
Proof-of-Reputation Blockchain
with Nakamoto Fallback

Leonard Kleinrock1, Rafail Ostrovsky1, and Vassilis Zikas2

1 Computer Science Department, UCLA, {lk,rafail}@cs.ucla.edu
2 School of Informatics, University of Edinburgh, vzikas@inf.ed.ac.uk

Abstract. Reputation is a major component of trustworthy systems. However, the subjective nature of
reputation, makes it tricky to base a system’s security on it. In this work, we describe how to leverage
reputation to establish a highly scalable and efficient blockchain. Our treatment puts emphasis on
reputation fairness as a key feature of reputation-based protocols. We devise a definition of reputation
fairness that ensures fair participation while giving chances to newly joining parties to participate and
potentially build reputation. We also describe a concrete lottery in the random oracle model which
achieves this definition of fairness. Our treatment of reputation-fairness can be of independent interest.
To avoid potential safety and/or liveness concerns stemming from the subjective and volatile nature
of reputation, we propose a hybrid design that uses a Nakamoto-style ledger as a fallback. To our
knowledge, our proposal is the first cryptographically secure design of a proof-of-reputation-based
(in short PoR-based) blockchain that fortifies its PoR-based security by optimized Nakamoto-style
consensus. This results in a ledger protocol which is provably secure if the reputation system is accurate,
and preserves its basic safety properties even if it is not, as long as the fallback blockchain does not
fail.

Keywords: Blockchain, proof of reputation, Byzantine agreement

1 Introduction

Many decisions taken in modern society are based on reputation: Fans are likely to follow suggestions from
their idols, social network followers are likely to adopt suggestions of the friends and groups, and people
often use publicly available ranking systems such as E-Bay, Yelp, AirBnB, Amazon, etc to make decisions
regarding online-shopping, choice of vacation, accommodation, eating out, insurances, investment, medical,
etc. In this work we leverage the power of reputation to establish a reliable, permissionless blockchain. Our
design assumes that certain parties in the system have a reputation-rank, which is recorded on the blockchain
itself. Similar to public ranking systems as above, where the “stars” of a party are interpreted as a prediction
of the quality of its offered services, the interpretation of our reputation-ranks is that the higher a party’s
reputation the higher are the chances that the party will behave honestly in maintaining the blockchain.

In a nutshell, our design goals are two-fold: (1) To rely on the reputation system to build a simple,
scalable decentralized ledger with optimized finality, communication, and computation, and with a formal
proof that relates the security of the protocol to the quality of the reputation system; importantly, our
PoR-blockchain aims to satisfy a new intuitive notion of participation fairness that promotes inclusivity. (2)
To address the subjectivity of reputation as a resource, by backing our blockchain’s safety and liveness with
a fallback mechanism that ensures that even if the reputation estimate is severely flawed, our protocol does
not create long forks.

Our Results. We devise a hybrid blockchain-ledger design which is primarily based on reputation but uses
a Nakamoto ledger as fallback. We use the term Nakamoto ledger similar to [4] to refer to blockchain-based
ledger protocols that follow the eventual consensus paradigm (e.g., Bitcoin, Ouroboros, etc) and realize a
ledger as described in [5,3]. For the purpose of exposition, in this work, we focus on the fallback ledger being
proof-of-stake-based and tune our analysis accordingly—we refer to this paradigm as PoR/PoS-hybrid. design
However, our treatment can be extended to other types of fallback blockchains (even those that do not follow
the Nakamoto paradigm) under their respective assumptions. In the following we provide an overview of our
design and discuss its properties in comparison to existing approaches.

PoR-blockchain We assume a (dynamically updatable) set P of parties where a subset P̂ ⊆ P of them are
special parties called reputation parties. The parties wish to leverage the reputation of the reputation parties
to securely maintain a ledger containing a sequence of blocks, each block containing a collection of messages
that can represent arbitrary data (throughout this paper, we refer to this data as transactions).3

Informally, a reputation system for a party set P̂ is similar to a probabilistic adversary structure [20]: It
assigns to each subset of P̂ a probability that this subset is corrupted by the adversary—we consider active,
aka Byzantine, corruption. In its simplest form, which we refer to as static correlation-free, a reputation
system can be described by a vector of |P̂| independent boolean random variables. The probability that the
ith variable is 1 is the probability that the i-th party in P̂—in a given canonical ordering, e.g., using the
party-IDs—is honest. This is similar to independent reputation systems investigated in [1]. We also extend
this notion by allowing the reputation to evolve as rounds advance, yielding a dynamic reputation system.
The update happens in an epoch-based manner, where an epoch consists of a fixed number of rounds.
To capture feasibility of PoR-based consensus, we introduce the notion of a feasible reputation system (cf.
Definition 2) which for static reputation systems requires that there is a party-sampling algorithm, such that
the probability that a super-majority of the selected parties is honest is overwhelming. (This is analogous to
the feasibility condition from [1].)

Our ledger protocol proceeds in rounds. Each block is associated with a slot, where a slot lasts a prede-
fined number of rounds. We use the reputation system as follows (we restrict the discussion here to static
correlation-free reputation): The contents of the genesis block—which is assumed to be available to any party
joining the protocol and includes the (initial) reputation system along with a random nonce—are hashed
to generate common randomness used in the first epoch. Since every party is assumed access to the genesis
block, every party can locally run a lottery which is “biased” by the parties’ reputation using these coins
to choose a committee for each slot. (For dynamic reputation, the contents of an epoch are used to extracts
coins for the following epoch.)

The above implicit lottery is used to elect a slot committee CiBA for each slot i, which is responsible
for gathering all known transactions at the beginning of the slot that have not yet been inserted in the
blockchain, and proposing the block corresponding to this slot along with evidence to enable all parties to
agree on this block. More concretely, in every slot, every party in a random subset CiBC of CiBA pools all
new and valid transactions received by the blockchain users into a set, and broadcasts this set to CiBA, by
means of a byzantine broadcast protocol. The union of the tractions broadcasted by CiBC is then signed
by every member of CiBA and circulated to the whole party set P who accept it if and only if it has at
least |CiBA|/2 signatures from parties in CiBA. As long as for each of the slot committees the majority of its
members is honest—a property which will be induced by an accurate and feasible reputation system—the
above consensus protocol will achieve agreement on the proposed block.

Of prime importance in our construction, and a novelty of our PoR-ledger, is a mechanism which ensures
an intuitive notion of inclusivity. For clarity, we focus our description and analysis on static correlation-free
reputation systems. Different ways to extend our result to dynamic and correlated adversaries are discussed
in the appendix. As proved in [1], for any feasible static correlation-free reputation system, the following
sampler, denoted as Amax, outputs a committee with honest majority: Order the parties according to their
reputation and choose a sufficient number (cf. [1]) of reputation parties with the highest reputations. The
above simple Amax algorithm is optimal (up to negligible error) for minimizing the risk of electing a dishonest-
majority committee, but it suffers from the following issues: First, if some malicious party establishes (e.g.,
by behaving honestly) a high reputation, then this party will be included in almost every committee. Second,
the approach lacks a natural fairness property which would give all parties voting power according to their
reputation (even to parties with low reputation). Such a fairness property is important for sustainable
decentralization, as it does not deter participation of parties with low reputation making the overall system
more inclusive. 4 We propose and instantiate an appropriate notion of reputation fairness, termed PoR-
fairness, which addresses the above concerns. The idea behind PoR-fairness is that every reputation party
should get a “fair” chance to be part of each slot-i committee CiBA. Defining such a notion turns out to
be non-trivial (cf. Section 3.1). Intuitively, a reputation-based lottery (i.e., committee selection protocol) is

3 We do not specify here how this data is efficiently encoded into a block, e.g., so that they can be updated and
addressed in an efficient manner; however, one can use the standard Merkle-tree approach used in many common
blockchains, e.g., Bitcoin, Ethereum, Ouroboros, Algorand, etc.

4 For instance, one can consider a mechanism which rewards honest behavior by increasing the parties’ reputation.

2

reputation-fair, if, (1) on average, the representation of parties on the selected committee becomes higher, the
more likely those parties are to be honest (according to their reputation); (2) this representation increases
as the ratio of parties with higher over parties with lower reputation increases; and (3) the probabilities of
parties included in the lottery increase proportionally to their reputation. Realizing such a reputation-fair
lottery also turns out to be a challenging task and a core technical contribution of our work.

The Nakamoto Fallback Arguably, reputation is a subjective and manipulable resource. For instance, the way
reputation of new parties is assigned might be flawed or a malicious party might act honestly to build up its
reputation, and then use its earned trust to attack the system. We address this in the following way: We back
our PoR-blockchain with a light-weight use of a Nakamoto-style blockchain5 which will ensure that if the
reputation system fails to provide security, this will be observed and agreed upon on the Nakamoto-chain.
This ensures that reputation parties, who try to actively cheat (e.g., sign conflicting messages) or abstain to
hurt liveness or safety, will be exposed on the fallback chain.

The idea for our fallback is as follows: Parties report on the fallback chain (an appropriate hash of) their
view of the PoR-blockchain. If any party observes an inconsistency of this with its own view, it contest the
reported view, by posting an accusation along with appropriate evidence (signatures and hash-pointers). The
original reporting party is then expected to respond to this accusation by the contents and signatures of the
disputed block. Once the accusation is answered, it will either expose one of the two disputing parties as a
cheater, or it will expose a misbehavior on the PoR-chain (e.g., signing conflicting messages). In either case
the exposed party gets its reputation zeroed out and is excluded from the system.

This fallback mechanism fortifies the security of the blockchain under an independent backup assumption,
e.g., majority of honest stake. Note that the fallback blockchain is not used for communicating transactions,
but only digests (hashes) of blocks from the main, reputation chain as discussed below. Furthermore, it does
not need to run in a synchronized manner with the main PoR-chain. This allows a very light-weight use of the
fallback chain, which as it is a black-box use, can even be outsourced to an existing Nakamoto-style chain.
We refer to this type of blockchain design as a PoR/PoS-Hybrid Blockchain. We remark that the generic
fallback mechanism allows to recover from safety attacks. By an additional assumption on the quality of the
reputation system we can also prevent liveness attacks as discussed in Section 5.

Properties of our construction. The proposed reputation-based blockchain takes advantage of the nature of
the reputation-system to improve on several properties of existing constructions as discussed below. Provided
that the reputation is accurate, the parties will enjoy such improvements. As is the case with any assumption
on resources, it is impossible to know a priori if the underlying assumption, in our case accuracy of the
reputation, is true. However, unlike constructions which completely fail when their core assumption is false
(e.g., dishonest majority of stake in PoS) our fallback mechanism will ensure that even if our primary
assumption, i.e., accuracy of the reputation, is violated, still the basic security properties are not (or any
violation is swiftly detected) as long as the secondary, fallback assumption holds. This yields a natural
optimistic mechanism for use of resources as discussed below. In the following we discuss the advantages
that our protocol in this optimistic mode, i.e., under the primary assumption that the reputation system is
accurate.

Efficiency and Scalability: A reputation system induces probabilities that a parties behaves maliciously,
which, technically, provides information to the protocol designer (and parties) on the corruption capabilities
of the adversary. This allows us to avoid the need for communication- and setup-heavy adaptive security tools,
e.g., compute and communicate proofs of verifiable random functions.6 Additionally, it allows us to associate
reputation parties with public keys and public physical IDs, e.g., public IP address, which means they can
communicate through direct point-to-point channels rather than diffusion/gossip network. This yields both
concrete and asymptotic improvements. First, depending on the network topology, this can improve the
overall concrete message complexity and yield denial-of-service (DoS) attack protection in practice—open

5 As discussed above, here we focus on a proof-of-stake Nakamoto-style blockchain, e.g., [28], but our fallback uses
the Nakamoto blockchain in a blackbox manner and can therefore be instantiated using any blockchain that realizes
a Bitcoin-style transaction ledger [5].

6 As a side note, our blockchain does address concerns about adaptivity in corruptions through its fallback mecha-
nism, which can be adaptively secure.

3

diffusion networks are more susceptible to DoS. Additionally, as most communication occurs only among
the (polylogarithmic) size slot committees and between these committees and the player set, even ignoring
the overhead of gossiping, the overall message complexity per slot is O(n logε n) as opposed to the Ω(n2)
complexity of standard blockchains relying solely on flooding.

High Throughput (Transaction-Liveness): Existing solutions implicitly assign to each block one
effective-block proposer [28,14,3,22]—multiple parties might win the lottery but only the proposal of one
is adopted. Instead, in our PoR-blockchain a (small) committee CBC of proposers is chosen in each slot, and
the union of their transactions-views is included. To ensure that honest transactions are included in a block it
suffices that any of the block proposers in the corresponding CBC is honest. This will be true with probability
at least 1 − 1/2L, where L is the size of CBC, as we are choosing L parties out of CBA which has honest
majority. In comparison, in systems that choose one proposer per block, this probability is upper-bounded by
(roughly) t/n, where t is the number of corrupted parties/resources (e.g., the amount of adversarially owned
stake) and n is the total amount of resources. The above discrepancy can be impactful in situations where
the transaction-submitting mechanism has high latency—e.g., due to bad/restricted access to the blockchain
network, or some points to the blockchain network are unreliable.

Finality: Since the parties decide on the next block by means of a Byzantine broadcast protocol, agreement
is achieved instantly by the end of the slot. This is similar to standard synchronous BFT-based blockchains,
and is in contrast to Nakamoto-style blockchains [34,9,28] which achieve eventual consistency, aka the com-
mon prefix property [21,37]. We stress that this is the case assuming the reputation system is accurate.
One can argue that this might be an insufficient guarantee as to get full confidence and some users might
want to wait for the situation to settle also on the fallback chain—i.e., ensure that no honest party contests
their view. Nonetheless, it allows for a tiered use of the assumptions, which naturally fits situations where
different transactions have different degree of importance, as is for example the case in cryptocurrencies: For
small-amount transactions the users can trust the PoR-blockchain and consider the transaction settled as
soon as it is finalized there. The more risk-averse users (or users with high-stake transactions) can wait for
the backup chain to confirm that there is no accusation. The above mode is the natural blockchain analog of
how reputation is used in reality: If a service or an investment is recommended by a highly reputable source,
then it typically enjoys higher trust. However, for risky actions, the actors usually seek further assurances
that might take longer time.

Related Literature. Asharov et al. [1] defined reputation systems for multi-party computation (MPC) and
proved necessary and sufficient conditions on a static reputation system for the existence of fair MPC—in
particular, for the existence of an algorithm for selecting a committee where the majority of the participants
is honest.

To our knowledge, ours is the first work which puts forth a rigorous specification, protocol, model, and
treatment of reputation-system-based blockchains. Attempts to combine consensus with reputation were
previously made in the context of blockchains and cryptocurrencies. None of these attempts addresses the
subjective nature of the reputation systems, i.e., if the reputation system is inaccurately estimated, their
security fails. This is in contrast to our fallback guarantee which allows us to preserve basic safety (unforka-
bility) properties which are essential in blockchains and cryptocurrencies. Additionally many of these works
lack a protocol specification, security model and proofs, and often even a credible security argument [19],
and/or rely on complicated reputation mechanisms and exogenous limitations on the adversary’s corruption
power [11]. Alternative approaches, use the proof-of-work (bitcoin) paradigm to assign reputation, by consid-
ering miners more reputable if they allocate, over a long period, more hashing-power to their protocol [40].

Notably, [8] proposed a reputation-module which can build a scalable blockchain on top of a BFT-style
consensus protocol, e.g., PBFT or Honey Badger [33]. The idea is that this reputation module can be used by
the parties to select smaller next round committees. In addition to lacking a security proof, the entire module
needs to operate over a broadcast channel created by the original BFT consensus protocol, as it uses a global
view of the computation to accurately readjust the reputations. Hence, its security relies on the security of
the underlying consensus protocol, even if reputation is accurate. Instead our PoR-blockchain construction
is secure under the assumptions of accuracy of the reputation system, irrespective of the properties of
the fallback blockchain. The result from [8] also proposed a notion of reputation-fairness, which renders a
reputation-based lottery more fair the closer its outcome is to a uniform sample. This notion of fairness
seems unsuitable for our goals, as it is unclear why low distance from uniform is a desirable property. Why

4

should it be considered fair that a large set of parties with low reputation has better relative representation
in the output than a small set with higher reputation? And how would this incentivize parties to build up
their reputation? Our fairness definition addresses this concern, at a very low overhead.

Hybrid blockchains which use an alternative consensus mechanism as a fallback were also previously used
in Thunderella [38] and Meshcash [7]. Their protocols rely on smart refinements of the proof-of-work and/or
proof-of-space-time paradigms, and uses novel methods to accelerate the blockchain and improve scalability
and finality when a higher amount of the underlying resource is in honest hands while ensuring safety even
under weaker guarantees. Finally, Afgjort [32] devises a finality layer module on top of a proof-of-stake
blockchain. Their construction achieves fast finality under the combination of the assumptions underlying
the PoS-blockchain—typically, honest majority of stake—and the assumption supporting the security of
the finality layer. In contrast, our PoR/PoS-hybrid blockchain is secure as long as the reputation-system is
accurate irrespective of the security of the underlying PoS-blockchain.

Preliminaries. We use the standard definition of negligible and overwhelming: A function µ : N → R+ is
negligible if for any polynomial p(k): µ(k) = O(1/p(k)); We say that a function f : N→ [0, 1] is overwhelming
if f(k) = 1− µ(k) for some negligible function µ. Many of our statements and definitions assume an (often
implicit) security parameter k. For two strings s1, s2 ∈ {0, 1}∗ we denote by s1||s2 the concatenation of s1
and s2. For some n ∈ N we will denote by [n] the set [n] = {1, . . . , n}. For a string s ∈ {0, 1}k and for some
D ≤ k we will say that T (s) ≥ D if s has at least D leading zeros, i.e., s is of the form s = 0D||s′ for some
s′ ∈ {0, 1}k−D.

Organization of the Remainder of the Paper. After discussing our model in Section 2, in Section 3 we
define and instantiate a reputation-fair lottery. Section 4 describes a PoR-based blockchain-ledger protocol
for static reputation systems, and Section 5 describes the hybrid PoR/PoS ledger protocol.

2 The Model

Our ledger protocol is among a set of parties P = {P1, . . . , Pn}. A subset P̂ of the parties, called reputation
parties, have a distinguished role in the protocol, and are tasked with proposing and confirming blocks to
be added in the blockchain. To avoid overcomplicating our description, we describe our protocol here for a
static set of parties; in the appendix we discuss how this set can be dynamically updatable, similar to the
dynamic participation of [28,3]. As is common in the blockchain literature, our statements are in the random
oracle model, where a hash function is assumed to behave as a random function. As a setup, we assume that
all parties have the genesis block which includes sufficient initial randomness and the reference reputation-
system. In terms of cryptographic assumptions we will assume existentially unforgeable digital signatures [23]
along with pseudorandom function. Efficient (and even post-quantum) variants of these primitives are known
to exist under standard complexity assumptions, namely, existence of one-way functions or hardness of lattice
problems.

Communication and Synchrony. We assume synchronous communication, where messages sent by honest
parties in some round are delivered by the beginning of the following round, and a rushing adversary [10].
The protocol timeline which is divided into slots, where each slot consists of a fixed number of rounds. An
epoch consist of a predefined number of slots. We assume a cryptographic adversary who gets to actively
corrupt parties—i.e., takes full control over them.

Parties have two means of communicating. (1) A diffusion (multicast) network available to everyone in P,
build by means of a standard flooding/gossiping protocol over a (potentially incomplete but) connected com-
munication graph of unicast channels [5]—this is similar to [34,5], Ethereum [9], Cardano/Ouroboros [28,3],
Algorand [22], Thunderella [38], etc. For simplicity, we abstract this network by means of a zero-delay multi-
cast primitive (cf [5]): When an honest party multicasts a message, this message is delivered to all (honest)
parties in the network by the beginning of the following round.7 We note that one can use techniques from

7 Observe that the adversary might send a message to a subset of parties, but if any honest party is instructed by
the protocol to forward it, then the message will be delivered (to all other honest parties) in the round when this
forwarding occurs.

5

the blockchain literature [3,22,22] to relax this perfect synchrony assumption—at the cost of a stricter feasi-
bility condition on the reputation system. A discussion of such a relaxation is included in the appendix. (2)
The second type of communication is among reputation parties. These parties have known physical identities
(e.g., IP addresses) and can communicate through direct channels, without flooding (e.g., via TCP/IP). We
remark that existence of such channels is not necessary for our security analysis—if they are there, they can
be used otherwise, communication via the diffusion network is sufficient for security. However, if they do
exist and are used then can considerably reduce the traffic and yield a more scalable/efficient solution, as
discussed in the introduction.

Reputation Systems. A reputation system Rep for m = O(k) reputation parties from a set P̂ =
{P̂1, . . . , P̂m} is a family of probability distributions (parameterized by m) over binary reputation vectors
of length m, i.e., vectors of the type (h1, . . . , hm) ∈ {0, 1}m.8 Each hi is an indicator bit which takes the
value 1 if P̂i is honest and 0, otherwise. For example, Pr[(h1, . . . , hm) = (0, . . . , 0, 1)] = 0.6 means that with
probability 0.6 every reputation party except P̂m is dishonest. We consider two types of reputation systems:
A static reputation system is a probability distribution as discussed above. This is similar to the reputation
system considered in [1]. A dynamic reputation system instead is a sequence (ensemble) Rep = {Repρ}ρ∈N of

distributions, where each Repρ is a static reputation system for a set P̂ρ of mρ ∈ N reputation parties. Such
dynamic reputation systems are useful in an evolving and reactive primitive such as a ledger protocol, where
the reputation of parties might change depending on their behavior in the system and/or other exogenous
factors.

We focus on the setting where each hi corresponds to the output of an independent indicator random
variable Hi, i.e., whether or not a reputation party P̂i behaves honestly does not depend on what other
reputation parties do. In this case, a static reputation system can be described by a vector of m numbers
between 0 and 1, i.e., Rep = (R1, . . . , Rm) ∈ [0, 1]m, where the interpretation of Rep is that with probability
equal to Ri the party P̂i will play honestly (i.e., Pr[Hi = 1] = Ri).

9 We then say that Ri is the reputation
of party P̂i. We refer to such a reputation system as a correlation-free reputation system. In the following
we provide more details of the corruption capabilities that a correlation-free reputation system (static or
dynamic) gives to the adversary.

The adversary’s corruption capabilities are specified by the reputation system. A static reputation-
bounded adversary for reputation system Rep, also referred to as a static Rep-adversary, corrupts the set
of parties at the beginning of the protocol according to Rep, and sticks to this choice. In particular, given
a reputation system Rep for m reputation parties, corruption with a static adversary occurs as follows: A
vector (h1, . . . , hm) ∈ {0, 1}m is sampled according to the distribution defined in Rep, and for each hi = 0 the
reputation party P̂i ∈ P̂ is corrupted by the adversary. For dynamic reputation systems, a stronger type of
adversary, which we call epoch-resettable adversary corrupts a completely new set of parties at the beginning
of each epoch, according to the reputation system at the beginning of that epoch—this is similarly to mobile
adversaries [36]. Here we focus our analysis to the static case; an extension to epoch-resettable adversaries
is discussed in the appendix.

3 Reputation-based Lotteries

At the heart of our construction is a lottery that chooses a (sublinear) set of parties according to their
reputation. To demonstrate the idea, let us first consider two extreme scenarios: Scenario 1: No reputation
party P̂i has Ri > 0.5. Scenario 2: All reputation parties P̂i have (independent) reputation Ri > 0.5 + ε for a
constant ε, e.g,. Ri > 0.51.

In Scenario 1, one can prove that users cannot use the recommendation of the reputation parties to agree
on a sequence of transactions. Roughly, the reason is that with good probability, the majority of the reputation
parties might be dishonest and try to split the network of users, so that they accept conflicting transaction
sequences. In Scenario 2, on the other hand, the situation is different. Here, by choosing a polylogarithmic

8 For notational simplicity, we often refer to Rep as a probability distribution rather than an ensemble, i.e., we omit
the explicit reference to the parameter m.

9 Adaptive correlation-free reputation systems are described, analogously, as an ensemble of static reputation systems.

6

random committee we can guarantee (except with negligible probability)10 that the majority of those parties
will be honest (recall that we assume independent reputations), and we can therefore employ a consensus
protocol to achieve agreement on each transaction (block).

Definition 1. For a reputation system Rep for parties from a reputation set P̂, a (possibly probabilistic)
algorithm A for sampling a subset of parties from P̂, and an Rep-adversary A, we say that Rep is (ε, A)-
feasible for A if, with overwhelming probability,11 A outputs a set of parties such that at most a 1/2 − ε
fraction of these parties is corrupted by A.

In the above definition, the corrupted parties are chosen according to Rep from the entire reputation-party
set P̂, and independently of the coins of A. (Indeed, otherwise it would be trivial to corrupt a majority.)

Definition 2. We say that a reputation system is ε-feasible for Rep-adversary A, if there exists a probabilistic
polynomial-time (PPT) sampling algorithm A such that Rep is (ε, A)-feasible for A.

It is easy to verify that to maximize the (expected) number of honest parties in the committee it suffices
to always choose the parties with the highest reputation. In fact, [1] generalized this to arbitrary correlation-
free reputation systems by proving that for any ε-feasible reputation system Rep (i.e., for any Rep-adversary
A) the algorithm which orders that parties according to their reputation chooses sufficiently many (see. [1])
parties with the highest reputation induces a set which has honest majority. We denote this algorithm by
Amax.

Lemma 1 ([1]). A correlation-free reputation system is ε-feasible for a Rep-adversary A if and only if it is
(ε, Amax)-feasible for A.

As discussed in the introduction, despite yielding a maximally safe lottery, Amax has issues with fair-
ness which renders it suboptimal for use in a blockchain ledger protocol. In the following we introduce an
appropriate notion of reputation-fairness for lotteries and an algorithm for achieving it.

3.1 PoR-Fairness

As a warm up, let us consider a simple case, where all reputations parties can be partitioned in two subsets:
P̂1 consisting of parties with reputation at least 0.76, and P̂2 consisting of parties with reputation between
0.51 and 0.75. Let |P̂1| = α1 and |P̂2| = α2. We want to sample a small (sublinear in |P̂| = α1 +α2) number
y of parties in total.

Recall that we want to give every reputation party a chance (to be part of the committee) while ensuring
that, the higher the reputation, the better his relative chances. A first attempt would be to first sample a
set where each party P̂i is sampled according to his reputation (i.e., with probability Ri) and then reduce
the size of the sampled set by randomly picking the desired number of parties. This seemingly natural idea
suffers from the fact that if there are many parties with low reputation—this is not the case in our above
example where everyone has reputation at least 0.51, but it might be the case in reality—then it will not
yield an honest majority committee even when the reputation system is feasible.

A second attempt is the following. Observe that per our specification of the above tiers, the parties in
P̂1 are about twice more likely to be honest than parties in P̂2. Hence we can try to devise a lottery which
selects (on expectation) twice as many parties from P̂1 as the number of parties selected from P̂2. This will
make the final set sufficiently biased towards high reputations (which can ensure honest majorities) but has
the following side-effect: The chances of a party being selected diminish with the number of parties in his
reputation tier. This effectively penalizes large sets of high-reputation parties; but formation of such sets
should be a desideratum for a blockchain protocol. To avoid this situation we tune our goals to require that
when the higher-reputation set |P̂1| is much larger than |P̂2|, then we want to start shifting the selection
towards P̂1. This leads to the following informal fairness goal:

Goal (informal): We want to randomly select x1 parties from P̂1 and x2 parties from P̂2 so that:

10 All our security statements here involve a negligible probability of error. For brevity we at times omit this from
the statement.

11 The probability is taken over the coins associated with the distribution of the reputation system, and the coins of
A and A.

7

1. x1 + x2 = y

2. x1 = 2 max{1, α1

α2
}x2 (representation fairness)

3. For each i ∈ {1, 2} : No party in P̂i has significantly lower probability of getting picked than other parties
in P̂i (non-discrimination), but parties in P̂1 are twice as likely to be selected as parties in P̂2 (selection
fairness).

Assuming α1 and α2 are sufficiently large, the above goal can be achieved by the following sampler: For
appropriately chosen numbers `1 and `2 ≥ 0 with `1 + `2 = y, sample `1 parties from P̂1, and then sample
`2 parties from P̂1 ∪ P̂2 (where if you sample a party from P̂1 twice, replace him with a random, upsampled
party from P̂1). As it will become clear in the following general analysis, by carefully choosing `1 and `2 we
can ensure that the conditions of the above goal are met. For the interested reader, we analyze the above
lottery in Appendix A.1. Although this is a special case of the general lottery which follows, going over that
simpler analysis might be helpful to a reader, who wishes to ease into our techniques and design choices.

Our PoR-Fairness Definition and Lottery We next discuss how to turn the above informal fairness goals
into a formal definition, and generalize the above lottery mechanism to handle more than two reputation
tiers and to allow for arbitrary reputations. To this direction we partition, as in the simple example, the
reputations in m = O(1) tiers12 as follows: For a given small δ > 0, the first tier includes parties with
reputation between m−1

m + δ and 1, the second tier includes parties with reputation between m−2
m + δ and

m−1
m + δ, and so on. Parties with reputation 0 are ignored.13 We refer to the above partitioning of the

reputations as an m-tier partition.

The main differences of the generalized reputation-fairness notion from the above informal goal, is that
(1) we parameterize the relation between the representation of different ties by a parameter c (in the above
informal goal c = 2) and (2) we do not only require an appropriate relation on the expectations of the
numbers of parties from the different tiers but require that these numbers are concentrated around numbers
that satisfy this relation. The formal reputation fairness definition follows.

Definition 3. Let P̂1, . . . , P̂m be a partition of the reputation-party set P̂ into m tiers as above (where the
parties in P̂1 have the highest reputation) and let L be a lottery which selects xi parties from each P̂i. For
some c ≥ 1, we say that L is c-reputation-fair, or simply, c-fair if it satisfies the following properties:

1. (c-Representation Fairness): For j = 1, . . . ,m, let cj = max{c, c · |P̂j ||P̂j+1|
}. Then L is c-fair if for each

j ∈ {0, . . . ,m− 1} and for every constant ε ∈ (0, c):

Pr [(cj − ε)xj+1 ≤ xj ≤ (cj + ε)xj+1] ≥ 1− µ(k),

for some negligible function µ.

2. (c-Selection Fairness): For any pj ∈ ∪mi=1P̂i, let Memberj denote the indicator (binary) random variable
which is 1 if pj is selected by the lottery and 0 otherwise. The L is c-selection-fair if for any i ∈ {1, . . . ,m−
1}, for any pair (P̂i1 , P̂i2) ∈ P̂i × P̂i+1, and any constant c′ < c:

Pr[Memberi1 = 1]

Pr[Memberi2 = 1]
≥ c′ − µ(k)

for some negligible function µ.

3. (Non-Discrimination): Let Memberi defined as above. The L is non-discriminatory if for any P̂i1 , P̂i2
in the same P̂i:

Memberi1 ≈Memberi2 ,

where ≈ in the above equation means that the random variables are computationally indistinguishable.

12 This is analogous to the rankings of common reputation/recommendation systems, e.g., in Yelp, a party might
have reputation represented by a number of stars from 0 to 5, along with their midpoints, i.e., 0.5, 1.5, 2.5, etc.

13 This also gives us a way to effectively remove a reputation party—e.g., in case it is publicly caught cheating.

8

At a high level the lottery for the m-tier case is similar in spirit to the two-tier case: First we sample a
number of `1 parties from the highest reputation set P̂1, then we sample `2 parties from the union of second-
highest and the highest P̂1 ∪ P̂2, then we sample `3 parties from the union of the three highest reputation
tiers P̂1 ∪ P̂2 ∪ P̂3, and so on. As we prove, the values `1, `2, `3 etc. can be carefully chosen so that the above
fairness goal is reached whenever there are sufficiently many parties in the different tiers. We next detail our
generalized sampling mechanism and prove its security properties.

We start by describing two standard methods for sampling a size-t subset of a party set P—where each
party P ∈ P is associated with a unique identifier pid14—which will both be utilized in our fair sampling
algorithm. Intuitively, the first sampler samples the set with replacement and the second without. The first
method, denoted by Rand, takes as input/parameters the set P, the size of the target set t—where naturally
t < |P|—and a nonce r. It also makes use of a hash function h which we will assume behaves as a random
oracle.15 In order to sample the set, for each party with ID pid, the sampler evaluates the random oracle on

input (pid, r) and if the output has more than log |P|t tailing 0’s the party is added to the output set. By
a simple Chernoff bound, the size of the output set P̄ will be concentrated around t. The second sampler
denoted by RandSet is the straight-forward way to sample a random subset of t parties from P without
replacement: Order the parties according to the output of h on input (pid, r) and select the ones with the
highest value (where the output h is taken as the standard binary representation of integers). It follows
directly from the fact that h behaves as a random oracle—and, therefore, assigns to each Pi ∈ P a random
number from {0, . . . , 2k − 1}—that the above algorithm uniformly samples a set P̄ ⊂ P of size t out of all
the possible size-t subsets of P. For completeness we have included detailed description of both samplers in
Appendix A.2. Given the above two samplers, we can provide the formal description of our PoR-fair lottery,
see Figure 1. Theorem 1 states the achieved security.

Theorem 1 (Reputation-Fair Lottery for m = O(1)-tiers). In the above lottery
L(P̂, Rep, (c1, . . . , cm), δ, ε, r), let ε, δ > 0 be strictly positive constants, and for each i ∈ {1, . . . ,m = O(1)},
let Xi be the random variable (r.v.) corresponding to the number of parties in the final committee that are

from set P̂i; and for each i ∈ [m] let ci = max{c, c |P̂i||P̂i+1|
} where c = O(1) such that for some constant

ξ ∈ (0, 1) : 1
cm−1 ≤ m−2

2m − ξ. If for some constant εf ∈ (0, 1/2) the reputation system Rep is εf -feasible for a
static Rep-bounded adversary A, then for the set Psel of parties selected by L the following properties hold
with overwhelming probability (in the security parameter k):

1. |Psel| = Θ(log1+ε n)
2. for some constant εδ > 0 adversary A corrupts at most an 1/2− εδ fraction of the parties in Psel
3. If every set P̂i has at least γ · log1+ε n parties for some γ > 1, then the lottery is c-fair.

The complete proof can be found in Appendix D.1. In the following we included a sketch of the main
proof ideas.

Proof (sketch). We consider two cases: Case 1: L noes not reset, and Case 2: L resets.

In Case 1, The lottery is never reset. This case is the bulk of the proof.
First, in Lemma 3 using a combination of Chernoff bounds we prove that the random variable Xi corre-
sponding to the number of parties from P̂i selected in the lottery is concentrated around the (expected)
value:

xi := Exp(Xi) = αi ·
m∑
j=i

`j∑j
q=1 αq

(1)

i.e., for any constant λi ∈ (0, 1):

Pr [|(1− λi)xi ≤ Xi ≤ (1 + λi)xi] ≥ 1− µi(k), (2)

14 In our blockchain construction, pid will the P ’s public key.
15 In the random oracle model, r can be any unique nonce; however, for the epoch-resettable-adversary extension of

our lottery we will need r to be a sufficiently fresh random value. Although most of our analysis here is in the
static setting, we will still have r be such a random value to ensure compatibility with dynamic reputation.

9

L(P̂, Rep, (c1, . . . , cm = 1), δ, ε, r)

1. Divide the reputation parties into m tiers P̂1, . . . , P̂m as follows,a: For i = 0 . . . ,m − 1, define P̂m−i to be the
set of parties in P̂ with reputation Repj ∈ (i

m
+ δ, i+1

m
+ δ].

2. Initialize P̄i := ∅ for each i ∈ [m].
3. For each i = 1, . . . ,m: αi := |P̂i|.
4. For each i = 1, . . . ,m− 1: Let

`i =

∑i
j=1 αj∑m

j=1

∏m
q=j cq

αi+1

∏m
j=i cj − αi

∏m
j=i+1 cj

αi+1αi
log1+ε n

and let

`m :=

∑m
j=1 αj∑m

j=1

∏m
q=j cq

1

αm
log1+ε n

5. For each i = 1, . . . ,m− 1 do the following:
– If | ∪ij=1 P̂j | ≥ `i:

(a) Invoke Rand(∪ij=1P̂j , d`ie; (r||i)) to choose a set Qi of parties uniformly at random from ∪ij=1P̂j .
(b) For each j ∈ [i] compute Qcol

i,j := Qi ∩ P̄j and update P̄j := P̄j ∪ (Qi ∩ P̂j).
(c) For each j ∈ [i] if Qcol

i,j 6= ∅, then

i. if |P̂j \ P̄j | < |Qcol
i,j | then reset the lottery and select Psel as the output of Amax.

ii. Else
• Invoke RandSet(P̂j \ P̄j , |Qcol

i,j |; (r||i||j)) to choose a set Q+
i,j ;

• For each j ∈ [i] update P̄j := P̄j ∪Q+
i,j .

iii. Set Q+
i := ∪mj=1Q+

i,j

– Else (i.e., | ∪ij=1 P̂j | < `i): Reset the lottery and select (and output) Psel as the output of Amax for choosing
log1+ε n.

6. If the lottery was not reset in any of the above steps, then set Psel := ∪mj=1P̄j(= ∪mi=1(Qi ∪ Q+
i)) and output

Psel.

a Where δ can be an arbitrary small constant.

Fig. 1: c-fair reputation-based lottery for m=O(1) tiers

Hence, by inspection of the protocol one can verify that the xi’s and the `j ’s satisfy the following system
of linear equations:

(x1, . . . , xm)T = B · (`1, . . . , `m)T (3)

Where B is an m×m matrix with the (i, j) position being

Bi,j =

{
αi∑j
q=1 αq

, if i ≥ j
0, otherwise

The above system of m equations has 2m unknowns. To solve it we add the following m equations which
are derived from the desired reputation fairness: For each i ∈ [m− 1] :

xi := ci · xi+1 (4)

and
m∑
i=1

xi = log1+ε k (5)

This yields 2m linear equations. By solving the above system of equations we can compute:

`i =

∑i
j=1 αj∑m

j=1

∏j
q=1 cq

αi+1

∏m
j=i cj − αi

∏m
j=i+1 cj

αi+1αi
log1+ε n,

for each i ∈ [m− 1], and

10

`m :=

∑m
j=1 αj∑m

j=1

∏m
q=j cq

1

αm
log1+ε n.

This already explains some of the mystery around the seemingly complicated choice of the `i’s in the
protocol.
Next we observe that for each j ∈ [m] :

∑m
i=1Bi,j = 1 which implies that

m∑
j=1

`j =

m∑
i=1

xi
Eq. 5

= log1+ε k (6)

Because in each round we choose parties whose number is from a distribution centered around `i, the
above implies that the sum of the parties we sample is centered around

∑m
j=1 `j = log1+ε k which proves

Property 1.

Property 2 is proven by a delicate counting of the parties which are corrupted, using Chernoff bounds for
bounding the number of corrupted parties selected by Rand (which selects with replacement) and Hoeffding’s
inequality for bounding the number of parties selected by RandSet (which selects without replacement). The
core idea of the argument is that because the reputation in different tiers reduces in a linear manner but the
representation to the output of the lottery reduces in an exponential manner, even if the adversary corrupts
for free all the selected parties from the lowest half reputation tiers, still the upper half will have a strong
super-majority to compensate so that overall the majority is honest.

Finally, the c-fairness (Property 3) is argued as follows:

–The c-Representation Fairness follows directly from Equations 1, 2 and 4.

–The non-discrimination property follows from the fact that our lottery picks each party in every P̂i with
exactly the same probability as any other party.

–The c-Selection Fairness is proved by using the fact that the non-discrimination property mandates that each

party in Psel ∩ P̂i is selected with probability pi = |Psel∩P̂i|
|P̂i|

. By using our counting of the sets’ cardinalities

computed above we can show that for any constant c′ < c: pi
pi+1
≥ c′.

In Case 2 the lottery is reset and the output Psel is selected by means of invocation of algorithm Amax. This
is the simpler case since Lemma 1 ensures that if the reputation system is εf -feasible, then a fraction 1/2+εf
of the parties in Psel will be honest except with negligible probability. Note that Amax is only invoked if a
reset occurs, i.e., if in some step there are no sufficiently many parties to select from; this occurs only if any
every set P̂i does not have sufficiently many parties to choose from. But the above analysis, for δ < γ − 1,
the sampling algorithms choose at most (1 + δ) log1+ε n with overwhelming probability. Hence when each P̂i
has size at least γ · log1+ε n, with overwhelming probability no reset occurs. In this case, by inspection of the
protocol one can verify that the number of selected parties is |Psel| = log1+ε n.

4 The PoR-Blockchain

We next describe how a PoR-fair lottery can be used to obtain a PoR-blockchain. The ground truth of
the blockchain is recorded on the genesis block which includes the (initial) set of reputation parties, their
public keys, and the corresponding reputation vector. We assume a canonical way of validating transactions
submitted in the same round, e.g., if two received transactions which have not-yet been inserted into a block
would contradict each other (e.g., correspond to double-spending), a default rule of ignoring both can be
adopted. We abstract this by means of a predicate Validate, that takes as input a sequence T (of transactions)
along with a current vector TH of transaction history—composed by concatenating the transactions in the
blockchain, and outputs a subset T ′ ⊆ T such that TH ||T ′ is a valid sequence of transactions.

The idea of the protocol for proposing and agreeing on the block of any given slot is as follows: A small (i.e.,
polylogarithmic) slot-committee CBA is chosen using our above lottery—recall that the lottery will guarantee
that the majority in CBA is honest and therefore it can run Byzantine agreement protocols (Consensus
and Broadcast). From CBA a smaller (constant-size) committee CBC is randomly chosen to broadcast its

11

transactions to everyone. Note that whenever in our protocol we say that a party P broadcasts a message, we
mean that a Byzantine broadcast protocol is executed with P as sender; to avoid confusion we will signify
this by saying that that the message is broadcasted by means of protocol Broadcast. We will use multicasting
to refer to the process of sending a message through the diffusion network to all parties.

Using Broadcast to communicate the transactions known to CBC allows us to agree on the union of all
transactions known to these parties. However, broadcasting to the whole player set has a big communication
and round overhead. To avoid the overhead we use the following idea: Recall that the parties in CBA are
all reputation parties and can therefore communicated directly. Thus, instead of directly broadcasting to
the whole party set P the parties in CBC broadcast to the parties in CBA. 16 The security of the broadcast
protocol ensures that the parties in CBA agree on the broadcasted messages and therefore also on the union.
What remains is to extend this agreement to the whole player set. This can be easily done since the majority
of the parties in CBA is honest: Every party in CBA signs the union of the received broadcasted messages and
sends it to every party in P. The fact that CBA has honest majority implies that the only message that might
be accepted is this agreed upon union. Hence, once any P ∈ P receives such a majority-supported set, he
can adopt it as the contents of this slot’s block. The above approach brings an asymptotic reduction on the
communication complexity of the protocol from Ω(n2) down to O(n logε n), for some constant ε > 1. (The
worst-case round complexity also has an asymptotic reduction but this depends on the actual reputation
system and the choice of protocol Broadcast.) Additionally, the fact that reputation parties communicate over
point-to-point (rather than gossiping) network is likely to further to improve the concrete communication
complexity, at least for certain network topologies.

A remaining question is: Where does the randomness for the selection of CBA and CBC come from?
For the static reputation-restricted adversary considered here, we extract the randomness for choosing each
CBA by repeated calls to the random oracle. In the appendix we discuss how we can extend our treatment
using standard techniques to tolerate epoch-resettable adversaries. The formal description of the protocol
for announcing and agreeing on the next block can be found in Figure 2. The proof of the following theorem
follows the above line of argument and can also be found in Appendix D.2.

BlockAnnounce(P̂,P, Rep, Bρ−1, ρ, δ, ε, L = O(1)):

1. Each party in P locally runs the reputation-fair lottery L(P̂, Rep, (c1, . . . , cm), δ, ε, h(ρ||0)), where the cjs are as
in Theorem 1, to sample a set CBA ⊂ P̂ (of size polylog(n)); out of this set, the parties choose a random subset
CBC of constant size L = O(1) by invoking RandSet(CBA, L; h(ρ||1)).

2. Each party P̂i ∈ CBC acts as sender in an invocation of Broadcast with receivers the parties in CBA and input
P̂i’s current transaction pool Ti; P̂i removes the broadcasted transactions from its local transaction pool.

3. All parties in CBA compute T̂ = Validate(TH , T) for T = ∪pi∈CBCTi. If some party P̂j ∈ CBC did not broadcast
a valid message in the previous round of the protocol, then all parties in CBA set Tj = {(abort, j)}.

4. Every P̂j ∈ CBA signs h(T̂ , h = h(Bρ−1), ρ), where Bρ−1 is the previous block,a and sends it to every party in
CBC.

5. Each P̂i ∈ CBC: If P̂i receives at least |CBA|/2 signatures from parties in CBA on some (T̂ , h), where ρ is the
current slot and h = h(Bρ−1) is a valid hash pointer to the previous block, then P̂i multicasts (T̂ , h, ρ) along
with all the corresponding signatures to all parties in P.

6. Each Pi ∈ P: Upon receiving any (T̂ , h, ρ) along with signatures on it from at least d|CBA|/2e parties from CBA,
create a block consisting of (T̂ , h, ρ) and the related signatures and add this block to the local (blockchain)
ledger state as the current slot’s block and mark the current slot as completed.

a As is common in blockchains assuming a compact representation of the block, e.g., a Merkle-tree will allow for
more efficiency by signing just the root.

Fig. 2: Block announcing protocol for Slot ρ

16 For clarity in our description we will use a deterministic broadcast protocol for Broadcast, e.g., the Dolev-Strong
broadcast protocol [16] for which we know the exact number of rounds. However, since our lottery will ensure honest
majority in CBA, using the techniques by Cohen et al. [12,13], we can replace the round-expensive Dolev-Strong
broadcast protocol by an randomized, expected-constant round broadcast protocol for honest majorities, e.g., [27].

12

Theorem 2. Let Rep be a reputation system, ε and δ be small positive constants, L denote our sampling
algorithm (lottery) discussed in the previous section used for choosing CBA according to Rep, and the ci’s be
as in Theorem 1. If for a static adversary A, Rep is ε-feasible, and all parties in P̂ρ participate in slot ρ then
in protocol BlockAnnounce, every node in P adds the same block on his local blockchain for slot ρ. Moreover,
this block will include the union of all transactions known to parties in CBC at the beginning of round ρ.

Using BlockAnnounce it is straightforward to build a blockchain-based ledger: In each round parties collect
all valid transactions they know and execute BlockAnnounce. For completeness, we provide a description of
this simple reputation-based blockchain ledger protocol in Appendix B. Its security follows directly from the
above theorem. We remark that although the above theorem is proven for static reputations and adversaries,
its proof can be extended, using standard techniques, to dynamic reputation systems with epoch-resettable
adversaries. This extension will also extend the corresponding PoR-based blockchain protocol to that setting.

5 The PoR/PoS-Hybrid Blockchain

As discussed in the introduction, a purely PoR-based blockchain protocol can be insecure if the reputation
system is inaccurate. To fortify our ledger against such a situation we do the following: In parallel to the PoR-
based blockchain above, we run an independent (and potentially slower) Nakamoto-style ledger protocol. As
discussed, we focus our description on Proof-of-Stake-based blockchain (in short, PoS-blockchain) but our
treatment can be applied to proof-of-work or even iterated-BFT ledger protocols [4]. As long as the majority
of the stake is in honest hands the back-up PoS-blockchain will ensure that an inaccurate (or manipulated)
reputation system does not result in an insecure ledger.

More concretely, our PoR/PoS-hybrid design ensures the following: If the reputation system is accurate,
i.e., it reflect the actual probabilities that the parties behave honestly, then our protocol will be secure and
achieve the claimed efficiency. If the reputation is inaccurate and, as a result, a fork is created, but the
honest majority of stake assumption holds, then parties will be able to detect the fork—and agree on this
fact—within a small number of rounds. We stress that our design uses the assumptions in a tired manner: as
long as the reputation system is accurate, the backup blockchain can neither yield false detection positives
nor slow down the progress of the PoR-blockchain, even if the majority stake in the system has shifted
to malicious parties (in which case the back-up PoS-blockchain might fork). However, if both accuracy of
reputation and honest majority of stake fail, the security of the system cannot be guaranteed as with any
construction based on assumptions.

Here is how our hybrid ledger works: In every round the reputation parties post to the backup PoS-
blockchain, the current slot’s hash pointers. This way every party will be able to efficiently verify their
local view by comparing their local hashes to the ones posted on the backup blockchain. If any honest
party observes a discrepancy, then she can complain by posting the block in his local PoR-chain, which is
inconsistent with the pointer seen on the backup PoS-blockchain, along with the supporting set of signatures.
We refer to this complaint as an accusation and to the party that posts it as an accuser. If the accuser fails
to present a valid view (i.e., a block with sufficient signatures from the corresponding slot committee) then
the accusation is considered invalid and the dispute is resolved in favor of the reputation party that had
initially posted the disputed hash pointer, hereafter referred to as the accused party. Otherwise, the accused
party will need to respond by posting (as a transaction on the backup PoS-blockchain) his own view of the
disputed block. If this party fails, then the dispute is considered resolved in favor of the accuser. Otherwise,
if both the accuser and the accused party post support on their claims, every party will be able to observe
this fact and detect that the PoR-chain forked. In either case, any such accusation will result in detecting
a malicious party: either the accuser, or the accused or some party that issued conflicting signatures on the
PoR blockchain. (The detected party’s reputation will be then reduced to 0 and the party will be excluded
from the protocol.) The detailed specification of our PoR/PoS-hybrid protocol ΠBC

PoR/PoS is provided in
Appendix C along with the proof of the following theorem, where we say that the reputation system is
accurate if it reflects, within a negligible error the actual probabilities that the reputation parties are honest:

Theorem 3. Let, ε, δ, c and L be as in Theorem 2. The following properties hold with overwhelming prob-
ability assuming that the reputation system is εf -feasible for some constant εf ∈ (0, 1): If the PoR-system
is accurate, then protocol ΠBC

PoR/PoS satisfies the following properties except with negligible probability in the
presence of a static Rep-adversary:

13

– Safety (with Finality): At the end of every block-slot, all reputation parties have the same view of the
blockchain.

– Block Liveness: A new block is added to each local chain held by any reputation party at the end of each
slot.

– Transaction Liveness: Assuming all honest reputation parties receive a transaction, this transaction will be
added to the blockchain within ` slots except with probability 2−`|CBC|.

Furthermore, even if the reputation system is faulty (e.g., inaccurate) but the majority of the stake is held
by honest parties, then if safety is violated, ΠBC

PoR/PoS will publicly detect it (i.e., agreement on this fact will

be reached among all parties) within 2k blocks of the PoS-blockchain.

Note that since all honest (non-reputation) parties are connected with the reputation parties via a
diffusion network, all that above guarantees will also be offered to them with a delay equal to the maximum
delay for any message from a reputation party to reach a non-reputation party in the network.

Detecting Liveness Attacks The above design detects safety violations, i.e., forks, but does not detect the
following attack on liveness: A flawed reputation system might allow the attacker controlling a majority
of slot committee members to prevent the blockchain from advancing, by not issuing a block signed with
sufficiently many signatures. Nonetheless, a mild additional assumption on the accuracy of the reputation
system, i.e., that within a polylogarithmic number of rounds an honest-majority committee will be elected,
allows to break this deadlock and detect such an attack. In a nutshell, to make sure the above attack to
liveness is exposed we employ the following mechanism: In every round, if a reputation party does not receive
any block with majority support from the current committee in the last round of BlockAnnounce, then it
issues a complaint on the fallback chain. If for any upcoming round ρ there have been complaints posted on
the main chain by a majority of the members of CBA corresponding to round ρ, then the parties decide that
the PoR-blockchain has halted. This ensure that at the latest when the next honest majority committee is
elected, the above liveness attack will be exposed. We refer to Appendix C.2 for a more detailed discussion.

6 Conclusions and Open Problems

Reputation has the potential to yield a highly scalable decentralized ledger. However, one needs to be careful
in using it as it is a manipulable and subjective resource. We put forth and proved the security of a hybrid
design which enjoys efficiency and scalability benefits by using reputation, while fortifying its security with a
fallback blockchain relying on standard assumption such as honest majority of stake. Central in our treatment
is a new (reputation-)fairness notion which aims to facilitate inclusivity of the resulting system. Our work
establishes the basic security principles and the core distributed protocol of such a fair PoR/PoS-hybrid
blockchain ledger. We believe that our treatment will seed a further investigation of reputation as a venue
for scalable decentralization. To this direction, in addition to the various extensions pointed to throughout the
paper and discussed in the appendix, there are two important research directions: (1) A rational analysis and
associated mechanism that add economic robustness to the arguments and demonstrate the decentralization
forces, and (2) a reliable mechanism for assigning reputation of the parties, e.g. using AI, and adjusting
it according to their behavior both in the protocol, as well as potentially on the external recommendation
systems.

Acknowledgements. This research was supported by Sunday Group, Inc. The authors would like to thank
Yehuda Afek for useful discussions.

References

1. Gilad Asharov, Yehuda Lindell, and Hila Zarosim. Fair and efficient secure multiparty computation with repu-
tation systems. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS,
pages 201–220. Springer, Heidelberg, December 2013.

2. Hagit Attiya, Amir Herzberg, and Sergio Rajsbaum. Optimal clock synchronization under different delay as-
sumptions (preliminary version). In Jim Anderson and Sam Toueg, editors, 12th ACM PODC, pages 109–120.
ACM, August 1993.

14

3. Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas. Ouroboros genesis:
Composable proof-of-stake blockchains with dynamic availability. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 913–930. ACM Press, October 2018.

4. Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas. Consensus redux:
Distributed ledgers in the face of adversarial supremacy. Cryptology ePrint Archive, Report 2020/1021, 2020.
https://eprint.iacr.org/2020/1021.

5. Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as a transaction ledger: A
composable treatment. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of
LNCS, pages 324–356. Springer, Heidelberg, August 2017.

6. Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme. In Michael J. Wiener, editor,
CRYPTO’99, volume 1666 of LNCS, pages 431–448. Springer, Heidelberg, August 1999.

7. Iddo Bentov, Pavel Hubáček, Tal Moran, and Asaf Nadler. Tortoise and hares consensus: the meshcash framework
for incentive-compatible, scalable cryptocurrencies. IACR Cryptology ePrint Archive, 2017:300, 2017.

8. Alex Biryukov, Daniel Feher, and Dmitry Khovratovich. Guru: Universal reputation module for distributed
consensus protocols. Cryptology ePrint Archive, Report 2017/671, 2017. http://eprint.iacr.org/2017/671.

9. Vitalik Buterin. A next-generation smart contract and decentralized application platform, 2013. https://

github.com/ethereum/wiki/wiki/White-Paper.
10. Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology, 13(1):143–

202, January 2000.
11. Sherman S. M. Chow. Running on Karma - P2P reputation and currency systems. In Feng Bao, San Ling,

Tatsuaki Okamoto, Huaxiong Wang, and Chaoping Xing, editors, CANS 07, volume 4856 of LNCS, pages 146–
158. Springer, Heidelberg, December 2007.

12. Ran Cohen, Sandro Coretti, Juan A. Garay, and Vassilis Zikas. Probabilistic termination and composability of
cryptographic protocols. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III, volume
9816 of LNCS, pages 240–269. Springer, Heidelberg, August 2016.

13. Ran Cohen, Sandro Coretti, Juan A. Garay, and Vassilis Zikas. Round-preserving parallel composition of
probabilistic-termination cryptographic protocols. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and
Anca Muscholl, editors, ICALP 2017, volume 80 of LIPIcs, pages 37:1–37:15. Schloss Dagstuhl, July 2017.

14. Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An adaptively-secure,
semi-synchronous proof-of-stake blockchain. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part II, volume 10821 of LNCS, pages 66–98. Springer, Heidelberg, April / May 2018.

15. Danny Dolev, Joseph Y. Halpern, and H. Raymond Strong. On the possibility and impossibility of achieving
clock synchronization. In 16th ACM STOC, pages 504–511. ACM Press, 1984.

16. Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement. SIAM J. Comput.,
12(4):656–666, 1983.

17. Shlomi Dolev and Jennifer L. Welch. Wait-free clock synchronization (extended abstract). In Jim Anderson and
Sam Toueg, editors, 12th ACM PODC, pages 97–108. ACM, August 1993.

18. Shlomi Dolev and Jennifer L. Welch. Self-stabilizing clock synchronization in the presence of byzantine faults
(abstract). In James H. Anderson, editor, 14th ACM PODC, page 256. ACM, August 1995.

19. Fangyu Gai, Baosheng Wang, Wenping Deng, and Wei Peng. Proof of reputation: A reputation-based consensus
protocol for peer-to-peer network. In DASFAA, 2018.

20. Juan A. Garay, Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. The price of low communication in secure
multi-party computation. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401
of LNCS, pages 420–446. Springer, Heidelberg, August 2017.

21. Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and applications.
In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 281–
310. Springer, Heidelberg, April 2015.

22. Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand: Scaling byzantine
agreements for cryptocurrencies. Cryptology ePrint Archive, Report 2017/454, 2017. http://eprint.iacr.org/
2017/454.

23. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against adaptive chosen-
message attacks. SIAM Journal on Computing, 17(2):281–308, April 1988.

24. Joseph Y. Halpern, Barbara Simons, H. Raymond Strong, and Danny Dolev. Fault-tolerant clock synchronization.
In Robert L. Probert, Nancy A. Lynch, and Nicola Santoro, editors, 3rd ACM PODC, pages 89–102. ACM, August
1984.

25. Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American
Statistical Association, 58(301):13–30, March 1963.

26. Gene Itkis and Leonid Reyzin. Forward-secure signatures with optimal signing and verifying. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 332–354. Springer, Heidelberg, August 2001.

15

https://eprint.iacr.org/2020/1021
http://eprint.iacr.org/2017/671
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://eprint.iacr.org/2017/454
http://eprint.iacr.org/2017/454

27. Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine agreement. In Cynthia
Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 445–462. Springer, Heidelberg, August 2006.

28. Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A provably secure proof-
of-stake blockchain protocol. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume
10401 of LNCS, pages 357–388. Springer, Heidelberg, August 2017.

29. Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party computation using a global
transaction ledger. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume
9666 of LNCS, pages 705–734. Springer, Heidelberg, May 2016.

30. Leslie Lamport and P. M. Melliar-Smith. Byzantine clock synchronization. In Robert L. Probert, Nancy A.
Lynch, and Nicola Santoro, editors, 3rd ACM PODC, pages 68–74. ACM, August 1984.

31. Christoph Lenzen, Thomas Locher, and Roger Wattenhofer. Clock synchronization with bounded global and
local skew. In 49th FOCS, pages 509–518. IEEE Computer Society Press, October 2008.

32. Bernardo Magri, Christian Matt, Jesper Buus Nielsen, and Daniel Tschudi. Afgjort - A semi-synchronous finality
layer for blockchains. IACR Cryptology ePrint Archive, 2019:504, 2019.

33. Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of BFT protocols. In
Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM
CCS 2016, pages 31–42. ACM Press, October 2016.

34. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. http://bitcoin.org/bitcoin.pdf.
35. Rafail Ostrovsky and Boaz Patt-Shamir. Optimal and efficient clock synchronization under drifting clocks. In

Brian A. Coan and Jennifer L. Welch, editors, 18th ACM PODC, pages 3–12. ACM, May 1999.
36. Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks (extended abstract). In Luigi Logrippo,

editor, 10th ACM PODC, pages 51–59. ACM, August 1991.
37. Rafael Pass, Lior Seeman, and abhi shelat. Analysis of the blockchain protocol in asynchronous networks. In

Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS,
pages 643–673. Springer, Heidelberg, April / May 2017.

38. Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant confirmation. In Jesper Buus
Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 3–33. Springer,
Heidelberg, April / May 2018.

39. T. K. Srikanth and Sam Toueg. Optimal clock synchronization. In Michael A. Malcolm and H. Raymond Strong,
editors, 4th ACM PODC, pages 71–86. ACM, August 1985.

40. J. Yu, D. Kozhaya, J. Decouchant, and P. Esteves-Verissimo. Repucoin: Your reputation is your power. IEEE
Transactions on Computers, 68(8):1225–1237, Aug 2019.

16

http://bitcoin.org/bitcoin.pdf

A Supplementary Material to Section 3

A.1 A Simple PoR-Fair Lottery for a 2-Tier Reputation System

For completeness, we first repeat the informal goal of PoR-fairness in our 2-tier example.

Goal (informal): We want to randomly select x1 parties from P̂1 and x2 parties from P̂2 so that:

1. x1 + x2 = y, and
2. x1 = 2 max{1, α1

α2
}x2.

3. For each i ∈ {1, 2} : No party in P̂i has significantly lower probability of getting picked than other parties
in P̂i, but parties in P̂1 are twice as likely to be selected as parties in P̂2.

Here is how to create a lottery which achieves the above goal. Let c := 2 max{1, α1

α2
}. The lottery proceeds

as follows:

1. First, we choose `I = cα2−α1

(c+1)α2
y parties randomly from P̂1;

2. Subsequently, we choose `II := α1+α2

(c+1)α2
y parties randomly from the union P̂1 ∪ P̂2. If a party from P̂1

is chosen twice, i.e., in both of the above steps, then choose another party randomly from the parties in
P̂1 that have not yet been chosen in any of the steps.

3. Take all the parties that were chosen in the above steps to form the committee.

We next show that the outcome of the above lottery satisfies, on average, the goals set for it. (Notation:
For a random variable X, we denote by E(X) the expected value of X). The third property follows from the
fact that the parties are chosen randomly from their respective sets. The following theorem formalizes and
proves the fact that, “on average”, our above lottery satisfies the first two properties discussed in the above
goal.

Theorem 4 (Reputation-Fair Lottery for two tiers). In the above lottery, for i ∈ {1, 2}: let Xi be the
random variable (r.v.) corresponding to the set of parties in the final committee that come from set P̂i (i.e.,
|Xi| is the r.v. corresponding to xi.) Let also `I (resp. `II) denote the number of parties that are added on
the committee in the first step (resp. in the last two steps). Then the following statements hold:

1. `I + `II = y
2. E(|X1|) = cE(|X2|)

Proof (sketch). We prove the two equations in the theorem separately.

1. `I + `II = (cα2−α1

(c+1)α2
+ α1+α2

(c+1)α2
)y = y

2. Let LI denote the r.v. corresponding to the set of parties that are added on the committee in the first
phase of the lottery and LII the set added in the second and last phase. Denote by L the union, i.e.,
L = LI ∪ LII . First we note that by definition:

E(|Xi|) = E(|L ∩ P̂i|)

Additionally, since in the second phase, parties from P̂2 who were already chosen in the first phase are
replaced by other (not-yet chosen) parties from P̂2 we know that LI and LII are disjoint.
The following hold: As in the first phase of the lottery no party from P̂1 is chosen an all parties are
chosen from P̂2:

E(|LI ∩ P̂2|) = 0 (7)

and

E(|LI ∩ P̂1|) = `I =
cα2 − α1

(c+ 1)α2
y (8)

In the second phase, there are α1 + α2 parties to choose from in total, out of which α2 are in P̂2 and α1

are in P̂1. Since we chose y
1+γ parties randomly we have:

E(|LII ∩ P̂2|) =
α2

α1 + α2
· α1 + α2

(c+ 1)α2
y =

1

c+ 1
y (9)

17

and

E(|LII ∩ P̂1|) =
α1

α1 + α2
· α1 + α2

(c+ 1)α2
y =

α1

α2(c+ 1)
y (10)

Using the above equations we can compute the expectations of X1 and X2:

E(|X2|) = E(|L ∩ P̂2|)
= E(|LI ∩ P̂2|+ |LII ∩ P̂2|)
= E(|LI ∩ P̂2|) + E(|LII ∩ P̂2|)

=
1

c+ 1
y

where the second equation holds because LI and LII are a partition of L and the third follows from the
linearity of expectation.

Similarly,

E(|X1|) = E(|L ∩ P̂1|)
= E(|LI ∩ P̂1|+ |LII ∩ P̂1|)
= E(|LI ∩ P̂1|) + E(|LII ∩ P̂1|)

=
cα2 − α1

(c+ 1)α2
y +

α1

α2(c+ 1)
y

=
c

c+ 1
y

The above imply:
E(|X1|)
E(|X2|)

= c

A.2 PoR-Fair Definition and Lottery (Cont’d)

This section includes supplementary material for Section 3.1.

Rand(P, t; r)

1. Initialize P̄ := ∅.
2. For each Pi ∈ P with party-ID pid:

(a) Compute si = h(pid, r).

(b) If T (si) ≥ log |P|
t

, then update P̄ := P̄ ∪ {Pi}.
3. Output P̄.

Fig. 3: A simple uniform sampler based on a hash function h

Lemma 2. In the random oracle model and assuming |P| > γt for some constant 1 < γ < 2, and t =
Ω(log1+ε k) for some constant ε > 0, the algorithm Rand(P, t; r) has the following properties:

1. Exp(|P̄|) = t

2. For any constant 0 < δ < 1:

Pr
[
|(1− δ)t ≤ |P̄| ≤ (1 + δ)t

]
≥ 1− µ(k),

for some negligible function µ.

3. For any r′ 6= r, the output of Rand(P, t; r′) is distributed independently of the output of Rand(P, t; r).

18

Proof. For Properties 1 and 2, because by assumption h behaves as a random oracle, we know that for
every Pi, Pr[Pi ∈ P̄] = t

|P| independently of whether or not any other P ′i ∈ P̄. Hence, the random variable

corresponding to P̄ is the sum of |P| independent Bernoulli trials with the above probability. Therefore, its
expectation will be Exp(|P̄|) = t, and by a simple Chernoff bound, we have Pr

[
|(1− δ)t ≤ |P̄| ≤ (1 + δ)t

]
≥

1− µ(k). Property 3 also follows from the random oracle assumption which implies that the output of h on
any inputs x 6= x′ is uniformly and independently distributed. ut

RandSet(P, t; r)

1. Initialize P̄ := ∅.
2. For each Pi ∈ P with party-ID pida:

(a) Compute si = h(pid, r).
(b) Interpret h(pid, r) as a k-bit integer ni.

3. Order the parties in P according to their corresponding ni’s.
4. Set P̄ to be the set of the first t parties in the above ordering.
5. Output P̄
a In our blockchain construction, pid will the Pi’s public key.

Fig. 4: A simple uniform sampler without replacements based on a hash function h

B Supplementary Material to Section 4

Figure 5 describes our PoR-Blockchain Protocol for static reputation reputation

RepBC(P̂,P, Rep, Bρ−1, ρ, δ, ε, L = O(1))
Every party receives the genesis block which includes: an encoding of the reputation system Rep, and the public keys
of all initial reputation parties. Let ρBA denote the number of (clock) rounds that each invocation of BlockAnnounce
takes to complete.a Each slot in our protocol will be ρBA clock-rounds. Without loss of generalize, we assume that
the protocol starts when the global clock round is 1.

– Extending the blockchain: In the ρth slot:
1. Let Bρ−1 denote the block adopted in the previous slot (where B0 is the genesis block):
2. The parties execute BlockAnnounce(P̂,P, Rep, Bρ−1, ρ, δ, ε, L) to announce and agree on the ρ-th slot block.

a Recall that for simplicity we describe the protocol with deterministic Byzantine Agreement; using the techniques
from [12] we can extend our treatment to use randomized—and more round-efficient—protocols.

Fig. 5: The Reputation-based Blockchain (Static Reputation)

C Supplementary material to Section 5

Figure 6 describes our PoR/PoS-Hybrid Blockchain Protocol for static reputation reputation

C.1 Proof of Theorem 3

Proof (sketch). First we observe that if the reputation system is accurate, then it reflects the probabilities
that parties are not corrupted. Hence, the block announcing protocol will always select an honest-majority
committee and the block supported by that committee will be added on the PoR-blockchain. Additionally,
since the majority in each such committee is honest, the adversary is able to produce valid signatures from
less than a 1/2-fraction of the parties in that committee. Hence no party might see any valid conflict on the
PoS chain. This proves safety. Block liveness is straightforward since in each slot the honest majority will
endorse a new (potentially empty) block. Transaction liveness holds because once a transaction is heard by

19

ΠBC
PoR/PoS(P̂,P, Rep, Bρ−1, ρ, δ, ε, L = O(1))

Every party receives the genesis block which includes: the reputation system Rep, the public keys of all initial
reputation parties spk1, . . . , spk|P̂| (where each party P̂i ∈ P̂ knows the corresponding private key sprki), the public
keys of all stake holders (users and reputation parties) in P, i.e., pk1, . . . , pk|P| (where each Pi ∈ P knows the
corresponding private key rpki)

a, and the initial distribution of stake S1, . . . , S|P|. Let ρBA denote the number of
(clock) rounds that each invocation of BlockAnnounce takes to complete.b Each slot in our protocol will be ρBA
clock-rounds. Without loss of generalize, we assume that the protocol starts when the global clock round is 1. The
parties execute the following processes in parallel:

Extending the blockchain: In the ρth slot:
1. Let Bρ−1 denote the block adopted in the previous slot (where B0 is the genesis block):

2. The parties execute BlockAnnounce(P̂,P, Rep, Bρ−1, ρ, δ, ε, L) to announce and agree on the ρ-th slot block.

Using the PoS blockchain as fallback: Invoke the PoS-blockchain where in each PoS-slotc:
– The current PoS-slot leader P (who is in charge of posting the block for the current PoS-slot) creates a

block as follows: If there are any valid complains, (see below) they are added to the block. Other than such
complains, P includes to his block his view of the latest valid block on the PoR-blockchain without the
actual transactions, i.e., if BρL is the latest block that Pi sees—where BρL includes h(Y, h = h(BρL−1), ρL)
as specified in BlockAnnounce, then Pi includes in his PoS-block: h = h(Y, h = h(BρL−1), ρL), the committee
CBA of the block BρL , and at least d|CBA|e signatures from parties in CBA on h.

– Every party Pi ∈ P (independently of whether or not they are slot leaders): If Pi observes a view of a PoR-
block Bj included in the PoS-blockchain which is different than his own view of that block (as extracted
from the PoR-blockchain) then create a complaint-transaction for the PoS-blockchain transferring coins
back to its own wallet which includes the conflicted PoS-block slot number, and his local view of block Bj
(along with the associated signatures).

– Every party Pj ∈ P, if there is a valid complaint by any party on the PoS chain, then output
Complaint(q1, q2), where q1 and q2 are the PoS-blocks containing the disputed view of the PoR-blockchain

a Note that for simplicity we will separate the staking keys from the reputation keys. In reality, a reputation party
can use its staking key as its reputation key.

b Recall that for simplicity we describe the protocol with deterministic Byzantine Agreement; using the techniques
from [12] we can extend our treatment to use randomized—and more round-efficient—protocols.

c Note that the slot in the PoS chain might be different than the slot in the PoR-chain. To make this distinction
explicit we will refer to the former as a PoS-slot and to the latter as a PoR-slot

Fig. 6: The PoR/PoS-Hybrid Blockchain Protocol (Static Reputation)

all honest reputation parties, it will be included in the next slot in which one of the parties in CBC is honest.
Since the parties in the CBC are chosen randomly from an honest majority set CBA, the probability that in
` consecutive slots’ CBC there is no honest party will be 2−`|CBC|.

If on the other hand the reputation system is inaccurate, then we show that no fork can be sustained
for more than 2k blocks of the backup PoS-blockchain, as long as the majority of stake is in honest hands.
Indeed, assume that the PoR-chain forks at some point (i.e., safety is violated). This means that there are two
honest reputation parties P̂i and P̂j who see PoR chains that fork on, say, the q-th block of the PoR-chain.
The honest majority of stake ensures [14,3] that within k blocks, from the round when the q-th PoR-block
was created, there will be a block contributed to the PoS-chain by an honest party, say P . This party’s block
will have to support the view of at most one of P̂i or P̂j (whichever is on P ’s view of the PoR-blockchain).
Once this block settles, i.e., enters the common prefix [21,3]—this happens within in at most 2k blocks from
round q [3]—it will be seen by both P̂i and P̂j and will trigger a dispute. At this point, the party in {P̂i, P̂j}
who sees his view being disputed will broadcast the block in support of his view. By the transaction liveness
of the PoS-chain, this block will be added to the state of the PoS chain within k blocks and will be seen by
everyone within another 2k blocks. Hence, within 4k blocks the fork will be publicly detected.

C.2 Countering Liveness Attacks

Our safety-violation detection mechanism does not prevent the following attack on liveness in the fallback
case: A flawed reputation system might allow the attacker controlling a majority of round committees to
prevent the blockchain from advancing, by not issuing a block signed with sufficiently many signatures.

20

We remark that in order to attack liveness as above, the adversary will need to allow no honest reputation
party to learn the contents of the current block, as otherwise that honest party will diffuse it to their network
and therefore, (1) every reputation party will learn it within one round—since they are connected by a direct
channels— and (2) every party will adopt it in time ∆max + ∆round, where ∆max is the maximum delay
for any message from a reputation party to reach a non-reputation party in the network and ∆round is the
round duration/time-out.

To make sure the above attack to liveness is exposed we employ the following mechanism: In every round,
if a reputation party does not receive any block with majority support from the current committee in the
last round of BlockAnnounce, then it issues a complaint on the fallback chain. If for any upcoming round ρ
there have been complaints posted on the main chain by a majority in ρ, then the parties detect the halt
(and, as above, an external protocol for recalibrating reputations can be employed).

The above mechanism ensures that under a very weak assumption on the accuracy of the reputation
system, i.e., that an honest-majority committee is elected within a polylogarithmic number of rounds, any
such halt will be detected by the system. Note that as long as the reputation is accurate, the fallback chain
will never induce such a detection, as all committees will have honest majority and therefore no honest party
complains. Note, also, that our lottery will satisfy the above assumption under very realistic assumptions on
the the reputation, e.g., that a constant fraction of the reputations in each of the the high tiers is correct.
We refer to the full version of this work for a detailed treatment.

Our above hybrid design ensures that if any of the two independent assumptions—i.e., quality/accuracy
of the reputation system and honest majority of stake—holds, then no fork will settle on the distributed
ledger—i.e., any fork will be quickly detected. This will be guaranteed by our protocol. This property suffices
to ensure that the system does not preserve deep forks, which in case of cryptocurrencies can lead to double
spending. Additionally, we can even add support for recovery, not just detection, as follows: If malfunction of
the PoR-blockchain is confirmed, then, as long as the majority of the stake is in honest hands, the parties will
be able to reapply the bootstrapping mechanism (or other external reputation-system repairing mechanisms)
discussed in Section H.3 to restart the PoR-blockchain from the point before the detected misbehavior.

Notwithstanding, the above mechanism does not prevent the following attack on liveness: A flawed
reputation system might allow the attacker controlling a majority of slot committee members to prevent
the blockchain from advancing, by not issuing a block signed with sufficiently many signatures. Nonetheless,
a very mild assumption on the accuracy reputation allows to break this deadlock and detect such an attack.
In a nutshell, to make sure the above attack to liveness is exposed we employ the following mechanism:
In every round, if a reputation party does not receive any block with majority support from the current
committee in the last round of BlockAnnounce, then it issues a complaint on the fallback chain. If for any
upcoming round ρ there have been complaints posted on the main chain by a majority of the members in
ρ, then the parties detect the halt (and, as above, an external protocol for recalibrating reputations can be
employed). This ensure that at the latest when the next honest majority committee is elected, the above
liveness attack will be exposed.

D Deferred Proofs

D.1 Proof of Theorem 1

Proof. Without loss of generality we will assume that all `i’s above are integers, to avoid unnecessary
rounding-related discussions. This assumption is without loss of generality as removing it might result in
the samplers adding at most a constant number of parties on the sampled sets which will not change any
of our asymptotic statement about the (relative) set sizes; furthermore, even if those additional parties are
all corrupted, the asymptotic fraction of corrupted over honest parties will not change, since, as we prove,
the sets are all super-constant with overwhelming probability and our corruption bound ensures that the
adversary is far from the majority by an at least εδ fraction of the selected parties.

We consider two cases: Case 1: L noes not reset, and Case 2: L resets.
In Case 1 the output Psel is selected by means of invocation of algorithm Amax. Hence, by Lemma 1, if
the reputation system is εf -feasible, then a fraction 1/2 + εf of the parties in Psel will be honest except
with negligible probability. Note that in this case, the number of selected parties is |Psel| = log1+ε n with
probability 1. Note that Amax is only invoked if a reset occurs, i.e., if in some step there are no sufficiently

21

many parties to select from; this never occurs if every set P̂i has at least γ · log1+ε n and, therefore, c-fairness
does not apply in this case.
In Case 1, The lottery is never reset. This case is the bulk of the proof. Conditioned on the lottery never
being reset to its default, we prove the following lemmas:

For each i ∈ [m] : let Xi denote the random variable corresponding to the number of parties from P̂i
selected in the lottery and let xi := Exp(Xi)

Lemma 3. For each i ∈ [m]:

1.

xi := Exp(Xi) = αi ·
m∑
j=i

`j∑j
q=1 αq

2. For any constant λi ∈ (0, 1):

Pr [|(1− λi)xi ≤ Xi ≤ (1 + λi)xi] ≥ 1− µi(k),

Proof. Let P̂i = {P̂i1 , . . . , P̂imi}. For each P̂iρ ∈ P̂i and denote by χiρ,j the indicator random variable which

is 1 if P̂iρ is selected in the jth iteration of Step 4(b)i, i.e., if P̂iρ ∈ Qj , and 0 otherwise. The j-th iteration

of Step 4(b)i chooses every party in ∪jq=1P̂q with probability `i∑j
q=1 αq

independently of whether or not any

other party in ∪jq=1P̂q is chosen. Indeed, observe that in the jth iteration of Step 4(b)i, the lottery L samples

always from the set ∪jq=1P̂q with replacement and conflicts are resolved later. Because, out of the
∑j
q=1 αq

parties in ∪jq=1P̂q, αi parties are from from P̂i, Pr[χiρ,j = 1] = αi
`i∑j
q=1 αq

independent of whether or not

any other party is chosen in Qj . Hence, each χiρ,j corresponds to a Bernoulli trial with the above success
probability and by application of the Chernoff bound for the r.v. Xi,j :=

∑mi
ρ=1 χiρ,j corresponding to the

number of parties from P̂i that are selected in Qj :

xi,j := Exp(Xi,j) = αi ·
`j∑j
q=1 αq

(11)

and for any λi,j ∈ (0, 1) and some negligible function µi,j :

Pr [|(1− λi,j)xi,j ≤ Xi,j ≤ (1 + λi,j)xi,j] ≥ 1− µi,j(k), (12)

Next we observe that although some of the parties in Qj ∩ P̂i selected in Step 4(b)i might have been
already selected and included in Psel (those are the parties in Qcol

i,j), by selecting exactly |Qcol
i,j | parties without

replacement from P̂i, we ensure that the total number of parties selected in the jth iteration of Step 4(b) is
exactly Xi,j .

To complete the proof we observe that Xi =
∑m
j=1Xi,j , hence by the linearity of expectation Equation 11

implies that

xi := Exp(Xi) = αi ·
m∑
j=i

`j∑j
q=1 αq

and Equation 12 implies that for any (λi,1, . . . , λi,m) ∈ (0, 1)m

Pr

|(1− m∑
j=1

λi,j)xi,j ≤
m∑
j=1

Xi,j ≤ (1 +

m∑
j=1

λi,j)xi,j

 ≥ 1− µi(k), (13)

for some negligible function µi (recall that constant-term sums and products of constantly many negligible
functions are also negligible). Hence, by setting λi,j = λi/m (recall that m = O(1) hence λi/m is a constant)
we derive the second property of the lemma.

22

Given the above lemma, it is easy to verify that the xi’s and the `j ’s satisfy the following system of linear
equations:

(x1, . . . , xm)T = B · (`1, . . . , `m)T (14)

Where B is an m×m matrix with the (i, j) position being

Bi,j =

{
αi∑j
q=1 αq

, if i ≥ j
0, otherwise

The above system of m equations has 2m unknowns. We add the following m equations:

– For each i ∈ [m− 1] :
xi := ci · xi+1 (15)

–
m∑
i=1

xi = log1+ε k (16)

This yields 2m linear equations. By solving the above system of equations we can compute:
For each i = 1, . . . ,m− 1:

`i =

∑i
j=1 αj∑m

j=1

∏j
q=1 cq

αi+1

∏m
j=i cj − αi

∏m
j=i+1 cj

αi+1αi
log1+ε n

and

`m :=

∑m
j=1 αj∑m

j=1

∏j
q=1 cq

1

αm
log1+ε n

We next observe that for each j ∈ [m] :
∑m
i=1Bi,j = 1 which implies that

m∑
j=1

`j =

m∑
i=1

xi
Eq. 16

= log1+ε k (17)

It is also easy to verify that B is invertible, hence

(`1, . . . , `m)T = B−1(x1, . . . , xm)T (18)

We are now ready to prove properties 1 and 2 in the theorem. We start with Property 1:

Claim. With overwhelming probability (in the security parameter k) : |Psel| = Θ(log1+ε n)

Proof. Let Lj denote the random variable corresponding to |Qj |, i.e., the total number of parties added to
Psel in the jth iteration of Step 4. Lemma 2 implies that that for each j ∈ [m]:

Exp(|Lj |) = `j (19)

and for any constant ζj ∈ (0, 1) and some negligible function µ̂j :

Pr [|(1− ζj)`j ≤ Lj ≤ (1 + ζj)`j] ≥ 1− µ̂j(k), (20)

Let Psel denote the r.v. corresponding to the selected party set. By definition of the protocol: Psel :=∑m
j=1 Lj . Hence from the linearity of expectation and Equation 19 we have

Exp(|Psel|) =

m∑
j=1

`j
Eq.17

= log1+εk

Similarly, from Equation 20 we get

23

Pr

|(1− m∑
j=1

ζj)

m∑
j=1

`j ≤
m∑
j=1

Lj ≤ (1 +

m∑
j=1

ζj)

m∑
j=1

`j

 ≥ 1− µ̂(k), (21)

for some negligible function µ̂, which, for any given ζ, by setting each j ∈ [m] : ζj = ζ/m, and setting
µ̂(·) =

∑m
j=1 µ̂(·) (which is also negligible when each µ̂j is negligible) and

∑m
j=1 `j = log1+ε k derives

Pr
[
|(1− ζ) log1+ε k ≤ |Psel| ≤ (1 + ζ) log1+ε k

]
≥ 1− µ̂(k), (22)

which implies that with overwhelming probability |Psel| = Θ(log1+ε k).

We next proceed to Property 2:

Lemma 4. With overwhelming probability (in the security parameter k) for some constant εδ > 0 adversary
A corrupts at most an 1/2− εδ fraction of the parties in Psel.

Proof. The reputation system Rep assigns to each party P̂i a reputation Ri ∈ [0, 1] which corresponds to
the probability that P̂i is honest. (Recall that we for this proof we consider static reputation systems.) By
the independent reputations assumption, this probability is independent of whether or not any other party
in P̂ becomes corrupted. This induces a probabilistic adversary A who corrupts each reputation party P̂i
independently with probability 1 − Ri. We wish to prove that this adversary corrupts at most a 1/2 − εδ
fraction of the parties in Psel. We will prove this by considering an adversary A′ which is stronger than A,
i.e, where Pr[A′ corrupts more than 1/2 − ε parties in Psel] ≥ Pr[A corrupts more than 1/2 − ε parties in
Psel], and proving that this adversary A′ corrupts more than 1/2− ε parties with only negligible probability.

Here is how A′ is defined: For each P̂i (recall that this includes parties with reputation between (i−1m +

δ, im + δ]), A′ corrupts P̂i with probability 1 − (i−1m + δ). Note that for each party P̂ ∈ P̂ : Pr[A′ corrupts

P̂] ≥ Pr[A corrupts P̂] and this probabilities are independent of whether A′ (resp. A) corrupts any other
party. This ensures the above property between A′ and A. Hence, it suffices to prove the lemma for A′ which
is what we do in the following.

Claim. In the ith iteration of Step 4, let Ci,j denote the random variable corresponding to the number of

corrupted parties in Qi,j := (Qi ∩ P̂j) ∪ Q+
i,j , i.e., the number of parties from P̂j that are newly added to

Psel and are corrupted by A′. Then for some negligible function µ for any constant 0 ≤ δ′ < m−i
m :

Pr[Ci,j < (
m− i
m

− δ′)|Qi,j |] > 1− µ(k).

Proof. We consider three cases: Case 1: Qcol
i,j = o(|Qi,j |); Case 2: Qcol

i,j = ω(|Qi,j |); and Case 3: Qcol
i,j =

Θ(|Qi,j |).
For Case 1: Since Qcol

i,j = o(|Qi,j |), this implies that |(Qi ∩ P̂j) \ P̄j | = O(|Qi|). Hence Equation 20 implies

that with overwhelming probability |(Qi∩P̂j)\ P̄j | = O(log1+ε k). However, since each party in Qi is chosen
independently and the reputation is static, i.e., corruptions are defined before selecting the parties to join
Qi, every party in (Qi ∩ P̂j) \ P̄j is corrupted by A′ with probability 1 − (im + δ). But then an invocation
of the Chernoff bound yields that with overwhelming probability, for any δ′′ > 0 the fraction of corrupted
parties in (Qi∩P̂j)\P̄j will be at most m−i

m −δ+δ′′. Additionally since Qcol
i,j = o(|Qi,j |), this implies that for

any constant δ′′′ ∈ (0, 1) and for sufficiently large k |Qcol
i,j | < δ′′′|Qi,j |. Hence, even if we allow the adversary

A′ to corrupt all parties in Qcol
i,j , for δ + δ′′′ − δ′′ < εδ we will have that with overwhelming probability the

fraction of corrupted parties in Qi,j will be at most m−i
m − εδ.

For Case 2: Since Qcol
i,j = ω(|Qi,j |), this implies that |Q+

i,j | = O(|Qi|). Hence Equation 20 implies that with

overwhelming probability |Q+
i,j | = O(log1+ε k). However, unlike the case above each party inQ+

i,j is not chosen
independently, but rather a set of parties is chosen randomly. This corresponds to sampling with replacement
and we can no longe use the Chernoff bound. But since the reputation is static, i.e., corruptions are defined
before selecting the above set, we can make direct use of Hoeffdings inequality [25] (see Appendix E), to prove
that with overwhelming probability, the fraction of corrupted parties in Q+

i,j will be at most m−i
m − δ + δ′′.

24

Additionally since Qcol
i,j = ω(|Qi,j |), this implies that for any constant δ′′′ ∈ (0, 1) and for sufficiently large k

|(Qi ∩ P̂j) \ P̄j | < δ′′′|Qi,j |. Hence, even if we allow the adversary A′ to corrupt all parties in (Qi ∩ P̂j) \ P̄j ,
for δ+ δ′′′− δ′′ < εδ we again will have that with overwhelming probability the fraction of corrupted parties
in Qi,j will be at most m−i

m − εδ.
Finally in Case 3, Qcol

i,j = Θ(|Qi,j |) impies that |(Qi∩P̂j)\P̄j | = O(log1+ε k) and |Q+
i,j | = O(log1+ε k). Hence

by using both arguments from the above two cases we can prove that (1) with overwhelming probability the
fraction of corrupted parties in (Qi ∩ P̂j) \ P̄j will be at most (m−im − εδ/2)|(Qi ∩ P̂j) \ P̄j | and (2) with

overwhelming probability the fraction of corrupted parties in Q+
i,j will be at most (m−im − εδ/2) of the size

of Q+
j . Therefore by a union bound, the fraction of corrupted parties in Qi,j will be at most m−i

m − εδ.

Next, we observe by inspection of the protocol that |Qi,j | = Xi,j . Since from for any constant λi,j > 0,
Equation 12 implies that

Pr [Xi,j ≤ (1 + λi,j)xi,j] ≥ 1− µ̂i,j(k),

for some negligible function µ̂i,j , and i,m, and λi,j are all constants, this implies that for any sufficiently
small positive constant δ′, and for some negligible function µ′i,j :

Pr[Ci,j < (
m− i
m

− δ′)xi,j] ≥ 1− µ′i,j(k). (23)

But then from a union bound we can deduce that there exists a negligible function µ̃i such that:

Pr[∀j : Ci,j < (
m− i
m

− δ′)xi,j] ≥ 1− µ̃i(k). (24)

which implies that

Pr[

m∑
j=1

Ci,j <

m∑
j=1

(
m− i
m

− δ′)xi,j] ≥ 1− µ′′i (k), (25)

for some negligible µ′′i . Denote by Ci the total number of corrupted parties from P̂i chosen in the lottery.
By inspection of the protocol:

Ci =

m∑
j=1

Ci,j

Hence Equation 25 can be rewritten as follows

Pr[Ci < (
m− i
m

− δ′)xi] ≥ 1− µ′′i (k) (26)

Wlog assume that m is even (the case when m is odd is analogous):
For each i ∈ {2, . . . ,m/2 − 1} the above implies that the majority of the parties in Ci is honest with

overwhelming probability. Hence, but a union bound, the majority of the parties in ∪m/2−1i=2 Qi is honest
with overwhelming probability. To complete the proof it suffices to prove that a (1/2 − ε′δ)-fraction of the
parties in Q1 ∪ (∪mj=m/2Qj) is honest with overwhelming probability. To this direction we observe that from

Equation 26, with overwhelming probability, Pr[C1 < (1
m − δ

′)x1]. By an easy calculation, it follows that for
any δ′ and any c such that

∑m
i=m/2

1
ci−1 ≤ m−2

2m − δ
′ (which can be equivalently written as 1

cm−1 ≤ m−2
2m − δ

′)

the total number of parties in ∪mi=m/2Qj is less than (m−22m − δ
′)x1. But if this is the case then then even if

we allow the adversary to corrupt all parties in every Qj (note that this is an even stronger adversary than
A′), still with overwhelming probability the total number corr1 of corrupted parties in Q1 ∪ (∪mi=m/2Qj) will
be:

corr1 = C1 +
m− 2

2m
x1

< (
1

m
+
m− 2

2m
− δ′)x1

= (1/2− δ′)x1

(27)

25

Hence with overwhelming probability, the fraction R of corrupted parties in Q1 ∪ (∪mi=m/2Qj) will be

R <
(1/2− δ′)x1

x1 +
∑m
i=m/2 xi

< 1/2− δ′ (28)

We next argue the following which will ensure that under Condition 2 of the protocol, i.e., that every set
P̂i has at least γ log1+ε n parties, with overwhelming probability the lottery never resets and hence all the
claims in this second case hold. This follows directly from the fact that the total number of parties selected
in the lottery will be less than γ log1+ε n with overwhelming probability; hence, none of the invocation of
Step 4 exceeds the size of the corresponding sets and therefore the lottery never resets.

To complete the proof we show the c-fairness property of L in this case.
The c-Representation Fairness follows directly from Lemma 3 and Equation 15.
The non-discrimination property follows from the fact that our lottery picks each party in every P̂i with
exactly the same probability as any other party.
The c-Selection Fairness is proved as follows: Since by the non-discrimination property every party has the

same probability of being picked, each party in each Psel ∩ P̂i is chosen with probability pi = |Psel∩P̂i|
|P̂i|

.

However from Lemma 3 we know that with overwhelming probability, for any constant λi ∈ (0, 1):

(1− λi)xi ≤ |Psel ∩ P̂i| ≤ (1 + λi)xi

This means that with overwhelming probability, for all i = 1, . . . ,m− 1:

pi
pi+1

≥ (1− λi)xi
(1 + λi+1)xi+1

· αi+1

αi

=
(1− λi)

(1 + λi+1)
· xi
xi+1

· αi+1

αi

=
(1− λi)

(1 + λi+1)
· ci ·

αi+1

αi

≥ (1− λi)
(1 + λi+1)

c

(29)

Where the last inequality follows by the definition of ci. For any constant c′ < c, by choosing λi and λi+1

such that (1−λi)
(1+λi+1)

≥ c′/c we can ensure that pi
pi+1
≥ c′.

In Case 2 the lottery is reset and the output Psel is selected by means of invocation of algorithm Amax. This
is the simpler case since Lemma 1 ensures that if the reputation system is εf -feasible, then a fraction 1/2+εf
of the parties in Psel will be honest except with negligible probability. Note that Amax is only invoked if a
reset occurs, i.e., if in some step there are no sufficiently many parties to select from; this occurs only if any
every set P̂i does not have sufficiently many parties to choose from. But the above analysis, for δ < γ − 1,
the sampling algorithms choose at most (1 + δ) log1+ε n with overwhelming probability. Hence when each P̂i
has size at least γ · log1+ε n, with overwhelming probability no reset occurs. In this case, by inspection of the
protocol one can verify that the number of selected parties is |Psel| = log1+ε n.

D.2 Proof of Theorem 2

Proof (sketch). Assume that every party has received the same genesis block. This block includes the iden-
tifiers (public keys) of all parties currently in P̂ and their reputations (recall that for this proof, we assume
static reputations) along with the randomness that seeds the lottery. Note that in the static adversary con-
sidered here, this randomness is independent from the randomness that samples the corrupted set. Since CBA

is selected by means of L, and the lottery is ε-feasible, Theorem 1 ensures that the majority of the parties
in CBA is honest. This means that we can use a Byzantine broadcast protocol to have any party P̂i ∈ CBA

consistently broadcast any messages to all the parties in CBA, i.e., in such a way that the following properties
hold:

26

– (consistency) All partiers in CBA output the same message (string) Y as their output of the protocol
with sender P̂i.

– (validity) If P̂i is honest, then Y is the string that P̂i intended to broadcast (i.e., his input).

Thus validity implies that for every honest P̂i ∈ CBC, if Ti is the set of valid transactions that P̂i has
seen at round ρ, then every (honest) party in CBA will output Ti along with a uniformly random string ri.
Furthermore, by consistency, we know that for every (honest or corrupted) P̂j the broadcast output with

sender P̂j is the same for all parties in CBA. Hence the union T of all transactions broadcasted by parties in
CBC will be the same for all CBA members, and the same holds for the concatenation of all random nonces r
broadcasted in the current round. Additionally, because the history of the blockchain is the same for every
party (in the first round this is the genesis block and in every subsequent round it is the sequence of the
blocks until round ρ − 1), TH is the same for every party in CBA; hence every P̂i ∈ CBA will compute the
same Y = T̂ in Step 4 of the protocol. Consequently, in Step 5, all honest parties in CBA will sign the same
(Y, h, ρ) and send it to the parties in CBC. Since the majority of the parties in CBA is honest, this implies
that in Step 6, every party in CBC will receive (Y, h, ρ) signed by at least the |CBA|/2 honest parties. Hence, if
there is any honest party in CBC the transaction pool T of that party broadcasted and included in T̂ and will
be certifies by by at least d|CBA|/2e signatures from parties in CBA; this T will be adopted by all parties as
the next block, since, as we show below, the adversary is unable to make any party accept any other block.
Indeed, with overwhelming probability (i.e., unless the adversary forges an honest party’s signature) for any
(Y ′, h′, ρ′) 6= (Y, h, ρ) the adversary will be able to produce at most d|CBA|/2e − 1 signatures on (Y ′, h′, ρ′)
from parties in CBA. Hence the no value other than (Y, h, ρ) might be accepted by any party.

E Hoeffdings Inequality

Lemma 5. (Hoeffding’s Inequality [25]) Let S = {x1, . . . , xN} be a finite set of real numbers with a = min
i
xi

and b = max
i
xi. Let X1, . . . , Xn be a random sample drawn from S without replacement. Let X =

n∑
i=1

Xi

n and

µ =

N∑
i=1

xi

N = E[Xj]. Then for all δ > 0, Pr[X − µ ≥ δ] ≤ e−
2nδ2

(b−a)2 .

F Reputation Systems with Limited Correlations

Our treatment discusses a wide yet restricted class of reputation systems, namely correlation-free reputation
systems. Recall that this means that the reputation of a reputation-party P̂i (i.e., P̂i’s probability of becoming
corrupted) does not depend on the reputation of other parties P̂j . The reason for such an assumption is that
if one allows for arbitrary correlations in these probabilities, then it is easy to find reputation systems in
which every party has probability of not becoming corrupted strictly less than 1/2, yet for any (randomized)
sampler the selected corrupted parties will be in the majority with overwhelming probability. An example
of such a situation was given in [20].

Despite the above strong impossibility result, our mechanism can be applied, either directly or with
modifications, to deal with several classes of dependent reputations. This differentiates our definition and
use of reputation systems from approaches like [8], which are applied to special distributions. In the following,
we discuss some of the distribution classes we can tolerate; a more complete investigation is left as an open
research direction.

n-wise independent reputation systems. A wide class of correlated reputation systems which can still be
used for our goals is one in which the random variables corresponding to the honesty indicator bits are of
n-wise independent for a logarithmic (in the size of the reputation set) n. In fact, our original algorithm will
work for such a distribution. This idea of n-wise independence can also be extended to capture additional
distributions along the lines of [1, Theorem 4.3].

27

Reputation-systems which are approximately correlation-free. The following definition says that a reputation
system is δ-correlation-free if and only if it is a δ-close to a correlation-free reputation system.

Definition 4 (δ-correlation-free reputation system). Let Rep be a (potentially non-correlation-free)
reputation system for a reputation set P̂. For each P̂i ∈ P̂, let γi denote the probability, according to Rep,
that P̂i gets corrupted. Let RepIND denote the correlation-free reputation system derived from P̂, where
each party gets corrupted with probability γi independent of other corruptions. Then we say that Rep is
δ-correlation-free reputation system if and only if the statistical distance of Rep and RepIND is at most δ.

It is straightforward to verify that is δ is very small (negligible in |P̂|) and RepIND is feasible, then our
sampling algorithm discussed above will directly select sets with honest majority. Furthermore, assuming
sufficiently many parties with high reputation in RepIND, we can modify our sampling to retain the selection
of honest majority even when δ is a small constant. The idea, which will be detailed in the research paper
accompanying this white paper, is to move the boundaries of the high-reputation buckets so that any errors
that occur by δ-bounded correlations are leveraged by the higher probability of honest parties.

We note in passing, that the above allows us to also capture situations in which the reputation system is
inaccurate but only by a bounded amount (e.g., the corruption probabilities that it predicts are off by up to a
δ factor from the actual probabilities that the parties get corrupted.) Thus in addition to our fallback security
property—which will ensure that as long as the majority of the stake in the system is in honest hands, the
blockchain will not fork even with inaccurate reputations—if the number of parties with high (estimated)
reputation permits it, then we can design our blockchain so that it is resilient to small inaccuracies in the
reputation.

G Dynamic Reputation and Epoch-Resettable Adversaries

We can also extend our analysis for announcing the blocks in each slot, and thereby our ledger protocol,
to cope with epoch-resettable adversaries. In fact, as long as the reputation system ensemble is a sequence
of independent (static) reputation systems, we do not need to make any modification to the protocol other
than requiring the parties to refresh their key in each epoch; this can be done interactively, by posting a new
key on the blockchain in every epoch and erasing the previous key, or non-interactively by using a forward
secure signature scheme [6,26]. Indeed, although the epoch-resettable adversary will able to predict the next
epoch’s committees, he is still bound to select his corrupted parties independently according to their (new)
reputation. As long as all reputation vectors (i.e., for each epoch) are feasible, such an adversary will be
unable to have a corrupted majority committee chosen, except with negligible probability.

However the above assumption that reputation-vectors of different epoch are independent, might fall
short in capturing situations, where malicious parties might try to manipulate their reputation (e.g., by
temporarily playing honestly) depending on the protocol’s history. Under the assumption that reputation
for the next epoch is already define in the one-but-last slot of the current epoch17 we can tolerate an
epoch-resettable adversary by modifying the way this randomness is selected as follows: We adapt the block
announcing protocol to have every party in any committee include, in addition to his transaction pool, a
fresh random nonce, and the concatenation of all these nonces is included to the block along with the union
of the transactions posted by CBC. (The corresponding protocol is given in Figure 7). As the distribution
of the reputation vector is decided before the last slot, the choice of all parties in the next epoch will be
independent of this distribution and therefore the same guarantees as before will apply.

Unfortunately, the above idea is still problematic. Indeed, since with an epoch resettable adversary the
corrupted set is “reset” at the beginning of each epoch, the adversary across two epochs might be able to
take keys he learned in the first of the two epoch and use them at the beginning slot of the second epoch
(before parties have had a chance to erase) thereby effectively holding the keys of a majority of the parties
in the latter epoch, even when both epoch’s reputation systems are ε-feasible.

To counter this scenarios, we consider the following strengthening of the notion of ε-feasibility:

17 This is a natural assumption as any reputation adjusting mechanism will need to have parties agree on the
adjustment of the reputation, e.g., by extracting is from blocks deep enough in the blockchain.

28

BlockAnnounce(P̂,P, Rep, Bρ−1, ρ, δ, ε, L = O(1)): Let P̂ρ denote the reputation parties in Slot ρ.

1. Extract the concatenation of randomness r−1 from the blocks of the previous epoch.
2. Using the above randomness rρ−1,a each party in P locally runs the reputation-fair lottery L(P̂, Rep, (c1, . . . , cm+

1), δ, ε, h(rρ−1||0)), where the cjs are as in Theorem 1, to sample a set CBA ⊂ P̂ρ (of size polylog(n)); out of this
set, the parties choose a random subset CBC of constant size L = O(1) by invoking RandSet(CBA, L; h(rρ−1||1)).

3. Each party P̂i ∈ CBC acts as sender in an invocation of Broadcast with receivers the parties in CBA and input
P̂i’s current transaction pool Ti along with a random nonce ri; P̂i removes the broadcasted transactions from
its local transaction pool.

4. All parties in CBA compute Y = (T̂ , r), where T̂ = Validate(TH , T) for T = ∪pi∈CBCTi and r is the concatenation
of all broadcasted ri’s. If some party P̂j ∈ CBA did not broadcast a valid message in the previous round of the
protocol, then all parties in CBA set Tj = {(abort, j)} and rj = 0.

5. Every P̂j ∈ CBA signs h(Y, h = h(Bρ−1), ρ), where Bρ−1 is a hash pointer to the block of the previous round and
sends it to every party in CBC.

6. Each P̂i ∈ CBC: If for some (Y, h, ρ), where ρ is the current slot and h = h(Bρ−1) is a valid hash pointer to the
previous block, P̂i receives at least |CBA|/2 signatures from parties in CBA on (Y, h), then P̂i multicasts (Y, h, ρ)
along with all the corresponding signatures to all nodes in P.

7. Each Pi ∈ P: Upon receiving any (Y, h, ρ) along with signatures on it from at least |CBA|/2 parties from CBA,
create a block consisting of (Y, h, ρ) and the related signatures and add this block to the blockchain as the
current slot’s block and mark the current slot as completed.

a In the version of the protocol using a beacon, the parties can simply use the current-round value of the beacon.

Fig. 7: Block announcing protocol for Slot ρ for an epoch resettable adversary

Definition 5. For a reputation system Rep for parties from a reputation set P̂, a (possibly probabilistic)
algorithm A for sampling a subset of parties from P̂, and an Rep-adversary A, we say that Rep is strongly
(ε, A)-feasible for A if, with overwhelming probability,18 A outputs a set of parties such that at most a 1/4− ε
fraction of these parties is corrupted by A.

Note that in the above definition, the corrupted parties are chosen according to Rep from the entire
reputation-party set P̂, and independently of the coins of A. (Indeed, otherwise it would be trivial to always
corrupt a majority.)

Definition 6. We say that a reputation system is strongly ε-feasible for Rep-adversary A, if there exists a
probabilistic polynomial-time (PPT) sampling algorithm A such that Rep is strongly (ε, A)-feasible for A.

It is easy to verify that if the reputation systems corresponding to all epochs are strongly ε-feasible, then
the probability that the adversary in two consecutive epochs can launch the above attach (i.e., using the
keys learned in the first of the two epochs exceed a minority of corruptions in the second one) is negligible.
This is true as long as the two epochs have the same (distribution on the) size of committees, since even if
all corrupted parties from the first epoch are selected in the second one, still the adversary will not be able
to reach more than a minority of corruptions (since in each epoch at most 1/4− ε fraction is corrupted).

Since in each epoch the adversary needs to release the parties from the previous epoch which are not
newly corrupted, we can have the parties refresh their signing keys in each epoch—either by erasing the
old keys and posting new ones on the blockchain or by using a forward-secure signature scheme—thereby
ensuring that the adversary can never corrupt a majority. It is easy to verify that the above modification
ensures security of our construction against epoch-resettable adversaries.

H Extensions and Future Research

H.1 Countering DDoS Attacks and Minimizing the load of the PoS-chain

Our hybrid protocol ΠBC
PoR/PoS allows malicious PoS-slot leaders to post fake complains. These complaint will

be debunked by the honest parties, but doing so requires costly verification of multiple signatures. In order

18 The probability is taken over the coins associated the the distribution of the reputation system, and the coins of
A and A.

29

to avoid such overloading attacks which can lead to DDoS against the backup blockchain and incentivize
parties to use it for checking, we will apply the following mechanism inspired by [29]:

1. The reputation parties will be posting their hash-pointers on the backup PoS-blockchain as part of a
collateral-transaction, which commits funds that will be refunded if there is no dispute in the next few
rounds (the exact number of rounds and size of collateral will be specified in the implementation) or
there is a dispute which leads to detection of fault in the PoR-blockchain.

2. Similarly, any accuser will have to post, along with his accusation, an analogous collateral-transaction
which will be refunded if the dispute leads to detection of fault in the PoR-blockchain.

3. If any dispute is resolved in favor of one of the parties, then this party can claim the collateral of the
other and get his own collateral refunded.

The above mechanism will ensure that: (1) reputation parties post the actual hash pointers that they see on
the PoR-blockchain—as invalid hashes will lead to disputes resolved in favor of the accuser and, therefore,
loss of funds for the accused; and (2) accusers do not post invalid/redundant accusations—as they will,
otherwise, lose their collateral.

H.2 Relaxing Synchrony

Removing the arguably strong simplifying assumptions of perfect synchrony with zero-delay channels is an-
other interesting direction. We conjecture one can adapt techniques from the blockchain literature, e.g., [12,13]
for removing the deterministic zero-delay assumption and clock synchronizarion techniques synchroniza-
tion [15,30,24,18,17,2,39,31,35] to relax the perfect synchrony assumption.

H.3 Establishing, Updating, and Extending the Reputation System

The current design assumes an already established reputation system and ensures that as long as the rep-
utation system is sufficiently accurate—i.e., the reputation of a reputation party is close to his probability
of being honest—the protocol will behave according to its abstract specification, i.e., it will securely realize
a decentralized transaction ledger. Thus our cryptographic analysis is orthogonal to the mechanism that
establishes, updates, and extends the reputation system. Nonetheless in this section we discuss a number
of directions and associated research questions that relate to the deployment and rational analysis of the
system.

The incentive structure. By design, ΠBC
PoR/PoS assumes a very simple incentive structure to characterize the

reputation parties’ rationality: Reputation parties should always prefer higher reputation values. There are
a number of approaches one can take to enforce and analyze such incentives. Although the complete game-
theoretic design and analysis is beyond the scope of this current paper, it is a very interesting future research
problem; in the following we discuss some choices and their intuitive consequences.

A mechanism to incentivize reputation parties to increase their reputation and behave according to it is
to create a cryptocurrency on top of our blockchain and tie the parties’ reputation with their actual stake in
the system. In our original design, we will require reputation parties to lock part of their stake as collateral;
we will also enforce a very minor fee to the parties whose proposal is included in the blockchain that they will
be able to either add to their collateral, thereby increasing their reputation—hence also their influence on
the system and their probability of getting more fees—or they will be able to receive it as an actual reward
in coins.

The value of the fee will be carefully computed to be diminishing with the reputation of the party in a
way that marginally increases the parties’ expected gain—e.g., parties with higher reputation achieve lower
fees every time they win, i.e., get selected for a slot committee, but still higher total fees on average (recall
that higher reputation parties win more often). We remark that, unlike generic proof-of-stake blockchains,
typical cases of reputation parties will be publicly recognizable entities, e.g., famous artists, banks, univer-
sities, companies, etc., so that one cannot manipulate the above mechanism by creating multiple identities.
Additionally, the following mechanism can ensure that reputations are not artificially inflated19: Periodically,

19 If everyone plays honestly then all reputations increase and will eventually become larger than 1, which is a
degenerate situation we want to avoid, as reputations correspond to probabilities.

30

an amortization factor will be applied to all reputations, so that their relative value changes marginally, but
their absolute value is preserved within limits that represent probabilities, i.e., stays between 0 and 1.

In addition to the above mechanism, our reputation-based blockchain as discussed in the introduction,
has the potential to disrupt the recommendation systems industry which currently uses opaque algorithms to
decide recommendations and rankings. An interesting research direction in the intersection of AI and cryp-
tography/security is to take as input to the reputation calculation the rankings of existing recommendation
systems, e.g., Amazon, Yelp, Ebay, etc., to develop a universal, transparent, and decentralized recommenda-
tion system running on our blockchain. The high throughput of our protocol will be instrumental in linking
on-chain pointers to potentially externally stored, yet immutable reviews.

Modifying the reputation according to the parties’ behavior. As discussed above, a mechanism taking advan-
tage of transaction fees and rewards will be associated with the parties’ reputation to ensure that parties
prefer to increase their reputations. Additionally, the following penalization mechanism will be applied to en-
sure that reputation parties with the above preferences: (1) are sufficiently available, and (2) do not attempt
to disrupt the systems consistency (and create forks):

– Reputation parties will declare availability for future slots and their rewards and/or reputation will
increase the more available they make themselves (i.e., availability will be taken in consideration in
calculating the associated rewards and reputation) but will decrease more radically if they declare them-
selves available but do not participate. We remark that this second property is trivial to ensure assuming
instant-delivery channels—as everyone can decide in round ρ whether or not a party sent its round ρ− 1
message—but it is tricky in the bounded-delay network, as a party might have sent its message, which is
delayed (by the adversary) in the network. One can rectify this by waiting sufficiently long—at least as
much as the network delay ∆—to decide on the reputation, but this incurs the risk of a malicious party
abstaining in the protocol and then quickly delivering a message for the reputation update mechanism.
Instead we will use the blockchain itself to implement a voting protocol for parties to ensure that a mes-
sage was contributed by a reputation party on the slot it volunteered for. Although not directly related
with the cryptographic design of the system, the game-theoretic analysis of such a mechanism is part of
our team’s research agenda.

– If any party presents on the blockchain verifiable evidence of some reputation-party cheating, e.g., two
conflicting signatures from that party for the same slot, then the reputation of that party is set to 0
by anyone that views this evidence. This means that the related reputation party is effectively removed
from the reputation set.

DDoS Effect and Mitigation Our blockchain leverages the reputation system to ensure that it selects an
honest-majority committee in every slot. However, as discussed here, the identities of slot leaders become
public prior to the round in which they participate in the committee. One might argue that this opens the
system to DDoS attacks, as even honest parties might be targeted. We point out however that that any such
attack will result in an empty slot and not a fork, as the adversary, even when DDoS-ing a party cannot
create a majority of signatures from the current slot’s committee. In fact, one can mitigate this issue by
either using—e.g., reputation-penalties for successful DDoS attacks—which will inceltivize high reputation
parties to safeguard their availability, or using verifiable random functions (VRF) as in [14,3,22] but this
will require not only circulating more information (VRF proofs) but also flooding it to the entire network.
Alternative one can spread out VRF slots will help recover from stalling due to very effective DDoS attacks,
but still most slots will be using the reputation-based incentives, thereby ensuring the good communication
efficiency of our blockchain protocol. The exact dynamics of this mechanism are left as a future research
direction.

H.4 Dynamically Joining Parties

The static reputation assumption makes it easy to join the protocol as a user: In order for a user (who knows
the current value of the clock) to read the blockchain he simply needs to query any of the parties for receiving
all ρ blocks, where ρ is the current round, and check that all blocks are valid, i.e., they are properly signed
by a majority of parties in a committee that is the result of running the lottery on the previous blocks.

31

Extending this to dynamic reputation requires the use of key-evolving signatures and also requires all the
reputation updates to be recorded on the blockchain before taking effect. A complete treatment of that case
is left as a future research direction.

32

	Proof-of-Reputation Blockchain with Nakamoto Fallback

