
Parallel strategies for SIDH:

Towards computing SIDH twice as fast

Daniel Cervantes-Vázquez José-Eduardo Ochoa-Jiménez
Francisco Rodŕıguez-Henŕıquez

April 2020

Abstract

We present novel strategies and concrete algorithms for the parallel computation
of the Supersingular Isogeny-based Diffie-Hellman key exchange (SIDH) protocol
when executed on multi-core platforms. The most relevant design idea exploited
by our approach is that of concurrently computing scalar multiplication operations
along with a parallelized version of the strategies required for constructing and
evaluating large smooth degree isogenies. We report experimental results showing
that a three-core implementation of our parallel approach achieves an acceleration
factor of 1.56 compared against a sequential implementation of the SIKE protocol.

1 Introduction

Isogeny-based cryptography was proposed by Couveignes in 1997. Complete details of
his proposal were eventually reported in [7]. In 2006, Couveignes’ protocol was inde-
pendently rediscovered by Rostovtsev and Stolbunov in [16, 18]. Also in 2006, Charles-
Lauter-Goren introduced in [4] the hardness of path-finding in supersingular isogeny
graphs and its application to the design of hash functions. Later in 2011, the Supersin-
gular Isogeny-based Diffie-Hellman key exchange protocol (SIDH) was proposed by Jao
and de Feo in [11]. More recently in 2017, the Supersingular Isogeny Key Encapsulation
(SIKE) protocol, which can be seen as a descendant of SIDH, was submitted to the
NIST post-quantum cryptography standardization project [1]. The isogeny-based pro-
tocol SIKE is one of the seventeen key-exchange schemes accepted for the second round
of the NIST contest.

The two most costly computational tasks of SIDH are, (i) the computation of large
smooth-degree isogenies of supersingular elliptic curves along with the evaluation of the
image of elliptic curve points in those isogenies and; (ii) elliptic curve scalar multi-
plication computations via three-point Montgomery ladder procedures. For a typical
software or hardware implementation of SIDH, the isogeny computations and associ-
ated point evaluations on one hand, along with the three-point Montgomery ladders on
the other hand, may take 65-75% and 25-35% of the overall protocol’s computational
cost, respectively [2]. The optimal computation of large degree isogenies for single-core

1

processors was presented and solved in [8]. Also, efficient algorithms for computing the
SIDH three-point scalar multiplications can be found in [11, 9]. Several general ideas for
a sensible improving of the SIDH performance were introduced in [6].

Let E be a supersingular elliptic curve defined over the quadratic extension field
Fp2 . Let S = 〈R0〉 be an order-`e subgroup of E[`e], where R0 ∈ E(Fp2), is a point of
order `e, e is a positive number, and ` is a (power) of a small prime. Then there exists a
degree-`e isogeny φ : E → E′ having kernel S. The image curve E′ is also a supersingular
elliptic curve defined over Fp2 . Moreover, #E = #E′ [19, Theorem 1]. In this paper, the
computational task of finding E′ will be referred as isogeny construction. Furthermore,
given a point P ∈ E(Fp2) such that P 6∈ Ker(φ), a closely related problem is that of
finding φ(Q), i.e., the image of the point Q over E′. We will refer to this computation
as isogeny evaluation.

In [8], optimal strategy techniques were introduced to efficiently compute degree-`e

isogenies at a cost of approximately e
2 log2 e scalar multiplications by `, e

2 log2 e degree-`
isogeny evaluations, and e constructions of degree-` isogenous curves.1 The strategies
described in [8] are provable optimal for those architectures equipped with a single
unit of processing, i.e., single-core platforms. Virtually all SI(DH/KE) implementations
published as of today, compute degree-`e isogenies using optimal strategies.

In [2], optimal strategies were depicted as a weighted directed graph whose vertices
are elliptic curve points and whose vertical and horizontal edges have as associated
weight the cost of performing one scalar multiplication by ` and one degree-` isogeny,
respectively. That weighted directed graph can be drawn as a right triangular lattice
∆e having e(e+1)

2 points distributed in e columns and rows. A leaf is defined as the most
bottom point of a given column in that lattice. All vertical edges must be computed
sequentially, whereas all the horizontal edges can be computed in parallel. At the be-
ginning of the isogeny computation, only the point R0 of order `e is known. The isogeny
computation is carried out by obtaining from left to right, each one of the leaves in ∆e

until the farthest right one, Re−1, is computed. Then, φ : E → E′ can be found by
calculating a degree-` isogeny with kernel Re−1.

An interesting consequence of the weighted directed graph representation is that one
can abstract oneself from the cryptographic nature of the isogeny computation problem,
and solely focus in the combinatorial structure associated to the graph.

As an illustrative example, consider the toy example depicted in Figure 1 using
the parameters `e = 49. In the event that that strategy is executed on a single-core
platform, it would have an associated timing cost of thirteen scalar multiplications by
4 (corresponding to the thirteen vertical blue edges shown in the graph), plus sixteen
degree-4 isogeny evaluations (corresponding to the sixteen horizontal red edges shown
in the graph).2 However, if one happens to have four cores available for performing this
task, then the timing cost can be reduced to thirteen scalar multiplications by 4, plus

1An analysis of the computational cost of small degree isogeny construction and evaluation can be
found in [6, 5, 3].

2The cost of computing the strategy shown in Figure 1 also includes ten degree-` isogeny constructions
not relevant for the discussion here.

2

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

Figure 1: Strategy to compute a degree-`e = 49 isogeny. The root point at row and
column zero, represents the elliptic curve point R0 of order 49. Each one of the nine
leaves at the bottom of the columns represent elliptic curve points of order 4. The
sequential cost of this strategy is of thirteen scalar multiplications by four plus sixteen
degree-4 isogeny evaluations.

just eight degree-4 isogeny evaluations.

Parallel computations of the SIDH protocol

The chief criticism pointed at the SIDH protocol, is that its latency is much higher than
the ones associated to several other candidates in the NIST standardization project [15].
Motivated by this, numerous efforts to speedup the performance of the SIDH protocol
both in software [6, 14, 9, 17, 2], and in hardware [12, 13], have been reported. Nonethe-
less, to our knowledge only the works presented in [12, 10, 2], have attempted to exploit
the rich opportunities for parallelism that SIDH has to offer.

In [12], a hardware implementation of the SIDH protocol on an FPGA device was
presented. Authors’ architecture was able to concurrently process an average of four
degree-4 isogeny evaluations. Using the 751-bit prime SIKEp751 = 2372 · 3239 − 1,3

these parallel calculations accounted for a saving of 36.5% in the number of clock cycles
required for computing degree-4186 isogenies over Fp2 .

The noticeable speedup reported in [12] can however be considered sub-optimal, in
the sense that for a degree-4186 isogeny computation, the authors adapted a strategy
originally conceived for a sequential execution (as opposed to explicitly designing a
parallel strategy for that purpose). Pointing out this limitation, the authors in [10]
proposed the usage of strategies specifically conceived for the parallel computation of
large degree isogenies in SIDH. From a careful theoretical analysis, the authors concluded
that an optimal eight-core parallel execution of the SIDH isogeny computation should
achieve a timing speedup of up to 55%. However, the authors of [10] focused all their
attention to the efficient parallelization of the isogeny computations required by the SIDH
protocol, leaving out attempts for executing concurrently other SIDH computational
tasks, such as three-point Montgomery ladders.

3A SIKE instantiation using the prime SIKEp751, achieves the NIST’s category 5 security level [1].

3

In [2], eSIDH, a variant of the SIDH protocol that permits to accelerate Bob’s compu-
tations on single and multi-core platforms was presented. Comparing against a SIKEp751

sequential instantiation of SIDH, the authors reported an acceleration factor of 1.05, 1.30
and 1.41, when eSIDH was implemented on k = {1, 2, 3}-core processors, respectively.
However, the approach proposed in [2] does not per se provide speedups for Alice SIDH
computations. Moreover, as in [10], eSIDH does not attempt to compute concurrently
three-point Montgomery ladders with large degree isogeny computations.

Contributions and organization of this paper

The main contribution of this paper is the proposal of a concrete, efficient and practical
strategy for a parallelized computation of the SIDH protocol. The strategies presented
in this work strive for concurrently computing the two most prominent SIDH primitives,
namely, the evaluation/construction of large degree isogenies and the computation of
right-to-left three-point Montgomery ladders. We report experimental results showing
that a three-core implementation of our parallel approach achieves an acceleration factor
of 1.56 compared against a sequential implementation of the SIKE protocol (cf. Table 4).

The remainder of this paper is organized as follows. In §2 a brief description of
the SIDH protocol is given. A general description of sequential and parallel strategies
for computing large smooth-degree isogenies are presented in §3 and §4, respectively.
In §5, it is observed that the multiples of Alice and Bob secret points, which are always
required in any valid strategy for computing isogenies, can be calculated independently
and concurrently. The performance implications of this trick are further discussed in §5.
Estimates and experimental results are presented in §6. Finally, some concluding remarks
are drawn in §7.

2 Background

SIDH protocol description

Let p = 4eA3eB−1 be a prime, so that 4eA ≈ 3eB ≈ p1/2. Let E be a supersingular elliptic
curve defined over Fp2 with #E(Fp2) = (p + 1)2. In addition, let PA, QA ∈ E[4eA] be
two points of order 4eA , and PB, QB ∈ E[3eB] be two points of order 3eB such that
E[4eA] = 〈PA, QA〉 and E[3eB] = 〈PB, QB〉. In SIDH, eA, eB, p and E and the bases
{PA, QA} and {PB, QB}, are all considered public domain parameters.

Alice begins the key generation phase by selecting her secret mA ∈R [0, 4eA − 1].
Then she computes RA = PA + [mA]QA. Thereafter, Alice constructs the isogeny
φA : E → E/A and while computing E/A, simultaneously evaluates Bob’s public points
PB, QB. Alice keeps secret, mA and RA. Then she transmits to Bob, E/A, φA(PB) and
φA(QB).

Analogously, Bob selects mB ∈R [0, 3eB − 1] to compute RB = PB + [mB]QB. Bob
then constructs the isogeny φB : E → E/B, and while computing E/B, simultaneously
evaluates Alice’s public points PA, QA. He keeps secret, mB and RB. Then he transmits
to Alice E/B, φB(PA) and φB(QA). This action ends the SIDH key generation phase.

4

Starting the SIDH shared secret phase, Alice computes φB(RA) = φB(PA)+[mA]φB(QA)
and uses this point to construct (E/B)/〈φB(RA)〉. Meanwhile, Bob computes φA(RB) =
φA(PB) + [mB]φA(QB) and uses this point to construct (E/A)/〈φA(RB)〉.

These two actions complete the secret shared phase. As a result, both of the compo-
sitions of isogenies E → E/A → (E/A)/〈φA(RB)〉 and E → E/B → (E/B)/〈φB(RA)〉,
have kernel 〈RA, RB〉. Hence, the elliptic curves computed by Alice and Bob are isomor-
phic over Fp2 , and their shared secret is the j-invariant of these curves.

Remark 1. In the SIDH key exchange protocol, the key generation phase is always more
expensive than the shared secret one. This is because in the former phase Alice and Bob
must compute not only the isogenies φA, φB, but they also have to evaluate the other
party’s public points namely, (φB(PA), φB(QA)) and (φA(PB), φA(QB)) , respectively

Remark 2. In order to compute the points RA, φB(RA), RB and φA(RB), Alice and
Bob must perform each, two three-point scalar multiplication procedures, which can be
efficiently computed using a right-to-left Montgomery ladder procedure [9]. This Mont-
gomery ladder has a per-step cost of one point addition and one point doubling. Due to
the fact that these two operations are usually performed in the projective space P1, we
will refer to them as the xADD and the xDBL operations, respectively.

Remark 3. Since for current SIDH state-of-the-art implementations it is observed that
the costs of xDBL and xADD are about the same, one can assume that the per-step
computational cost of the three-point Montgomery ladder is essentially of two xDBL
operations. It follows that the cost of computing RA is of 4eA xDBL operations.

3 Sequential strategies for large smooth-degree isogenies

As mentioned in the introduction, any strategy that successfully constructs/evaluates a
degree-`e isogeny can be associated with a subgraph Ste of a weighted directed graph
∆e. In this paper, ∆e is depicted as a right triangular lattice with e rows and columns.
The triangular lattice ∆e has exactly e(e+1)

2 points and e leaves, which are defined as
the most bottom points in each one of the e columns of the lattice. For the sake of
convenience, we will often refer to the directed graph ∆e as a triangle of size e. The points
of ∆e represent elliptic curve points. The vertical lines indicate scalar multiplications
by `, whereas the horizontal lines represent degree-` isogeny evaluations that could in
principle be computed in parallel.

Several basic definitions and other useful properties of the lattice ∆e are summarized
in the following subsection.

3.1 Walking across ∆e

Aiming to find a strategy Ste able to compute degree-`e isogenies, the following naviga-
tion rules to walk across the triangular grid ∆e must be observed.

1. All the vertices of ∆e are represented as nodes (i, j), with 0 ≤ i, j ≤ e − 1. The
root of Ste is the vertex (0, 0) and represents a point R0 of order `e.

5

2. All the nodes in a row i with i = 0, 1, . . . , e − 1, represent points belonging to
different elliptic curves. Likewise, all the nodes in a column j with j = 0, 1, . . . , e−
1, represent points that belong to the same elliptic curve. All nodes having the
same Manhattan distance to the vertex (0, 0), represent points having the same
order.

3. A Vertical edge corresponds to a scalar multiplication by `. For example in Figure
1, the edge [(2, 0), (3, 0)] indicates that starting from the node [`2]R0, one arrives
to the node [`3]R0. Every vertical edge has the same weight p`, which is the com-
putational cost associated to one scalar multiplication by `.

4. A Horizontal edge corresponds to a degree-` isogeny evaluation. For example in
Figure 1, the edge [(3, 0), (3, 1)] indicates that starting from the node [`3]R0 one
arrives to the node φ0([`3]R0). Every horizontal edge has the same weight q`, which
is the computational cost associated to one degree-` isogeny evaluation.

5. The depth at column j for j ∈ [0, e − 1], defined as its number of vertices, is of
e− 1− j vertices.

6. One can only compute a horizontal edge [(i, j)(i, j + 1)] with i ∈ [0, e − 2] and
j ∈ [0, e− i− 2], provided that one has previously reached the leave of the column
j, represented by the vertex (e− j − 1, j).

7. All horizontal edges [(i, j), (i, j + 1)] are independent of each other and therefore
can be computed in parallel.

8. One can only compute the vertical edge [(i, j), (i + 1, j)] for i ∈ [0, e − 2] and
j ∈ [0, e − i − 2], if either i = 0 or the predecessor edge [(i − 1, j), (i, j)] has
already been visited. Thus, vertical edges in the same column have computational
dependencies among them and in general must be computed sequentially.

9. A split node is a node that has both a vertical edge and a horizontal edge leaving
from it. The weight of a split node is the number of nodes between it and either
the next split node in the column or the leave in the column. There are always
e− 1 split nodes in any valid strategy.

10. By definition, there are two possible triangles ∆1 of size one, but only one triangle
∆2 of size two (cf. Figure 2).

3.2 Sequential strategies for computing large smooth-degree isogenies

Let ∆e be the upper-left right triangle of an e × e grid, so that ∆e has e(e+1)
2 points

distributed in e rows and columns. The optimal strategy problem consists of finding a
directed-rooted-weighted subtree Ste, such that

∑
E∈Edges(Ste)w(E) is minimum. Here

w(E) ∈ {p`, q`} represents the weight of the edge E ∈ Edges(Ste).
In the remaining of this subsection, we start by describing first two naive strategies,

followed by an approach that finds optimal strategies as presented in [8]

6

(a) ∆1 (b)
∆1

(c) ∆2

Figure 2: The three smallest triangles, Subfigure 2a shows a size-1 triangle consisting of
its root and one horizontal edge. Subfigure 2b shows a size-1 triangle consisting of its
root and one vertical edge. Subfigure 2c shows the only size-2 triangle having exactly
two leaves.

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

(a) ∆9

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

(b)

Figure 3: Two basic strategies for computing a degree-`9 isogeny. Subfigures 3a-3b
illustrate a multiplicative-oriented approach and an isogeny-oriented approach, respec-
tively. Vertical blue lines indicate scalar multiplications by `, whereas horizontal red
lines indicate degree-` isogeny evaluations.

7

3.2.1 Two naive strategies

Two natural albeit naive strategies for computing a degree-`e isogeny can be summarized
as follows.

Suppose that R ∈ E(Fp2) has order `e, e ≥ 1. Then the isogeny φ : E → E/〈R〉
can be computed as follows. Define E0 = E and R0 = R. For j = 0, 1, . . . , e − 1, let
φj : Ej → Ej+1 be the degree-` isogeny with kernel 〈`e−1−jRi〉, and let Rj+1 = φi(Rj).
Then φ = φe−1 ◦ · · · ◦ φ0. The computational cost associated to the multiplicative-

oriented procedure described above is of e(e−1)
2 scalar multiplications by `, e− 1 isogeny

evaluations and e isogeny constructions.
A second naive approach to compute a degree-`e isogeny can be formulated as follows.
Define E0 = E. For i = 0, 1, . . . , e− 1, compute and store all the e points R0

i = [`i]R.
Compute φ0 : E0 → E1 such that Ker(φ0) =

〈
R0
e−1

〉
. For j = 1, . . . , e − 1 and for

i = 0, . . . , e − 1 − j, compute Rji = φj−1(Rj−1
i); followed by φj : Ej → Ej+1 such

that Ker(φj) =
〈
Rje−1−j

〉
. The computational cost associated to the isogeny-oriented

procedure described above is of e(e−1)
2 isogeny evaluations, e − 1 scalar multiplications

by ` and e isogeny constructions.
Instantiated for the computation of a degree-`9 isogeny, Figure 3 illustrates the com-

putations that one must perform for the two basic methods previously outlined.
However, we can do much better as discussed next.

3.2.2 Optimal strategies for SIDH

Optimal strategies as defined in [8] exploit the fact that a triangle ∆e can be optimally
and recursively decomposed into two sub-triangles ∆h and ∆e−h as shown in Figure 4.
Let us denote as ∆h

e the design decision of splitting a triangle ∆e at row h. Then, the
sequential cost of walking across the strategy Ste, which is a direct subgraph of ∆e, is
given as

C(Sthe) = C(Sth) + C(Ste−h) + (e− h) · q` + h · p`.

We say that Sĥe is optimal if C(Stĥe) is minimal among all Sthe for h ∈ [1, e− 1].
Applying this strategy recursively leads to a procedure that computes a degree-`e

isogeny at a cost of approximately e
2 log2 e scalar multiplications by `, e

2 log2 e degree-`
isogeny evaluations, and e constructions of degree-` isogenous curves.

As an illustrative example, consider the strategy shown in Figure 5. Assuming that
all the vertical and horizontal edges costs 1 unit, then Subfigure 5a shows an optimal
partition of ∆9 into two subtriangles ∆6 and ∆3, which can in turn be subdivided
into two subtriangles ∆4 and ∆2; and ∆2 and ∆1, respectively. The strategy shown in
Subfigure 5b is optimal to traverse ∆9 for single-core processor platforms.

3.3 Linearizing strategies

In SIKE specification [1, §1.3.7], computational strategies Ste for constructing/evaluating
isogenies are described by means of a full binary tree on e− 1 nodes. The authors of [1]

8

h scalar muls by `
h

e− h

e− h degree-` isogeny evaluations

∆e−h

∆h

∆e

Figure 4: Using an optimal SIDH strategy as in [8], a triangular lattice ∆e is processed
by splitting it into two sub-triangles. After applying this splitting strategy recursively,
the cost of computing φ drops to approximately e

2 log2 e scalar multiplications by `,
e
2 log2 e degree-` isogeny evaluations, and e constructions of degree-` isogenous curves.

∆9

∆6

∆4

∆2

∆3

(a)

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

(b)

Figure 5: Assuming that all the vertical and horizontal edges costs 1 unit, this figure
shows an optimal strategy for traversing ∆9 on single-core processor architectures.

9

represent such a tree using a so-called linear representation, which can be obtained by
walking through the tree according to a depth-first left-first ordering and outputting
the bifurcations as they are encountered. It is straightforward to apply the same lin-
earization process to the right triangular lattices adopted in this paper. To this end,
one just needs to record the weight of all the split nodes (see Rule 9 in §3.1) as they are
encountered when combing the triangular lattice by columns from j = 0 to e − 2. This
process is illustrated in the following examples.

Example 1. Referring to the strategies depicted in Figure 1 its linear representation
is given by (4, 2, 1, 1, 1, 2, 1, 1). The first column has four split nodes of weight 4, 2, 1, 1,
respectively. The other four split nodes are located in the columns three (one), five (two)
and seven (one). all of these four split node have weight one, except the first split node
of column 5, whose first split node has weight two.

Example 2. Referring to the strategies depicted in Figure 3, their linear representation
is given as follows,

• Subfigure 3a: (8, 7, 6, 5, 4, 3, 2, 1). Each one of the first eight columns of this strategy
has only one split node of weight equal to 8− j, for j = 0, . . . , 7.

• Subfigure 3b: (1, 1, 1, 1, 1, 1, 1). All the eight split nodes of this strategy have weight
one and are located in the column zero.

Example 3. Referring to the strategies depicted in Figure 5 its linear representation is
given by (3, 2, 1, 1, 1, 1, 1, 1). The first column has five split nodes of weight 3, 2, 1, 1, 1,
respectively. The other three split nodes are located in the columns four (one) and six
(two) and all three of them have weight one.

3.3.1 Executing linearized strategies

A strategy specified as a vector of e − 1 split nodes, can be processed as described in
Algorithm 4. Algorithm 4 performs a non-recursive walk across the parallel strategy
Ste for computing a degree-`e isogeny.4 A general procedure for computing linearized
strategies is described next.

1. Initialize the three counters i, j, k = 0. Also, initialize a stack Points, with the
point R0.

2. Process the element Ste[i] as follows

(a) Get the top element in Points, namely Rt and compute R′t = [S`te[i]]Rt. Then
store R′t in Points.

(b) Assign j = j + Ste[i] and i = i+ 1.

3. Repeat Step 2 until j = e− 1− k.
// The leaf node is reached when j = e− 1− k.//

4The interested reader is also referred to [1, Algorithm 19].

10

4. Construct a degree-` isogeny φ using the top element in Points, then remove that
element.

5. Find the image of all the points stored in Points under the isogeny φ.
//This computes all the horizontal edges from column k to column k + 1 that
belong to the strategy Ste.//

6. Assign k = k + 1 and j = j − Ste[i− 1].
// This indicates the algorithm that a new column will start being processed. Now
j indicates the position in the grid of the top element of Points corresponding to
the vertex (j, k).

7. If k ≤ e − 2, then repeat Step 2. If k = e − 1 go to step 3 and then finish the
procedure.

4 Parallel strategies for large smooth-degree isogenies

In this section, the problem of designing parallel strategies and associated criteria to
decide when a parallel strategy is optimal are presented. We say that an strategy Ste is
better than another strategy St′e, if the cost of computing Ste is lesser than the cost of
computing St′e when executed on a k-core platform.

In a nutshell, our approach to parallelize isogeny computations exploits two main
tricks: (i) As per Rule 7 of §3.1, one can make use of all of the k available cores to
concurrently compute the horizontal edges associated to any given column; (ii) As it
was done in the sequential setting in [8], one can use dynamic programming to translate
the problem of optimizing a strategy ∆e to the simpler problem of optimizing the sub-
triangles Te−h and Th, for h ∈ {1, 2, . . . , e− 1}. This process must carefully consider the
parallel computational cost of the strategy.

In the remaining of this Section, we describe in detail both of these two options.

4.1 Exploiting the parallelism of the horizontal edges

In order to measure strategy costs the following proposition becomes useful.

Proposition 1. Let q` be the timing cost associated to the computation of a degree-`
isogeny. Let us define a set of horizontal edges for a fixed index j ∈ {0, 1, . . . , e− 2} by
Colj(St) = {[(i, j), (i, j + 1)] ∈ E(Ste) | i ∈ [0, e− j − 2]}. The timing cost of computing
all horizontal edges in Colj(Ste) using k cores is of⌈

#Colj(Ste)

k

⌉
· q`

Proof. Let us say that #Colj(Ste) = m. If k ≥ m then one can compute all m edges in
parallel at a cost of one isogeny evaluation q`. Otherwise, a = dmk e isogeny evaluations
q` suffice for computing all the horizontal edges in column j of strategy Ste.

11

Using the previous Proposition one can compute the cost of all the horizontal edges
of Stt using k cores, denoted by Ck(Ste), by applying the following Lemma.

Lemma 1. Let us define the set of horizontal edges from the column j to the column
j + 1 as in Proposition 1. The cost of all evaluations defined by Ste using k cores is
given by

e−2∑
j=0

⌈
#Colj(Ste)

k

⌉
· q`

Now the cost of evaluating Ste using k cores is given as

Ck(Ste) =
e−1∑
j=0

⌈
#Colj(Ste)

k

⌉
· q` + #V (Ste) · p`,

where V (Ste) is the set of all vertical edges in Ste, and as before p` and q` represent the
costs of computing one scalar multiplication by ` and evaluating one degree-` isogeny.

Lemma 2. An e− 1-core platform can compute an `e isogeny at a cost of e− 1 scalar
multiplications by `, e degree-` isogeny evaluations and e degree-` isogeny constructions.

Proof. Using of the isogeny-oriented strategy described in § 3.2.1 (cf. Subfigure 3b),
this cost can be justified as follows. Compute and store all vertices (0, i) for i = 0 to
e − 1. This operation costs e − 1 scalar multiplications by `. Now, for i = 0 to e − 2
using e− 1− i cores one can perform the isogeny evaluation of the per-column e− 1− i
points in parallel. Moreover, at each one of the e columns, one isogeny construction must
be performed. The last degree-` isogeny with kernel given by the point in the vertex
(0, e− 1) is computed using only one core.

4.2 Using Dynamic programming for finding parallel strategies

Lemma 3. [8] Given a triangle ∆e and its decomposition into ∆h and ∆e−h, the se-
quential cost of traversing Ste using this particular decomposition is given as,

C1(Sthe) = C1(Sth) + C1(Ste−h) + (e− h) · q` + h · p`.

We say that Ste is an optimal strategy if C1(Sthe) is minimal among all Sthe for h ∈
[1, e− 1].

This lemma is illustrated in Figure 4. Lemma 3 can be generalized in a natural way
to k cores as follows.

Lemma 4. The cost of traversing Sthe using k cores is given as,

Ck(Sthe) = Ck(Ste−h) + Ck(Sth) +
(e− h) · q`

k
+ h · p`, (1)

We say that Sthe is an optimal parallel strategy if Ck(Sthe) is minimum among all Sthe
for h ∈ [1, e− 1].

12

The cost above can be justified by the fact that one can include the (e − h) extra
degree-` isogeny evaluations into the computation of the horizontal edges of Ste−h. Since
the cost Ck(Sth) depends of two sets, namely, the set of all columns of Sth and the set
of all vertical edges V (Sth), a precise way to keep track of both sets must be put in place
as discussed next.

4.2.1 Constructing and Traversing parallel strategies

Let us assume that the parameters e, k, p`, q`, corresponding to the size of the tree ∆e, the
number of available cores, the cost of performing one scalar multiplication by ` and the
cost of performing one degree-` isogeny, respectively, are all given. Then Algorithms 1,
2 and Algorithm 3 in Appendix A, find an optimal parallel strategy for Ste by using a
bottom-up approach.

Algorithm 3 is essentially the same as Algorithm 46 in [1, Appendix C]. In our
case, Algorithm 3 invokes Algorithm 2 at Line 6. Algorithm 2 iteratively finds the
row h ∈ [1, e − 1] that produces a minimum cost strategy Ste composed of the two
sub-strategies Ste−h and Sth (cf. Figure 4). For this purpose, Algorithm 2 invokes
Algorithm 1, which uses Eq. (1) to calculate the computational expenses associated to
the strategies Sth and Ste−h. Notice that Algorithm 2 follows a bottom-up approach by
constructing optimal parallel strategies of size 1, 2, . . . , e− 1, in that order. Algorithm 3
produces as an output, a linear vector of the split nodes included in the optimal parallel
strategy Ste. To illustrate the process outlined above consider the following toy example.

Example 4. Let us assume e = 5, p` = 1, q` = 1 and k = 2. Algorithm 3 uses the
following construction to discover an efficient parallel-strategy St5.

1. Figure 6a shows the initial setting of size-1 triangles.

2. Figure 6b shows the two size-3 strategies considered by algorithm 2 for e = 3. The
parallel cost of the left and right strategies is 4 and 5, respectively. Hence, the left
one is chosen. The output vector S is set to S = [[], [1], [1, 1]].

3. Figure 6c shows the three size-4 strategies considered by algorithm 2 for e = 4. The
parallel cost of the first and second strategies is of 7 units. Algorithm 2 chooses the
first one because in Line 6 of this procedure there is a strict less condition. If one
relaxes this condition to a strict less or equal comparison, then the second strategy
would be used. Now the output vector is set to: S = [[], [1], [1, 1], [1, 1, 1]].

4. Figure 6d shows the four different size-5 strategies for n = 5. In this case, the
first three strategies cost 10 units. Again, Algorithm 2 chooses the first one. Now,
the output vector is set to S = [[], [1], [1, 1], [1, 1, 1], [1, 1, 1, 1]] and the optimal par-
allel strategy output by Algorithm 2 is completely defined by the linearized vector,
St5 = [1, 1, 1, 1].

5. The vector St5 = [1, 1, 1, 1] as well as the base curve E and the order-`e point
R ∈ E(Fq), are the input parameter required by Algorithm 4 for computing a degree-
`e isogeny.

13

(a) Algorithm 3
starts with this
setting .

1

1
2 1

(b) The enclosed strategy St3 is
optimal for two cores

1

1

1

St4 = St1 + St3

1

1

St4 = St2 + St2

3 1

1

St4 = St3 + St1

(c) The enclosed strategy St4 is optimal for two cores

1

1
1
1

St5 = St1 + St4

2

1
1

1

St5 = St2 + St3

3

1

1

1

St5 = St3 + St2

4 1

1
1

St5 = St4 + St1

(d) The enclosed St5 is optimal for two cores

Figure 6: A toy example of a parallel optimal-strategy search using dynamic program-
ming, along with the parameter set e = 5, p` = 1, q` = 1 and k = 2. 3

14

5 Parallelizing the computation of the multiples of the
point R0

In this section, an interesting property of the Montgomery ladders will be exploited.
This property will allow us to extract more parallelism opportunities from the SIDH
main computations. For the sake of simplicity, optimization opportunities for Alice will
be discussed first. Hence, the task of computing degree-4eA isogenies will be the focus of
most of this section. The combined savings of Alice and Bob will be considered at the
end of this section.

Let us recall that in order to compute a scalar multiplication of the form P + [m]Q,
the three-point Montgomery ladder used in SIDH has a per-step cost of 1 xADD and 1
xDBL [9]. The cost of this ladder (cf. Remark 3), is essentially of two xDBL operations
per step, which implies that the computation of Alice’s secret point RA costs about 4eA
xDBL operations.

In §3, it was discussed that starting from the root point RA of order-4ea , any strategy
Ste must compute the multiples [4i]RA belonging to its first column, for i = 1, . . . , e−1.
Hence, a naive iterative computation of the point multiple [4i]RA would involve to obtain
first the point RA. From RA the desired multiple can be obtained by performing 2i
doubling operations. The computational cost of such approach is of about,

4eA xDBL + 2i xDBL = (4eA + 2i) xDBL.

Note that this approach also finds as by-products the multiples, [4j]RA for j = 1, . . . , i−
1. However as shown next, there exists a more efficient approach for computing any
multiple of RA.

Theorem 1. Let PA, QA,mA, RA be the public and private keys of Alice where RA = PA+
[mA]QA, and Order(PA)= Order(QA)= Order(RA) = 4eA . Then the computation of the
point [4i]RA costs 2(eA − i) xDBL.

Proof. Since PA and QA are public parameters, one can pre-compute all the multiples
[4i]PA and [4i]QA for i = 1 to eA − 1. From a direct manipulation one can write,

[4i]RA = [4i]PA + [mA]([4i]QA).

As [4i]QA has order 4eA−i, then mA can be replaced by m̄A where m̄A = mA mod 4eA−i,
which is a 2(eA − i)-bit long integer and compute

[4i]RA = [4i]PA + [m̄A][4i]QA,

using the fixed-point three-point Montgomery ladder of [9], at a cost of about 1 xDBL
(xADD) per bit.

Theorem 2. Let PA, QA be the public keys of Alice with Order(PA)= Order(QA) = 4eA .
Let φB(PA) and φB(QA) be the public points that Alice receives from Bob, and let mA

be Alice’s secret scalar. Then computing [4i]φB(RA) costs (4eA − 2i) xDBL.

15

Proof. From a direct manipulation one can write,

[4i]φB(RA) = [4i](φB(PA) + [mA]φB(QA)) = [4i]φB(PA) + [mA]([4i]φB(QA)).

Similar to Theorem 1, the multiple [4i]φB(QA) has order 4eA−i. Then, one can replace
mA by m̄A, where m̄A = mA mod 4eA−i which has 2(eA−i) bits. One can compute PA+
[m̄A]QA) using a three-point Montgomery ladder at a cost of 4(eA−i) xDBL. As φB(PA)
and φB(QA) both depend on Bob’s secret key, it is not possible to pre-compute off-line
anything relevant. Thus, one needs to compute [4i](φB(PA) + [mA]φB(QA)), which can
be done by repeatedly doubling φB(PA) + [m̄A]φB(QA). This has a computational cost
of 2i doublings. Adding this to the cost of the three-point ladder gives us the desire
result of (4(eA − i) + 2i) = (4eA − 2i) xDBL.

Theorems 1 and 2 state that the computation of the points RA and φB(RA), is
independent of computing the multiples [4i]RA and [4i]φB(RA) for i ∈ 2, . . . , eA − 1,
respectively. Therefore, during the Key Generation phase the point RA and any of its
multiples [4i]RA, for some i ∈ 1, 2, . . . , e− 1, can be computed in parallel on a multi-core
architecture. Similarly, during the Key Agreement phase, the point φB(RA) and any of
its multiples [4i]φB(RA) for some i ∈ 1, 2, . . . , e− 1, can be computed concurrently.

Corollary 1. For an e-core architecture, one can compute all multiples [4i]RA or [4i]φB(RA),
for i = 0, 1, . . . , e− 1, in parallel.

This give us the possibility of computing a portion of vertical edges of the left-most
column of a strategy Ste. Alternatively, one can perform isogeny evaluations associated
to such strategy at the same time that another core is devoted to compute the points
RA (or φB(RA)).

Proposition 2. Let PA, QA,m,RA be the public and private keys of Alice where RA =
PA + [m]QA, and let k be the number of cores available to compute a 4eA-isogeny. Let
p4 be the cost of computing a point multiplication-by-4, and q4 be the cost of a degree-4
isogeny evaluation. Then, one can compute a 4b-isogeny by means of a parallel strategy
Stb that uses k − 1 cores, at the same time that one core is devoted to compute RA (or
φB(RA)), where b is given as,

b = max
i:=1,2,...,

eA−1

3

{i | Ck−1(Sti) + 2i · p4 + i · q4 ≤ 2eAp4}.

For the Key Generation phase; and

b = max
i:=1,2,...,

eA−1

2

{i | Ck−1(Sti) + i · p4 + i · q4 ≤ 2eAp4}.

For the Key Agreement phase.

Proof. This result follows directly from Theorem 2. Here we have ignored the cost of
isogeny construction, which are usually not taken into account fo assessing the strategy
computational cost.

16

Single core step
1 core

k cores

k − 1cores
Stb

Ste−b

RA

[4e−b]RAP
A

R
A

L
L

E
L

Figure 7: Representation of a k-core load for the parallel computation of the strategy Ste
as stated in Proposition 2. The left-most dash-enclosed computations occur in parallel
during a first step. Then, a sequential step computes the image of the point RA to be
used by the Second strategy Ste−b. This last strategy can be computed using all the k
cores.

Figure 7 illustrates Proposition 2 showing a k-core load for computing a strategy Ste
in parallel.

In the following, Theorem 2 is generalized to consider multiplications by ` different
than 4.

Proposition 3. Let P,Q,R be points on an elliptic curve E, m, ` and e be integers
such that Order(P) = Order(Q) = Order(R) = `e, R = P + [m]Q, and m < `e. Then
computing [`i]R for i = 0 to e − 1, costs about (2e − i) log2(`) xDBL. This implies that
computing the multiple [`i]R for i = 1 to e − 1, costs less than the computation of the
point R.

Proof. The cost of computing R is of about 2e log2(`) xDBL because m is at most an
(e log2(`))-bit long integer. As in Theorem 2 one has

[`i]R = [`i](P + [m mod `e−i]Q).

Here, m mod `e−i has at most log2(`e−i) bits. Then computing P + [m mod `e−i]Q
costs 2(e− i) log2(`) xDBL. By adding i scalar multiplications by ` at a cost of i log2(`),
the claimed result is obtained.

Remark 4. In fact the above result is an upper bound because for scalar multiplications
by ` = 3, 4, 5, there exist formulas with a cost less than 1.5 log2(`) xDBL. Moreover,
depending on the specific setting, one can pre-compute off-line point multiples that may
lead to a further reduction of the computational cost given in Theorem 1.

By Corollary 1, if e cores are available for the computation of SIDH, then one can
compute [`i]R for i = 0 to e − 1 in parallel at the same cost of computing one three-
point-ladder of e log2(`)-bits. Then all vertices (0, i) for i = 0 to e−1 of a given strategy

17

[`0]R
[`1]R
[`2]R

[`e−3]R
[`e−2]R
[`e−1]R

.

.

.

R0

R1

R2

Re−1
Re−2

Re−3
.

.
.

P
A

R
A

L
L

E
L

Figure 8: If the hardware resources are plentiful enough, all multiples of R can be
computed in parallel. Also, if there are e available cores, all isogeny evaluations can be
computed in parallel.

can be computed at once. Let p`, q` and r` be the cost of a multiplication-by-`, and the
cost of a degree-` isogeny evaluation and construction, respectively. Now if r` < p` then
the core that computes [`e−1]R can also compute the first isogeny construction and from
then on, this core can be dedicated to compute all remaining codomain curves. Since
r` < q`, then, r` is dominated by q` and its associated cost vanishes as one can compute
the codomain curve and evaluations in parallel. The assumptions r` < q` and r` < p`
are true for ` = 3, 45

In summary, if e cores are available for the computation of the SIDH protocol, then
the computation of an `e isogeny costs e − 1 `-isogeny evaluations plus one three-point
ladder as illustrated in Figure 8.

6 Cost estimates and experimental results

In this section we present concrete cost estimates and experimental results associated
to the execution of the SIDH and the SIKE protocols when they are instantiated with
the SIKE primes p434 and p751. We also include in our experiments the Extended-SIDH
protocol presented in [2] instantiated with the primes eSIDH primes p443 and p765.

We begin by given cost estimates for performing the key agreement phase of SIDH
using the parallel tricks discussed in §§ 4-5. Then, we present experimental results for
performing the key agreement phase of SIDH and the three main phases of the SIKE
protocol, namely, Key generation, Encapsulation and Decapsulation.

We benchmarked our software on an Intel(R) Core(TM) i7-6700K processor at 4.00GHz
supporting the Skylake micro-architecture. To guarantee the reproducibility of our mea-
surements, the Intel Hyper-Threading and Intel Turbo Boost technologies were disabled.
We used the OpenMP v4.5 API for parallel tasks and POSIX threads. Our source
code was compiled using Clang v3.9 with the -O3 optimization flag and using the op-
tions -mbmi2 -madx -fwrapv -fomit-frame-pointer -fopenmp -pthread. Our soft-

5This assumption is true in general, but for ` ≥ 5 there is an extra cost associated to kernel points
generation because the kernel has more than one point.

18

ware library is freely available from,

https://github.com/dcervantesv/eSIDH

6.1 Cost estimates

The cost estimates and experimental results presented in this section focus in two case
studies,

1. SIKE Prime p434 = 41083137 − 1

• e4 = 107, p4 = 5, 510, q4 = 3, 756, r4 = 1, 646 , Fp2434 inversion = 76, 078.

2. SIKE Prime p751 = 41863239 − 1.

• e4 = 185, p4 = 11, 902, q4 = 8, 108, r4 = 3, 492, Fp2751 inversion = 310, 512.

Where r4 is the cost of constructing a degree-4 isogenous curve. All the costs above are
given in Skylake clock cycles.

Tables 1 and 2 show our cost estimates for Alice’s key generation phase when using
the SIKE primes p434 and p751, respectively. The data included in these two tables
was organized as follows. The first column gives the number of cores considered by
the parallel strategy. The second and third columns show the equivalent timing cost
associated with the computation of degree-4 isogeny evaluations when using a single and
k cores, respectively. The unit of measure for these costs are given in terms of equivalent
isogeny evaluations. The fourth column indicates the number of scalar multiplications
performed by both, the single-core and the multi-core processors. The fifth column
reports the maximum value b that one can select. As defined in Proposition 2, this
parameter indicates the height of the lower subtriangle in Figure 7. The sixth column
reports the expected complete cost of Alice’s key agreement phase (given in millions of
Skylake clock cycles), including the expenses associated to walking across St107 (resp.
St186), the cost of obtaining the Montgomery constant for the curve EB (essentially
one field inversion), the cost of evaluating φB(RA), computing 108 (resp. 186) degree-
4 isogenies and the shared secret j(EB) (essentially one field inversion). Finally, the
seventh column reports the Acceleration Factor (AF) achieved by the parallel strategy
compared against the sequential one.

The estimates given in Table 1, predict that for the prime p434 one can achieve
an acceleration factor of two when using 29 cores and the parallel strategy reported
in Appendix B.1. Notice that when 69 cores are available, the minimum number of
multiplications, which is 106, is achieved. The estimates given in Table 2, expect that
an acceleration factor of two will be achieved when using 22 cores and the parallel
strategy reported in Appendix B.2. Moreover, a total of 122 cores would be needed to
achieve the minimum number of multiplications-by-4 (184 multiplications). Notice also
that the size of the lower subtriangle of Figure 7 get stuck at 62 cores. This indicates
that another strategy or scheduling must be adopted to further improve the parallelism
in this setting.

19

https://github.com/dcervantesv/eSIDH

Evaluations
Cores Serial Parallel Muls b Cost AF

1 405 —- 333 —- 5.12 1
2 433 278 259 21 3.83 1.34
3 497 217 234 23 3.46 1.48
4 563 192 214 26 3.24 1.58

8 834 153 176 29 2.90 1.77

29 2388 140 120 35 2.56 2.00

69 3151 107 106 36 2.36 2.17

106 3151 106 106 36 2.36 2.17
107 3151 106 106 36 2.36 2.17

Table 1: Estimate costs (in millions of clock cycles) of Alice’s key agreement SIDH phase
for the prime p434 using the Section 5 tricks except for Remark 4. The AF column gives
the quotient of the Single core cost and the parallel cost using k cores. The parameter
b is given as defined in Proposition 2

Evaluations
Cores Serial Parallel Muls b Cost AF

1 784 —- 636 —- 20.33 1
2 849 540 508 33 15.35 1.32
3 1006 436 445 37 13.76 1.48
4 1125 370 413 41 12.77 1.59
8 1723 303 331 48 11.26 1.80

22 3083 233 281 54 10.15 2.00

60 9099 245 187 62 9.26 2.20

122 9456 184 184 62 8.73 2.33

184 9456 184 184 62 8.73 2.33
185 9456 184 184 62 8.73 2.33

Table 2: Estimate costs (in millions of clock cycles) of Alice’s key agreement SIDH phase
for the prime p751 using the Section 5 tricks except for Remark 4. The AF column is
the quotient of the Single core cost and the parallel cost using k cores. The parameter
b is given as defined in Proposition 2

20

Estimated Cost Experimental timings
Strategy type

Parallel Single core
of cores (including R (including R

k in parallel) in parallel)
1 19.60 (19.60) 19.00 (19.00) 19.00
2 16.44 (14.73) 16.57 (15.17) 17.06
3 15.04 (13.21) 15.95 (13.82) 16.35
4 14.19 (12.25) 14.64 (13.51) 16.11

Table 3: Estimated Vs. experimental costs for the computation of the key agreement
phase of the SIDH protocol instantiated with the prime p751. All estimates and experi-
mental results are given in 106 clock cycles.

6.2 Experimental results

Table 3 presents a comparison of estimated versus experimental costs on the computation
of the key agreement phase of the SIDH protocol, instantiated with the prime p751. The
data in this table was organized as follows. The first column reports the number k of
cores. The second and third columns report the estimated and experimental SIDH key
agreement costs using parallel strategies, with and without computing multiples of the
secret point R in parallel, respectively. The last column reports the timing costs of the
SIDH protocol using the sequential optimal strategies of [8].

The relatively complex synchronization of the core loads, has so far prevented us to
experimentally achieve the expected theoretical speedups for k = 2, 3, 4. Nonetheless,
our experiments show that the parallel strategies reported in Appendix B.2 yields an ac-
celeration factor of 1.15, 1.19 and 1.34 when using two, three and four cores, respectively.
Including the trick of computing the multiples of R in parallel, provides an acceleration
factor of 1.25, 1.38 and 1.41 when using two, three and four cores, respectively.

We also implemented the SIKE protocol instantiated with the SIKE prime p751 [1]
and the eSIDH prime p765 [2], using the parallelization techniques discussed in §§4-5
for Alice’s key generation and key agreement phases. Compared against a sequential
SIKE implementation instantiated with p751, Table 4 reports an acceleration factor of
1.56 for a three-core implementation of SIKE instantiated with the prime p765. We also
implemented SIDH protocol and we achieve an acceleration factor of about 1.57 when
comparing the single core SIDH implementation using SIKE prime p751 against the
three-core implementation of eSIDH [2] using eSIDH prime p765 and the parallelization
techniques discussed in §§4-5.

7 Conclusion

We presented a framework that permits to accelerate the execution of the SIDH and
SIKE protocols on multi-core platforms by exploiting the concurrent computation of
degree-`e isogenies and three-point Montgomery ladders. Our experiments shows that

21

p751 p765

Phase
Number of cores Number of cores

1 1 2 3

Key Generation 26.71 24.78 17.71 15.93
Encapsulation 43.01 40.43 29.95 27.64
Decapsulation 46.34 45.58 32.92 30.79

Total 116.06 110.79 80.58 74.36

Table 4: SIKE protocol experimental timing for a SIKE prime p751 and an eSIDH prime
p765 instantiation. All timings are given in 106 clock cycles measured on an Intel Skylake
proccessor at 4.0 GHz. An acceleration factor of 1.56 was measured for a SIKE three-
core implementation compared against a sequential SIKE instantiation using the prime
p751.

p751 p765

Phase
Number of cores Number of cores

1 1 2 3

Alice Key Generation 23.59 22.27 15.93 14.80
Bob Key Generation 26.74 24.34 17.76 15.79
Alice Key Agreement 19.37 18.21 14.30 13.07
Bob Key Agreement 22.76 23.24 17.16 15.94

Total 92.46 88.05 65.15 59.06

Table 5: SIDH protocol experimental timing for a SIKE prime p751 and an eSIDH prime
p765 instantiation. All timings are given in 106 clock cycles measured on an Intel Skylake
proccessor at 4.0 GHz. An acceleration factor of about 1.57 was measured for a SIDH
three-core implementation compared against a sequential SIDH instantiation using the
prime p751.

22

compared against their sequential counterparts, our proposed SIDH and SIKE parallel
variants achieve important acceleration factors.

It appears that there exist several other parallelization opportunities that were not
considered in this work. For example, we did not consider the design decision of reserving
k − 1 cores for the computation of the vertices (0, i) of the subtriangle ∆b in Figure 7.
One can then compute in parallel the intermediate points of the strategy associated to
∆b, which would produce a reduction in its computational cost. Since this approach
appears to be a non-trivial design task, we leave this option as a future work.

Acknowledgements

This work was partially done while the first and third authors were visiting the Univer-
sity of Waterloo. The authors would like to thank Jesús-Javier Chi-Domı́nguez for his
valuable comments, and José-Abraham Bernal for his useful comments and for allowing
us to use his server.

References

[1] R. Azarderakhsh, M. Campagna, C. Costello, L. D. Feo, B. Hess, A. Jalali, D. Jao,
B. Koziel, B. LaMacchia, P. Longa, M. Naehrig, G. Pereira, J. Renes, V. Soukharev,
and D. Urbanik. Supersingular isogeny key encapsulation. second round candidate
of the nist’s post-quantum cryptography standardization process, 2017. Available
at: https://sike.org/.

[2] D. Cervantes-Vázquez, E. Ochoa-Jiménez, and F. Rodŕıguez-Henŕıquez. esidh: the
revenge of the sidh. Cryptology ePrint Archive, Report 2020/021, 2020. https:

//eprint.iacr.org/2020/021.

[3] D. Cervantes-Vázquez and F. Rodŕıguez-Henŕıquez. A note on the cost of computing
odd degree isogenies. Cryptology ePrint Archive, Report 2019/1373, 2019. https:
//eprint.iacr.org/2019/1373.

[4] D. Charles, E. Goren, and K. Lauter. Cryptographic hash functions from expander
graphs. Cryptology ePrint Archive, Report 2006/021, 2006. http://eprint.iacr.
org/2006/021.

[5] C. Costello and H. Hisil. A simple and compact algorithm for SIDH with arbitrary
degree isogenies. In T. Takagi and T. Peyrin, editors, Advances in Cryptology -
ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications
of Cryptology and Information Security Part II, volume 10625 of Lecture Notes in
Computer Science, pages 303–329. Springer, 2017.

[6] C. Costello, P. Longa, and M. Naehrig. Efficient algorithms for supersingular isogeny
Diffie-Hellman. In M. Robshaw and J. Katz, editors, Advances in Cryptology -
CRYPTO 2016 - Part I, volume 9814 of Lecture Notes in Computer Science, pages
572–601. Springer, 2016.

23

https://eprint.iacr.org/2020/021
https://eprint.iacr.org/2020/021
https://eprint.iacr.org/2019/1373
https://eprint.iacr.org/2019/1373
http://eprint.iacr.org/2006/021
http://eprint.iacr.org/2006/021

[7] J.-M. Couveignes. Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291, 2006. http://eprint.iacr.org/2006/291.

[8] L. De Feo, D. Jao, and J. Plût. Towards Quantum-Resistant Cryptosystems
from Supersingular Elliptic Curve Isogenies. Journal of Mathematical Cryptology,
8(3):209–247, Sept. 2014.

[9] A. Faz-Hernández, J. L. Hernandez, E. Ochoa-Jiménez, and F. Rodŕıguez-
Henŕıquez. A faster software implementation of the supersingular isogeny diffie-
hellman key exchange protocol. IEEE Trans. Computers, 67(11):1622–1636, 2018.

[10] A. Hutchinson and K. Karabina. Constructing canonical strategies for parallel
implementation of isogeny based cryptography. In D. Chakraborty and T. Iwata,
editors, Progress in Cryptology - INDOCRYPT 2018, volume 11356 of Lecture Notes
in Computer Science, pages 169–189. Springer, 2018.

[11] D. Jao and L. D. Feo. Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In B. Yang, editor, Post-Quantum Cryptography - 4th In-
ternational Workshop, PQCrypto 2011, volume 7071 of Lecture Notes in Computer
Science, pages 19–34. Springer, 2011.

[12] B. Koziel, R. Azarderakhsh, and M. M. Kermani. Fast hardware architectures for
supersingular isogeny diffie-hellman key exchange on FPGA. In O. Dunkelman and
S. K. Sanadhya, editors, Progress in Cryptology - INDOCRYPT 2016, volume 10095
of Lecture Notes in Computer Science, pages 191–206, 2016.

[13] B. Koziel, R. Azarderakhsh, M. M. Kermani, and D. Jao. Post-quantum cryptog-
raphy on FPGA based on isogenies on elliptic curves. IEEE Trans. on Circuits and
Systems, 64-I(1):86–99, 2017.

[14] B. Koziel, A. Jalali, R. Azarderakhsh, D. Jao, and M. M. Kermani. NEON-SIDH:
efficient implementation of supersingular isogeny diffie-hellman key exchange pro-
tocol on ARM. In S. Foresti and G. Persiano, editors, Cryptology and Network
Security - 15th International Conference, CANS 2016, volume 10052 of Lecture
Notes in Computer Science, pages 88–103, 2016.

[15] NIST. NIST Post-Quantum Cryptography Standardization Process. Second Round
Candidates, 2017. Available at: https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions.

[16] A. Rostovtsev and A. Stolbunov. Public-key cryptosystem based on isogenies. IACR
Cryptology ePrint Archive, 2006:145, 2006.

[17] H. Seo, Z. Liu, P. Longa, and Z. Hu. SIDH on ARM: faster modular multiplications
for faster post-quantum supersingular isogeny key exchange. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(3):1–20, 2018.

24

http://eprint.iacr.org/2006/291

[18] A. Stolbunov. Constructing public-key cryptographic schemes based on class group
action on a set of isogenous elliptic curves. Adv. in Math. of Comm., 4(2):215–235,
2010.

[19] J. Tate. Endomorphisms of abelian varieties over finite fields. Inventiones Mathe-
maticae, 22:134—-144, 1966.

25

Appendices

A Dynamic Programming Algorithms

Algorithm 1 Ev counts: Computes Eq.(1) for a given partition Sthe
Require: E0 and E1 are sets of horizontal edges counts, k is the number of cores available
Ensure: Ee: The new set of horizontal edges generated by E0 and E1. evs: The number of evaluations required

to compute the set of edges Ee when k cores are available.
1: if E0 is empty then {Merging both strategies}
2: Ee := [1] cat [i : i in E1];
3: else
4: Ee := [i + 1 : i in E0] cat [1] cat E1;
5: end if
6: evs := 0;
7: if k = 1 then {getting the cost of Ee when k cores used}
8: evs :=

∑
e∈Ee

e;

9: else
10: for i in Ee do
11: if i ≤ k then {Using Lemma 4}
12: evs +:= 1;
13: else
14: evs +:= bi/kc+ 1;
15: end if
16: end for
17: end if
18: return evs, Ee;

Algorithm 2 get Min Parallel Strat: Finds an optimal Sthe splitting

Require: C: Set of costs, E: Set of sets of horizontal edges, V : Set of Multiplication operations, e: number of
leaves , p`: Cost of one scalar multiplication by `, q`: Cost of one evaluation by a degree-` isogeny, k: number
of available cores.

Ensure: minC: The cost of the minimum strategy for e leaves using k cores. minEn: The new set of edges for
the minimum strategy for e leaves using k cores. minM : The multiplication counts for the minimum strategy
for e leaves using k cores.

1: minC := e2∗(p`+q`);{just an upper bound}
2: for b := 1 to e-1 do
3: ev counts temp, St temp := Ev Counts(E[e-b], E[b], k);{Algorithm 1}
4: muls temp := (V[e-b] + V[b] + b);{number of multiplications on St temp}
5: cost temp := (ev counts temp * q`) + (muls temp * p`);
6: if cost temp < minC then
7: split := b;
8: minC := cost temp;
9: minEn := E temp;

10: minV := muls temp;
11: end if
12: end for;
13: return minC, split, minEn, minV;

26

Algorithm 3 get Parallel Strategy: Obtains the optimal parallel strategy

for ∆e using k-cores

Require: e: the number of leaves, p`: Cost of the scalar multiplications by `, q`: the cost of a degree-` isogeny
evaluation, K: number of available cores)

Ensure: S: Strategy to traverse ∆e.
1: E := [[], [1]]; {Set of set of horizontal edges}
2: M := [0, 1];{Set of multiplication counts}
3: S := [[], [1]];{Set to keep the partial strategies}
4: C := [0, p` + q`];{Set to keep the cost of partial strategies}
5: for i in [3..(e + 1)] do
6: cost, h, Ei, muls := get Min Parallel Strat(C, E, M, i, p`, q`, K);{Algorithm 2}
7: Append(∼C, cost);{getting cost;}
8: Append(∼E, Ei);{updating the set of sets of horizontal edges}
9: Append(∼M, muls);{updating the set of Muls.}

10: Append(∼S, [b] cat S[i - b] cat S[b]);{building the new strategy}
11: end for
12: return S[e + 1];

Algorithm 4 Non-recursive walking across the Strategy Stn

Require: A strategy Ste obtained from algorithm 3, Elliptic Curve E0, Point R ∈ E0 of order `e.
Ensure: Elliptic Curve Ee such that there is a degree-`e-isogeny between E0 and Ee.
1: idx := 0;
2: i := 1;
3: points := [[R, 0]];
4: for row := 0 to e− 1 do
5: while idx< n - row do
6: Rt := [dSt[i]]Rt;
7: idx +:= St[i];
8: Append(points, [Rt, idx]);
9: i +:=1;

10: end while
11: Compute φrow and Erow+1 using Erow and Rt.
12: Prune(points);
13: for j := 1 to #points do {PARALLEL FOR}
14: points[j, 1] := φrow(points[j, 1]);
15: end for
16: [Rt, idx] :=Pop(points);
17: end for
18: Compute φe−1 and Ee using Ee−1 and Rt.
19: return Ee;

27

B Node split vectors for the parallel strategies

We report several parallel strategies generated using the algorithms presented in Ap-
pendix A.

B.1 Strategies for the SIKE prime p434

• 2 cores [39, 21, 18, 10, 8, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1,

1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 8, 3, 3, 1, 1, 1, 1, 1, 1, 1,

3, 2, 1, 1, 1, 1, 1, 8, 5, 3, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1,

1, 1, 1, 1, 13, 8, 8, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1,

3, 2, 1, 1, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1]

• 9 cores [10, 10, 10, 10, 10, 10, 10, 10, 10, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1,

1, 1,

1, 1,

1, 1]

• 55 cores [1,

1, 1,

1, 1,

1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

The following strategies include the parallel computation of the multiples of RA:

• 2 cores [86, 10, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 5, 2, 1, 1, 1, 2, 1,

1, 1, 28, 19, 13, 8, 8, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1,

1, 3, 2, 1, 1, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 8, 4, 3,

1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 8, 8, 4, 3, 2, 1, 1, 1,

1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1]

• 20 cores [74, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 21, 14, 1, 1, 1, 1, 1, 1, 1,

1, 1,

1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

B.2 Strategies for the SIKE prime p751

• 2 cores [57, 42, 28, 21, 12, 8, 8, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1,

1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 8,

5, 3, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 8, 8, 4, 3,

2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1,

14, 8, 8, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 3, 2,

28

1, 1, 1, 1, 1, 6, 3, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 18, 13, 8, 8, 3,

3, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 5,

3, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 8, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 2,

1, 1, 1, 1, 1]

• 9 cores[20, 18, 18, 18, 14, 10, 10, 10, 10, 10, 10, 10, 10, 1, 1, 1,

1, 1,

1, 1,

1, 1,

1, 1,

1, 1,

1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1]

• 94 cores [1,

1, 1,

1, 1,

1, 1,

1, 1,

1, 1,

1, 1,

1, 1,

1, 1, 1, 1]

The following strategies include the parallel computation of the multiples of RA:

• 2 cores [152, 16, 9, 4, 2, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 1, 2, 1, 1,

7, 4, 2, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 44, 39, 21, 18, 10, 8, 4,

3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1,

1, 1, 1, 8, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 8, 5, 3,

2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 13, 8, 8, 3, 3, 1,

1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 5, 3, 2,

1, 1, 1, 1, 1, 2, 1, 1, 1, 16, 8, 8, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1,

3, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 8, 3, 2, 1, 1, 1, 1, 1, 3,

2, 1, 1, 1, 1, 1]

• 22 cores[131, 14, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 23, 23, 19, 1, 1, 1, 1, 1,

1, 1,

1, 1,

1, 1,

1, 1,

1, 1,

1, 1, 1, 1, 1, 1]

29

• 62 cores [123, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1,

1, 1,

1, 1,

1, 1,

1, 1,

1, 1,

1, 1,

1, 1, 1, 1, 1]

30

	Introduction
	Background
	Sequential strategies for large smooth-degree isogenies
	Walking across e
	Sequential strategies for computing large smooth-degree isogenies
	Two naive strategies
	Optimal strategies for SIDH

	Linearizing strategies
	Executing linearized strategies

	Parallel strategies for large smooth-degree isogenies
	Exploiting the parallelism of the horizontal edges
	Using Dynamic programming for finding parallel strategies
	Constructing and Traversing parallel strategies

	Parallelizing the computation of the multiples of the point R0
	Cost estimates and experimental results
	Cost estimates
	Experimental results

	Conclusion
	Appendices
	Dynamic Programming Algorithms
	Node split vectors for the parallel strategies
	Strategies for the SIKE prime p434
	Strategies for the SIKE prime p751

