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Abstract

Reputation is a major component of trustworthy systems. In this work, we describe how
to leverage reputation to establish a highly scalable and efficient blockchain. In order to avoid
potential safety concerns stemming from the subjective and volatile nature of reputation, we pro-
pose a proof-of-reputation/proof-of-stake-hybrid (in short, PoR/PoS-hybrid) blockchain design.
Although proof-of-stake and proof-of-reputation have been separately studied, to our knowledge,
our proposal is the first cryptographically secure design of proof-of-reputation-based (in short
PoR-based) blockchains; and it is the first blockchain that fortifies its PoR-based security by
optimized Nakamoto-style consensus. This results in a ledger protocol which is provably secure
if the reputation system is accurate, and preserves its basic safety properties even if it is not,
as long as the majority of the stake in the system remains in honest hands. Our results put
emphasis on reputation fairness as a key feature of any reputation-based lottery. We devise a
definition of reputation fairness that ensures fair participation while giving chances to newly
joining parties to participate and potentially build reputation. We also describe a concrete
lottery in the random oracle model which achieves this definition of fairness. Our treatment of
reputation-fairness can be of independent interest.

Keywords: Blockchain, cryptocurrencies, proof of reputation, proof of stake

1 Introduction

Many of the decisions taken in modern society are based on centralized publicly known reputation
systems. For example, fans are likely to follow suggestions from their idols, social network followers
are likely to adopt suggestions of the friends and groups they follow. Most importantly, people
use publicly available ranking systems such as E-Bay, Yelp, AirBnB, Amazon, etc to take decisions
regarding online-shopping, choice of vacation, accommodation, eating out, insurances, investment,
medical, etc.

In this work we leverage the power of reputation systems to establish a reliable, permissionless
blockchain. Our design assumes that certain parties in the system have a public ”reputation”
similar to E-bay or Yelp, which is recorded on the blockchain itself. The more ”stars” a party has,
i.e., the higher its ranking, the better is this party’s reputation. And because reputation can be
destroyed by misbehaving, the higher the reputation the higher are the chances that the parties
will behave honestly in a decentralized consensus protocol execution.

In a nutshell, our design goals are two-fold: (1) to rely on the reputation system to build a simple,
highly scalable decentralized ledger with optimized finality, communication, and computation, and
with a formal proof that relates the quality of our system to the quality of the reputation system;
(2) to back our ledger’s safety with a fall-back mechanism that ensures that even if the reputation
estimate is flawed, the ledger protocol does not create indefinite forks.
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1.1 Our Results

At the core of most blockchain-based decentralized consensus protocols is an implicit lottery that
designates, for each block, one or more parties with the right to propose the next block in the
blockchain, along with a mechanism to endorse this proposal so that consensus is achieved across
the blockchain networks. We propose a provably secure Proof-of-Reputation/Proof-of-Work-hybrid
(in short, PoR/PoS-hybrid) blockchain.

Our blockchain protocol proceeds in synchronous rounds and relies on a reputation system to
select a set of leaders (parties that will propose the contents of the next block) and endorsers
(parties that vote on the next block) that advance the blockchain. In particular, reputation is
used to instantiate the above lottery mechanism and achieve decentralized consensus with optimal
finality, a concept which is hereafter referred to as proof of reputation, in short PoR. In the following
we sketch the basic design principles for our PoR blockchain.

We assume that we have a (dynamically updatable) set P of parties where a subset P̂ ⊆ P of
them are special parties called reputation parties. The parties wish to leverage the reputation of
the reputation parties to maintain a ledger containing a sequence of blocks, each block containing
a collection of messages that can represent arbitrary data (throughout this paper, we refer to this
data as transactions). We do not specify here how this data is efficiently encoded into a block,
e.g., so that they can be updated and addressed in an efficient manner; however, one can use the
standard Merkle-tree approach used in many common blockchains, e.g., Bitcoin [Nak08, BMTZ17],
Ethereum [But13], Cardano/Ouroboros [KRDO17, BGK+18], Algorand [GHM+17], etc.

Informally, a reputation system for a party set P is similar to a characterization of a probabilistic
adversary structure [GIOZ17]: It assigns to each subset P a probability that this subset is corrupted
by the adversary—we only consider active, aka Byzantine, corruption. In its simplest form, which
we refer to as static correlation-free, a reputation system can be described by a vector of |P|
independent boolean random variables. The probability that the ith variable is 1 is the probability
that the i-th party in P—in some canonical ordering, e.g., using the party’s IDs—is honest. We
note in passing that this corresponds to the notion of independent reputation systems investigated
in [ALZ13]. We extend the above notion by allowing the reputation to evolve as rounds advance,
yielding a dynamic reputation system. The update happens in an epoch-based manner, where an
epoch consists of a fixed number of rounds.

To capture feasibility of PoR-based consensus, we introduce the notion of a feasible reputation
system (cf. Definition 6) which for static reputation systems requires that there is a party sampling
algorithm, such that the probability that a super-majority of the selected parties is honest is
overwhelming. (This coincides with the feasibility condition from [ALZ13].)

We use the reputation system in the following manner (we restrict the discussion here to static
correlation-free reputation): The contents of the genesis block—which is assumed to be available
to any party joining the protocol and includes the (initial) reputation system along with a random
nonce—are hashed to generate randomness for the first epoch’s lottery. Since every party is assumed
access to the genesis block, every party can locally run a lottery which is biased by the parties’
reputation using these coins to choose a committee for each slot. The slot committee CiBA of the
i-th slot1 is responsible for gathering all known transactions at that slot that have not yet been
inserted in the blockchain, and proposing the block corresponding to this slot along with evidence

1As discussed below, our description assumes in each slot blackbox access to (a functionality for) Byzantine Fault
Tolerant (BFT) consensus; hence when this is instantiated by a BFT consensus protocol, each slot will span over
multiple rounds, depending on the underlying BFT protocol. We remark that although we present our protocol
assuming access to a deterministic termination canonical functionality [CCGZ16, CCGZ17], we can directly use the
compiler from [CCGZ17] to replace this with the constant-round randomized BA protocol (cf. Appendix D.4).
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to allow all parties to agree on this block (see details below).
Concretely, in every slot, every party in a random subset CiBC of CiBA of slot leaders pools all new

and valid—where validation is done by a predicate which is a parameter of the ledger—transactions
received by the blockchain users by that slot into a block, and communicates this to CiBA, who run
an honest majority BFT consensus protocol to agree on the next block. The agreed upon block
is then signed by all members of CiBA and circulated to the party set P who accept it if and only
if it has at least |CiBA|/2 signatures from parties in CiBA. Clearly, as long as for each of the slot
committees the majority of its members is honest (which will be induced by an accurate and feasible
reputation system), the above BFT consensus protocol will achieve consensus on the current block
(and only this agreed upon block might be accepted by the parties). Once this happens the next
slot starts.

In order to allow for adversaries that have partial adaptivity (cf. Appendix 6), we use ideas
from the adaptive and/or mobile adversaries literature and introduce a stricter feasibility condition
which require a fraction of 3/4 honest parties in each committee. In particular, first we embed
in the protocol a lottery re-randomization mechanism: In each round, parties include in their
proposed transactions a random nonce which is also incorporated to the contents of the block; in
each subsequent epoch, the above process is invoked to select round committees with the difference
that the randomness for the lottery is extracted by hashing the contents from the previous epoch.
Second, the parties refresh their key in each epoch; this can be done interactively, by posting a new
key on the blockchain in every epoch and erasing the previous key, or non-interactively by using a
forward secure signature scheme [BM99, IR01]. For simplicity, throughout this paper we focus in
our analysis on static reputations. The adaptation to dynamic, i.e., epoch-resettable, adversary is
in Appendix D.2.

Of prime importance in our construction, and a novelty of our PoR-lottery, is a mechanism
which ensures an appropriate version of egalitarianism. In particular, as proved in [ALZ13], for
any feasible correlation-free reputation system, the following sampler, denoted as Amax, outputs
such a committee: Order the parties according to their reputation and choose a sufficient number
(cf. [ALZ13]) of reputation parties with the highest reputations.

The above suggest that for the type of systems we are discussing here, i.e., correlation-free
reputations, the above simple Amax algorithm is optimal (up to negligible quantities) for minimizing
the risk of dishonest majority. Nonetheless, in practice Amax suffers from several deficiencies: First,
if some malicious party establishes (by playing initially honestly) a high reputation, then this party
will be included in almost every committee. Second, the approach lacks a natural fairness quality
which would give parties voting power according to their reputation (even to parties with low
reputation). Such a fairness property is instrumental for sustainable decentralization, as it will
incentivize parties to join and/or increase their reputation, and, in parallel, it will allow parties
that are not in the top reputation ranks to participate in the process, thereby also improving their
own reputation.

We propose an appropriate notion of reputation fairness, termed PoR-fairness, which addresses
the above concerns, along with a delicate lottery mechanism that achieves it. The idea behind
PoR-fairness is that every reputation party should get a chance to (be part of the committee that)
provides a recommendation for the inclusion of the next block to be added on the blockchain. The
challenge is that we want to achieve this while ensuring that, the higher the reputation, the better
the relative chances are of a party to be included in the committee. This will incentivize parties
to try to increase their reputation (or preserve their current reputation), and allow us to choose
many highly reputable parties thereby eliminating the chances of a majority of corrupt reputation
parties.

Intuitively, a reputation-based committee selection protocol is (approximately) fair, if, (1) on
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average, the representation of parties on the selected committee becomes higher, the less likely those
parties are to be corrupt (according to their reputation); (2) this representation increases as the
ratio of parties with higher over parties with lower reputation increases; and (3) the probabilities
of parties included in the lottery increase proportionally to their reputation. Realizing such a
reputation-fair lottery turns out to be a challenging goal and a core technical contribution of our
work.

Last but not least, our blockchain construction addresses the subjective nature of reputation
systems—e.g., inaccuracies due to the fact that the reputation estimator might be flawed and/or dis-
honest parties might behave honestly until they build sufficient reputation to attack. In particular,
we build into the protocol a fallback mechanism based on a Nakamoto-based blockchain. (For the
sake of this submission we use a proof-of-stake Nakamoto-style blockchain, e.g., [KRDO17], but our
fallback uses the Nakamoto blockchain in a blackbox manner and can therefore be instantiate using
any blockchain that realizes a Bitcoin-style transaction ledger [BMTZ17]).This fallback mechanism
fortifies the basic security properties of the blockchain under an independent backup assumption,
e.g., majority of honest stake. Note that the fallback blockchain is not used for communicating
messages, but only digests (hashes) of blocks from the main, reputation chain. Furthermore, it does
not need to run in a synchronized manner with the main chain. This allows a very light-weight
use of the fallback chain, which as it is a black-box use, can even be outsourced to an existing
Nakamoto-style chain. We refer to this type of blockchain as a PoR/PoS-Hybrid Blockchain. We
note that such a hybrid approach takes advantage of the benefits we can harvest from proof-of-
reputation discussed in the following section, without (ab)using massive external resources as is
the case with proof-of-work based solutions, e.g., the Bitcoin. Furthermore, by using a blockchain
secure in the dynamic availability setting of [BGK+18], our fallback also addresses possible issues
with availability of parties in the PoR-blockchain.

1.2 Properties of our construction

The proposed reputation-based blockchain combines and improves several properties of existing
constructions:

1. High Throughput/Transaction-Liveness: Existing solutions adopt the proposal of at most one
effective slot-leader in each slot [KRDO17, DGKR18, BGK+18, GHM+17]. Instead, in our
solution a small committee CBC of proposers is chosen in each slot, and we allow all of them
to include the transactions they see in the next block by communicating them to the larger
random committee of slot block-endorsers CBA. This means that transactions do not need to
propagate through the entire network in order to be included, and it suffices that they reach
at least one party in the next round’s CBC committee. This also means that the propagation
of transactions is expected to put less load on the network, as once a transaction settles on
a block it is removed from the local transaction pool of any party that sees this block and is
no longer forwarded by that party. Finally, although the set of parties in CBC is small (of size
L = O(1), e.g., L = 5) for efficiency purposes, still with probability at least 1/2L at least one
of the parties in this set will be honest—the reason is that we are choosing L parties out of
CBA which we know has honest majority—and therefore all transactions this party knows will
be included. In contrast, existing solutions both in the proof-of-work and the proof-of-stake
realm, e.g., Bitcoin, Ethereum, Cardano, Algorand, etc, adopt the view of a single slot leader,
hence transaction liveness is slowed down each time this single slot leader is corrupted.

2. Efficiency and Scalability: A major advantage of reputation-system-based constructions is
that it limits the adaptivity of the adversary and incentivizes honest (looking) behavior, i.e.,
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one does not need to take costly measures to avoid worst case adaptive corruption. Indeed,
the chances that a party gets corrupted are defined by the reputation-system. This allows us
to avoid the need for heavy adaptive security tools, e.g., compute and communicate proofs
of verifiable random functions and, instead, rely on the random oracle model to extract the
randomness for the next slot’s committee (see also Section D.3 for details on this randomness
extraction mechanism.) Nonetheless, our blockchain addresses concerns about adaptivity in
corruptions, through its fallback mechanism, which can be adaptively secure.

In addition to the above efficiency benefits, our protocol allows reputation parties to have
public IDs, e.g., public IP address, and therefore in each round only the members of the
consensus committee CBA send or receive messages needed for consensus, and only members
of the (even smaller) broadcast committee CBC multicast to the whole node set, and only one
message each. This allows us to avoid overloading the network with gossiping any communi-
cated message. In addition to reducing the amount of flooding/gossiping, which is expected
to have a practical impact on the scalability of the protocol, our protocol yields also an
asymptotic improvement on the message complexity, as communication occurs only among
the (sublinear) size slot committees and between these committees and the player set. Thus
even ignoring the overhead of gossiping, the overall message complexity per slot is ω(n2) (in
fact, O(n log1+ε n) for committees of size log1+ε n) as opposed to the O(n2) complexity of
standard flooding/gossiping solutions.

3. Finality: Since the parties decide on the next block by means of a traditional consen-
sus protocol, this decision is instant. This is in contrast to standard Nakamoto-style
blockchains [Nak08, But13, KRDO17] which achieve eventual consistency, aka the common
prefix property [GKL15, PSs17].

The cost for some of the above properties is that, as in Algorand, the reputation parties need to
be online when they are chosen. However, this is another place where the reputation system is
instrumental. In particular as discussed in the following section, we can fortify our protocol with a
volunteering mechanism where parties are rewarded (by increasing their reputation) for volunteering
and participating.2 Parties who wish to preserve and improve their reputation need to volunteer
and be online when they do. This mechanism can be even more effective when reputation is linked
to an actual ranking systems, such as Yelp or Ebay, where parties also have external incentive
structures to preserve and improve their reputation. Thus, the reputation system can also serve as
a replacement or reinforcement of standard coin-based reward/punishment mechanisms.

1.3 Related Literature

The recent explosion of blockchain and decentralised ledgers solutions makes it infeasible to review
all the related literature here. In the following, we discuss works which are most relevant to
our results and treatment. Wherever appropriate, additional protocols relevant to our result are
discussed in the following sections.

Reputation systems were previously considered in the context of multi-party computation by
Asharov et al. [ALZ13]. Their results establish necessary and sufficient conditions on the reputation
distribution of a static reputation system for the existence of fair MPC—in particular, for the
existence of an algorithm for selecting a committee where the majority of the participants is honest.

To our knowledge, ours is the first work which puts forth a rigorous specification, protocol,
model, and treatment of reputation-system-based blockchains. Attempts to combine consensus

2We refer to Section D.5 for a longer discussion of the above mechanisms.
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with reputation were previously made in the context of blockchains and cryptocurrencies. Many
of these works lack a complete protocol specification, security model and proofs, and often even
a credible security argument [GWDP18], and/or rely on complicated reputation mechanisms and
exogenous limitations on the adversary’s corruption power [Cho07]. Alternative approaches, use
the proof-of-work (bitcoin) paradigm to assign reputation, by considering miners more reputable if
they allocate, over a long period, more hashing-power to their protocol [YKDE19].

Notably, [BFK17] proposed a reputation-module which can build a scalable blockchain on top
of a BFT-style consensus protocol, e.g., PBFT or Honey Badger [MXC+16]. The idea is that this
reputation module can be used by the parties to select smaller next round committees; however, in
addition to lacking a security proof, the entire module needs to operate over a broadcast channel
created by the original BFT consensus protocol, as it uses a global view of the computation to
accurately readjust the reputations. Hence, its security relies on the security of the underlying
consensus protocol, even if reputation is accurate. Furthermore, their protocol cannot tolerate
epoch-resettable adversaries.

Instead our PoR-blockchain construction is secure under the assumptions of accuracy of the
reputation system, irrespective of the properties of the fallback blockchain. We note in passing
that [BFK17] also proposed an alternative notion of reputation-fairness. Using our terminology,
their definition renders a reputation-based lottery more fair the closer its outcome is to a uniform
sample. We believe that this simplistic definition is not the right notion of reputation-fair lotteries,
as it is unclear why low distance from uniform is a desirable property. (Why should it be considered
fair that a large set of parties with low reputation has better relative representation in the output
than a small set with higher reputation?) Our fairness definition addresses this concern, at a very
low overhead.

We remark that none of the above works addresses the subjective nature of the reputation
systems, i.e., if the reputation system is inaccurately estimated, their security fails. This is in
contrast to our fallback guarantee which allows us to preserve basic safety (unforkability) properties
which are essential in blockchains and cryptocurrencies.

The idea of hybrid constructions which use an alternative consensus mechanism as a fallback
was also previously used in Thunderella [PS18] and Meshcash [BHMN17]. Their protocols rely
on smart refinements of the proof-of-work and/or proof-of-space-time paradigms, and uses novel
tricks to accelerate the blockchain and improve scalability and finality when a higher amount of the
underlying resource is in honest hands while ensuring safety even under weaker guarantees. Finally,
Afgjort [MMNT19] devises a finality layer module on top of a proof-of-stake blockchain. Their
construction achieves instant finality under the combination of the assumptions underlying the
PoS-blockchain—typically, honest majority of stake—and the assumption supporting the security
of the finality layer. In contrast, our PoR/PoS-hybrid blockchain is secure as long as the reputation-
system is accurate irrespective of the security of the underlying PoS-blockchain.

1.4 Organization of the Remainder of the Paper

In Section 2 we establish basic terminology and notation. In Section 3 we lay out the basic pa-
rameters of the model. Section 4 provides the basic definition of a reputation-fair lottery and
construction assuming a feasible correlation-free reputation system. Finally Section 5 describes
a pure PoR-based blockchain for static reputation systems and Section 6 describes how to add a
PoS backup leading to our final solution. Due to space limitations some detailed proofs have been
moved to the appendix, and are referred to as necessary. The Appendix also includes a discussion
about extensions and open research directions.
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2 Preliminaries

We use the standard definition of negligible and overwhelming: A function µ : N→ R+ is negligible
if for any polynomial p(k): µ(k) = O(1/p(k)); We say that a function f : N→ [0, 1] is overwhelming
if f(k) = 1 − µ(k) for some negligible function µ. Many of our statements and definitions assume
an (often implicit) security parameter k. For two strings s1, s2 ∈ {0, 1}∗ we denote by s1||s2 the
concatenation of s1 and s2. For some n ∈ N we will denote by [n] the set [n] = {1, . . . , n}. For a
string s ∈ {0, 1}k and for some D ≤ k we will say that T (s) ≥ D if s has at least D leading zeros,
i.e., s is of the form s = 0D||s′ for some s′ ∈ {0, 1}k−D.

3 The Model

Our blockchain-ledger protocol is a decentralized protocol among a set of nodes P = {P1, . . . , Pn},
also referred to as parties. Each of these parties corresponds to what is typically referred to as a
full node in the blockchain literature.3 That is, each node stores a complete and validated view
of the blockchain and participates in maintaining it whenever the node is online. We note that
the set P is not static, i.e., new nodes might be added or deleted to the set, and nodes might go
temporarily offline, under the restrictions of semi-dynamic availability discussed below. A subset
of the nodes—which might also be dynamically updated during the protocol’s lifetime—have a
distinguished role in the protocol, and are in charge of proposing the blocks to be added in the
blockchain by a mechanism based on their public reputation (see Section 3.1 for our formulation
of reputation). In the remainder of this section we outline the basic network, cryptographic, and
setup assumptions used in our construction.

We assume a standard cryptographic adversary who gets to actively corrupt parties—i.e., takes
full control over them—and uses them to attack the decentralized protocol. The adversary is
assumed to be able to perform any efficient computation—i.e., can compute any probabilistic-
polynomial time (PPT) algorithm.

Synchrony. Similarly to [BMTZ17, BGK+18] the parties are assumed access to a synchronized
clock that allows them to keep track a global current round, so that no (honest) party proceeds
to round ρ + 1 before all parties have had a chance to complete round ρ. (We discuss how this
assumption can be relaxed using techniques from the literature in Appendix D.4.) As a worst case
assumption, the adversary is assumed to be rushing, i.e., in every round, the adversary first receives
all messages that are sent by honest parties, and then decides which messages the corrupted parties
should send (if any).

As is the case in standard PoS-based blockchains [BGK+18, GHM+17], synchrony will allow
us to have a well structured blockchain timeline which is divided into slots, such that in each slot,
blocks tagged with that round are added to the blockchain. Furthermore, we will divide time (hence
also the blockchain) into epochs of a predefined length, i.e., each epoch consisting of a predefined
number of rounds.

The Network. Parties have two means of communication. The first network is a diffusion
(multicast) network build by means of a standard gossiping protocol over an incomplete but con-
nected communication graph of unicast channels, whereby a party stores messages, also called
transactions, it has seen for a fixed time interval and forwards any newly seen transaction to

3Here we do not distinguish between full and light nodes but they can easily be added to the system analogous to
standard blockchains.
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its neighbors. This is analogous to all well studied and widely deployed blockchains such as
Bitcoin [Nak08, BMTZ17], Ethereum [But13], Cardano/Ouroboros [KRDO17, BGK+18], Algo-
rand [GHM+17], Thunderella [PS18], etc. For sake of clarity, we will abstract this communication
by means of a zero-delay multi-cast primitive (cf [BMTZ17]): When an honest party multicasts a
message, this message is delivered to all (honest) parties in the network by the beginning of the
following round.4 However, using [CCGZ17] our protocol can be compiled to be secure in the more
relaxed setting where the delivery of messages can be adversarially delayed by a bounded amount
(see discussions in Appendix D.4.)

The second communication medium is for cases where the identity (e.g., IP) of the receiver
is known. This is a direct channel to the receiver (e.g., established over TCP/IP). These will be
channels to the reputation-parties which have a special role in the protocol—these parties will be
part of a reputation system—and might have publicly announced IP addresses which can be used
by anyone for directly communicating with these parties in a faster manner than via the vanilla
diffusion network. We stress that existence of such links is not necessary for our security analysis—
if they are there, they can be used otherwise, communication via the diffusion network is sufficient
for security. However, if they exist and are used—as due to the nature of reputation systems, such
communication links will exist in reality—then they will considerably reduce the traffic flowing
through the network yielding a more scalable/efficient solution, as discussed in Section 1.2.

3.1 Reputation Systems

A reputation system Rep for m = O(k) reputation parties from a set P̂ = {P̂1, . . . , P̂m} is a family
of probability distributions (parameterized by m) over binary reputation vectors of length m, i.e.,
vectors of the type (h1, . . . , hm) ∈ {0, 1}m.5 Each hi is an indicator bit which takes the value 1 if
P̂i is honest and 0, otherwise. For example, Pr[(h1, . . . , hm) = (0, . . . , 0, 1)] = 0.6 means that with
probability 0.6 every reputation party except P̂m is dishonest. In this work we consider two types
of reputation systems:

• A static reputation system is a probability distribution as discussed above. This is similar to
the reputation system considered in [ALZ13].

• A dynamic reputation system instead is a sequence (ensemble) Rep = {Repρ}ρ∈N of distribu-

tions, where each Repρ is a static reputation system for a set P̂ρ of mρ ∈ N reputation parties.
The reason for considering such dynamic reputation systems is that in a dynamic blockchain
setting, reputation parties might get added or removed, and the reputation of existing parties
might change depending on their behavior in the system and/or other exogenous factors—see
Appendix D.5 for a discussion. Hence the interpretation of Repρ is that it corresponds to
the snapshot of the reputation system in round ρ. A typical scenario, is a reputation system
updated at the beginning of each epoch—i.e., for all rounds ρ and ρ′ that belong to the same
epoch, Repρ = Repρ′—by means of public information recorded on the blockchain during the
previous epoch.

Correlation-free reputation systems. In our description, for simplicity, we focus on the setting
where each hi corresponds to the output of an independent indicator random variable Hi, i.e.,

4Observe that the adversary might send a message to a subset of parties, but if any honest party is instructed
by the protocol to forward it, then the message will be delivered (to all other honest parties) once this forwarding
occurs.

5For notational simplicity, we often refer to Rep as a probability distribution rather than an ensemble, i.e., we
omit the explicit reference to the parameter m.
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whether or not a reputation party P̂i behaves honestly does not depend on what other reputation
parties do. In this case, a static reputation system can be described by a vector of m numbers
between 0 and 1, i.e., Rep = (R1, . . . , Rm) ∈ [0, 1]m, where the interpretation of Rep is that with
probability equal to Ri the party P̂i will play honestly (i.e., Pr[Hi = 1] = Ri).

6 We then say that Ri
is the reputation of party P̂i. We refer to such a reputation system as a correlation-free reputation
system. In the following we provide more details of the corruption capabilities that a correlation-
free reputation system (static or dynamic) gives to the adversary. Correlated reputation systems
(with limited correlations) and corresponding stronger adversaries are discussed in Appendix D.2.

Corruption of Reputation Parties The adversary’s corruption capabilities are specified by
the reputation system. We consider three types of reputation-bounded adversaries:

• A fully static reputation-bounded adversary for reputation system Rep, also referred to as a
Rep-adversary, corrupts the set of parties at the beginning of the protocol and sticks to this
choice. This is the weakest form of corruption considered here. Given a reputation system
Rep for m reputation parties, corruption with a static adversary occurs as follows: A vector
(h1, . . . , hm) ∈ {0, 1}m is sampled according to the distribution defined in Rep, and each
hi = 0 the reputation party P̂i ∈ P̂ is corrupted by the adversary.

• Fully static reputation-bounded adversaries are unsuitable for reputation systems which might
be dynamically updated as the underlying system evolves—e.g., new reputation parties are
added, and the reputation of existing parties is updated as a result of their (mis)behavior.
An epoch-resettable reputation-bounded adversary instead, corrupts a completely new set of
parties at the beginning of each epoch, according to the reputation system at the beginning of
the epoch, and is a more suitable (and stronger) adversary for dynamic reputation systems.
The process is similar to the above, with the difference that a new set of corrupted parties is
sampled at the beginning of each round ρ for which Repρ 6= Repρ−1.

• The above epoch-resettable adversary is suitable for correlation-free reputation systems. How-
ever, this corruption mode might be considered overly restrictive as it does not allow the ad-
versary to ”lock onto” corrupted parties across epoch boundaries—i.e., keep a corrupted party
corrupted when the epoch switches. In Appendix D.2 we discuss a refinement of this type of
adversaries to account for such more general corruption-patterns. This refinement implicitly
captures several adversarially-induced dependencies in the distribution of corrupted parties,
and, therefore, also captures limited correlations or inaccuracies in the parties’ reputation
which are still tolerable. Although in this work, security of our PoR-blockchain is proved for
correlation-free systems, in Appendix D.2 we discuss how this treatment can be extended us-
ing the above refinements to reputation systems with limited correlation. We stress however
that, as we prove, even when our reputation system is inaccurate (e.g., there are stronger
correlations than allowed in our treatment) the Nakamoto-blockchain (e.g., PoS-blockchain)
backup will ensure a sufficiently strong security fallback property.

3.2 Semi-Dynamic Availability

In modern blockchain protocols, parties are allowed to come and go at will. In [BGK+18] the
concept of dynamic availability was introduced to capture arbitrary, even adversarial, participation
patterns. Instead, in [GHM+17], these patterns were implicitly reduced to assume the necessary

6Adaptive correlation-free reputation systems are described, analogously, as an ensemble of static reputation
systems.
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level participation. Although the advantage of full dynamic availability is evident—i.e., one does
not need additional assumptions about which parties are around—this generality does not come
without a cost: Protocols with dynamic availability [BGK+18] do not achieve instant finality—i.e.,
a new block needs to be confirmed by sufficiently many follow-up blocks, which might even arrive
at different times, in order to be considered stable. Our design aims to achieve instant finality,
i.e., once an honest party adopts a new block, every honest party will adopt it in the same round
assuming full synchrony, or by a delay which is bounded by the network’s delay if not. This is
analogous with the guarantee achieved by Algorand and other iterated Byzantine fault tolerant
constructions.

Although, for clarity, our security proof assumes such an assumption on availability guarantees—
i.e., that parties are there when needed—we can use reputation to ensure that a rational party which
wants to preserve or increase its reputation will participate when necessary. More precisely, we can
take the following approach. (Recall that the protocol execution is divided into epochs.) In each
epoch, the reputation parties are allowed to declare their availability for up to E epochs in the
future (where E is a protocol parameter). Note that the quality of the blockchain heavily depends
of the availability of reputation parties. Therefore, we use the following mechanism to incentivize
such availability:

1. The reputation of a party increases with the number of epochs, for which it declares itself
available. If this number is less than a set threshold, then the reputation decreases. This will
incentivize the reputation parties to declare dense availability.7

2. The reputation of a party decreases if the party has declared itself available and is selected
to participate but it does not.

Additional reputation-based rewards and penalties are discussed in Section D.4.

3.3 Cryptographic Assumptions and Setups

We conclude this section by providing the setup assumptions used in the specification and proof
of our blockchain. As discussed below, some of these assumptions are introduced to simplify the
exposition and can be removed using standard techniques from the blockchain literature.

– Random Oracle. This is the standard assumption that a hash function behaves as a random
function.

– Randomness Beacon (Source of Clean Randomness). We will assume that the parties have access
to a randomness beacon that produces fresh, unpredictable randomness. At the beginning of
each round ρ, the beacon generates a fresh independent k-bit random string Rρ; at any round
ρ, parties can query the beacon with any past-round index ρ′ ≤ ρ and they receive Rρ′ as a
response. A query for a future round is always answered with ⊥. We note that such a beacon is
not necessary in the simple case of a static or epoch-resettable adversary, where we can use the
random oracle to generate randomness for the whole protocol, but it becomes relevant for the
more advanced adversary able to tune his corruptions and/or for correlated reputation systems.
Therefore we already include it in the original description.

We note further that, even for the above stronger adversarial assumptions, this beacon
assumption is only for simplifying the description. In Section D.3 we discuss how to instantiate
a sufficiently strong version of the beacon using a simple and very efficient construction; in
particular, we show how the parties can choose the randomness of each epoch by evaluating a

7Observe that here we implicitly assume that parties wish to increase their reputation. Exact rewarding mecha-
nisms that realize this incentives structure are discussed in Section D.
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hash function (i.e., random oracle) in a hash-chain manner, i.e., on input the randomness of the
previous epoch—or the genesis block if this is the first epoch—and (a hash) of the contents of
the blocks of the previous epoch. We note that this allows the adversary to ”grind” the actual
randomness [KRDO17, GHM+17]—i.e., tune the randomness by sampling a different input
polynomially many times. However, as each epoch will also include honest inputs—transactions,
blocks, and nonces—the input will have sufficient entropy to ensure unpredictability of the next
epoch’s randomness.

– Genesis Block. We assume that parties are able to obtain the genesis block which includes suf-
ficient randomness. In practice, this randomness can be extracted from a combination of un-
predictable yet publicly verifiable events, e.g., recent news articles and contents, or from other
existing blockchains.

– Complexity Assumptions. In terms of cryptographic assumptions we will assume existentially
unforgeable digital signatures [GMR88] along with pseudorandom function. Efficient and even
post-quantum variants of these primitives are known to exist under standard complexity as-
sumptions, namely, existence of one-way functions or hardness of lattice problems.

4 Reputation-based Lotteries

In the heart of our construction is a lottery that chooses a (sublinear) set of parties according to
their reputation. To demonstrate the idea, let’s first consider two extreme scenarios:

• Scenario 1: No reputation party P̂i has Ri > 0.5.

• Scenario 2: All reputation parties P̂i have (independent) reputation Ri > 0.50000001.

In Scenario 1, one can prove that users cannot use the recommendation of the reputation
parties to agree on a sequence of transactions. Roughly, the reason is that with good probability,
the majority of the reputation parties might be dishonest and try to split the network of users,
so that they accept conflicting transaction sequences. Thus in this scenario, consensus needs to
be reached by leveraging some other mechanism. We outline such a mechanism based on proof of
stake in Section 6.

In Scenario 2, on the other hand, the situation is different. Here, by choosing a small random
committee of, say 40, reputation parties, we can guarantee (except with negligible probability)8that
the majority of those parties will be honest (recall that we assume independent reputations), and
we can therefore employ a fast Byzantine Fault-tolerant Consensus (BFT) protocol to achieve
agreement on the sequence of transactions.

Definition 1. For a reputation system Rep for parties from a reputation set P̂, a (possibly proba-
bilistic) algorithm A for sampling a subset of parties from P̂, and an Rep-adversary A, we say that
Rep is (ε, A)-feasible for A if, with overwhelming probability,9 A outputs a set of parties such that at
most a 1/2− ε fraction of these parties is corrupted by A.

Note that in the above definition, the corrupted parties are chosen according to Rep from the
entire reputation-party set P̂, and independently of the coins of A. (Indeed, otherwise it would be
trivial to corrupt a majority.)

8All our security statements here involve a negligible probability of error. For brevity we at times omit this from
the statement.

9The probability is taken over the coins associated with the distribution of the reputation system, and the coins
of A and A.
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Definition 2. We say that a reputation system is ε-feasible for Rep-adversary A, if there exists a
probabilistic polynomial-time (PPT) sampling algorithm A such that Rep is (ε, A)-feasible for A.

It is easy to verify that to maximize, in the above Scenarios, the (expected) number of honest
parties in the committee it suffices to always choose the parties with the highest reputation. In
fact, as show in [ALZ13] this can be generalized to arbitrary correlation-free reputation systems. In
particular, [ALZ13] proved that for any ε-feasible reputation system Rep (i.e., for any Rep-adversary
A) the algorithm which orders that parties according to their reputation chooses sufficiently many
(see. [ALZ13]) parties with the highest reputation induces a set which has honest majority. We
denote this algorithm by Amax.

Lemma 1 ([ALZ13]). A correlation-free reputation system is ε-feasible for a Rep-adversary A if
and only if it is (ε, Amax)-feasible for A.

We note that as discussed in the introduction, although yielding a maximally safe lottery, Amax

has issues with fairness which renders it suboptimal for use in a blockchain ledger protocol. In the
following we introduce an appropriate notion of reputation-fairness for lotteries and a mechanism
for achieving it.

4.1 PoR-Fairness

Analogous to standard ranking/reputation systems, we divide reputation in a small number of tiers.
This is analogous to the ranking system used by classical reputation/recommendation systems, e.g.,
in Yelp, a party might have reputation represented by a number of stars from 0 to 5, along with their
midpoints, i.e., 0.5, 1.5, 2.5, etc—we refer to such a reputation system as a eleven-tier reputation-
system. As a warm up we first informally demonstrate fairness and describe a reputation-fair lottery
for the simple case of a two-tier reputation system. In the following paragraph we provide our formal
definition of reputation-fairness along with a sampler for a constant number of reputation tiers.

4.1.1 A Simple PoR-Fair Lottery for a 2-Tier Reputation System

For the purpose of this demonstration let us assume that all reputations can be divided in two
tiers corresponding to reputation at least 0.75000001 and reputation at least 0.50000001 (but lower
than 0.75000001). This will allow us to focus on fairness as all candidates for the committee-lottery
have reputation greater than 0.50000001 which, as discussed above, will ensure (with overwhelming
probability) honest majority within the committee. The more general case of more tiers and tiers
with lower probabilities is discussed in the following paragraph.

For the purpose of this example, we denote the set of reputation parties with reputation be-
tween 0.50000001 and (less than) 0.75000001 by P̂2 and the set of parties with reputation at least
0.75000001 by P̂1. Assume that |P̂1| = α and |P̂2| = β. We want to sample a small number y
of parties in total, where, of course, y < |P̂| = |P̂1| + |P̂2|. Per our specification of the tiers, the
parties in P̂2 are about twice more likely to be corrupted as parties in P̂1. Hence, if the sets P̂1
and P̂2 were of similar size, the fairness requirement would imply a goal of selecting (on average)
about twice as many parties from P̂2 than the number of parties selected from P̂1. However, when
|P̂1| = α1 is much larger than |P̂2|, we want to start shifting the selection towards P̂1, as we do
not want to penalize large sets of high-reputation parties—high reputation is a desideratum. This
leads to the following informal goal for the lottery (the formal definition is discussed in the next
paragraph).

Goal (informal): We want to randomly select x1 parties from P̂1 and x2 parties from P̂2 so that:
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1. x1 + x2 = y, and

2. x1 = max{2, α1
α2
}x2.

3. For each i ∈ {1, 2} : No party in P̂i has significantly lower probability of getting picked than
other parties in P̂i, but parties in P̂1 are twice as likely to be selected as parties in P̂2.

Here is how to create a lottery which achieves the above goal. To avoid having to deal with
rounding issues, we choose our target size y to be such that the values 2β−α

α+β
y

1+ 2β−α
α+β

α = 5β−α
3β αy

and y

1+ 2β−α
α+β

β = α+β
3 y are integral values. The lottery proceeds as follows:

1. First, we choose max
{

0, 2β−αα+β

}
y

1+max
{
0, 2β−α
α+β

} parties randomly from P̂2;

2. Subsequently, we choose y

1+max
{
0, 2β−α
α+β

} parties randomly from the union P̂1 ∪ P̂2. If a party

from P̂2 is chosen twice, i.e., in both of the above steps, then choose another party randomly
from the parties in P̂2 that have not yet been chosen in any of the steps.

3. Take all the parties that were chosen in the above steps to form the committee.

We next show that the outcome of the above lottery satisfies, on average, the goals set for
it. (Notation: For a random variable X, we denote by E(X) the expected value of X). The
non discrimination property follows from the fact that the parties are chosen randomly from their
respective sets. As a warm up, the following theorem formalizes and proves the fact that, “on
average”, our above lottery satisfies the first two properties discussed in the above goal. The
formal and more general version of the result, with all three properties, is then proved in the
following paragraph for arbitrary (feasible) reputation systems:

Theorem 1 (Reputation-Fair Lottery for two tiers). In the above lottery, for i ∈ {1, 2}: let Xi

be the random variable (r.v.) corresponding to the set of parties in the final committee that come
from set P̂i (i.e., |Xi| is the r.v. corresponding to xi.) Let also `I (resp. `II) denote the number
of parties that are added on the committee in the first step (resp. in the last two steps). Then the
following statements hold:

1. `I + `II = y

2. E(|X1|) = max{2, αβ }E(|X2|)

The proof of the theorem can be found in Appendix B.1.

4.1.2 Extension to Multiple Reputation Tiers

We next discuss how to formalize the above informal fairness requirement, and extend the definition
and lottery mechanism to more than two reputation tiers and to allow reputations less than 1/2.
Note that although, in principle, a reputation less than 1/2 indicates that the respective reputation
party is more likely to be adversarial than not, it will be essential for the dynamic reputation version
of the protocol to select (even a small number) of such parties, to give newly joining reputation
parties—which, being new, might have lower reputation—a chance to build reputation by honestly
playing the protocol. Along the way we also describe the formal specification of a sampler for
achieving our notion of fairness.
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To this direction we will partition the reputations in m = O(1), i.e., constantly many, tiers
as follows: For a given small δ > 0, Tier j includes parties with reputation between j−1

m + δ and
j
m + δ. Note that we explicitly ignore parties with reputation 0; those parties are not considered as
belonging to the reputation set. Thus, a mechanism for removing a reputation party is to set its
reputation to 0.

We refer to the above partitioning of the reputations as an m-tier partition. The idea of the
fairness goal for the lottery then is to give to each party belonging to Tier j, chances of being
chosen proportional to c(m−j) for an appropriate class of constant c’s, which are parameters to the
the sampling algorithm, but also balanced by the tier-set size ratio, similarly to the two-tier case.
Concretely, the formal fairness goal is as follows:

Definition 3. Let P̂1, . . . , P̂m be a partition of the reputation-party set P̂ into m subsets and let L
be a lottery which selects xi parties from each P̂i. For some c ≥ 1, we say that L is c-reputation-fair,
or simply, c-fair if it satisfies the following properties:

1. (c-Representation Fairness): For j = 1, . . . ,m, let cj = max{c, c · |P̂j |
|P̂j+1|

}. Then L is c-fair if

for each j ∈ {0, . . . ,m− 1} and for every constant ε ∈ (0, c):

Pr [(cj − ε)xj+1 ≤ xj ≤ (cj + ε)xj+1] ≥ 1− µ(k),

for some negligible function µ.

2. (c-Selection Fairness): For any pj ∈ ∪mi=1P̂i, let Memberi denote the indicator (binary)
random variable which is 1 if pj is selected by the lottery and 0 otherwise. The L is c-
selection-fair if for any i ∈ {1, . . . ,m − 1}, for any pair (pi1 , pi2) ∈ P̂i × P̂i+1, and any
constant c′ < c:

Pr[Memberi1 = 1]

Pr[Memberi2 = 1]
≥ c′ − µ(k)

for some negligible function µ.

3. (Non-Discrimination): Let Memberi defined as above. The L is non-discriminatory if for
any pi1 , pi2 in the same P̂i:

Memberi1 ≈Memberi2 ,

where ≈ in the above equation means that the random variables are computationally indistin-
guishable.

At a high level the lottery for the m-tier case is similar in spirit to the two-tier case: First we
sample a number of α1 parties from the highest reputation set, then we sample α12 parties from
the union of second-highest and the highest, then we sample α123 parties from the union of the
three highest reputation tiers, and so on. The values α1, α12, α123, etc. are carefully chosen so that
the above fairness goal is reached whenever there are sufficiently many parties in the different tiers.
We next discuss the detailed mechanism and prove its security properties.

We start by describing two standard methods for sampling a size t subset of a party set P—
where each party P ∈ P is associated with a unique identifier pid10—which will both be utilized in
our fair sampling algorithm. Intuitively, the first sampler samples the set with replacement and the
second without. The first method, denoted by Rand, takes as input/parameters the set P, the size
of the target set t—where naturally t < |P|—and a nonce r. It also makes use of a hash function

10In our blockchain construction, pid will the P ’s public key.
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h which we will assume behaves as a random oracle.11 In order to sample the set, for each party
with ID pid, the sampler evaluates the random oracle on input (pid, r) and if the output has more
than log t tailing 0’s the party is added to the output set. By a simple Chernoff bound, the size of
the output set P̄ will be concentrated around t. For completeness we include a description of the
sampler along with its achieved properties in Appendix A

In addition to the above sampler which samples each party independently, we will also make
use of the straighforward sampler, denoted by RandSet (see Appendix A), that samples a random
subset of t parties from P (corresponding to sampling without replacement): Order the parties
according to the output of h on input (pid, r) and select the ones with the highest value (where the
output h is taken as the standard binary representation of integers). It follows directly from the
fact that h behaves as a random oracle—and, therefore, assigns to each Pi ∈ P a random number
from {0, . . . , 2k − 1}—that the above algorithm uniformly samples a set P̄ ⊂ P of size t out of all
the possible size-t subsets of P.

Theorem 2 (Reputation-Fair Lottery for m = O(1)-tiers). In the above lottery
L(P̂, Rep, (c1, . . . , cm), δ, ε, r), let ε, δ > 0 be strictly positive constants, and for each i ∈ {1, . . . ,m =
O(1)}, let Xi be the random variable (r.v.) corresponding to the set of parties in the final committee

that come from set P̂i (i.e., |Xi| is the r.v. corresponding to xi); and let ci = max{c, c |P̂i|
|P̂i+1|

} where

c = O(1) such that for some constant ξ ∈ (0, 1) : 1
cm−1 ≤ m−2

2m −ξ. If for some constant εf ∈ (0, 1/2)
the reputation system Rep is εf -feasible for a static Rep-bounded adversary A, then for the set Psel
of parties selected by L the following properties hold:

1. With overwhelming probability (in the security parameter k) :

1.a) |Psel| = Θ(log1+ε n), and

1.b) for some constant εδ > 0 adversary A corrupts at most an 1/2−εδ fraction of the parties
in Psel

2. Additionally, if every set P̂i has at least γ · log1+ε n parties for some γ > 1, then the lottery
is c-fair.

The complete proof can be found in Appendix B.2. In the following we included a sketch of the
main proof ideas.

Idea. The proof considers two Cases.

In Case 1 the output Psel is selected by means of invocation of algorithm Amax. This is the
simplest case since Lemma 1 ensures that if the reputation system is εf -feasible, then a fraction
1/2 + εf of the parties in Psel will be honest except with negligible probability. Note that in this
case, the number of selected parties is |Psel| = log1+ε n with probability 1.

In Case 2, The lottery is never reset. Proving this case is the bulk of the proof.

First, in Lemma 3 using a combination of Chernoff bounds we prove that the number of parties
from P̂i selected in the lottery is concentrated around the (expected) value:

xi := Exp(Xi) = αi ·
m∑
j=i

`j∑j
q=1 αj

11In the random oracle model, r can be any unique nonce; however, for the epoch-resettable-adversary extension
of our lottery we will need r to be a sufficiently fresh random value. Although most of our analysis here is in the
static setting, we will still have r be such a random value to ensure compatibility with dynamic reputation.
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L(P̂, Rep, (c1, . . . , cm = 1, cm+1 = 0), δ, ε, r)

1. Divide the reputation parties into m tiers P̂1, . . . , P̂m as follows,a: Set P̂1 to the set of reputation
parties with reputation Repj ∈ (0, 1

m + δ] , and for i = 2 . . . ,m, define P̂i is the set of parties in

P̂ with reputation Repj ∈ ( i−1m + δ, im + δ].

2. Initialize P̄i := ∅ for each i ∈ [m].

3. For each i = 1, . . . ,m: αi := |P̂i|.

4. For each i = 1, . . . ,m:

(a) Let

`i =

∑i
j=1 αj∑m

j=1

∏j
q=1 cj

αi+1

∏m−i
j=0 cm−j − αi

∏m−i−1
j=0 cm−j

αi+1αi
log1+ε n

(b) If | ∪ij=1 P̂j | ≥ `i:

i. Invoke Rand(∪ij=1P̂j , d`ie; (r||i)) to choose a set Qi of parties uniformly at random

from ∪ij=1P̂j .
ii. For each j ∈ [i] compute Qcol

i,j := Qi ∩ P̄j and update P̄j := P̄j ∪ (Qi ∩ P̂j).
iii. For each j ∈ [i] if Qcol

i,j 6= ∅, then

A. if |P̂j \ P̄j | < |Qcol
i,j | then reset the lottery and select Psel as the output of Amax.

B. Else

• Invoke RandSet(P̂j \ P̄j , |Qcol
i,j |; (r||i||j)) to choose a set Q+

i,j ;

• For each j ∈ [i] update P̄j := P̄j ∪Q+
i,j .

C. Set Q+
i := ∪mj=1Q

+
i,j

(c) Else (i.e., | ∪ij=1 P̂j | < `i): Reset the lottery and select (and output) Psel as the output of

Amax for choosing log1+ε n.

5. If the lottery was not reset in any of the above steps, then set Psel := ∪mj=1P̄j(= ∪mi=1(Qi ∪Q+
i ))

and output Psel.
aWhere δ can be an arbitrary small constant.

Figure 1: c-fair reputation-based lottery for m=O(1) tiers

From this we deduce that the xi’s and the `j ’s satisfy the following system of linear equations:

(x1, . . . , xm)T = B · (`1, . . . , `m)T (1)

Where B is an m×m matrix with the (i, j) position being

Bi,j =

{
αi∑j
q=1 αj

, if i ≥ j

0, otherwise

The above system of m equations has 2m unknowns. To solve it we add the following m
equations which follow from the desired reputation fairness:

• For each i ∈ [m− 1] :
xi+1 := ci · xi (2)
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•
m∑
i=1

xi = log1+ε k (3)

This yields 2m linear equations. By solving the above system of equations we can compute:

`i =

∑i
j=1 αj∑m

j=1

∏j
q=1 cj

αi+1
∏m−i
j=0 cm−j − αi

∏m−i−1
j=0 cm−j

αi+1αi
log1+ε n

This already explains some of the mystery around the complicated choice of the `i’s in the
protocol.

Next we observe that for each j ∈ [m] :
∑m

i=1Bi,j = 1 which implies that

m∑
j=1

`j =
m∑
i=1

xi
Eq. 3

= log1+ε k (4)

Because in each round we choose parties whose number is from a distribution centred around
`i, the above implies that the sum of the parties we sample is centred around

∑m
j=1 `j = log1+ε k

which proves property 1.a).

Property 1.b) is then proved by a delicate counting of the parties which are corrupted, using
Chernoff bounds for bounding the number of corrupted parties selected by Rand (which selects with
replacement) and Hoeffding’s inequality for bounding the number of parties selected by RandSet
(which selects without replacement). The core idea of the argument is that because the reputation
in different tiers reduces in a linear manner but the representation to the output of the lottery
reduces in an exponential manner, even if we give to the adversary all the parties selected in the
lowest half reputation tiers, still the upper half will have a very strong super-majority to compensate
so that overall the majority is honest.

Finally, the c-fairness properties are argued as follows:

–The c-Representation Fairness follows directly from Lemma 3 and Equation 2.

–The non-discrimination property follows from the fact that our lottery picks each party in every
P̂i with exactly the same probability as any other party.

–The c-Selection Fairness is proved by using the fact that the non-discrimination property mandates

that each party in Psel ∩ P̂i is selected with probability pi = |Psel∩P̂i|
|P̂i|

. By using our counting of

the sets’ cardinalities computed above we can show that for any constant c′ < c: pi
pi+1
≥ c′.

5 From a PoR-Fair Lottery to a Blockchain

We next describe how a PoR-fair lottery can be used to obtain a PoR-fair blockchain. The idea is
as follows: Time will be divided in epochs, where each epoch consists of a fixed number of rounds,
aka slots.

The ground truth of the blockchain is recorded on the genesis block which includes the (initial)
set of reputation parties, their public keys and the corresponding reputation vector. For simplicity,
we focus our attention to the case of static reputation, i.e., the set of reputation parties is fixed and
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so are their individual reputations. Appendix D.5 discusses an approach to a reputation-update
mechanism; a formal treatment of such a mechanism is left as future work.

5.1 The Consensus Mechanism

In the following, as discussed in the model, we assume for simplicity that at the beginning of each
epoch the parties receive from a beacon (cf. Section 3.3) a sufficient amount of fresh independent
randomness to run the lotteries associated with the current epoch of our protocol. Using standard
techniques from the PoS literature we can ensure that security of our construction is preserved
even under imperfect randomness (cf. Section D.3). We assume a canonical way of validating
transactions submitted in the same round, e.g., if two received transactions which have not-yet
been inserted into a block would contradict each other (e.g., correspond to double-spending), a
default rule of ignoring both can be adopted. We will abstract this by means of a predicate
Validate, that takes as input a sequence T (of transactions) along with a current vector TH of
transaction history—composed by concatenating the transactions in the blockchain, and outputs a
subset T ′ ⊆ T such that TH ||T ′ is a valid sequence of transactions.

The idea of the protocol is as follows: For each slot, a random small (i.e., polylogarithmically big)
slot-committee CBA is chosen using our above lottery—recall that the lottery will guarantee that the
majority in CBA is honest and therefore it can run Byzantine agreement protocols (Consensus and
Broadcast). Note that whenever in our protocol we say that a party P broadcasts a message, we
mean that a Byzantine broadcast protocol is executed with P as sender; to avoid confusion we will
signify this by saying that that the message is broadcast by means of protocol Broadcast. For clarity
in our description we will use a deterministic broadcast protocol for Broadcast, e.g., the Dolev-Strong
broadcast protocol [DS83] for which we know the exact number of rounds. However, using the
techniques from [CCGZ16, CCGZ17], we can replace the round-expensive Dolev-Strong broadcast
protocol by an randomized, expected-constant round broadcast protocol for honest majorities,
e.g., [KK06] in an almost blackbox manner. We stress that only parties in this committee will
send messages in this respective slot, and as the identities of the committee can be computed by
everyone, the parties never need to process messages that do not originate from the current slot
committee members.12 Out of this CBA we will choose randomly a smaller (constant size) committee
CBC; this committee will get to propose transactions to go to the currently formed block—the block
will include the union of all the proposed transactions.13

Once the committee is chosen, the protocol proceeds as follows: Every party in CBC, in parallel,
acts as a sender in an invocation of protocol Broadcast to broadcast his set of known transactions—
aka its local transaction pool—to the set CBA (once the broadcast protocol terminates, the respective
sender removes the broadcasted transactions from its transaction pool). Since the majority in CBA

is honest, the broadcast will be successful, i.e., every party will output the same set of transactions,
and all transactions broadcasted by any honest party in CBC will be included in this set. In order
to get convincing evidence that this is the right set, we will have every party in CBA sign it. At this
point we can forward it to the whole set of nodes and everyone can adopt the set which is backed
by a majority of signatures from CBA—since the majority in CBA is honest and honest parties agree
on the set of transactions, only this set might be accepted.

However, as, in reality, some reputation parties will have public identities and IP addresses and
can be reached by direct communication, we will use the following method for exploiting this fact

12We can make sure that all messages from non-committee members are ignored by having committee members
attach standard size-efficient signatures.

13As usually, we assume in the analysis unlimited-size blocks; for dealing with bounded size blocks we will allocate
a transaction budget to each of the parties in CBA.
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to optimize communication: Rather than flood the entire set P, the parties in CBA will return their
signed transaction sets to the parties in CBC, whenever possible over a direct channel. Then CBC—
which, recall, has only a tiny (constant) number of members—will be responsible for multicasting
it to the whole set P. Note that this does not compromise consensus—in other words will not
create forks—as (1) only transaction-sets with majority (from CBA parties) support might make
it into a block, and (2) from the properties of the multicast network, any honest party in P that
accepts a new block will relay it and hence the block will reach all other honest parties (and for
the same reason of honest majority support, this relay will convince any other honest receiver).
Furthermore, unlike what one might initially think, having only CBC players multicast blocks to the
full node set does not affect transaction liveness14 even though CBC is not large enough to guarantee
presence of an honest parties with overwhelming probability. Indeed, if there is an honest party
in CBC then this party will propagate the CBA-majority-backed transaction-set/block which will be
adopted; otherwise, i.e., if all parties in CBC are corrupted, then the worst that can happen is that
they do not propagate a block for that round. As there is more than one party in CBC this will
yield a higher transaction liveness than existing solutions (see Section 1.2 for a discussions on the
liveness guarantees of our protocol).

The formal description of the protocol for announcing and agreeing on the next block can be
found in Figure 2. Recall that we assume that the parties maintain a set of received transactions
(their local transaction pool) which is periodically, locally validated by means of the predicate
Validate(·) and updated whenever a new block is added on the chain by removing conflicting trans-
actions. Recall that all parties are assumed to be available when selected in a committee. In
Appendix D we discuss how reputation can be used to inceltivize availability. The proof of the
following theorem can also be found in Appendix B.3.

Theorem 3. Let Rep be a reputation system, ε and δ be small positive constants, and L denote
our sampling algorithm (lottery) discussed in the previous section used for choosing CBA according
to Rep. If for a static adversary A, Rep is ε-feasible, and all parties in P̂ρ participate in slot ρ
then in protocol BlockAnnounce, every node in P adds the same block on his local blockchain for
slot ρ. Moreover, this block will include the union of all transactions known to parties in CBC at
the beginning of round ρ.

Using Protocol BlockAnnounce it is straightforward to build a blockchain: In each round parties
collect all still valid transactions they know and exectute BlockAnnounce. For completeness we also
provide a description of our reputation-based blockchain protocol (see Figure 3). Its security follows
directly from the above theorem. We remark that although the above theorem is proven for static
reputations and adversaries, its proof can be extended, using standard techniques in the blockchain
literature (cf. Section D.3), to dynamic reputation systems with epoch-resettable adversaries. This
extension will also extend the corresponding PoR-based blockchain protocol to that setting.

Remark 1 (Joining parties). The static reputation assumption makes it easy to join the protocol
as a user: In order for a user (who knows the current value of the clock) to read the blockchain he
simply needs to query any of the parties for receiving all ρ blocks, where ρ is the current round, and
check that all blocks are valid, i.e., they are properly signed by a majority of parties in a committee
that is the result of running the lottery on the previous blocks. Extending this to dynamic reputation
requires the use of key-evolving signatures and also requires all the reputation updates to be recorded
on the blockchain before taking effect. A complete treatment of that case is left as a future research
direction.

14Informally, transaction liveness [GKL15] requires that transactions of honest parties make it into an adopted
block within a short time interval.
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BlockAnnounce(P̂,P, Rep, Bρ−1, ρ, δ, ε, L = O(1)):

Let P̂ρ denote the reputation parties in Slot ρ.

1. Extract the concatenation of randomness rρ−1 from the previous block.

2. Using the above randomness rρ−1,a each party in P locally runs the reputation-fair lottery

L(P̂, Rep, (c1, . . . , cm + 1), δ, ε, h(rρ−1||0)), where the cjs are as in Theorem 2, to sample a set

CBA ⊂ P̂ρ (of size polylog(n)); out of this set, the parties choose a random subset CBC of
constant size L = O(1) by invoking RandSet(CBA, L; h(rρ−1||1)).

3. Each party P̂i ∈ CBC acts as sender in an invocation of Broadcast with receivers the parties in
CBA and input P̂i’s current transaction pool Ti along with a random nonce ri; P̂i removes the
broadcasted transactions from its local transaction pool.

4. All parties in CBA compute Y = (T̂ , r), where T̂ = Validate(TH , T ) for T = ∪pi∈CBCTi and r

is the concatenation of all broadcasted ri’s. If some party P̂j ∈ CBA did not broadcast a valid
message in the previous round of the protocol, then all parties in CBA set Tj = {(abort, j)} and
rj = 0.

5. Every P̂j ∈ CBA signs h(Y, h = h(Bρ−1), ρ), where Bρ−1 is a hash pointer to the block of the
previous round and sends it to every party in CBC.

6. Each P̂i ∈ CBC: If for some (Y, h, ρ), where ρ is the current slot and h = h(Bρ−1) is a valid

hash pointer to the previous block, P̂i receives at least |CBA|/2 signatures from parties in CBA on
(Y, h), then P̂i multicasts (Y, h, ρ) along with all the corresponding signatures to all nodes in P
and resets his local transaction-pool set to ∅.

7. Each Pi ∈ P: Upon receiving any (Y, h, ρ) along with signatures on it from at least |CBA|/2
parties from CBA, create a block consisting of (Y, h, ρ) and the related signatures and add this
block to the blockchain as the current slot’s block and mark the current slot as completed.

aIn the version of the protocol using a beacon, the parties can simply use the current-round value of the
beacon.

Figure 2: Block announcing protocol for Slot ρ

RepBC(P̂,P, Rep, Bρ−1, ρ, δ, ε, L = O(1))
Every party receives the genesis block which includes: an encoding of the reputation system Rep, and
the public keys of all initial reputation parties. Let ρBA denote the number of (clock) rounds that each
invocation of BlockAnnounce takes to complete.a Each slot in our protocol will be ρBA clock-rounds.
Without loss of generalize, we assume that the protocol starts when the global clock round is 1.

• Extending the blockchain: In the ρth slot:

1. Let Bρ−1 denote the block adopted in the previous slot (where B0 is the genesis block):

2. The parties execute BlockAnnounce(P̂,P, Rep, Bρ−1, ρ, δ, ε, L) to announce and agree on the
ρ-th slot block.

aRecall that for simplicity we describe the protocol with deterministic Byzantine Agreement; using the tech-
niques from [CCGZ16] we can extend our treatment to use randomized—and more round-efficient—protocols.

Figure 3: The Reputation-based Blockchain (Static Reputation)

20



6 A PoR/PoS-Hybrid Blockchain

A purely PoR-based blockchain protocol can be manipulated by malicious parties who behave
honestly until they build reputation and then use their reputation to attack the system. To minimize
the effect of such attacks on the protocol, we devise a hybrid-design approach: In parallel to the fast
and sharp-finality PoR-based blockchain, we will run a slower, Proof-of-Stake-based blockchain (in
short, PoS-blockchain) whose contents will be special transactions (see below) along with digests
of the blocks of the PoR-blockchain. This back-up PoS-blockchain will ensure that PoR cannot be
manipulated as above by exploiting an inaccurate reputation system, as long as the majority of
the stake is in honest hands. In addition to offering a fallback guarantee, the PoS-based blockchain
can be used in a bootstrapping phase to establish a common view on the reputation system (cf.
Section D.5).

The guarantees that we will be receiving from such a hybrid blockchain design are the following:
If the reputation system is accurate, i.e., the reputations reflect the actual probabilities that the
parties behave honestly, then our protocol will be secure and achieve the claimed speed and finality.
Additionally, if the reputation is inaccurate and, as a result, a fork is created, the parties will
be able to detect this—and agree on this fact—within a small number of rounds as long as the
majority of the stake in the system is in honest hands. Note that detection is a very important
feature as it will ensure that no double spending can occur, which will not be observed very
swiftly. Most importantly, our design will ensure that as long as the reputation system is good,
the backup blockchain can neither yield false detection positives nor slow down the progress of the
PoR-blockcain, even if the stake in the system has shifted to malicious parties (in which case the
back-up PoS-blockchain might fork).

Here is how this can be achieved: In every round the reputation parties will be posting, as a
transaction on the backup PoS-blockchain, the current slot’s hash pointers. This way every party
will be able to efficiently verify their local view by comparing their local hashes to the ones posted
on the backup blockchain. If any honest party observes a discrepancy, then he can complain by
posting the block in his local PoR-chain which is inconsistent with the pointer seen on the backup
PoS-blockchain. We refer to this complaint as an accusation and to the party that posts it as an
accuser. If the accuser fails to present a valid view (i.e., a block with sufficient signatures from the
corresponding slot committee) then the accusation is considered invalid and the dispute is resolved
in favor of the reputation party that had initially posted the disputed hash pointer, hereafter
referred to as the accused party. Otherwise, the accused party will need to respond by posting (as
a transaction on the backup PoS-blockchain) his own view of the disputed block. If this party fails,
then his reputation will be reduced (see below) and the dispute is considered resolved in favor of
the accuser. Otherwise, if both the accuser and the accused party post support on their claims,
every party will be able to observe this fact and detect that the PoR-chain forked.The detailed
specification of our PoR/PoS-hybrid protocol ΠBC

PoR/PoS can be found in Figure 4, below.

Theorem 4 (see Appendix B.4 for a proof) states the achieved security, where we say that the
reputation system is accurate if it reflects, within a tiny, negligible error the actual probabilities
that the reputation parties are honest:

Theorem 4. Let, ε, δ, c and L be as in Theorem 3. The following properties hold with overwhelming
probability assuming that the reputation system is εf -feasible for some constant εf ∈ (0, 1): If
the PoR-system is accurate, then protocol ΠBC

PoR/PoS satisfies the following properties except with
negligible probability in the presence of a static Rep-adversary:

– Safety (with Instant Finality): At the end of every slot, all parties have the same view of the
blockchain.
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– Block Liveness: A new block is added in every slot.

– Transaction Liveness: Assuming all honest reputation parties receive a transaction, this transac-
tion will be added to the blockchain within ` slots except with probability 2−`|CBC|.

Furthermore, even if the reputation system is faulty (e.g., inaccurate) but the majority of the
stake is held by honest parties, then if safety is violated, ΠBC

PoR/PoS will publicly detect it (i.e.,

agreement on this fact will be reached among all parties) within 2k blocks of the PoS-blockchain.

ΠBC
PoR/PoS(P̂,P, Rep, Bρ−1, ρ, δ, ε, L = O(1))

Every party receives the genesis block which includes: the reputation system Rep, the public keys of
all initial reputation parties spk1, . . . , spk|P̂| (where each party P̂i ∈ P̂ knows the corresponding private
key sprki), the public keys of all stake holders (users and reputation parties) in P, i.e., pk1, . . . , pk|P|
(where each Pi ∈ P knows the corresponding private key rpki)

a, and the initial distribution of stake
S1, . . . , S|P|. Let ρBA denote the number of (clock) rounds that each invocation of BlockAnnounce takes

to complete.b Each slot in our protocol will be ρBA clock-rounds. Without loss of generalize, we assume
that the protocol starts when the global clock round is 1. The parties execute the following processes
in parallel:

• Extending the blockchain: In the ρth slot:

1. Let Bρ−1 denote the block adopted in the previous slot (where B0 is the genesis block):

2. The parties execute BlockAnnounce(P̂,P, Rep, Bρ−1, ρ, δ, ε, L) to announce and agree on the
ρ-th slot block.

• Using the PoS blockchain as fallback: Invoke the PoS-blockchain where in each PoS-slotc:

– The current PoS-slot leader P (who is in charge of posting the block for the current PoS-
slot) creates a block as follows: If there are any valid complains, (see below) they are added
to the block. Other than such complains, P includes to his block his view of the latest valid
block on the PoR-blockchain without the actual transactions, i.e., if BρL is the latest block
that Pi sees—where BρL includes h(Y, h = h(BρL−1), ρL) as specified in BlockAnnounce,
then Pi includes in his PoS-block: h = h(Y, h = h(BρL−1), ρL), the committee CBA of the
block BρL , and at least d|CBA|e signatures from parties in CBA on h.

– Every party Pi ∈ P (independently of whether or not they are slot leaders): If Pi observes a
view of a PoR-block Bj included in the PoS-blockchain which is different than his own view
of that block (as extracted from the PoR-blockchain) then create a complaint-transaction
for the PoS-blockchain transferring coins back to its own wallet which includes the conflicted
PoS-block slot number, and his local view of block Bj (along with the associated signatures).

– Every party Pj ∈ P, if there is a valid complaint by any party on the PoS chain, then
output Complaint(q1, q2), where q1 and q2 are the PoS-blocks containing the disputed view
of the PoR-blockchain

aNote that for simplicity we will separate the staking keys from the reputation keys. In reality, a reputation
party can use its staking key as its reputation key.

bRecall that for simplicity we describe the protocol with deterministic Byzantine Agreement; using the tech-
niques from [CCGZ16] we can extend our treatment to use randomized—and more round-efficient—protocols.

cNote that the slot in the PoS chain might be different than the slot in the PoR-chain. To make this
distinction explicit we will refer to the former as a PoS-slot and to the latter as a PoR-slot

Figure 4: The PoR/PoS-Hybrid Blockchain Protocol (Static Reputation)

Remark 2 (Detection vs Recovery). Our above hybrid design ensures that if any of the two
independent assumptions—i.e., quality/accuracy of the reputation system and honest majority
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of stake—holds, then no fork will settle on the distributed ledger—i.e., any fork will be quickly
detected. This will be guaranteed by our protocol. This property is sufficient to make sure that
the system does not preserve deep forks, which can lead to double spending. We remark, however,
one can add support for recovery as follows: If malfunction of the PoR-blockchain is confirmed,
then, as long as the majority of the stake is in honest hands, the parties will be able to reapply the
bootstrapping mechanism (or other external reputation-system repairing mechanisms) discussed in
Section D.5 to restart the PoR-blockchain from the point before the failure. The exact mechanism
of this process and its rigorous analysis is interesting future research.

Acknowledgements. The authors would like to thank Yehuda Afek for useful discussions and
his valuable feedback.
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A Complementary Material to Section 4

Rand(P, t; r)

1. Initialize P̄ := ∅.

2. For each Pi ∈ P with party-ID pid:

(a) Compute si = h(pid, r).

(b) If T (si) ≥ log t, then update P̄ := P̄ ∪ {Pi}.

3. Output P̄.

Figure 5: A simple uniform sampler based on a hash function h

Lemma 2. In the random oracle model and assuming |P| > γt for some constant 1 < γ < 2, and
t = Ω(log1+ε k) for some constant ε > 0, the algorithm Rand(P, t; r) has the following properties:

1. Exp(|P̄|) = t

2. For any constant 0 < δ < 1:

Pr
[
|(1− δ)t ≤ |P̄| ≤ (1 + δ)t

]
≥ 1− µ(k),

for some negligible function µ.

3. For any r′ 6= r, the output of Rand(P, t; r′) is distributed independently of the output of
Rand(P, t; r).

Proof. For Properties 1 and 2, because by assumption h behaves as a random oracle, we know that
for every Pi, Pr[Pi ∈ P̄] = t

|P| independently of whether or not any other P ′i ∈ P̄. Hence, the

random variable corresponding to P̄ is the sum of |P| independent Bernoulli trials with the above
probability. Therefore, its expectation will be Exp(|P̄|) = t, and by a simple Chernoff bound, we
have Pr

[
|(1− δ)t ≤ |P̄| ≤ (1 + δ)t

]
≥ 1 − µ(k). Property 3 also follows from the random oracle

assumption which implies that the output of h on any inputs x 6= x′ is uniformly and independently
distributed.

RandSet(P, t; r)

1. Initialize P̄ := ∅.

2. For each Pi ∈ P with party-ID pida:

(a) Compute si = h(pid, r).

(b) Interpret h(pid, r) as a k-bit integer ni.

3. Order the parties in P according to their corresponding ni’s.

4. Set P̄ to be the set of the first t parties in the above ordering.

5. Output P̄
aIn our blockchain construction, pid will the Pi’s public key.

Figure 6: A simple uniform sampler without replacements based on a hash function h
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B Deferred Proofs

B.1 Proof of Theorem 1

Proof. We prove the two equations in the theorem separately. For brevity, we use the following

notation: γ = max
{

0, 2β−αα+β

}
1. `I + `II = γ y

1+γ + y
1+γ = y

2. Let LI denote the r.v. corresponding to the set of parties that are added on the committee
in the first phase of the lottery and LII the set added in the second and last phase. Denote
by L the union, i.e., L = LI ∪ LII . First we note that by definition:

E(|Xi|) = E(|L ∩ P̂i|)

Additionally, since in the second phase, parties from P̂2 who were already chosen in the first
phase are replaced by other (not-yet chosen) parties from P̂2 we know that LI and LII are
disjoint.

The following hold: As in the first phase of the lottery no party from P̂1 is chosen an all
parties are chosen from P̂2:

E(|LI ∩ P̂1|) = 0 (5)

and
E(|LI ∩ P̂2|) = γ

y

1 + γ
(6)

In the second phase, there are α+ β parties to choose from in total, out of which α are in P̂2
and β are in P̂1. Since we chose y

1+γ parties randomly we have:

E(|LII ∩ P̂1|) =
β

α+ β
· y

1 + γ
(7)

and
E(|LII ∩ P̂2|) =

α

α+ β
· y

1 + γ
(8)

Using the above equations we can compute the expectations of X1 and X2:

E(|X1|) = E(|L ∩ P̂1|)
= E(|LI ∩ P̂1|+ |LII ∩ P̂1|)
= E(|LI ∩ P̂1|) + E(|LII ∩ P̂1|)

= 0 +
β

α+ β
· y

1 + γ

where the second equation holds because LI and LII are a partition of L and the third follows
from the linearity of expectation.
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Similarly,

E(|X2|) = E(|L ∩ P̂2|)
= E(|LI ∩ P̂2|+ |LII ∩ P̂2|)
= E(|LI ∩ P̂2|) + E(|LII ∩ P̂2|)

= γ
y

1 + γ
+

α

α+ β
· y

1 + γ

=

(
γ +

α

α+ β

)
· y

1 + γ

To complete the proof we observe that by definition, γ is either 0 or 2β−α
α+β > 0.

• When γ = 0:

E(|X2|)
E(|X1|)

=

αy
α+β

βy
α+β

=
α

β

Since by definition γ = 0 only when α > 2β we have α
β > 2 in this case hence E(|X2|) =

max{2, αβ }E(|X1|)

• When γ = 2β−α
α+β > 0:

E(|X2|)
E(|X1|)

=
γ + α

α+β

β
α+β

=

2β−α
α+β + α

α+β

β
α+β

= 2 = max{2, α
β
}

where the last equation holds because γ > 0 occurs only when α ≤ 2β.

B.2 Proof of Theorem 2

Proof. Without loss of generality we will assume that all `i’s above are integers, to avoid unnecessary
rounding-related discussions. This assumption is without loss of generality as removing it might
result in the samplers adding at most a constant number of parties on the sampled sets which will
not change any of our asymptotic statement about the (relative) set sizes; furthermore, even if
those additional parties are all corrupted, the asymptotic fraction of corrupted over honest parties
will not change, since, as we prove, the sets are all super-constant with overwhelming probability
and our corruption bound ensures that the adversary is far from the majority by an at least εδ
fraction of the selected parties.

We consider two cases: Case 1: L resets, and Case 2: L does not reset.

In Case 1 the output Psel is selected by means of invocation of algorithm Amax. Hence, by
Lemma 1, if the reputation system is εf -feasible, then a fraction 1/2 + εf of the parties in Psel will
be honest except with negligible probability. Note that in this case, the number of selected parties
is |Psel| = log1+ε n with probability 1.

In Case 2, i.e., conditioned on the lottery never being reset to its default, we prove the following
lemmas:

For each i ∈ [m] : let Xi denote the random variable corresponding to the number of parties
from P̂i selected in the lottery and let xi := Exp(Xi)
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Lemma 3. For each i ∈ [m]:

1.

xi := Exp(Xi) = αi ·
m∑
j=i

`j∑j
q=1 αj

2. For any constant λi ∈ (0, 1):

Pr [|(1− λi)xi ≤ Xi ≤ (1 + λi)xi] ≥ 1− µi(k),

Proof. Let P̂i = {P̂i1 , . . . , P̂imi}. For each P̂iρ ∈ P̂i and denote by χiρ,j the indicator random

variable which is 1 if P̂iρ is selected in the jth iteration of Step 4(b)i, i.e., if P̂iρ ∈ Qj , and 0

otherwise. The j-th iteration of Step 4(b)i chooses every party in ∪jq=1P̂q with probability `i∑j
q=1 αq

independently of whether or not any other party in ∪jq=1P̂q is chosen. Indeed, observe that in the

jth iteration of Step 4(b)i, the lottery L samples always from the set ∪jq=1P̂q with replacement and

conflicts are resolved later. Because, out of the
∑j

q=1 αq parties in ∪jq=1P̂q, αi parties are from

from P̂i, Pr[χiρ,j = 1] = αi
`i∑j
q=1 αq

independent of whether or not any other party is chosen in

Qj . Hence, each χiρ,j corresponds to a Bernoulli trial with the above success probability and by
application of the Chernoff bound for the r.v. Xi,j :=

∑mi
ρ=1 χiρ,j corresponding to the number of

parties from P̂i that are selected in Qj :

xi,j := Exp(Xi,j) = αi ·
`j∑j
q=1 αj

(9)

and for any λi,j ∈ (0, 1) and some negligible function µi,j :

Pr [|(1− λi,j)xi,j ≤ Xi,j ≤ (1 + λi,j)xi,j ] ≥ 1− µi,j(k), (10)

Next we observe that although some of the parties in Qj ∩P̂i selected in Step 4(b)i might have
been already selected and included in Psel (those are the parties in Qcol

i,j ), by selecting exactly |Qcol
i,j |

parties without replacement from P̂i, we ensure that the total number of parties selected in the jth
iteration of Step 4(b) is exactly Xi,j .

To complete the proof we observe that Xi =
∑m

j=1Xi,j , hence by the linearity of expectation
Equation 9 implies that

xi := Exp(Xi) = αi ·
m∑
j=i

`j∑j
q=1 αj

and Equation 10 implies that for any (λi,1, . . . , λi,m) ∈ (0, 1)m

Pr

|(1− m∑
j=1

λi,j)xi,j ≤
m∑
j=1

Xi,j ≤ (1 +

m∑
j=1

λi,j)xi,j

 ≥ 1− µi(k), (11)

for some negligible function µi (recall that constant-term sums and products of constantly many
negligible functions are also negligible). Hence, by setting λi,j = λi/m (recall that m = O(1) hence
λi/m is a constant) we derive the second property of the lemma.
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Given the above lemma, it is easy to verify that the xi’s and the `j ’s satisfy the following system
of linear equations:

(x1, . . . , xm)T = B · (`1, . . . , `m)T (12)

Where B is an m×m matrix with the (i, j) position being

Bi,j =

{
αi∑j
q=1 αj

, if i ≥ j

0, otherwise

The above system of m equations has 2m unknowns. We add the following m equations:

• For each i ∈ [m− 1] :
xi+1 := ci · xi (13)

•
m∑
i=1

xi = log1+ε k (14)

This yields 2m linear equations. By solving the above system of equations we can compute:

`i =

∑i
j=1 αj∑m

j=1

∏j
q=1 cj

αi+1
∏m−i
j=0 cm−j − αi

∏m−i−1
j=0 cm−j

αi+1αi
log1+ε n

We next observe that for each j ∈ [m] :
∑m

i=1Bi,j = 1 which implies that

m∑
j=1

`j =
m∑
i=1

xi
Eq. 14

= log1+ε k (15)

It is also easy to verify that B is invertible, hence

(`1, . . . , `m)T = B−1(x1, . . . , xm)T (16)

We are now ready to prove properties 1.a) and 1.b) in the theorem. We start with Property 1.a):

Claim 1. With overwhelming probability (in the security parameter k) : |Psel| = Θ(log1+ε n)

Proof. Let Lj denote the random variable corresponding to |Qj |, i.e., the total number of parties
added to Psel in the jth iteration of Step 4. Lemma 2 implies that that for each j ∈ [m]:

Exp(|Lj |) = `j (17)

and for any constant ζj ∈ (0, 1) and some negligible function µ̂j :

Pr [|(1− ζj)`j ≤ Lj ≤ (1 + ζj)`j ] ≥ 1− µ̂j(k), (18)

Let Psel denote the r.v. corresponding to the selected party set. By definition of the protocol:
Psel :=

∑m
j=1 Lj . Hence from the linearity of expectation and Equation 17 we have

Exp(|Psel|) =

m∑
j=1

`j
Eq.15

= log1+εk

Similarly, from Equation 18 we get
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Pr

|(1− m∑
j=1

ζj)
m∑
j=1

`j ≤
m∑
j=1

Lj ≤ (1 +
m∑
j=1

ζj)
m∑
j=1

`j

 ≥ 1− µ̂(k), (19)

for some negligible function µ̂, which, for any given ζ, by setting each j ∈ [m] : ζj = ζ/m, and
setting µ̂(·) =

∑m
j=1 µ̂(·) (which is also negligible when each µ̂j is negligible) and

∑m
j=1 `j = log1+ε k

derives

Pr
[
|(1− ζ) log1+ε k ≤ |Psel| ≤ (1 + ζ) log1+ε k

]
≥ 1− µ̂(k), (20)

which implies that with overwhelming probability |Psel| = Θ(log1+ε k).

We next proceed to Property 1.b):

Lemma 4. With overwhelming probability (in the security parameter k) for some constant εδ > 0
adversary A corrupts at most an 1/2− εδ fraction of the parties in Psel.

Proof. The reputation system Rep assigns to each party P̂i a reputation Ri ∈ [0, 1] which corresponds
to the probability that P̂i is honest. (Recall that we for this proof we consider static reputation
systems.) By the independent reputations assumption, this probability is independent of whether
or not any other party in P̂ becomes corrupted. This induces a probabilistic adversary A who
corrupts each reputation party P̂i independently with probability 1 − Ri. We wish to prove that
this adversary corrupts at most a 1/2 − εδ fraction of the parties in Psel. We will prove this by
considering an adversary A′ which is stronger than A, i.e, where Pr[A′ corrupts more than 1/2− ε
parties in Psel] ≥ Pr[A corrupts more than 1/2−ε parties in Psel], and proving that this adversary
A′ corrupts more than 1/2− ε parties with only negligible probability.

Here is how A′ is defined: For each P̂i (recall that this includes parties with reputation between
( i−1m +δ, im+δ]), A′ corrupts P̂i with probability 1−( i−1m +δ). Note that for each party P̂ ∈ P̂ : Pr[A′

corrupts P̂ ] ≥ Pr[A corrupts P̂ ] and this probabilities are independent of whether A′ (resp. A)
corrupts any other party. This ensures the above property between A′ and A. Hence, it suffices to
prove the lemma for A′ which is what we do in the following.

Claim 2. In the ith iteration of Step 4, let Ci,j denote the random variable corresponding to the
number of corrupted parties in Qi,j := (Qi ∩ P̂j)∪Q+

i,j, i.e., the number of parties from P̂j that are
newly added to Psel and are corrupted by A′. Then for some negligible function µ for any constant
0 ≤ δ′ < m−i

m :

Pr[Ci,j < (
m− i
m
− δ′)|Qi,j |] > 1− µ(k).

Proof. We consider three cases: Case 1: Qcol
i,j = o(|Qi,j |); Case 2: Qcol

i,j = ω(|Qi,j |); and Case 3:

Qcol
i,j = Θ(|Qi,j |).

For Case 1: Since Qcol
i,j = o(|Qi,j |), this implies that |(Qi ∩ P̂j) \ P̄j | = O(|Qi|). Hence Equation 18

implies that with overwhelming probability |(Qi ∩ P̂j) \ P̄j | = O(log1+ε k). However, since each
party in Qi is chosen independently and the reputation is static, i.e., corruptions are defined before
selecting the parties to join Qi, every party in (Qi ∩ P̂j) \ P̄j is corrupted by A′ with probability
1−( i

m+δ). But then an invocation of the Chernoff bound yields that with overwhelming probability,

for any δ′′ > 0 the fraction of corrupted parties in (Qi ∩ P̂j) \ P̄j will be at most m−i
m − δ + δ′′.

Additionally since Qcol
i,j = o(|Qi,j |), this implies that for any constant δ′′′ ∈ (0, 1) and for sufficiently
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large k |Qcol
i,j | < δ′′′|Qi,j |. Hence, even if we allow the adversary A′ to corrupt all parties in Qcol

i,j , for
δ + δ′′′ − δ′′ < εδ we will have that with overwhelming probability the fraction of corrupted parties
in Qi,j will be at most m−i

m − εδ.
For Case 2: Since Qcol

i,j = ω(|Qi,j |), this implies that |Q+
i,j | = O(|Qi|). Hence Equation 18 implies

that with overwhelming probability |Q+
i,j | = O(log1+ε k). However, unlike the case above each

party in Q+
i,j is not chosen independently, but rather a set of parties is chosen randomly. This

corresponds to sampling with replacement and we can no longe use the Chernoff bound. But since
the reputation is static, i.e., corruptions are defined before selecting the above set, we can make
direct use of Hoeffdings inequality [Hoe63] (see Appendix C), to prove that with overwhelming
probability, the fraction of corrupted parties in Q+

i,j will be at most m−i
m − δ + δ′′. Additionally

since Qcol
i,j = ω(|Qi,j |), this implies that for any constant δ′′′ ∈ (0, 1) and for sufficiently large k

|(Qi ∩ P̂j) \ P̄j | < δ′′′|Qi,j |. Hence, even if we allow the adversary A′ to corrupt all parties in
(Qi ∩ P̂j) \ P̄j , for δ + δ′′′ − δ′′ < εδ we again will have that with overwhelming probability the
fraction of corrupted parties in Qi,j will be at most m−i

m − εδ.

Finally in Case 3, Qcol
i,j = Θ(|Qi,j |) impies that |(Qi∩P̂j)\P̄j | = O(log1+ε k) and |Q+

i,j | = O(log1+ε k).
Hence by using both arguments from the above two cases we can prove that (1) with overwhelming
probability the fraction of corrupted parties in (Qi∩P̂j)\P̄j will be at most (m−im −εδ/2)|(Qi∩P̂j)\P̄j |
and (2) with overwhelming probability the fraction of corrupted parties in Q+

i,j will be at most

(m−im − εδ/2) of the size of Q+
j . Therefore by a union bound, the fraction of corrupted parties in

Qi,j will be at most m−i
m − εδ.

Next, we observe by inspection of the protocol that |Qi,j | = Xi,j . Since from for any constant
λi,j > 0, Equation 10 implies that

Pr [Xi,j ≤ (1 + λi,j)xi,j ] ≥ 1− µ̂i,j(k),

for some negligible function µ̂i,j , and i,m, and λi,j are all constants, this implies that for any
sufficiently small positive constant δ′, and for some negligible function µ′i,j :

Pr[Ci,j < (
m− i
m
− δ′)xi,j ] ≥ 1− µ′i,j(k). (21)

But then from a union bound we can deduce that there exists a negligible function µ̃i such that:

Pr[∀j : Ci,j < (
m− i
m
− δ′)xi,j ] ≥ 1− µ̃i(k). (22)

which implies that

Pr[

m∑
j=1

Ci,j <

m∑
j=1

(
m− i
m
− δ′)xi,j ] ≥ 1− µ′′i (k), (23)

for some negligible µ′′i . Denote by Ci the total number of corrupted parties from P̂i chosen in
the lottery. By inspection of the protocol:

Ci =

m∑
j=1

Ci,j

Hence Equation 23 can be rewritten as follows
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Pr[Ci < (
m− i
m
− δ′)xi] ≥ 1− µ′′i (k) (24)

Wlog assume that m is even (the case when m is odd is analogous):
For each i ∈ {2, . . . ,m/2− 1} the above implies that the majority of the parties in Ci is honest

with overwhelming probability. Hence, but a union bound, the majority of the parties in ∪m/2−1i=2 Qi
is honest with overwhelming probability. To complete the proof it suffices to prove that a (1/2−ε′δ)-
fraction of the parties in Q1∪(∪mj=m/2Qj) is honest with overwhelming probability. To this direction

we observe that from Equation 24, with overwhelming probability, Pr[C1 < ( 1
m − δ

′)x1]. By an
easy calculation, it follows that for any δ′ and any c such that

∑m
i=m/2

1
ci−1 ≤ m−2

2m − δ′ (which

can be equivalently written as 1
cm−1 ≤ m−2

2m − δ
′) the total number of parties in ∪mi=m/2Qj is less

than (m−22m − δ
′)x1. But if this is the case then then even if we allow the adversary to corrupt all

parties in every Qj (note that this is an even stronger adversary than A′), still with overwhelming
probability the total number corr1 of corrupted parties in Q1 ∪ (∪mi=m/2Qj) will be:

corr1 = C1 +
m− 2

2m
x1

< (
1

m
+
m− 2

2m
− δ′)x1

= (1/2− δ′)x1

(25)

Hence with overwhelming probability, the fraction R of corrupted parties in Q1 ∪ (∪mi=m/2Qj)
will be

R <
(1/2− δ′)x1

x1 +
∑m

i=m/2 xi
< 1/2− δ′ (26)

We next argue the following which will ensure that under Condition 2 of the protocol, i.e., that
every set P̂i has at least γ log1+ε n parties, with overwhelming probability the lotterty never resets
and hence all the claims in this second case hold. This follows directly from the fact that the total
number of parties selected in the lottery will be less than γ log1+ε n with overwhelming probability;
hence, none of the invocation of Step 4 exceeds the size of the corresponding sets and therefore the
lottery never resets.

To complete the proof we show the c-fairness property of L in this case.

The c-Representation Fairness follows directly from Lemma 3 and Equation 13.

The non-discrimination property follows from the fact that our lottery picks each party in every P̂i
with exactly the same probability as any other party.

The c-Selection Fairness is proved as follows: Since by the non-discrimination property every party
has the same probability of being picked, each party in each Psel ∩ P̂i is chosen with probability

pi = |Psel∩P̂i|
|P̂i|

. However from Lemma 3 we know that with overwhelming probability, for any

constant λi ∈ (0, 1):
(1− λi)xi ≤ |Psel ∩ P̂i| ≤ (1 + λi)xi

This means that with overwhelming probability, for all i = 1, . . . ,m− 1:
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pi
pi+1

≥ (1− λi)xi
(1 + λi+1)xi+1

· αi+1

αi

=
(1− λi)

(1 + λi+1)
· xi
xi+1

· αi+1

αi

=
(1− λi)

(1 + λi+1)
· ci ·

αi+1

αi

≥ (1− λi)
(1 + λi+1)

c

(27)

Where the last inequality follows by the definition of ci. For any constant c′ < c, by choosing
λi and λi+1 such that (1−λi)

(1+λi+1)
≥ c′/c we can ensure that pi

pi+1
≥ c′.

B.3 Proof of Theorem 3

Proof. Assume that every party has received the same genesis block. This block includes the
identifiers (public keys) of all parties currently in P̂ and their reputations (recall that for this
proof, we assume static reputations). Since CBA is selected by means of L, and the lottery is ε-
feasible, Theorem 2 ensures that the majority of the parties in CBA is honest. This means that
we can use a Byzantine broadcast protocol to have any party P̂i ∈ CBA consistently broadcast any
messages to all the parties in CBA, i.e., in such a way that the following properties hold:

• (consistency) All partiers in CBA output the same message (string) y as their output of the
protocol with sender P̂i.

• (validity) If P̂i is honest, then y is the string that P̂i intended to broadcast (i.e., his input).

Thus validity implies that for every honest P̂i ∈ CBC, if Ti is the set of valid transactions that
P̂i has seen at round ρ, then every (honest) party in CBA will output Ti along with a uniformly
random string ri. Furthermore, by consistency, we know that for every (honest or corrupted) P̂j
the broadcast output with sender P̂j is the same for all parties in CBA. Hence the union T of all
transactions broadcasted by parties in CBC will be the same for all CBA members, and the same
holds for the concatenation of all random nonces r broadcasted in the current round. Additionally,
because the history of the blockchain is the same for every party (in the first round this is the
genesis block and in every subsequent round it is the sequence of the blocks until round ρ − 1),
TH is the same for every party in CBA; hence every P̂i ∈ CBA will compute the same Y in Step 4
of the protocol. Consequently, in Step 5, all honest parties in CBA will sign the same (Y, h, ρ) and
send it to the parties in CBC. Since the majority of the parties in CBA is honest, this implies that
in Step 6, every party in CBC will receive (Y, h, ρ) signed by at least the |CBA|/2 honest parties.
Hence, if there is any honest party in CBC the transaction pool T of that party broadcasted and
included in T̂ and will be certifies by by at least d|CBA|/2e signatures from parties in CBA; this T
will be adopted by all parties as the next block, since, as we show below, the adversary is unable
to make any party accept any other block. Indeed, with overwhelming probability (i.e., unless the
adversary forges an honest party’s signature) for any (Y ′, h′, ρ′) 6= (Y, h, ρ) the adversary will be
able to produce at most d|CBA|/2e − 1 signatures on (Y ′, h′, ρ′) from parties in CBA. Hence the no
value other than (Y, h, ρ) might be accepted by any party.
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B.4 Proof of Theorem 4

sketch. First we observe that if the reputation system is accurate, then it reflects the probabili-
ties that parties are not corrupted. Hence, the block announcing protocol will always select an
honest-majority committee and the block supported by that committee will be added on the PoR-
blockchain. Additionally, since the majority in each such committee is honest, the adversary is
able to produce valid signatures from less than a 1/2-fraction of the parties in that committee.
Hence no party might see any valid conflict on the PoS chain. This proves safety. Block liveness is
straightforward since in each slot the honest majority will endorse a new (potentially empty) block.
Transaction liveness holds because once a transaction is heard by all honest reputation parties, it
will be included in the next slot in which one of the parties in CBC is honest. Since the parties in
the CBC are chosen randomly from an honest majority set CBA, the probability that in ` consecutive
slots’ CBC there is no honest party will be 2−`|CBC|.

If on the other hand the reputation system is inaccurate, then we show that no fork can be
sustained for more than 2k blocks of the backup PoS-blockchain, as long as the majority of stake is
in honest hands. Indeed, assume that the PoR-chain forks at some point (i.e., safety is violated).
This means that there are two honest reputation parties P̂i and P̂j who see PoR chains that fork
on, say, the q-th block of the PoR-chain. The honest majority of stake ensures [DGKR18, BGK+18]
that within k blocks, from the round when the q-th PoR-block was created, there will be a block
contributed to the PoS-chain by an honest party, say P . This party’s block will have to support
the view of at most one of P̂i or P̂j (whichever is on P ’s view of the PoR-blockchain). Once this
block settles, i.e., enters the common prefix [GKL15, BGK+18]—this happens within in at most 2k
blocks from round q [BGK+18]—it will be seen by both P̂i and P̂j and will trigger a dispute. At this
point, the party in {P̂i, P̂j} who sees his view being disputed will broadcast the block in support of
his view. By the transaction liveness of the PoS-chain, this block will be added to the state of the
PoS chain within k blocks and will be seen by everyone within another 2k blocks. Hence, within
4k blocks the fork will be publicly detected.

C Hoeffdings Inequality

Lemma 5. (Hoeffding’s Inequality [Hoe63]) Let S = {x1, . . . , xN} be a finite set of real numbers
with a = min

i
xi and b = max

i
xi. Let X1, . . . , Xn be a random sample drawn from S without

replacement. Let X =

n∑
i=1

Xi

n and µ =

N∑
i=1

xi

N = E[Xj ]. Then for all δ > 0, Pr[X −µ ≥ δ] ≤ e−
2nδ2

(b−a)2 .

D Extensions and Future Research

D.1 Countering DDoS Attacks and Minimizing the load of the PoS-chain

Our hybrid protocol ΠBC
PoR/PoS allows malicious PoS-slot leaders to post fake complains. These

complaint will be debunked by the honest parties, but doing so requires costly verification of
multiple signatures. In order to avoid such overloading attacks which can lead to DDoS against
the backup blockchain and incentivize parties to use it for checking, we will apply the following
mechanism inspired by [KZZ16]:

1. The reputation parties will be posting their hash-pointers on the backup PoS-blockchain as
part of a collateral-transaction, which commits funds that will be refunded if there is no
dispute in the next few rounds (the exact number of rounds and size of collateral will be
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specified in the implementation) or there is a dispute which leads to detection of fault in the
PoR-blockchain.

2. Similarly, any accuser will have to post, along with his accusation, an analogous collateral-
transaction which will be refunded if the dispute leads to detection of fault in the PoR-
blockchain.

3. If any dispute is resolved in favor of one of the parties, then this party can claim the collateral
of the other and get his own collateral refunded.

The above mechanism will ensure that: (1) reputation parties post the actual hash pointers that
they see on the PoR-blockchain—as invalid hashes will lead to disputes resolved in favor of the
accuser and, therefore, loss of funds for the accused; and (2) accusers do not post invalid/redundant
accusations—as they will, otherwise, lose their collateral.

D.2 Accounting for Dynamic Reputation and Limited Correlations

Our above treatment discusses a limited class of reputation systems, namely correlation-free rep-
utation systems. Recall that this means that the reputation of a reputation-party P̂i (i.e., P̂i’s
probability of becoming corrupted) does not depend on the reputation of other parties P̂j . The
reason for such an assumption is that if one allows for arbitrary correlations in these probabilities,
then it is easy to find reputation systems in which every party has probability of not becoming
corrupted strictly less than 1/2, yet for any (randomized) sampler the selected corrupted parties
will be in the majority with overwhelming probability. An example of such a situation was given
in [GIOZ17].

Despite the above strong impossibility result, our mechanism can be applied, either directly or
with modifications, to deal with several classes of dependent reputations. This differentiates our
definition and use of reputation systems from approaches like [BFK17], which are applied to special
distributions. In the following, we discuss some of the distribution classes we can tolerate; a more
complete investigation is left as an open research direction.

n-wise independent reputation systems. A wide class of correlated reputation systems which
can still be used for our goals is one in which the random variables corresponding to the honesty
indicator bits are of n-wise independent for a logarithmic (in the size of the reputation set) n. In
fact, our original algorithm will work for such a distribution. This idea of n-wise independence can
also be extended to capture additional distributions along the lines of [ALZ13, Theorem 4.3].

Reputation-systems which are approximately correlation-free. The following definition
says that a reputation system is δ-correlation-free if and only if it is a δ-close to a correlation-free
reputation system.

Definition 4 (δ-correlation-free reputation system). Let Rep be a (potentially non-correlation-free)
reputation system for a reputation set P̂. For each P̂i ∈ P̂, let γi denote the probability, according
to Rep, that P̂i gets corrupted. Let RepIND denote the correlation-free reputation system derived
from P̂, where each party gets corrupted with probability γi independent of other corruptions. Then
we say that Rep is δ-correlation-free reputation system if and only if the statistical distance of Rep
and RepIND is at most δ.
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It is straightforward to verify that is δ is very small (negligible in |P̂|) and RepIND is feasible,
then our sampling algorithm discussed above will directly select sets with honest majority. Fur-
thermore, assuming sufficiently many parties with high reputation in RepIND, we can modify our
sampling to retain the selection of honest majority even when δ is a small constant. The idea, which
will be detailed in the research paper accompanying this white paper, is to move the boundaries of
the high-reputation buckets so that any errors that occur by δ-bounded correlations are leveraged
by the higher probability of honest parties.

We note in passing, that the above allows us to also capture situations in which the reputation
system is inaccurate but only by a bounded amount (e.g., the corruption probabilities that it
predicts are off by up to a δ factor from the actual probabilities that the parties get corrupted.)
Thus in addition to our fallback security property—which will ensure that as long as the majority
of the stake in the system is in honest hands, the blockchain will not fork even with inaccurate
reputations—if the number of parties with high (estimated) reputation permits it, then we can
design our blockchain so that it is resilient to small inaccuracies in the reputation.

Dynamic (Epoch-resettable) Correlation Systems. Since with an epoch resettable adver-
sary the corrupted set is “reset” at the beginning of each epoch, one might be worried that the
adversary across two epochs might be able to use keys he learned in the first of the two epoch in
the second one thereby ohlding the keys of a majority of the parties in the latter epoch, even when
both epoch’s reputation systems are ε-feasible.

To counter this scenarios, we consider the following strengthening of the notion of ε-feasibility:

Definition 5. For a reputation system Rep for parties from a reputation set P̂, a (possibly proba-
bilistic) algorithm A for sampling a subset of parties from P̂, and an Rep-adversary A, we say that
Rep is strongly (ε, A)-feasible for A if, with overwhelming probability,15 A outputs a set of parties
such that at most a 1/4− ε fraction of these parties is corrupted by A.

Note that in the above definition, the corrupted parties are chosen according to Rep from the
entire reputation-party set P̂, and independently of the coins of A. (Indeed, otherwise it would be
trivial to always corrupt a majority.)

Definition 6. We say that a reputation system is strongly ε-feasible for Rep-adversary A, if there
exists a probabilistic polynomial-time (PPT) sampling algorithm A such that Rep is strongly (ε, A)-
feasible for A.

It is easy to verify that if the reputation systems corresponding to all epochs are strongly ε-
feasible, then the probability that the adversary in two consecutive epochs can launch the above
attach (i.e., using the keys learned in the first of the two epochs exceed a minority of corruptions
in the second one) is negligible. This is true as long as the two epochs have the same (distribution
on the) size of committees, since even if all corrupted parties from the first epoch are selected in
the second one, still the adversary will not be able to reach more than a minority of corruptions
(since in each epoch at most 1/4− ε fraction is corrupted).

Since in each epoch the adversary needs to release the parties from the previous epoch which
are not newly corrupted, we can have the parties refresh their signing keys in each epoch—either by
erasing the old keys and posting new ones on the blockchain or by using a forward-secure signature
scheme—thereby ensuring that the adversary can never corrupt a majority. It is easy to verify that
the above modification ensures security of our construction against epoch-resettable adversaries.

15The probability is taken over the coins associated the the distribution of the reputation system, and the coins of
A and A.
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Capturing additional correlations via a stronger adversary. The epoch-resettable adver-
sary allows for capturing dynamic reputation systems. Nonetheless, when specified by a correlation-
free (or δ-correlation-free) system it does not capture situations where reputation parties might be
related, e.g, because they are both steered by the same higher level entity.16 This could be captured
by correlated reputation-systems but as discussed above, we cannot tolerate arbitrary correlations.
In this section, we discuss how to introduce correlations sufficient for capturing situations like the
above, which can still be tolerated.

This is done by what we call a correlating semi-adaptive adversary described as follows:

1. Rather than choosing the set of corrupted parties by sampling according to Rep at the begin-
ning of each epoch, we allow the adversary to sample multiple times (bounded by his running
time) and keep the outcome of his choosing. This means that an adversary that wants a small
subset of parties of his choice to be corrupted in Epoch i can achieve this as long as each of
these parties has sufficiently large corruption probability.

2. To allow the adversary to further increase his chances of correlating the corrupted sets towards
combinations of his choice, we will allow him in this repeated sampling to modify part of the
corrupted set by giving up on some of the parties and resampling from the remainder, but
with reputations divided by an appropriate factor.

In order, however, to ensure that this adversary cannot target the specific sets of parties that are
selected for some round, we require that his sampling from the reputation set occurs by the end of
Epoch i− 2 before the adversary knows the random coins that will be used for sampling the slot-
leaders of Epoch i. We remark that this is precisely where the random nonces that were introduced
in our Round Broadcast Procedure (Figure 2) are needed.

D.3 Imperfect Randomness

For simplicity in the presentation, we provided a description of our blockchain assuming a random-
ness beacon for extracting the randomness used in the lottery that defines the slot-committee of
each slot. This is a strong assumption but fortunately is it also unnecessary given the standard
cryptographic abstraction of hash functions as a random oracle. More concretely, the standard cryp-
tographic assumption under which blockchains are cryptographically analyzed is that the assumed
hash function, e.g., SHA256, behaves as a random oracle: On input any new string s ∈ {0, 1}∗ it
outputs a uniformly distributed and unpredictable k-bit string (but if the input has been queried
in the past it answers consistently with the previous answer). This is often referred as the Random
Oracle (RO) model.

Assuming that the genesis block, denoted by BGen, contains sufficient amount of entropy, i.e.,
unpredictable randomness—which we will ensure by including multiple sources of unpredictable
yet verifiable randomness, such as the day’s weather report or an unlikely event on the newspaper,
stock-market values, or blocks from alternative blockchains—we can use such a hash function in
the RO model to extract the randomness we need for each epoch as follows:

• For static reputation system and adversaries, we can define the randomness of the i-th epoch to
be h(BGen||i1)||h(BGen||i2), . . . (where || denotes concatenation of strings). Note that although
this means that the adversary will be able to predict all slot committees by just knowing the
genesis block, a static reputation-limited adversary is forced to sample his corrupted parties

16For example, if the reputation parties are public figures, such as popular artists, they might follow their agent’s
directions.
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set only once (at the beginning of the protocol) and according to the static reputation system
which, by the unpredictability of BGen, will be sufficiently independent of the output of h.
We note in passing that in this case we do not even need the randomness which is explicitly
introduced in each epoch to prove security of the protocol. However, the static reputation
and adversary assumption yields a too weak adversary. Therefore, in the following we discuss
how to cope with stronger adversaries.

• The above simple randomness-extraction idea still works for dynamic reputation systems and
epoch-resettable adversaries, as long as the reputation system ensemble is a sequence of inde-
pendent (static) reputation systems. This however excludes situations where malicious parties
might try to manipulate their reputation (e.g., by temporarily playing honestly) depending
on the protocol’s history. To model also such situation we modify the way this randomness is
selected as follows: As discussed in Figure 2, each block Bi in the blockchain includes a hash
pointer h(Bi−1) to the previous block.17 The randomness for each epoch i is then decided by
the value of this hash pointer at a slot of the previous epoch which is sufficiently deep in the
chain to ensure that the corresponding block has reached every (honest) party18 but not too
deep, so that an adversarial reputation party can considerably correlate his reputation with
it.

We note that as the adversary might be choosing the randomness (nonces) he contributes
to each block potentially depending on honest slot-committee members’ nonces, he still has
the power to affect the outcome of the hash function (RO). However, because, by design
of the protocol in Figure 2, the concatenation of all nonces—including honestly generated—
contributed in each slot will be used to form the slot randomness rρ, we can argue, analogously
to [KRDO17, BGK+18], that this effectively corresponds to allowing the adversary to resam-
ple from the distribution of the RO’s output up to polynomially many times, and choose
his favorite outcomes of this iterated-sampling procedure as the value adopted for the cur-
rent epoch randomness—this process is often referred to as randomness grinding. Similarly
to [KRDO17, BGK+18], we can argue that as long as the range of h(·) is exponentially big—
which is true for all common hash functions—such grinding might only increase the success
probability of the adversary by a negligible amount. In fact, the above idea can be extended
to also tolerate correlating semi-adaptive adversaries, as above. The idea is that this extra
power of the adversary effectively increases his randomness grinding ability by a polynomial
factor, which, however, is not sufficient to considerably affect the adversary’s overall success
probability (it will remain negligible).

D.4 Relaxing Synchrony

We next discuss how to revise protocol ΠBC
PoR/PoS and its analysis to remove the arguably strong

simplifying assumptions of perfect synchrony with zero-delay channels. We discuss how to remove
each assumption separately in the following two subsections.

Partially Synchronous Network We start by replacing the zero-delay multicast network, aka
instant delivery multicast, with ∆-delay multicast network which captures what happens in real
world diffusion networks. In such a network, when a message is inserted by some honest party,

17As usually in the blockchain setting the transaction will be identified by means of a Merkle-Tree; and for efficiency,
rather than the whole block Bi, the hash pointer will include the root of the tree along with the header (metadata)
of the block—the metadata explicitly includes the current nonce r.

18This becomes relevant when the network is not perfect, but it has delays (cf. Section D.4).
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it is guaranteed to be delivered to every honest party within ∆ rounds. We note that ∆ is an
upper bound on the delay but the adversary is able to deliver submitted messages in any order
and/or incur any delay up to ∆ rounds from the time the message was inserted into the network.
As shown in [BMTZ17], in the synchronous model this network can be constructed from simpler
unicast channels of the type used in all mainstream blockchains.

Our blockchain approach can be adapted to this setting using the technique from [CCGZ16,
CCGZ17]. This technique allows to design primitives assuming zero-delay channels, and prove their
security under this assumption, and then automatically compile the protocol to work for the setting
of bounded-delay channels, in a way that preserves both the number of rounds and the security.

Removing the Global Clock Our design and analysis assumes a global clock. This is a realistic
assumption as NTP offers such a functionality to Internet protocols. As part of future research,
we will combine our approach with techniques in clock synchronization [DHS84, LMS84, HSSD84,
DW95, DW93, AHR93, ST85, LLW08, OPS99] to ensure that our protocol can operate without
the global clock assumption, but under the weaker assumptions that parties have local clocks that
advance at roughly the same speed. In addition to the above, we will take advantage of the back-
up proof-of-stake blockchain to establish clock synchronization under the honest-majority of stake
assumption, using [BGK+19], and/or combine it with the traditional synchronizers discussed above
to get a best-of-both-worlds synchronizer.

Reducing the Number of Rounds Our round broadcast protocol in Figure 2 uses an off-the-
self broadcast protocol among the slot committee. Instantiating this with a traditional deterministic
broadcast protocol will incur a number of rounds which is, in the worst case, linear to the slot-
committee size. To make sure that, on average, the actual execution time is very short, requiring
a small constant number of rounds, we will make use of the expected constant round protocols
from [FM88, FM85, KK06, GKKO07, Mic17] instead. We note in passing that in addition to these
protocols being very fast on expectation, they are almost certain to terminate within a sufficiently
short (polylogarithmic in the slot-committee size) number of rounds. Thus, the resulting protocol
will be very fast on average and sufficiently fast in the worst case.19 We also remark that the
composition (sequential and or parallel execution) of such protocols with themselves and with non-
zero-delay networks as the one used here is known to have several pitfalls. Thus will can again
use the compiler from [CCGZ16, CCGZ17] to make sure that the resulting protocol will retain its
security.

D.5 Establishing, Updating, and Extending the Reputation System

The current design assumes an already established reputation system and ensures that as long as
the reputation system is sufficiently accurate—i.e., the reputation of a reputation party is close to
his probability of being honest—the protocol will behave according to its abstract specification,
i.e., it will securely realize a decentralized transaction ledger. Thus our cryptographic analysis
is orthogonal to the mechanism that establishes, updates, and extends the reputation system.
Nonetheless in this section we discuss a number of directions and associated research questions
that relate to the deployment and rational analysis of the system.

The incentive structure. By design, ΠBC
PoR/PoS assumes a very simple incentive structure to

characterize the reputation parties’ rationality: Reputation parties should always prefer higher

19The probability that these protocols terminate after round ρ is roughly 2−ρ.
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reputation values. There are a number of approaches one can take to enforce and analyze such
incentives. Although the complete game-theoretic design and analysis is beyond the scope of this
current paper, it is a very interesting future research problem; in the following we discuss some
choices and their intuitive consequences.

A mechanism to incentivize reputation parties to increase their reputation and behave according
to it is to create a cryptocurrency on top of our blockchain and tie the parties’ reputation with their
actual stake in the system. In our original design, we will require reputation parties to lock part
of their stake as collateral; we will also enforce a very minor fee to the parties whose proposal is
included in the blockchain that they will be able to either add to their collateral, thereby increasing
their reputation—hence also their influence on the system and their probability of getting more
fees—or they will be able to receive it as an actual reward in coins.

The value of the fee will be carefully computed to be diminishing with the reputation of the party
in a way that marginally increases the parties’ expected gain—e.g., parties with higher reputation
achieve lower fees every time they win, i.e., get selected for a slot committee, but still higher total
fees on average (recall that higher reputation parties win more often). We remark that, unlike
generic proof-of-stake blockchains, typical cases of reputation parties will be publicly recognizable
entities, e.g., famous artists, banks, universities, companies, etc., so that one cannot manipulate
the above mechanism by creating multiple identities. Additionally, the following mechanism can
ensure that reputations are not artificially inflated20: Periodically, an amortization factor will be
applied to all reputations, so that their relative value changes marginally, but their absolute value
is preserved within limits that represent probabilities, i.e., stays between 0 and 1.

In addition to the above mechanism, our reputation-based blockchain as discussed in the intro-
duction, has the potential to disrupt the recommendation systems industry which currently uses
opaque algorithms to decide recommendations and rankings. An interesting research direction in
the intersection of AI and cryptography/security is to take as input to the reputation calculation
the rankings of existing recommendation systems, e.g., Amazon, Yelp, Ebay, etc., to develop a
universal, transparent, and decentralized recommendation system running on our blockchain. The
high throughput of our protocol will be instrumental in linking on-chain pointers to potentially
externally stored, yet immutable reviews.

Modifying the reputation according to the parties’ behavior. As discussed above, a mech-
anism taking advantage of transaction fees and rewards will be associated with the parties’ rep-
utation to ensure that parties prefer to increase their reputations. Additionally, the following
penalization mechanism will be applied to ensure that reputation parties with the above prefer-
ences: (1) are sufficiently available, and (2) do not attempt to disrupt the systems consistency (and
create forks):

• Reputation parties will declare availability for future slots and their rewards and/or reputa-
tion will increase the more available they make themselves (i.e., availability will be taken in
consideration in calculating the associated rewards and reputation) but will decrease more
radically if they declare themselves available but do not participate. We remark that this
second property is trivial to ensure assuming instant-delivery channels—as everyone can de-
cide in round ρ whether or not a party sent its round ρ − 1 message—but it is tricky in the
bounded-delay network, as a party might have sent its message, which is delayed (by the
adversary) in the network. One can rectify this by waiting sufficiently long—at least as much

20If everyone plays honestly then all reputations increase and will eventually become larger than 1, which is a
degenerate situation we want to avoid, as reputations correspond to probabilities.
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as the network delay ∆—to decide on the reputation, but this incurs the risk of a malicious
party abstaining in the protocol and then quickly delivering a message for the reputation
update mechanism. Instead we will use the blockchain itself to implement a voting protocol
for parties to ensure that a message was contributed by a reputation party on the slot it
volunteered for. Although not directly related with the cryptographic design of the system,
the game-theoretic analysis of such a mechanism is part of our team’s research agenda.

• If any party presents on the blockchain verifiable evidence of some reputation-party cheating,
e.g., two conflicting signatures from that party for the same slot, then the reputation of that
party is set to 0 by anyone that views this evidence. This means that the related reputation
party is effectively removed from the reputation set.

DDoS Effect and Mitigation Our blockchain leverages the reputation system to ensure that
it selects an honest-majority committee in every slot. However, as discussed here, the identities
of slot leaders become public prior to the round in which they participate in the committee. One
might argue that this opens the system to DDoS attacks, as even honest parties might be targeted.
We point out however that that any such attack will result in an empty slot and not a fork,
as the adversary, even when DDoS-ing a party cannot create a majority of signatures from the
current slot’s committee. In fact, one can mitigate this issue by either using—e.g., reputation-
penalties for successful DDoS attacks—which will inceltivize high reputation parties to safeguard
their availability, or using verifiable random functions (VRF) as in [DGKR18, BGK+18, GHM+17]
but this will require not only circulating more information (VRF proofs) but also flooding it to the
entire network. Alternative one can spread out VRF slots will help recover from stalling due to very
effective DDoS attacks, but still most slots will be using the reputation-based incentives, thereby
ensuring the good communication efficiency of our blockchain protocol. The exact dynamics of this
mechanism are left as a future research direction.
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