 as possible), for allowing that

G ◦ F has algebraic degree significantly larger than G.

Remark. It is interesting to see that the multiplicative inverse function, which
has been chosen as S-box in the AES (see [10]), fulfills this criterion, since we
have seen that its graph indicator has algebraic degree 2n−2. We need however
to moderate this observation: it is easily seen with Relation (17) that, for every
(n,m)-function F , we have dalg(F ) +m− 1 ≤ dalg(1GF ) ≤ n+m− 1 (the right
hand-side inequality coming from the fact that 1GF has even Hamming weight),
and for every (n,m)-function F of algebraic degree at most n − 1, we have
dalg(F ) + m − 1 ≤ dalg(1GF ) ≤ n + m − 2 (since the coefficients of x{1,...,n}yJ
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and xIy{1,...,m} equal 0, for every I, J such that |I| ≥ n − 1 and |J | ≥ m − 1),
and any (n,m)-function of algebraic degree n − 1, such as the multiplicative
inverse function, satisfies then dalg(1GF ) = n+m− 2. 2

3. The bound has also the advantage of being valid without the assumption
that n = m. In the case n = m, we shall derive, in the particular case where F is
bijective, a bound that does not involve dalg(1GF ), that may be hard to calculate
in some cases, but only dalg(F

−1) and dalg(G), and that is slightly stronger
than the Boura-Canteaut bound. Before that, let us illustrate with an example
how the two bounds are evaluated, and compare their values. Let us take for
instance n = m odd, x ∈ F2n , F (x) = x2

i+1, with i < n/2 and gcd(i, n) = 1
(this power function is called a Gold function; under these conditions, it is a

permutation). The graph indicator of F equals 1GF (x, y) = 1+(y+x2
i+1)2

n−1 =

1+
∑2n−1
j=0 y2

n−1−j xj(2
i+1) and we have then dalg(1GF ) = max0≤j≤2n−1(w2(2n−

1− j)+w2(j(2i+1))) = max0≤j≤2n−1(n−w2(j)+w2(j(2i+1))). The bound of
Theorem 1 gives then dalg(G◦F ) ≤ max0≤j≤2n−1(w2(j(2i+1))−w2(j))+dalg(G)
and the Boura-Canteaut bound gives (since the algebraic degree of F−1 equals
n+1
2 as shown in [11]) dalg(G ◦ F ) ≤ n−

⌊
n−1−dalg(G)
dalg(F−1)

⌋
= n−

⌊
2(n−1−dalg(G))

n+1

⌋
,

which equals n or n − 1, while the bound of Theorem 1 is much better. For

instance, taking r = n and G(x) = x2
i′+1, with i 6= i′ < n/2, we have checked

for small values of n that, in average, the value of the bound of Theorem 1 is
about half the value of the Boura-Canteaut bound.

4. However, there are some cases where the bound of Theorem 1 is weak
(which is probably inevitable for a bound valid without any constraint). Take
for instance for F the multiplicative inverse function, and for G a power func-
tion G(x) = xd. Then G ◦ F (x) = x2

n−1−d has algebraic degree n − w2(d) =
n − dalg(G), while the bound gives dalg(G ◦ F ) ≤ n − 2 + dalg(G). The bound
is then efficient only when G has low algebraic degree. There are even some
extreme cases where the bound is weaker than the naive bound. Take for in-
stance G affine. Then the naive bound writes dalg(G ◦ F ) ≤ dalg(F ) (and if G
is a permutation, there is equality) but our bound may be far from this value,
because 1GF may have algebraic degree much larger than m+ dalg(F )− 1.

Improved bound, also efficient when G is affine (and exact when
G is an affine permutation):
The next result shows that, in the bound of Theorem 1, the algebraic degree of
1GF may be replaced by that of a function whose ANF is a part of 1GF (x, y).

Theorem 2 For every (n,m)-function F and every (m, r)-function G, let the
functions ϕF,J be defined by Relation (14) and let

hF,G(x, y) =
⊕

J⊆{1,...,m} ;
|J|≥m−dalg(G)

ϕF,J(x) yJ . (29)

We have:
dalg(G ◦ F ) ≤ dalg(hF,G) + dalg(G)−m.
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Proof. For every I ⊆ {1, . . . , n}, the only terms in ψF,I(y) which can ensure, for
some k, the condition dalg ((gk ⊕ 1)ψF,I) = m of Relation (28), have degree at
least m− dalg(G) and then, when multiplied by xI , are terms of hF,G. Writing
Relation (29) in the form hF,G(x, y) =

⊕
I⊆{1,...,n} ψF,G,I(y)xI , the rest of

the proof is similar to the proof of Theorem 1: we have then dalg(G ◦ F ) =
maxk∈{1,...,r} (max {|I|; I ⊆ {1, . . . , n}; dalg ((gk ⊕ 1)ψF,G,I) = m}); the relation
dalg ((gk ⊕ 1)ψF,G,I) = m implies that m ≤ dalg(hF,G)− |I|+ dalg(gk), that is,
|I| ≤ dalg(gk) + dalg(hF,G)−m. 2

If G is affine, then hF,G(x, y) =
⊕

J⊆{1,...,m} ;
|J|≥m−1

ϕF,J(x) yJ . According to relation

(14), we have dalg(ϕF,J) ≤ dalg(F ) for every J ⊆ {1, . . . ,m} such that |J | = m−
1 and dalg(ϕF,{1,...,m}) = 0. Hence, if F is not constant, we have dalg(hF,G) ≤
dalg(F ) +m− 1, and the bound of Theorem 2 gives then dalg(G ◦F ) ≤ dalg(F )
and the bound is tight when G is affine.
We have seen in Section 2 that, if the Walsh transform values of an (n,m)-
function F are all divisible by 2l, then 1GF has algebraic degree at most n+m−l.
We immediately deduce then from Theorem 1:

Corollary 3 Given three positive integers n,m, l such that 1 ≤ l ≤ n, for every
(n,m)-function F whose Walsh transform values are all divisible by 2l and every
(m, r)-function G, we have:

dalg(G ◦ F ) ≤ n− l + dalg(G).

This is exactly the Canteaut-Videau bound, which happens then to be a direct
consequence of Theorem 1 and whose explanation becomes crystal clear. Note
that using Theorem 2 instead of Theorem 1 would give the same bound under
a different hypothesis.

5.1.2 Case of more than two functions

Another advantage of our approach is that Theorems 1 and 2 can be generalized
to several functions. Let us consider the case of three functions. For every
(n,m)-function F , every (m, r)-function G and every (r, s)-function H, we have,
according to Relations (16) and (23):

dalg(H ◦G ◦ F ) =

max
k∈{1,...,s}

(max {|I|; I ⊆ {1, . . . , n}; dalg (ψF,I(y)1GG(y, z)(hk(z)⊕ 1)) = m+ r}) ,

and dalg (ψF,I(y)1GG(y, z)(hk(z)⊕ 1)) = m+r implies that m+r ≤ dalg (ψF,I)+
dalg (1GG)+dalg(hk(z)⊕1) ≤ dalg (1GF )+dalg (1GG)+dalg(hk(z)⊕1)−|I|. More-
over, with the same arguments as in the proof of Theorem 2, we can replace in
this reasoning 1GF (x, y) by hF,G,H(x, y) =

⊕
J⊆{1,...,m} ;

|J|≥m+r−dalg(1GG )−dalg(H)

ϕF,J(x) yJ .

Therefore:
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Theorem 3 For every (n,m)-function F , every (m, r)-function G and every
(r, s)-function H, we have:

dalg(H ◦G ◦ F ) ≤ dalg (1GF ) + dalg (1GG) + dalg(H)−m− r. (30)

Moreover, we can replace dalg(1GF ) by dalg(hF,G,H) in this evaluation, where

hF,G,H(x, y) =
⊕

J⊆{1,...,m} ;
|J|≥m+r−dalg(1GG )−dalg(H)

ϕF,J(x) yJ .

Note that the bound of Relation (30) is much better than what we get when
applying Theorem 1 to the functions G ◦ F and H, using Relation (23) and
bounding the algebraic degree of a product by the sum of the algebraic degrees
(this gives a gap of m). The bound of Theorem 3 is tight (take F and G affine).

5.2 Algebraic degree of G ◦ F when F is a permutation

If F is a permutation, then we have seen in Subsection 4.1 that ψF,I introduced
in Relation (19) factorizes into

∏
i∈Ic(f

′
i(y)⊕ 1), where f ′i is the i-th coordinate

function of F−1. According to Relation (24), we have:

1GG◦F (x, z) =
⊕

I⊆{1,...,n},K⊆{1,...,r};
dalg(

∏
i∈Ic (f

′
i
⊕1)

∏
k∈Kc (gk⊕1))=n

xIzK , (31)

where Ic = {1, . . . , n} \ I, Kc = {1, . . . , r} \K and the gk’s are the coordinate
functions of G.

Remark. If F is identity (that is, f ′i(y) = yi for every i), then this for-
mula gives correctly 1GG◦F (x, z) = 1GG(x, z), but this needs a little work to
be checked. In a nutshell, given the function h(y) =

∏
k∈Kc(gk(y)⊕ 1), we have

dalg
(∏

i∈Ic(yi ⊕ 1)h(y)
)

= n if and only the intersection of the support of h with
the set {y ∈ Fn2 ; supp(y) ⊆ I} has odd size, that is, according to Relation (4), if
yI has coefficient 1 in the ANF of h(y); Proposition 3 completes then the argu-
mentation. And if G is identity, the formula gives also 1GG◦F (x, z) = 1GF (x, z),
that can be checked similarly. The reason why checking 1GG◦Id(x, z) = 1GG(x, z)
is not direct is related to the fact that Relation (31) brings a different viewpoint
on the composition of functions, and this will be illustrated by bounds. 2

5.2.1 An exact evaluation of the degree of G ◦ F when F is bijective

Representation by the ANF Relation (31) implies:

dalg (1GG◦F (x, z)) = max
I⊆{1,...,n},K⊆{1,...,r};

dalg(
∏
i∈Ic (f

′
i
⊕1)

∏
k∈Kc (gk⊕1))=n

(|I|+ |K|), (32)

which will be useful in the sequel. According to Relation (16) applied with G◦F
instead of F , we have:
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Theorem 4 For any (n, n)-permutation F and any (n, r)-function G, we have:

dalg(G ◦ F ) = max
k∈{1,...,r}

(
max

{
|I|; dalg

(
(gk ⊕ 1)

∏
i∈Ic

(f ′i ⊕ 1)

)
= n

})
, (33)

where the f ′i ’s are the coordinate functions of the compositional inverse F−1 of
F and the gk’s are the coordinate functions of G.

Important remark. In Theorem 4, the “⊕1”’s play no role. In other words,
each coordinate function may be complemented or not in Relation (33). Indeed,
complementing some coordinate functions of F−1 corresponds to applying a
translation to the output of F−1, that is, the input to F , and does not change
the algebraic degree of G ◦ F ; and complementing some coordinate functions
of G corresponds to translating the output of G, which does not change the
algebraic degree either. 2

Remark. According to Theorem 4, G ◦ F has algebraic degree strictly smaller
than t if and only if the product of at most n−t coordinate functions of F−1 and
of one coordinate function of G never reaches algebraic degree n (i.e. has always
even Hamming weight). And the fact that each of these coordinate functions
can be complemented or not can be checked by another way: the product of
at most n − t functions, some being complemented, equals a sum of functions
equal to the products of at most n− t functions. 2

Remark. Since F−1 is a permutation, the product of less than n of its coor-
dinate functions (complemented or not) has even Hamming weight. Hence, in
Relation (33), it is thanks to the multiplication by (gk ⊕ 1) that the product
(gk ⊕ 1)

∏
i∈Ic(f

′
i ⊕ 1) can reach algebraic degree n. Note that Theorem 4 also

shows that, for every permutation F and every non-constant function G, there
exists I such that dalg

(
(gk ⊕ 1)

∏
i∈Ic(f

′
i ⊕ 1)

)
= n. 2

Representation in bivariate form From (18), (22) and (23) we deduce, as
altready observed in [6], that for every (n, n)-permutation F and every (n, n)-
function G, we have:

1GG◦F (x, z) =

2n−1∑
i=0

 ∑
y∈F2n

(F−1(y))i

x2
n−1−i +

2n−1∑
k=0

 ∑
y∈F2n

(G(y))k

 z2
n−1−k+

∑
i,k∈{0,...,2n−1}

 ∑
y∈F2n

(F−1(y))i(G(y))k

x2
n−1−iz2

n−1−k.

Gathering the terms, monomial by monomial, we obtain:

1GG◦F (x, z) =
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 ∑
y∈F2n

(
(F−1(y))2

n−1 + (G(y))2
n−1 + (F−1(y))2

n−1(G(y))2
n−1
)+

2n−2∑
i=0

 ∑
y∈F2n

(F−1(y))i
(

1 + (G(y))2
n−1
)x2

n−1−i+

2n−2∑
k=0

 ∑
y∈F2n

(G(y))k
(

1 + (F−1(y))2
n−1
) z2

n−1−k+

∑
i,j∈{0,...,2n−2}

 ∑
y∈F2n

(F−1(y))i(G(y))k

x2
n−1−iz2

n−1−k.

Note that, for k = 0, we have
∑
y∈F2n

(G(y))k
(
1 + (F−1(y))2

n−1) = 1, since

there is a unique y such that F−1(y) = 0. We deduce, using Proposition 1 and
what is recalled in the introduction about the algebraic degree in polynomial
representation:

dalg(1GG◦F ) = max
(
n, max

i,k∈{0,...,2n−2}
dalg((F

−1(y))i(G(y))k)=n

(
2n− w2(i)− w2(k)

))
.

As observed in [6], the univariate representation of a function F (x) is obtained
from 1GF (x, z) as the x-dependent coefficient of z2

n−2. Exploiting this property
with G ◦ F instead of F , we deduce:

dalg(G ◦ F ) = max
i∈{0,...,2n−2}

dalg((F
−1(y))iG(y))=n

(
n− w2(i)

)
. (34)

Remark. Since the inverse of F plays such important role, let us recall that
the inverses of the exponents of known APN (in fact, AB) power permutations
(n odd) and the algebraic degrees of the corresponding power functions (which
are also APN (AB)) have been determined in [11]. 2

5.2.2 Deduced bound on the algebraic degree of G ◦ F

In Relation (33), the equality dalg
(
(gk ⊕ 1)

∏
i∈Ic(f

′
i ⊕ 1)

)
= n implies n ≤

dalg(G) + (n− |I|) dalg(F−1), that is, |I| ≤ n− n−dalg(G)
dalg(F−1) . We deduce:

Corollary 4 For every (n, n)-permutation F and every (n, r)-function G, we
have:

dalg(G ◦ F ) ≤ n−
⌈
n− dalg(G)

dalg(F−1)

⌉
.

The Boura-Canteaut bound and that of Corollary 4 provide a criterion for the
choice of S-boxes in block ciphers when they are permutations: both algebraic
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degrees of F and F−1 should be as large a possible. Indeed, this S-box may play
the role of G or that of F , according to the situations.

For most pairs (F,G) of (n, n)-functions, the bound of Corollary 4 improves
by one unit the Boura-Canteaut bound recalled in Section 3, since the inequality
n−1−dalg(G)
dalg(F−1) <

n−dalg(G)
dalg(F−1) most often implies

⌊
n−1−dalg(G)
dalg(F−1)

⌋
=
⌈
n−dalg(G)
dalg(F−1)

⌉
− 1.

The bound is tight, since it is an equality when F is affine (which is not the
case of the Boura-Canteaut bound); another example for which it is an equality
is when G ◦ F has algebraic degree n, that is, when G has (maximal) alge-
braic degree r (since F is a permutation, we have then

∑
x∈Fn2

(G ◦ F )(x) =∑
y∈Fn2

G(y) 6= 0; note that the Boura-Canteaut bound is also an equality in

that case). It would be nice to be able to determine all the pairs of functions
for which the bound is an equality.

Remark. The bound of Corollary 4 and the bound of Theorem 1 both are
consequences of Relation (28). The bound of Theorem 1 exploits the fact that
dalg(ψF,I) ≤ dalg(1GF )−|I| (and is then weaker than the exact expression given
by (28)) while Corollary 4 uses this exact expression, which results in (33), but
also weakens it. And both bounds use that the algebraic degree of a product of
functions is bounded above by the sum of their algebraic degrees, but in differ-
ent ways, with different impairments. These two bounds and the naive bound
are complementary; none is a corollary of one of the others. 2

Remark. There are cases where the gap in the bound of Corollary 4 is small,
see the remark after Theorem 5, in which we investigate a more general set-
ting. There are also cases where the value of the bound is far from the exact
value given by Relation (33). A first example is when G = F−1: Relation
(33) gives directly that dalg(G ◦ F ) equals the algebraic degree 1 of the iden-
tity function (indeed, for any I of size larger than 1, (gk ⊕ 1)

∏
i∈Ic(f

′
i ⊕ 1)

never reaches algebraic degree n, since (gk ⊕ 1)
∏
i∈Ic(f

′
i ⊕ 1) equals the prod-

uct of less than n functions (f ′i ⊕ 1)), while the bound of Corollary 4 gives

dalg(G ◦F ) ≤ n−
⌈
n−dalg(F−1)
dalg(F−1)

⌉
=
⌊
n(1− 1

dalg(F−1) )
⌋

+ 1, and this latter value

is arbitrarily larger than 1. 2

Let us now apply Corollary 4 to G ◦ F in the place of G, and to F−1 in the

place of F . We obtain dalg(G) ≤ n− n−dalg(G◦F )
dalg(F ) , that is:

Corollary 5 For every (n, n)-permutation F and every (n, r)-function G, we
have:

dalg(G ◦ F ) ≥ n− (n− dalg(G)) dalg(F ). (35)

This lower bound gives information only when dalg(G) is near n and dalg(F ) is
reasonably small, but it is worth mentioning.

We have also the following bound (that will be useful in relation with The-
orem 6 below) that we easily deduce from Relation (32) and the fact that the
equality dalg

(∏
i∈Ic(f

′
i ⊕ 1)

∏
k∈Kc(gk ⊕ 1)

)
= n in this relation implies n ≤
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(n−|I|) dalg(F−1)+(r−|K|) dalg(G) ≤ (n+r−|I|−|K|) max(dalg(F
−1), dalg(G)),

which implies:

Corollary 6 For every (n, n)-permutation F and any (n, r)-function G, we
have:

dalg(1GG◦F ) ≤ n+ r −
⌈

n

max(dalg(F−1), dalg(G))

⌉
.

Note that, applying Relation (16) to G ◦ F instead of F , we deduce:

dalg(G ◦ F ) ≤ n+ 1−
⌈

n

max(dalg(F−1), dalg(G))

⌉
.

But this is never stronger than the bound of of Corollary 4, since, if dalg(G) ≤
dalg(F

−1), then n + 1 −
⌈

n
max(dalg(F−1),dalg(G))

⌉
= n −

⌈
n−dalg(F−1)
dalg(F−1)

⌉
≥ n −⌈

n−dalg(G)
dalg(F−1)

⌉
, and if dalg(G) ≥ dalg(F−1) then n+ 1−

⌈
n

max(dalg(F−1),dalg(G))

⌉
=

n−
⌈
n−dalg(G)
dalg(G)

⌉
≥ n−

⌈
n−dalg(G)
dalg(F−1)

⌉
.

5.2.3 Case of the composition of more than two functions

To be able to evaluate the algebraic degree of the function whose output is that
of the i-th round of a block cipher, it is necessary to address the compositions of
more than two functions. We shall see that it is enough to extend Relation (31)
to three functions. Given any (n, n)-permutation F , any (n,m)-function G and
any (m, r)-function H, we have, iterating Relation (23), that 1GH◦G◦F (x, t) =⊕

y∈Fm2
1GF (x, y)1GH◦G(y, t) =

⊕
y∈Fm2 ,z∈Fr2

1GF (x, y)1GG(y, z)1GH (z, t). Using

Proposition 3 and Relations (14) and (20), we deduce:

1GH◦G◦F (x, t)

=
⊕

I⊆{1,...,n}
K⊆{1,...,r}

xItK

⊕
y∈Fn2
z∈Fm2

∏
i∈Ic

(f ′i(y)⊕ 1)

m∏
j=1

(gj(y)⊕ zj ⊕ 1)
∏
k∈Kc

(hk(z)⊕ 1)


 ,

and according to Relation (16):

Theorem 5 For any (n, n)-permutation F , any (n,m)-function G and any
(m, r)-function H, we have:

dalg(H ◦G ◦ F ) = max
k∈{1,...,r}

(max {|I|; dalg (θk,I(y, z)) = n+m}) , (36)

where

θk,I(y, z) =
( ∏
i∈Ic

(f ′i(y)⊕ 1)
)( m∏

j=1

(gj(y)⊕ zj ⊕ 1)
)(
hk(z)⊕ 1

)
=

( ∏
i∈Ic

(f ′i(y)⊕ 1)
)(

1GG(y, z)
)(
hk(z)⊕ 1

)
,
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the f ′i ’s are the coordinate functions of the compositional inverse F−1 of F , 1GG
is the graph indicator of G and the hk’s are the coordinate functions of H.

Remark. We deduce, taking F and H equal to identity, that, for every (n,m)-
function G, we have dalg(G) =

max
1≤k≤r

[
max

{
|I|; dalg

(( ∏
i∈Ic

(yi ⊕ 1)
)(

1GG(y, z)
)(
zk ⊕ 1

))
= n+m

}]
. (37)

Remark. In Theorem 5, function 1GG is involved as a whole in the algebraic
degree of H ◦G◦F . Anyway, changing G for a CCZ equivalent function, even if
it does not change the algebraic degree of 1GG , changes in general the algebraic
degree of H ◦ G ◦ F . If we look for instance again at the case where F and
H are both the identity function, we know (see [2]) that CCZ equivalence does
not preserve the algebraic degree; this can be verified with Relation (37), since
changing GG into an affinely equivalent set may change the size of the index set
I of maximal size satisfying the condition of Relation (37). 2

Deduced bounds on the algebraic degree The equality dalg (θk,I(y, z)) =
n+m in Relation (36) implies:

n+m ≤ dalg

(∏
i∈Ic

(f ′i(y)⊕ 1)(1GG(y, z))(hk(z)⊕ 1)

)
≤ dalg(H) + (n− |I|) dalg(F−1) + dalg(1GG)

that is, |I| ≤ n− n+m−dalg(1GG )−dalg(H)

dalg(F−1) . We deduce:

Theorem 6 For every (n, n)-permutation F , every (n,m)-function G and ev-
ery (m, r)-function H, we have:

dalg(H ◦G ◦ F ) ≤ n−
⌈
n+m− dalg(1GG)− dalg(H)

dalg(F−1)

⌉
.

Remark. The bound of Theorem 6 is tight. For instance, if we take n = m

and F , G affine, then we have n −
⌈
n+m−dalg(1GG )−dalg(H)

dalg(F−1)

⌉
= dalg(H), since

1GG(y, z) =
∏n
j=1(yi ⊕ zi ⊕ 1) has algebraic degree n. If dalg(H ◦G ◦ F ) equals

n, then the bound is also clearly tight. There are also cases where the bound
is not an equality but the difference is small. If we take n = m = r and

F−1(x) = x2
i+1, with i < n/2, n odd and gcd(i, n) = 1 and G(x) = x2

i′+1, with

i 6= i′ < n/2, H(x) = x2
i′′+1, with i, i′ 6= i′′ < n/2, the graph indicator of G

equals 1GG(y, z) = (z + y2
i′+1)2

n−1 + 1 =
∑2n−1
j=0 z2

n−1−j yj(2
i′+1) + 1 and has

then algebraic degree equal to: max0≤j≤2n−1(n − w2(j) + w2(j(2i
′

+ 1))) and

dalg(H ◦G ◦ F ) = w2

(
(2i
′′
+1)(2i

′
+1)

2i+1 [mod (2n − 1)]

)
.
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For n = 9, i = 2, i′ = 3, i′′ = 4, we have dalg(H ◦G◦F ) = 6 and the bound gives
7.
For n = 25, i = 11, i′ = 4, i′′ = 12, we have dalg(H ◦G ◦ F ) = 18 and the bound
gives 19.
There are also cases where the difference is large, for instance if we take n = m =
r and F (x) = G(x) = H(x) = x2

i+1, with i < n/2, n odd and gcd(i, n) = 1. The
algebraic degree of F−1 has been given in [11], it equals n+1

2 and dalg(H◦G◦F ) =
w2((2i+ 1)3) = w2(23i+ 22i+1 + 22i+ 2i+1 + 2i+ 1) equals 4, 5 or 6 (when these
six powers of 2 are distinct modulo 2n − 1). The bound is often far from these
three values. 2

Remark. In the bound of Theorem 6, each function plays a distinct role: the
first function F in the decomposition plays a role through the degree of its in-
verse, the last function H plays a role through its own degree and the function
in the middle plays a role through the degree of the indicator of its graph. 2

5.2.4 Comparison between Theorem 6 and the iterated known bound

Let us compare the bound of Theorem 6 with the Boura-Canteaut bound (or
better, its slight improvement by Corollary 4) iterated once. For such iteration,
we need that G be also bijective, with m = n. We take the optimum between
the application of Corollary 4 to the pairs (G ◦ F,H) and (F,H ◦ G), and we
get:

dalg(H ◦G ◦ F )

≤ n−max

(⌈
n− dalg(H)

dalg(F−1 ◦G−1)

⌉
,

⌈
n− dalg(H ◦G)

dalg(F−1)

⌉)

≤ n−max

 n− dalg(H)

n−
⌈
n−dalg(F−1)
dalg(G−1)

⌉
 ,
⌈

n− dalg(H)

dalg(G−1) · dalg(F−1)

⌉ . (38)

If λ, µ, ν ∈ [0, 1] are such that dalg(F
−1) = λn, dalg(G

−1) = µn and dalg(H) =

νn, then (38) writes dalg(H ◦G◦F ) ≤ n−max

(⌈
1−ν

1−d
1−λ
µ e
n

⌉
,
⌈
1−ν
µλn

⌉)
and gives

then no real information since this will most often result in dalg(H◦G◦F ) ≤ n−1.
On the contrary, the bound of Theorem 6 still gives information: if additionally
η ∈ [0, 1] is such that dalg(1GG) = n(1 + η), this bound writes dalg(H ◦G ◦F ) ≤
n−

⌈
1−ν−η
λ

⌉
. And if this information is not significant enough, we still can try

to evaluate with a finer grain the exact value given by Relation (36).
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5.3 Bounds involving the numerical normal form of com-
ponent functions

Relation (8), applied to l − 1 coordinate functions of F−1 (or less) and one
coordinate function of G shows that, if the coefficient of

∏n
i=1 xi in the NNF of

any sum (mod 2) of at most l− 1 coordinate functions of F−1 and at most one
coordinate function of G is divisible by 2l, then all the products of at most l−1
coordinate functions of F−1 and one coordinate function of G have algebraic
degree strictly less than n, which implies that if dalg

(
(gk ⊕ 1)

∏
i∈Ic(f

′
i ⊕ 1)

)
=

n then |Ic| ≥ l, that is |I| ≤ n− l. According to Relation (33), we deduce:

Proposition 4 For every (n, n)-permutation F and any (n,m)-function G, if
for some l ≤ n, the coefficient of

∏n
i=1 xi in the numerical normal form of any

sum (mod 2) of at most l − 1 coordinate functions of F−1 and at most one
coordinate function of G is divisible by 2l, then we have:

dalg(G ◦ F ) ≤ n− l.

We know, according to Relation (13), that the coefficient λ{1,...,n} of
∏n
i=1 xi in

the numerical normal form of a function h equals (−1)n−1Wh(1n)
2 , where 1n is the

all-1 vector. Then, the hypothesis of Proposition 4 is equivalent to assuming that
W⊕

i∈J f
′
i
(1n) and Wgk⊕

⊕
i∈J f

′
i
(1n) are divisible by 2l+1 for every k ∈ {1, . . . ,m}

and every J ⊆ {1, . . . , n} such that |J | ≤ l − 1. Hence, changing l into l − 1 so
as to be able to compare with the Canteaut-Videau bound, we have:

Corollary 7 For every (n, n)-permutation F and any (n,m)-function G, if for
some l ≤ n and for every v ∈ Fn2 such that wH(v) ≤ l − 2 and every k ∈
{1, . . . ,m}, both numbers Wgk⊕v·F−1(1n) and Wv·F−1(1n) = WF−1(1n, v) =
WF (v, 1n) are divisible by 2l, then we have:

dalg(G ◦ F ) ≤ n− l + 1.

This bound can be compared to the Canteaut-Videau bound. Each bound has
advantages and disadvantages:

• Corollary 7 assumes F bijective, contrary to the Canteaut-Videau bound,
which has then a weaker hypothesis from this viewpoint.

• In Corollary 7, the condition concerns Wgk⊕v·F−1(1n), while the Canteaut-
Videau does not, and has then a weaker hypothesis from this viewpoint
as well.

• In Corollary 7, the condition also concerns Wv·F−1(u) = WF (v, u), but
only for u = 1n and wH(v) ≤ l − 2, while the condition for the Canteaut-
Videau bound deals with all the Walsh coefficients of F ; the Canteaut-
Videau bound has then a more demanding hypothesis from this viewpoint.

• Corollary 7 limits the algebraic degree to n − l + 1, while the Canteaut-
Videau limits it to n− l+dalg(G), and is then weaker from this viewpoint.

24



We see that the two bounds are complementary, since they are neither compara-
ble from the viewpoint of their hypotheses, nor comparable from the viewpoint
of their values.

We can also apply Relation (8) by keeping the factor (gk ⊕ 1) apart. If, for
some values l, d ≤ n, all the coefficients of the terms of degrees strictly larger
than d in any sum (mod 2) of at most l coordinate functions of F−1 are divisible
by 2l, then all the products of at most l coordinate functions of F−1 have
algebraic degree at most d, which implies that if dalg

(
(gk ⊕ 1)

∏
i∈Ic(f

′
i ⊕ 1)

)
=

n then we have n ≤ dalg(G) + d, and therefore, taking d = n − dalg(G) − 1
then dalg

(
(gk ⊕ 1)

∏
i∈Ic(f

′
i ⊕ 1)

)
= n implies |Ic| > l, that is |I| ≤ n − l − 1.

According to Relation (33), we deduce then:

Proposition 5 Let F be an (n, n)-permutation and G an (n,m)-function, and
let l ≤ n. If all the coefficients of the terms of degrees at least n−dalg(G) in the
numerical normal forms of the sums (mod 2) of at most l coordinate functions
of F−1 are divisible by 2l, then we have:

dalg(G ◦ F ) ≤ n− l − 1.

Relations (12) and (13) allow to translate by means of WF−1 , and therefore of
WF , the fact that the coefficients of the terms xI of degree |I| ≥ n− dalg(G) in
the numerical normal form of a linear combination u · F−1 are all divisible by
2l. Relations (12) and (13), with v in the place of u and applied to f = u ·F−1,
give:

Corollary 8 Let F be an (n, n)-permutation and G an (n,m)-function, and let
l ≤ n. If for every u, v ∈ Fn2 such that wH(u) ≤ l and wH(v) ≥ n− dalg(G), the
value WF−1(v, u) = WF (u, v) is divisible by 2n−wH(v)+l+1, then we have:

dalg(G ◦ F ) ≤ n− l − 1.

Note that, if a number is divisible by 2l+dalg(G)+1, then it is divisible by
2n−wH(v)+l+1, for every v such that wH(v) ≥ n− dalg(G). Then, replacing l by
l − dalg(G)− 1 in Corollary 8, so as to be able to compare with the Canteaut-
Videau bound, and weakening the corollary (by strengthening its hypothesis),
we deduce:

Corollary 9 Let F be an (n, n)-permutation and G an (n,m)-function, and let
l ≤ n− dalg(G)− 1. If for every u ∈ Fn2 such that wH(u) ≤ l− dalg(G)− 1 and
every v ∈ Fn2 such that wH(v) ≥ n−dalg(G), the value of WF−1(v, u) = WF (u, v)
is divisible by 2l, then we have:

dalg(G ◦ F ) ≤ n− l + dalg(G).

Let us now compare Corollary 9 with the Canteaut-Videau bound. The differ-
ences are:
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• Corollary 9 assumes F bijective; this is a restriction with respect to the
Canteaut-Videau bound.

• In Corollary 9, the condition concerns WF (v, u) only for wH(v) ≤ l −
dalg(G)− 1 and wH(u) ≥ n− dalg(G); this is an extension with respect to
the Canteaut-Videau bound.

• Both bounds limit the algebraic degree to n − l + dalg(G), so there is no
difference from this viewpoint.

5.3.1 Case of the composition of more than two functions

The Canteaut-Videau bound and the bounds of Proposition 4 and 5 or of Corol-
laries 7 and 9 address only the compositions of two functions. Let us see how we
can extend them to bounding the algebraic degree of the composition of (say)
three functions F,G,H.
A first possibility is to replace G by H ◦G in the Canteaut-Videau bound, for
instance, or in the bound of Corollary 9 (note that using Corollary 7 would be
complex). Then, we need to bound dalg(H ◦G). A possibility is to assume that
G satisfies the hypothesis on F in either the Canteaut-Videau bound, or the
bound of Corollary 7, or that of Corollary 9, but in all cases, this means that
the conditions needed are very strong for both F and G. We can also use the
Boura-Canteaut bound or, better, the bound of Corollary 4, assuming that G
is a permutation; then if (say) F and G are (n, n)-permutations and H is an
(n, r)-function and if WF has all its values divisible by 2l, we have:

dalg(H ◦G ◦ F ) ≤ 2n− l −
⌈
n− dalg(H)

dalg(G−1)

⌉
. (39)

Another solution, which may be more efficient, at least in some cases, is to use
Theorem 5, that gives an exact value and does not need G bijective. So let us
take for G any (n,m)-function. Relation (36): dalg(H ◦G ◦ F ) =

max
k∈{1,...,r}

(
max

{
|I|; dalg

(( ∏
i∈Ic

(f ′i(y)⊕ 1)
)(

1GG(y, z)
)(
hk(z)⊕ 1

))
= n+m

})
,

makes that all the methods we developed above for two functions can be used
for three. For instance, let us assume again that, for some values l, d ≤ n, all the
coefficients of the terms of degrees strictly larger than d in any sum (mod 2) of at
most l coordinate functions of F−1 are divisible by 2l, then again all the products
of at most l coordinate functions of F−1 have algebraic degree at most d, which
implies that if dalg

((∏
i∈Ic(f

′
i(y)⊕ 1)

)(
1GG(y, z)

)(
hk(z)⊕ 1

))
= n+m then we

have n+m ≤ dalg(1GG)+dalg(H)+d, and therefore that if d = n+m−dalg(1GG)−
dalg(H)−1 then dalg

((∏
i∈Ic(f

′
i(y)⊕1)

)(
1GG(y, z)

)(
hk(z)⊕1

))
= n+m implies

|Ic| > l, that is |I| ≤ n− l − 1. According to Relation (33), we deduce then:

Proposition 6 For every (n, n)-permutation F , any (n,m)-function G and any
(m, r)-function H, if for some l ≤ n, all the coefficients of the terms of degrees
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at least n+m−dalg(1GG)−dalg(H) in the numerical normal forms of the sums
(mod 2) of at most l coordinate functions of F−1 are divisible by 2l, then we
have:

dalg(H ◦G ◦ F ) ≤ n− l − 1.

We can, here also, deduce a bound involving the Walsh transform of F : ac-
cording to Relations (12) and (13) applied with v in the place of u to the
function f = u · F−1, saying that the coefficient of any term xI such that
|I| ≥ n+m−dalg(1GG)−dalg(H) in the numerical normal form of u ·F−1 (with
wH(u) ≤ l) is divisible by 2l is equivalent to saying that, for every u ∈ Fn2 such
that wH(u) ≤ l and every v ∈ Fn2 such that wH(v) ≥ n+m−dalg(1GG)−dalg(H),
the value WF−1(v, u) = WF (u, v) is divisible by 2n−wH(v)+l+1. Note that the di-
visibility by 2dalg(1GG )−m+dalg(H))+l+1 implies the divisibility by 2n−wH(v)+l+1

when wH(v) ≥ n + m − dalg(1GG) − dalg(H). We have then, replacing l by
l − dalg(1GG) +m− dalg(H))− 1:

Corollary 10 For every (n, n)-permutation F , any (n,m)-function G and any
(m, r)-function H, if for some l ≤ n−dalg(1GG)+m−dalg(H))−1 and for every
u ∈ Fn2 such that wH(u) ≤ l−dalg(1GG)+m−dalg(H)−1 and every v ∈ Fn2 such
that wH(v) ≥ n+m− dalg(1GG)− dalg(H), the value of WF−1(v, u) = WF (u, v)
is divisible by 2l−dalg(1GG )+m−dalg(H)−1, then we have:

dalg(H ◦G ◦ F ) ≤ n−m− l + dalg(1GG) + dalg(H).

Let us compare the bound of Corollary 10 with (39), for m = n and G bijec-
tive (since this is needed by (39)). The bound of Corollary 10 writes dalg(H ◦
G ◦ F ) ≤ dalg(1GG) + dalg(H) − l, to be compared with dalg(H ◦ G ◦ F ) ≤
2n− l−

⌈
n−dalg(H)
dalg(G−1)

⌉
. We can see that (39) is more efficient when the algebraic

degrees of 1GG and H are large and Corollary 10 is better when they are smaller.
But note that the hypothesis of Corollary 10 does not assume the divisibility
by 2l for all Walsh transform values of F and is then weaker. Moreover, the
advantage of the approach by Corollary 10 is that, if this bound is inefficient,
we can try to use to the exact value given by Theorem 5 and bound it in a more
precise way.

Conclusion

We have shown how the indicators of the graphs of vectorial functions can be
used for studying the algebraic degree of vectorial functions. This approach
has led to an exact expression of the algebraic degree of composite functions
and to an efficient upper bound on it, that is valid without any condition on the
functions. We have seen how this allows to prove more simply the known bounds
(that all assume conditions), and to clarify why they work. It has in particular
completely clarified why, when F is a permutation, the algebraic degree of G◦F
depends on the algebraic degree of G and of the algebraic degree of F−1 (rather
than that of F ), and why the divisibility of the Walsh transform values of F
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plays a role. The approach by graph indicators has also led to new bounds that
involve the numerical normal form of component functions. We have now three
types of bounds: a first bound, that is completely general and however efficient,
but may be delicate to be precisely evaluated; a second bound, that is simpler to
evaluate, but is often weaker and assumes that F is bijective; and a third series
of bounds, assuming strong conditions on the divisibility by powers of 2 of some
coefficients in the numerical normal form of some functions or (equivalently) of
the values taken by the Walsh transform. Moreover, we have derived a general
upper bound on the algebraic degree of the composition of three functions, and
for H◦G◦F , where F is bijective, we have shown that the algebraic degree of the
composite function essentially depends on the algebraic degrees of H and F−1,
and of the algebraic degree of the graph indicator of G. These bounds generalize
to more than three functions. We have also generalized to three functions the
bounds assuming divisibility by powers of 2. Our results give more insight for
the designer of a block cipher on how optimizing the choice of S-boxes from the
viewpoint of the algebraic degree of the round functions. In a future work, we
shall study in detail some main block ciphers, starting in particular with the
algebraic degree of the so-called SDS function, that intervenes in the two first
rounds of the AES.
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