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Abstract: Encoding an arbitrary bit string, by parceling 
it out to randomized size subsections, encoding each 
subsection through a unary alphabet, thereby expressing 
the original string via a much larger one, which upon 
transposition projects up to perfect mathematical 
secrecy. The attraction of TEAM (Transposition 
Encryption Alphabet Method) is in the fact that it 
replaces common floating-point complex computational 
ciphers with the utter simplicity and speed of nothing 
more than one round of transposition. Also enabling 
decoy bits, which are recognized as noise by the intended 
recipient, while presenting a cryptanalytic burden on the 
attacker. Implemented in hardware TEAM is very 
battery-friendly, fitting for Internet of Things 
application. TEAM security is based on equivocation, 
which classifies it as post quantum cryptography. 
TEAM’s efficacy may be upgraded unilaterally by the 
transmitter through increased use of ad-hoc, not pre-
shared randomness.  

 

I. INTRODUCTION 

Transposition is arguably the most basic 
cryptographic primitive, it requires no alphabet, and it's 
complexity is super-exponential. It lends itself to very 
efficient execution in hardware, which explains its 
popularity in most common cryptographic protocols. 
Herewith we investigate the premise that it may be a 
sufficient operation for purpose of security. We present 
TEAM: Transposition Encryption Alphabet Method, s 
cipher based on one round of transposition for generating 
secrecy. The TEAM cipher is based on randomized at-will 
encoding of the plaintext so that its transposition will 
generate any desired measure of security.  

A bit string b comprised of t bits, can be encoded in a 
format b* through a string bv comprised of v+1 bits of 

identity "0" where v is the binary value interpretation of b, 
associated with a string br, of r+1 bits of identity "0", where 
r represents the count of leading zeros in b.  

Illustration: let b = 0001011. We write v = 11, r=3, 
and hence:  

b*: {bv, br} = {v+1 "0"s, r+1 "0"} = {000 000 000 000, 0000} 

There is clear bijection between b and b*.  

Let string b1 be so encoded to b*1, and b2 so encoded 
to b*2 only that for b*2, we switch the bit identities from "0" 
to "1". . We write:  

b1 = {v1+1 "0", r1+1 "0"}  
b2 = {v2+1 "1", r2+1 "1"}  

We now express a concatenation between b1, and b2 as 
follows:  

b1||b2 = {bv1||bv2, br1|| br2} 

Illustration: let b1 = 00101 and b2 = 0001000. 
Accordingly v1 = 5, r1 = 2, and v2 = 8, r2 = 3. And thus we 
write:  
b1= {v1+1 "0", r1+1 "0"} = {000 000, 000}  
b2= {v2+1, r2+1} = {111 111 111, 1111}  

b1||b2 = {bv1||bv2, br1|| br2} = {000 000 111 111 111, 000 
1111}  

Since bv2 is comprised of "1"s and br1 is comprised of 
"0"s we can concatenate without confusion:  

b1||b2 = {bv1||bv2, br1|| br2} = bv1||bv2||br1|| br2 
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Similarly for a string B comprised of arbitrary 
number, n, of subsections: B = b1||b2......||bn versus B* = 
b*1||b*2......||b*n. For an even value of i (i=1,2,...n) the bvi 
and bri strings of bi will be written with "1"s while for an 
odd value of i bvi and bri will be written with :"0"s.  

We now write:  

B* = {B*v = bv1||b2v||.....bnv, B*r = br1||b2r||.....bnr} 

Further concatenating the two strings:  

B* = B*v || B*r = bv1||bv2||.....bvn|| br1||br2||.....brn 

In order to mark where the bits of bvn end, and the bits 
of br1 begin, it is necessary that n will be divided by 4 ( n = 
4 MOD 4). We shall see below that this requirement may be 
overcome, using the NULL entity.  

We now define b0 = 'NULL' as the 'NULL' string 
which will be mapped to b*0 with v = 0, and r=0, namely: 
b*0 = {v+1 "0", r+1 "0"} = {0,0} or: b*0 = {v+1 "1", r+1 
"1"} = {1,1} where we agree to switch bit identities for 
adjacent NULLs characters: b0b0 = {0,0}{1,1}, or 
{1,1}{0,0}, no {00}{0,0} {1,1}{1,1} .  

One ready use of the NULL is to allow an arbitrary 
string B to be parceled out to any n number of subsections. 
Adding one, two, or three NULLs anywhere in B will make 
the total number of subsections n' = 0 MOD 4 and will 
insure that the bit identity comprising bvn will be opposite 
the bit identity comprising br1 so there will be no confusion 
as to when bvn ends and br1 begins.  

We can implant NULL characters throughout a bit-
string:  

B = b1 || b2 ||.. || bn = b1 || b2 ||...|| bi || b0 || b0.... || b0 || bi+1 || bi+2... || bn  

and so:  

B* = b*1 || b*2 ||... || b*n = b*1 || b*2 ||.....|| b*i || b*0 || b*0... || b*0 || 
b*i+1 || b*i+2.... || b*n  

We shall regard the above described encoding of an 
arbitrary bit string as TEAM-encoding, and the reverse 
process as TEAM-decoding.  

Let B*T be an arbitrary transposition of B* using a 
transposition key, KT: B*T = TP ( B*, KT), and let |B*| = 
|B*T| be the bit count of either of these two strings.  

Both B*T, and B* have the same number of '0' bits, 0c, 
and the same number of '1' bits, 1c where 0c + 1c = |B*| = 
|B*T|. Let bit string B' ≠ B be encoded into B'* where 0'c = 

0c, and 1'c = 1c. Accordingly there exists a transposition key 
K't such that B*T = TP(B'*, K't). In other words, anyone with 
possession of B*T without a possession of its generating 
transposition key, Kt will not be able to determine whether 
B or B' were used to generate it. Since B' is arbitrary, this 
means that all the bit strings that can be encoded to a string 
with 0c zeros and 1c ones -- are valid candidates for being 
the string that was transposed to B*T. The larger the class of 
such B' string, the larger the equivocation -- up to perfect 
secrecy as defined by Claude Shannon.  

We shall show now how to encode an arbitrary B' to 
B'* with 0'c = 0c, and 1'c = 1c  

Step 1: parcel B' to m consecutive subsections of 
arbitrary sizes: b'1|| b'2|| ....||.b'm.  

Step 2: TEAM-encode B': Read b'1v and b'1r and 
construct b'1 = {v'1 + 1 "0", r'1 + 1 "0"]. Continue 
respectively with b'i for i=1,2,...p where p ≤ m, as follows:  

b'i = {v'i + 1 "Q", r'i + 1 "Q"] 

where 'Q' represent bits of identity '0' for odd i, and 
identity '1' for even i.  

Step 3: TEAM-Encode B' to B'*, as above, then count 
the number of '0' bits in B'* (0'c), and the number of '1' bits 
in B'* (1c):  

0'c = Σ v'2i+1 + r'2i+1 + 2 ........ for i=0,1,2,3.... no higher than p/2.  

1'c = Σ v'2i + r'2i + 2 ........ for i=1,2,.... no higher than p/2 .  

If 0'c > 0c, or 1'c > 1c then B' go to "oversize options". 
Otherwise:  

Step 4: compute:  

Δ0 = 0c - 0'c  
Δ1 = 1c - 1'c 

Add Δ0 '0' bits as a header according to the set forth 
"header protocol", and add Δ1 '1' bits as a trailer according 
to the set forth "trailer protocol.". The resultant header and 
trailer wrapped string B'* → B'*w is comprised of 0c bits of 
identity '0' and 1c bits of identity '1', and hence B'*w is a 
permutation of both B* and B*T. Namely, there exists a 
transposition key K't such that:  

B*T = TP ( B'*w, K't) 

Hence anyone holding B*T without holding Kt cannot 
conclude that B*T was generated from B*, and not from B'*. 
Every bit string sufficiently short will qualify as B' in the 
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preceding analysis. This includes B' comprised of a string of 
'NULLS'. In other words the size of B*, |B*|, and its 
Hamming weight, not its content, determines the range of 
candidate strings (B') that all qualify to be the string that 
generates B*T. It is this vastness of this range that 
determines the security of the cipher.  

When we combine this fact with the ability of the 
TEAM cipher user to increase the size of the TEAM- 
encoded version, (B*), of the original string B, at will (using 
as many NULL elements as desired, as well as wrapping the 
B with header and trailer as described ahead), we conclude 
that a transmitter of a message B using the TEAM cipher 
would be able to increase indefinitely the range of plaintext 
candidates that would encrypt to the transmitted ciphertext 
(B*). This is a very strong statement. Which in effect makes 
it unnecessary to use any more algorithmic protection for 
data. Using the TEAM cipher, security is achieved through 
investing in greater computational effort in terms of 
executing transposition of large bits strings and through 
handling and transmitting large ciphertext. This resource 
investment is decided ad hoc by the user, not the cipher 
designer or builder. Such shift of responsibility for the 
security of transmitted data is far reaching.  

OVERSIZE OPTIONS  

In the event that O'c > 0c, or 1'c > 1 c, then one can try 
a different way to parcel out B'. Otherwise, it is possible to 
increase the size of B through adding NULLs or through 
attaching larger headers and trailers. This can be done until 
0c and 1c are high enough, implying that the TEAM encoder 
has full control over the degree of equivocation that protects 
their transmission.  

A. Header/Trailer Wrapping 

The TEAM-encoded bit string B* over bit string B, 
may be wrapped with a leading header, HDR, and a trailing 
trailer TRL: B* → B*w = HDR-B*-TRL.  

The header will be in the form 00.....1. Namely h '0' 
bits followed by '1', where h=1,2,.... open ended.  

The trailer will be in the form 011.. 1. Namely l '1' bits 
followed by '0', where l = 1,2,.... open ended.  

The values of h and l are arbitrary, and determined by 
the encoder.  

As defined, the recipient of the wrapped string B*w 
will readily strip the header and the trailer to recover the 
unwrapped version, B*. To strip the header the recipient 
will remove all the leading zeros and the following '1'. To 

strip the trailer the recipient will remove all the trailing '1' 
and the preceding '0'.  

Wrapping allows the TEAM encoder to add as many 
'0' and '1' bits to the pre-transposed string, in order to pack 
the transposed list with the same number of '1' an '0' bits, or 
any other ratio.  

If headers and trailers are allowed then, at a minimum 
a single 0 added header and a single 1 added trailer will be 
needed to properly interpret the bit string.  

B. Encoding Considerations 

TEAM encoding creates an encoded string B* off a 
pre-encoded bit string B, such that the encoded size (bit 
count) is larger than the pre encoded size. We first examine 
this size-factoring.  

It is readily seen that the smallest increase in size will 
happen for a string comprised of n "0" bits: 00....0. Encoded 
as a single section, it will register v=0, r=n. Hence: B* = { 1 
"Q", (n+1) "Q"} where Q is a bit of either identity "1" or 
identity "0". Since there is only one section we may have 
opposite identities for the v and the r. Alternatively we 
could add a NULL element. and keep both the r bits and the 
v bits of same identity.  

So if B = 000000 then B* = { 0000000, 1} = 
00000001 or B* = B* NULL = 0000000101  

In the first way the size of B* is |B*| = n + 2, and the 
latter way it is |B*| = n + 2 + 2. Namely |B*| ~ |B|.  

The largest expansion happens for a string of n bits of 
identity "1": B =11......1. In the case where the string is 
referred to as a single section we have B* = {2n - 1 "Q", 1 
"Q"}. An exponential expansion: η = |B*|/|B| = 2n/n.  

The actual expansion, η, ranges between these two 
extremes:  

1 < η ≤ 2n 

When an n-"1" bits string B is divided to s subsections 
of equal size then the encoded version, B* counts: |B*| = s * 
2 n/s bits where the size decreases with rising value of s.  

To minimize the value of η for an arbitrary bit string, 
B, comprised of n bits, one should divide it to the maximum 
number of subsections: one-bit size each. We can write:  

for b=0 we have v=0, r=1, and hence b* = {Q, QQ}  
and for b=1 we have v=1, r=0, and hence b* = {QQ, Q}  
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where Q is a bit of either identity 1 or identity 0.  

Accordingly b* is three times the size of b: η = 3  

Analyzing subsections of size 2 bits:  

 
b  v r b*  
- - - - - - -  
00 0 2 Q,QQQ  
01 1 1 QQ,QQ  
10 2 0 QQQ,Q  
11 3 0 QQQQ,Q  

This is average size increase of η = 4.25  

for |b| = 3 the η will range from 5, (for 000, 001, 010, 
011) to 9 (for 111).  

C. Subsection Strategy 

The strategy for parceling the plaintext B to 
subsections is critical in determining the size increase of the 
ciphertext, B* = B*T over the plaintext B. We have seen 
above how large is this range. In practice the subsections 
may be of varying sizes. These size variety may be chosen 
through a randomization process, perhaps between two 
limits (upper and lower per subsection size). By using ad-
hoc randomness the security of the operation vastly 
increases. Yet, it can also be chosen in some deterministic 
way. In fact the very choice of the subsection sizes may be 
used to deliver a secondary hidden message to the intended 
recipient.  

D. Decoy Strategy 

The transmitter of a TEAM message may increase 
security by using a high η value -- a large ciphertext 
compared to the un-encoded plaintext. They can use two 
ready methods to inflate the ciphertext, and add so called 
'decoy bits'. One method is by peppering the message with 
NULL elements. A NULL element does not add anything to 
the message but it requires 2 bits to be expressed. With 
NULLs it is impossible to add at will more 0 bits than 1, or 
at will more 1 bits than 0. The alternative  method is headers 
and trailers where both '1' bits and '0' bits can be added in 
any desires number.  

The following string, E. is empty:  

E = 000000000001010101010101010101010111111  

because it is comprised a header, 10 NULLS, and a 
trailer: HDR NULL NULL NULL NULL NULL NULL 
NULL NULL NULL NULL TRL  

E = 000000000001 01010101010101010101 0111111 

The transmitter may 'hide' a message M in a series of 
empty transmissions E1, E2, .,,:  

E1 E2 ,....... Ei M Ei+1, E i+2 ......, Eq 

By applying sufficient decoys the transmitter may 
protect his message with any desired measure of security.  

II. OPERATION 

The transmitter of a TEAM enciphered message 
enjoys a great measure of control over the security of the 
sent message. The transmitter decides how much to pay, 
aware of how much security will be purchased. The price is 
rated with computational burden. Some of this burden may 
be alleviated through hardware, and some through 
communication channels and memory.  

TEAM security is based on a shared transposition key 
and a single transposition round, on encoding variety, and 
on decoy strategy. The larger the transposition list, the better 
the security. This size, depending on implementation, may 
be non pre-shared, namely unilaterally determined by the 
transmitter on account of the desired security. Same for the 
encoding scheme, and the decoy management, which are 
also unilaterally determined and feed on ad-hoc randomness. 
That means the transmitter who is in the best position to 
appreciate the security needs for its transmission, is the right 
agent to determine which encoding scheme to use and the 
degree of decoy defense. This determination may be made 
for each transmission. So that when a single key must be 
used over and over again, it can each time, be used with 
more protection through more elaborate encoding and more 
extensive decoy management. This is an important 
distinction relative to mainstay ciphers where security is 
built in to the published algorithm and is threatened by 
unpublished attack scheme. The TEAM user relies on ad-
hoc high quality randomness in desired quantities. Security 
shifts from the algorithm designer to the message 
transmitter; from well known cipher algorithm to unknown 
on-demand randomness.  

A. Unary Encoded Packaing 
The figure abreast shows how the payload (the 

ciphertext) is wrapped 
by a header and a trailer. 
The header has 6 
elements: (a). message 
start signal, (b) sender 
id, time of transmission, 
open fields, (c) encoding 
data, (d) transposition 
key indicators, (e) 
payload size, (f) header 



 

 5 

end indicator. The trailer is identified with four elements: 
(p) trailer start indicator, (q) transmission history, (r). 
signature (payload hash / header hash), (u). end of trailer 
indicator.  

 

 

 

B. Transposition Options 

We consider two methods. One is based on US Patent 
10608814, Equivoe-T, the other on hard-wired TSIC 
(Transposition Specific Integrated Circuits). Equivoe-T 
offers the advantage of having an integer as a key, which 
applies to any size of transposed list. This gives the TEAM 
user the advantage of choosing each time a different size of 
bit string to transpose. TSIC is much faster, but it is geared 
towards a fixed size bit string to be transposed. We will 
focus on the TSIC fixed size option. 

C. Fixed Size Transposition 

The advantage of fixed size transposition in hardware 
implementation is that it allows for hard wiring of the 
transposition operation to allow any permutation of n-items 
list to any other permutation of the same list. The issue here 
is that this transposition is fixed, and applies to a fixed size 
list.  

Size variety can still be applied over a range from 
some low threshold L, and high threshold H (bit count). Any 
size value X: L ≤ X ≤ H can be used for the payload, with 
the balance of H-X bits contributed through NULLs or 
through header or trailers, such that the pre-transposition 
size will always be H, which is the hard wired size.  

It can be implemented over a fixed size input and 
output, of n item, where some t fixed transposition wiring 
units are listed in order: T1, T2,.... Tt. These t transposition 
rounds are combined into a single device. The input to the 
combined device includes a designation of which u 
transposition units (among the available t transposition 
operations) are to be applied over the input to generate the 
respective output. This list of u items is the 'secondary 
transposition key', K*t. The first key is expressed in the 
hard-wired t units. This implies that a group can share the 
hard-wired device with t transposition units, but bilateral 
confidential communication within the group will be carried 
out via a secret shared secondary transposition key, which 
has a key space of 2t.  

Every processing round in the device may involve a 
randomized selection of the next K*t key, to be used in the 
next processing round in the device (the next application of 
the TSIC). Say the first payload P1 is comprised of the first 

message M1, and the secondary transposition key to be used 
for the next message: K*t1: P1 = M1 - K*t2. P1 will be 
transposed with the pre agreed first transposition key, K*1:  

P1
T = TP ( [M1-K*t2], K*t1) 

and then:  

P2
T = TP ( [M2-K*t3], K*t2) 

and so on for i=1,2,...  

Pi
T = TP ( [Mi-K*ti+1], K*ti) 

There are 2t combinations to select active units among 
the available t, so the key space for the secondary key is: 
|K*t| = 2t.  

The transposition can be hard wired to operate on 
individual bits or on sub-
strings of bits of equal size.  

The device input string 
S0 will enter the first hard 
wired transposition unit, T1, 
and come out transposed, S1. 
This output string, S1, will 
then encounter a decision 
node. If T2 is listed in K*t as a 
unit to be activated then S1 
will be fed into T2 for another 
round of transposition. If T2 is 
not listed in K*t then S1 will 
by pass the 2nd transposition 

unit and be routed to a similar decision before node T3. 
Every transposition unit will be preceded by a routing 
decision junction based on the value of K*t.  

The device will be built to allow for reverse 
transposition by simply reversing the input/output ports, 
using the same K*t.  

TSIC may feature, say, n=106 register bits, and t=1000 
transposition units, which will allow this device to be used 
in 21000 different ways: |K*t| = 21000 = 1.07 * 10301. 

 

D. Latchable TEAM cipher 

The transposition operation is the security hub of the 
TEAM operation. One may then implement it in a latchable 
device, to be bio-activated, and be latchable to a computer to 
provide specifically transposition and reverse transposition 
services only.  
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E. Decryption 

The recipient of the ciphertext (the transposed 
encoded message, B*T), will first reverse-transpose it, then 
decode it to extract the original message:  

B*T → B* → B 
 

F. TEAM hash 

Any bit string can be parceled out to substrings, such 
that each substring is comprised only of same identity bits. 
And if the number of such substrings divides by 4 then this 
string can be interpreted as TEAM-encoded off a smaller 
string. If the total number of such substrings does not divide 
by four then one could concatenate to it Q, QQ, or QQQ as 
required: " where Q is a bit of identity opposite the identity 
of the last bit in the string to which it is concatenated (or a 
similar solution). Hence if a string B is comprised of 37 
strings and the last string is 111, then QQQ is needed to 
make the count of subsections divide by 4, namely QQQ = 
010. This arbitrary string comprised of 4k same identity 
substrings (k=1,2,...) can be compressed to its TEAM-
decoded version. The compressed encoding can be further 
compressed iteratively. This 'decoding' process is not 
reversible because the corresponding encoding involves an 
arbitrary division of the decoded string to substrings.  

Let B0 be the original string, of size |B0|l bits. It can be 
compresses (as stated above, in a lossy way) to B1, which in 
turn can be compressed (decoded) to B2, and so on, string Bi 
may be compressed to string Bi+1 . This process may 
continue until a terminal string Bt comprised on NULLs. 
Unlike the typical hashing procedures, the TEAM hash does 
not end at a preset size, but it can be continued until the hash 
equals or is less than a threshold size. The resultant hash 
may be applied like the more common hash procedures.  

We designate dB as the TEAM-decoded version of 
string B. And so we can write: Bi = dBi-1 = djBi-j = diB0.  

Illustration: Let B0 = 11100110010001. B0 is 
comprised of 7 same-bit-identity strings: 111 00 11 00 1 000 
1. We need therefore to concatenate it with Q=0:  

B'0 = 111 00 11 00 1 000 1 0 

So dB' = b1 || b2 || b3 || b4, where:  

 
b1 = (v1 = 2, r1 = 0) = 10  
b2 = (v2 = 1, r2 = 2) = 001  
b3 = (v3 = 1, r3 = 0) = 1  
b4 = (v4 = 1, r4 = 0) = 1  

Thus: 

dB' = b1 || b2 || b3 || b4 = 10 001 1 1 

The original string is comprised of 14 bits, and the 
decoded one is comprised of 7 bits.  

Decoding again: dB' = 1 000 111 is comprised of 3 
same-bit-identity subsections, so Q=0 will have to be added 
to create a number of subsections that divides by 4:  

d(dB')' = d(1 000 111 0) = b1 || b2 

 
b1 = (v1 = 0, r1 = 2) = 00  
b2 = (v2 = 2, r2 = 0) = 10  

And hence:  

d(dB')' = d(1 000 111 0) = b1 || b2 = 0010 

To continue we need to add '1', and end up with a 
string with four subsections  

d(d(dB')')' = d(00 1 0 1) = b1 || b2 

 
b1 = (v1 = 1, r1 = 0) = 1  
b2 = (v2 = 0, r2 = 0) = NULL  

and hence:  

d(d(dB')')' = d(00 1 0 1) = b1 || b2 = 1 

To continue, we must add QQQ = 010  

d(d(d(dB')')')''' = d(1010) = b1 || b2 

 
b1 = (v1 = 0, r1 = 0) = NULL  
b2 = (v2 = 0, r2 = 0) = NULL  

 

G. Transposed HASH 

Any string in the series B0, B1, .... may be transposed 
before it is decoded. When these transpositions are carried 
out with a secret key, they create a secret hash.  

We write: Bi = H(Bi-1, Kt) = HBi-1 for i=1,2,.. 
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H. Implementation 

TEAM can be used generically wherever symmetric 
encryption is used. But it would be prominent for 
applications based on a latchable gadget fitted into a 
computer, and holding the TSIC chip. A similar chip will be 
useful for medical devices that are body implanted and are 
fine-tuned remotely. It is important to insure that these 
devices will not be mal-controlled. Alas, same devices use 
tiny battery and can't spare the energy to compute AES or 
alike.  

I. TEAM Security 

While common ciphertexts commit to their generating 
plaintext, and given enough cryptanalysis will yield their 
secret, a TEAM cipher will challenge its attacker with 
irreducible equivocation, the extent of which is determined 
by its user. This is a strong security statement.  

We have seen that given a plaintext P, the transmitter 
thereto will be able to render an arbitrary different plaintext, 
P' ≠ P to be an equally likely candidate for the generating 
plaintext. To do so, the transmitter may have to inflate the 
number of transposable zeros (0c) and the number of 
transposable 1 bits (1c) to a sufficient level. From a practical 
point of view this feature is equivalent to mathematical 
secrecy as defined by Claude Shannon.  

TEAM cipher equivocation security may be extended 
to repeat use of the same transposition key. Let a transmitter 
use the same transposition key, Kt, over q plaintext 
messages P1, P2, ..... Pq. For each transmission i ( i=1,2,...q) 
let an attacker have a list Li of plausible plaintexts for that 
transmission, where this list is compiled before the 
respective ciphertext is released. So a-priori the number of 
possible sets of q messages is: EQV = π |Li|. Since the 
transmitter can inflate the size of the pre-transposed string to 
any desired size, they can assure that given the q released 
ciphertext, there are likely to remain some desired number s, 
of transposition keys that will 
reduce the equivocation lists L1, 
L2, .... Lq to L'1, L'2,.....Lq, 
respectively where while for 
every i=l,2,...q there exists L'i < 
Li, the residual equivocation 
EQV'(s) = π |L'i| will be above a 
preset security threshold, S: 
EQV'(s) < S. In practice this 
implies that the user can control 
the security projection of their 
transmitted data. 

 

J. Outlook 

In the post-Coronavirus universe we expect to 
experience a proliferation of work-from-home practice. 
Bankers and confidential workers of all sorts will find it 
necessary to routinely communicate highly confidential data 
among distributed locations. This will pose new challenges 
before cyber technology. Security responsibility will have to 
shift to the transmitters of sensitive information. Not only 
content, but pattern will have to be concealed to enable the 
emerging, lasting work configurations. The new wave of 
Trans Vernam ciphers is well prepared to meet that 
challenge, and the TEAM cipher fits right in. 

 

 

 

III. REFERENCE 
1. US Patent 10,608,814 Equivoe-T: Transposition 

Equivocation Cryptography 
2. US Patent 10,523,642 Skeleton Network 
3. Samid “Randomness Rising The Decisive Resource in 

the Emerging Cyber Reality” 14th International 
Conference on Foundations of Computer Science 
(FCS'2018, Las Vegas, USA)  

4. Samid  “Shannon’s Proof of Vernam Unbreakability”  
https://www.youtube.com/watch?v=cVsLW1WddVI  

5. Shannon 1949: “Communication Theory of Secrecy 
Systems” 
http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf  

6. Smart: “Cryptography Made Simple” , Springer. � 
7. Vernam, US Patent 1310719, 13 September 1918.  
8. Williams 2002: “Introduction to Cryptography” Stallings 

Williams, http://williamstallings.com/Extras/Security-
Notes/lectures/classical.html  

 

 


