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Abstract
We study the problem of secure two-party computation of arithmetic circuits in the presence of active

(“malicious”) parties. This problem is motivated by privacy-preserving numerical computations, such
as ones arising in the context of machine learning training and classification, as well as in threshold
cryptographic schemes.

In this work, we design, optimize, and implement an actively secure protocol for secure two-party
arithmetic computation. A distinctive feature of our protocol is that it can make a fully modular black-
box use of any passively secure implementation of oblivious linear function evaluation (OLE). OLE is a
commonly used primitive for secure arithmetic computation, analogously to the role of oblivious transfer
in secure computation for Boolean circuits.

For typical (large but not-too-narrow) circuits, our protocol requires roughly 4 invocations of pas-
sively secure OLE per multiplication gate. This significantly improves over the recent TinyOLE protocol
(Döttling et al., ACM CCS 2017), which requires 22 invocations of actively secure OLE in general, or
44 invocations of a specific code-based passively secure OLE.

Our protocol follows the high level approach of the IPS compiler (Ishai et al., CRYPTO 2008, TCC
2009), optimizing it in several ways. In particular, we adapt optimization ideas that were used in the
context of the practical zero-knowledge argument system Ligero (Ames et al., ACM CCS 2017) to
the more general setting of secure computation, and explore the possibility of boosting efficiency by
employing a “leaky” passively secure OLE protocol. The latter is motivated by recent (passively secure)
lattice-based OLE implementations in which allowing such leakage enables better efficiency.

We showcase the performance of our protocol by applying its implementation to several useful in-
stances of secure arithmetic computation. On “wide” circuits, such as ones computing a fixed function
on many different inputs, our protocol is 5x faster and transmits 4x less data than the state-of-the-art
Overdrive (Keller et al., Eurocrypt 2018). Our benchmarks include a general passive-to-active OLE
compiler, authenticated generation of “Beaver triples”, and a system for securely outsourcing neural net-
work classification. The latter is the first actively secure implementation of its kind, strengthening the
passive security provided by recent related works (Mohassel and Zhang, IEEE S&P 2017; Juvekar et al.,
USENIX 2018).
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1 Introduction

Secure two-party computation (2PC) allows two parties to perform a distributed computation while protect-
ing, to the extent possible, the secrecy of the inputs and the correctness of the outputs. The vast body of
research on 2PC has mostly focused on the goal of computing Boolean circuits, combining an oblivious
transfer primitive with either garbled circuits [Yao86] or a secret-sharing based approach [GMW87, Kil88].
However, in many applications, the computation can be more naturally described by using arithmetic op-
erations over integers, real numbers, or other rings. For such instances of secure arithmetic computation,
general techniques for securely evaluating Boolean circuits (see, e.g., [MF06, LP07, NNOB12, WRK17]
and references therein) incur a very significant overhead [KSS12].

Some early examples of secure arithmetic computation arose in the contexts of distributed generation
of cryptographic keys [BF01, FMY98, PS98, Gil99] and privacy-preserving protocols for statistics and data
mining [CIK+01, LP02]. More recently, secure arithmetic computation has been used as a tool for privacy-
preserving machine learning applications [MZ17, LJLA17, JVC18]. Generally speaking, secure arithmetic
computation may provide the right tool for applications that involve numerical or algebraic computations
over integers or bounded-precision reals. For such applications, standard secure computation techniques
that apply to Boolean circuits are too inefficient.

Arithmetic computations may be conveniently represented using arithmetic circuits. An arithmetic cir-
cuit over a finite field F is similar to a Boolean circuit, except that the inputs and outputs are field elements
and the gates perform addition, subtraction and multiplication operations over F. While this model may
seem limited in its power, there are many techniques in the literature for reducing more general compu-
tation tasks to computation of arithmetic circuits over large fields. For instance, one can use techniques
from approximation theory to approximate common real-valued functions (such as inverse, logarithm, or
trigonometric functions) by small arithmetic circuits [LP02] or use efficient bit-decomposition techniques
for mixing Boolean and arithmetic computations [DFK+06, MR18]. In light of these techniques, arithmetic
circuits provide a broadly useful canonical model for representing secure computation tasks.

The main contribution of this work is the design and implementation of a concretely efficient secure
two-party computation protocol for arithmetic circuits. Our protocol is actively secure, providing security
against an active (malicious) adversary who corrupts one of the two parties, and yields significant efficiency
improvements over previous protocols of this type. In particular, our protocol has similar performance to
Overdrive [KPR18] in its worst case scenario (i.e. narrow circuits), but is up to 5 times faster and transmits
4 times less bits when used on typical “wide” circuits (see Section 5.2 for a discussion on wide circuits).
The latter captures the commonly occurring goal of evaluating the same function on a big number of inputs.

A distinctive feature of our protocol is that it can make a fully modular black-box use of any passively
secure implementation of oblivious linear function evaluation (OLE).1 This means that it can build on a
variety of existing or future implementations of passively secure OLE, inheriting their security and effi-
ciency features. To the best of our knowledge, our work gives the first working implementation of a general
“passive-to-active” compiler of any kind.

Given the multitude of optimization goals, security requirements, and execution platforms, such a mod-
ular design can have major advantages. For instance, if the lattice-based passively secure OLE we use for
our current implementation is improved in any way (e.g., by taking advantage of a GPU, by improving the
FFT algorithm, or even by plugging in an entirely new additively homomorphic encryption scheme based on

1An OLE protocol is a secure two-party protocol for computing the function ax+ b over F, where one party inputs a and b, and
the other inputs x and obtains the output. OLE is a commonly used primitive for secure arithmetic computation, analogously to the
role of oblivious transfer in secure Boolean computation [NP99, IPS09, ADI+17a].
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new assumptions), our final protocol will automatically inherit the performance gain without requiring any
modification. Finally, we demonstrate the usefulness of our compiler to construct actively secure computa-
tion based on weaker primitives. In particular, we construct actively secure OLE from passive OLE that are
imperfect (i.e., have a statistical privacy/correctness error) but potentially more efficient. For example, im-
perfect OLEs can be instantiated more efficiently than passive OLEs by aggressively setting the parameters
in lattice-based schemes.

1.1 Background and Related Work

We next provide some background on prior relevant works.

2PC in the OLE-hybrid. Oblivious linear function evaluation (OLE) can be viewed as an arithmetic gen-
eralization of oblivious transfer (OT). Recall that the OLE functionality computes ax + b, where x ∈ F is
the input of one party, who also gets the output, and a, b ∈ F are the inputs of the other party. OLE serves as
a natural building block for secure arithmetic computation. Indeed, when settling for passive security, any
arithmetic circuit can be evaluated in the OLE-hybrid (namely, using an ideal OLE oracle) by using only
2 OLE calls per multiplication gate [GMW87, IPS09]. Passively secure OLE (or “passive-OLE” for short)
can be directly realized using any additively homomorphic encryption, which in turn can be based on either
number theoretic assumptions or lattice assumptions (see [JVC18] for a survey of such constructions). Al-
ternatively, passive-OLE can also be efficiently realized under the assumption that noisy random codewords
of a Reed-Solomon code (with a sufficiently high noise rate) are pseudorandom [NP99, IPS09].

Trying to extend the OLE-based approach to active security, one encounters two difficulties. First,
upgrading passive-OLE to active-OLE typically involves a significant overhead. For a specific code-based
passive-OLE construction from [IPS09], the overhead has recently been reduced to 2x [GNN17]. However,
the underlying technique is quite specialized and does not seem to apply to the best current passive-OLE
protocols, such as the efficient lattice-based protocols from [JVC18]. A second difficulty is that even when
given an ideal (actively secure) OLE, securely evaluating general arithmetic circuits is nontrivial. The recent
TinyOLE protocol of Döttling et al. [DGN+17] tackles this problem via the following two-step approach: (1)
use OLE to implement instances of an “authenticated Beaver triples” functionality [BDOZ11, DPSZ12]; (2)
use instances of this functionality to evaluate a general arithmetic circuit. The optimized implementation of
this approach from [DGN+17] consumes 22 instances of active-OLE per multiplication gate. An alternative
approach for OLE-based 2PC using so-called “AMD circuits” [GIP+14] has a similar overhead. Finally, the
protocol from [IPS09] also implies a similar asymptotic result, but with a big constant overhead that has not
been optimized.

2PC in OT-hybrid. Another approach for arithmetic 2PC uses a bit decomposition for computing authenti-
cated triples based on oblivious transfer (OT). The MASCOT protocol of Keller et al. [KOS16] extends the
passively secure multiplication protocol of Gilboa [Gil99] using 15 log(|F|) active OTs per multiplication
gate. In a more recent work [FPY18], Frederiksen et al. extend this technique by employing additively-
homomorphic commitments, and reduce the number of active OTs per gate to 6 log(|F|) for a field F of
size O(2s), for s bits of statistical security. Generally speaking, the OT-based approach is quite efficient in
computation but involves a higher communication cost for secure arithmetic computation over large fields.

2PC based on semi-homomorphic encryption. Finally, the Overdrive protocol by Keller et al. [KPR18]
represents a third approach. Namely, it reduces the communication complexity of the MASCOT protocol for
two parties by a factor of 20 using special-purpose lattice-based proofs of knowledge dedicated for creating
authenticated triples.
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Our protocol builds on the high level approach of the IPS compiler [IPS08, IPS09], that in turn gen-
eralizes the MPC-in-the-head paradigm of [IKOS09]. In particular, we further develop optimization ideas
that were used in the context of the practical zero-knowledge argument system Ligero [AHIV17] and extend
them to the more general setting of secure two-party computation. We begin with a brief overview of the
MPC-in-the-head paradigm.

The virtual MPC or MPC-in-the-head paradigm. The work of Ishai et al. [IKOS09] introduced a novel
paradigm that allows compilation of MPC protocols to zero-knowledge proofs in a modular way. Gen-
eralizing this technique from zero-knowledge to secure computation, the work of Ishai, Prabhakaran and
Sahai [IPS08] provided an implementation of a m-party active secure computation protocols in the dishon-
est majority setting for an arbitrary functionality F by making black-box use of the following two weaker
ingredients: (1) a virtual honest-majority MPC protocol (referred to as an outer protocol) that securely real-
izes F with m clients and n servers, tolerating active corruption of a minority of the servers and an arbitrary
subset of the clients, and (2) a passively secure m-party protocol (referred to as an inner protocol) for a
“simpler” functionality tolerating an arbitrary number of corruptions.

This compiler, referred to as the “IPS compiler,” has several important properties. In particular, it in-
troduces a uniform framework that applies to both the two-party and multiparty settings, it implies excel-
lent asymptotic efficiency in some settings, and enjoys the flexibility of being instantiated with different
sub-protocols in a black-box way which implies different computation and communication overheads. Nev-
ertheless, despite its appealing features, the concrete efficiency of the IPS compiler has not been well es-
tablished. In fact, prior works argue bottlenecks in obtaining concretely efficient protocols based on this
compiler [LOP11, DGN+17]. The main drawback is the reliance on a large number of virtual servers in the
outer MPC protocol [LOP11] due to the implementation of the watchlist channels. This requirement is part
of an innovative mechanism that adds privacy and correctness to the passive protocol. Still, it constitutes the
main bottleneck towards making this compiler concretely efficient.

The practicality of MPC-in-the-head. With the aim of understanding the practicality of the IPS compiler,
Lindell et al. [LOP11] examined different practical aspects of this compiler. They introduced a tighter
analysis which reduced the number of virtual servers from O(m2 ·n) into O(m ·n), as well as improved the
watchlists setup mechanism. Their analysis highlighted the bottlenecks of this compiler towards making it
practical, arguing that the number of servers must be tightened to achieve better efficiency.

In the context of zero-knowledge protocols, the practicality of the MPC-in-the-head paradigm has been
demonstrated in several recent works [GMO16, CDG+17, AHIV17, KKW18]. More closely related to the
present work, Ames et al. [AHIV17] presented the first application of the paradigm that delivered a con-
cretely efficient and sublinear argument protocol for NP. In slightly more detail, the work of [AHIV17]
designed an optimized honest-majority MPC protocols where the amortized computation and communica-
tion per party was minimized and applied a tightened version of the the compiler presented in [IKOS09].

1.2 Our Contribution

In this paper, we design and implement a new actively secure two-party protocol for arithmetic circuits
by following the high-level approach of the IPS compiler. The main novelty in our work consists of (1)
designing a concretely efficient outer protocol, and (2) providing a tighter analysis of the IPS compiler to
obtain concrete parameters, and providing an implementation with benchmarks. Indeed, our outer protocol
has a similar high-level structure to the one implicit in Ligero [AHIV17]. However, the compilation from
(information-theoretic) MPC to 2PC is quite different from the one required for zero-knowledge and requires
a different analysis. In the case of zero-knowledge, soundness (for NO instances) and privacy (for YES
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instances) do not have to hold at the same time. When compiling for 2PC, we need soundness and privacy
to hold simultaneously. This affects the concrete analysis as well as the proof of security.

Following the IPS compiler, we rely on two building blocks: (1) an outer MPC protocol Π with 2 clients
(providing the inputs) and n servers (performing the computation) secure against an active corruption of a
minority of the servers and at most one client (cf. Section 4.1), and (2) an inner 2PC protocol secure against
passive corruptions. In the compiled protocol, the desired arithmetic functionality is realized by the outer
protocol, and the inner protocol is used to emulate the server’s computation in the outer protocol. The two
parties in the computation participate as clients in the outer protocol and use the inner protocol to securely
emulate the computation and communication in the outer protocol. A major technical part of our protocol
involves designing and optimizing a new outer protocol. For the inner protocol, we simply rely on the classic
[GMW87] protocol.

Optimizing the outer MPC protocol (Section 4.1). In the IPS compiler, the outer protocol begins with
the clients distributing its inputs via secret-sharing to the servers. The servers then compute the desired the
functionality on the shared inputs and deliver the shares of the outputs back to the clients. In our optimized
protocol, we rely on “share packing” (a.k.a packed secret-sharing) due to [FY92]. Packed secret sharing
extends Shamir’s secret sharing and allows sharing a block of w secrets within a single set of shares. We
will assume that the circuit is arranged in layers that contain each all addition or all multiplication gates.
In each phase of the protocol, the gates in a layer of the circuit are computed. At the beginning of each
layer, the parties arrange (pack) the shared secrets corresponding to the input wire values of that layer into
“left” and “right” blocks so that the left and right wire values of the gates are aligned in their corresponding
blocks. Next, the protocol proceeds layer by layer. For layers comprising of only addition gates, the shares
corresponding to their input blocks can be locally added by the servers. For multiplication gates, these
shares can be locally multiplied by the servers, which doubles the degree size of the encoding polynomial.
Therefore, a “degree reduction” step must be performed after each multiplication. Furthermore, the encoded
values of every computation layer must be rearranged between layers. In typical honest majority MPC
protocols, degree reduction and layer rearrangement with packed shares involve pairwise communication
between the servers using verifiable secret sharing. We will instead have the servers send the shares (after
masking the secret) to the two clients and have them perform the degree reduction / repacking. This reduces
the communication from quadratic to linear in the number of servers. Furthermore, this will result in an outer
protocol with no server-to-server communication which significantly simplifies the watchlist mechanism.

The IPS compiler requires the outer protocol to be secure against active corruptions. This means the
servers need to make sure that the degree reduction and repacking are done correctly in each layer, and that
the shares are valid. This is typically achieved through verifiable secret sharing that is expensive. Note
that it is sufficient for the IPS compiler to rely on an outer protocol that is secure with abort. To protect
against active adversaries in the outer protocol, we introduce three tests that need to be performed at the end
before the outputs are revealed. The first “degree test” (because the shares lie on some k-degree polynomial)
ensures that all the shares from all the layers are valid secret shares. The second “permutation test” ensures
that repacking in each step is performed correctly and finally, the third “degree reduction test” ensures
that the degree reduction step was performed correctly. These tests and ensuing analyses are inspired by
analogous tests from the work of [AHIV17].

Next, applying the IPS compiler, we combine our outer protocol with an inner protocol that is realized
here by the passive GMW [GMW87] protocol. This combination, yielding protocol Φ, is carried out by
having the parties of the inner protocol emulate the corresponding roles of the clients from Π as well as
emulating the virtual servers. As mentioned above, one of the simplifications of our outer protocol, which
greatly improves its description, implies that the servers do not need to communicate via private channels

5



and only communicate with the clients. Consequently, ensuring correctness via the watchlist mechanism is
much simpler, where the goal of using this mechanism is to enforce correctness by allowing each party Pi
to monitor the actions of the other party P1−i, making sure that P1−i follows the instructions of the outer
protocol Π.

Note that the overhead of the inner protocol is dominated by the number of servers and the numbers
of OLE calls, as these calls require interaction. By carefully optimizing the number of servers, we show
that for sufficiently wide circuits, our protocol only requires 4 amortized passively secure OLE calls per
multiplication gate.

Using imperfect OLE (Section 6). Another feature of our compiler is that it can tolerate an imperfect
passive OLE, namely one that has a non-negligible statistical privacy or correctness error. This security
feature can be turned into an efficiency advantage. For example, imperfect OLE can be implemented more
efficiently by aggressively setting the parameters in existing LWE-based OLE constructions.

Previous related privacy amplification results from the literature [MPR07, IKO+11, DDF19] relied on
a so-called “statistical-to-perfect lemma” to reduce a general leaky functionality to a simple one that leaks
everything with small probability but otherwise leaks nothing. (This is akin to the notion of covert secu-
rity in secure computation.) This simple kind of “zero-one” leakage is clearly tolerated by our compiler if
the leakage probability is low. Unfortunately, the leakage probability promised by the statistical-to-perfect
lemma grows linearly with the domain size of the functionality. In particular, when considering OLE proto-
cols over large fields, the lemma can only provide a meaningful security guarantee when the statistical error
is smaller than the inverse of the field size.

Towards better statistical error tolerance, we formulate a simple leaky OLE functionality that allows
the adversary to choose a subset of field elements called an exclusion set. The functionality leaks to the
adversary one bit of information specifying whether the honest party’s secret input belongs to this set. For
this model, we are able to prove that if the exclusion set is sufficiently small compared to the field size,
the imperfection is indeed tolerated by our compiler. To this end, we extend the work of Benhamouda et
al. [BDIR18] and establish a new result on the leakage resilience of Shamir’s secret sharing scheme in the
exclusion set regime, where less than one bit is leaked from each share. We conjecture that our analysis
for the simplified “exclusion set” model can be extended to general statistical leakage, in the sense that
an arbitrary ε-secure passive OLE is no worse (for our compiler) than leaky OLE with exclusion set of
fractional size O(ε). Proving or refuting this conjecture is left as an interesting question for future work.

Implementation. We implemented our main compiler and showcase its strength by benchmarking the appli-
cations described next. Our implementation relies on a recent lightweight passive OLE implementation due
to de Castro et al. [dCJV, Juv18] that is based on the LWE assumption. We implemented the authenticated
triples functionality and compared it with the recent work of Keller et al. [KPR18], which is considered
the state-of-the-art. We then give benchmarks for generating active OLE from passive OLE, as well as for
randomly generated circuits designed to showcase our end-to-end performance. The final benchmark is a
concrete use case that implements a simple secure neural network inference problem.

1.3 Applications

The protocol we design can be adapted and optimized for several use cases, which we present below.

Arithmetic 2PC with active security (Section 5.2). First, our protocol can be efficiently instantiated to
compute any functions expressed as an arithmetic circuit. Given an arbitrary passive OLE protocol, we
provide two instantiations:
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(1) For sufficiently “wide” circuits, our protocol can be used directly, requiring only 4 passive OLE per
multiplication gate in the computed circuit (in an amortized sense), where the OLE are used in a black-box
way.
(2) To compute arbitrary circuits, our protocol can be used (and further optimized) to realize the “authenti-
cated triples” functionality from [DGN+17] (whose circuit is itself wide). These triples can then be “con-
sumed” by the “online phase” of [DGN+17] to compute the original circuit. This combined protocol requires
an amortized 16 passive OLE per multiplication gate.

Black-Box active OLE from passive OLE (Section 5.3). Our second application is a concretely efficient
protocol for achieving OLE with active security from actively secure oblivious-transfer and passively secure
OLE in a black-box way where the computational and communication overheads are roughly twice of the
passive OLE instantiation in the amortized setting.

Privacy-preserving secure neural network inference (Section 5.4). In a concrete use case, we consider
a scenario where a party PCL wishes to classify private data based on a private machine learning model
trained by another party PML in an outsourced setting, with an untrusted set of cloud nodes performing the
computation. More formally, we consider the two-server model in which a party PML distributes its trained
model via additive secret sharing to two cloud nodes s1, s2. In the next classification phase, the servers obtain
a shared input from PCL and securely compute the result of the classification algorithm. The security of the
protocol is required to hold against any active adversary that corrupts at most one party and one server. This
model (or similar variants) is popular for outsourcing privacy-preserving machine learning computations
[MZ17, LJLA17]. Our work is the first to demonstrate a protocol for privacy-preserving machine learning
computation which achieves active security.

Providing security against active adversaries in this setting presents its own challenges beyond utilizing
an active secure protocol for the underlying functionality. In more details, party PML needs to be ensured
that the servers use the “right” inputs and do not abuse the valid input provided by PCL by adding to it a
carefully chosen small adversarial perturbation with the aim to change the prediction [TV16, KACK18].2

These types of attacks can be devastating when correctness of computation is crucial to the application, such
as in medical diagnosis and image classification for defense applications, and only arise in the presence of
active adversaries. To prevent them, we must incorporate an authentication mechanism that will guarantee
that the classification was obtained on the “right” inputs. To ensure this, we combine ideas originating from
[DPSZ12, GIP+14] to obtain a protocol that guarantees that either the answer is correct or indicates that one
of the servers behaved maliciously. We demonstrate the practicality of our implementation by implementing
a CNN with 3 layers with quadratic activation function as described in [JVC18].

Another challenge induced in such a scenario is the abuse on PCL’s side, which may choose its input in
some “bad format” that may allow to infer information about the model. We note that our protocol does not
provide this type of input certification and an additional mechanism must be provided. Furthermore, input
certification is a different task from input authentication. Where the former is performed with respect to the
input inserted by party PCL, whereas the later is performed with respect to the clouds’ computations.

Recently, there has been extensive literature showcasing machine learning computation with passive
security. For example, in [MZ17] the authors introduce SecureML, a system for several privacy preserving
machine learning training and classifications algorithms in the two-server model that run 2PC for arithmetic
computation. In [LJLA17], the authors develop MiniONN, a framework for transforming an existing neural
network to an oblivious neural network which protects the privacy of the model (held by a cloud) and the
client’s input in the predication phase. In [RWT+18], Riazi et al. present Chameleon, a system that supports

2We emphasize that relying on general secure two-party computation does not prevent such an attack. Even if one of the servers
is honest, the other server could perturb the input supplied by PCL.

7



Table 1: Recent 2PC secure ML implementations.

security model of activation
construction level computation methodology function

GC+GMW
Chameleon passive mixed additive SS non-linear

non-linear
Gazelle passive mixed FHE+GC & square

SEALion passive arithmetic FHE non-linear
MPC

LevioSA active arithmetic in-the-head square

hybrid secure computation in the two-party setting, which combines arithmetic computation over rings for
linear operations and Yao’s garbled circuits [Yao86] for the non-linear computation. Chameleon provides
training and classification for deep and convolutional neural networks. Juvekar et al. [JVC18] extends this
paradigm in GAZELLE for classifying private images using a convolutional neural network, protecting the
classification phase, and using homomorphic encryption scheme for carrying out the linear computation.
Finally, in a recent work by Elsloo et al. [vEPI19] the authors introduce SEALion, which is an improved
framework for privacy preserving machine learning based on homomorphic encryption. In the setting with
more than two parties, Wagh et al. [WGC18] introduced SecureNN, a tool for training and predication in the
three-party and four-party settings with honest majority. We summarize some of the recent implementations
in the two-party setting in Table 1.

2 Preliminaries

Basic notations. We denote a security parameter by κ. We say that a function µ : N → N is negligible
if for every positive polynomial p(·) and all sufficiently large κ’s it holds that µ(κ) < 1

p(κ) . We use the
abbreviation PPT to denote probabilistic polynomial-time and denote by [n] the set of elements {1, . . . , n}
for some n ∈ N. We assume functions to be represented by an arithmetic circuit C (with addition and
multiplication gates of fan-in 2), and denote the size of C by |C|. By default we define the size of the circuit
to include the total number of gates including input gates.

2.1 Layered Arithmetic Circuits

An arithmetic circuit defined over a finite field F is a directed acyclic graph, where nodes (or gates) are
labelled either as input gates, output gates or computation gates. Input gates have no incoming edges (or
wires), while output gates have a single incoming wire and no outgoing wires. Computation gates are
labelled with a field operations (either addition or multiplication),3 and have exactly two incoming wires,
which we denote as the left and right wire. A circuit with i input gates and o output gates over a field F

3Subtraction gates can be handled analogously to addition gates, and we ignore them here for simplicity.
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Functionality F t:nOT

Functionality F t:nOT communicates with sender S and receiver R, and adversary S.

1. Upon receiving input (sid, v1, . . . , vn) from S where vi ∈ {0, 1}κ for all i ∈ [n], record
(sid, v1, . . . , vn).

2. Upon receiving (sid, u1, . . . , ut) from R where ui ∈ {0, 1}logn for all i ∈ [t], send (vu1
, . . . vut

)
to R. Otherwise, abort.

Figure 1: The oblivious transfer functionality.

Functionality FOLE

Functionality FOLE communicates with sender S and receiver R, and adversary S.

1. Upon receiving the input (sid, (a, b)) from S where a, b ∈ F, record (sid, (a, b)).

2. Upon receiving (sid, x) from R where x ∈ F, send a · x+ b to R. Otherwise, abort.

Figure 2: The oblivious linear evaluation functionality.

represents a function f : Fi → Fo whose value on input x = x1, . . . , xi can be computed by assigning a
value to each wire of the circuit.

In this work, we will exploit an additional structure of the circuit. Specifically, the gates of an arithmetic
circuit can be partitioned into ordered layers l1, . . . , ld, such that i) a layer only consists of gates of the same
type (i.e., addition, multiplication, input or output gates belonging to the same party), and ii) the incoming
wires of all gates of layer i originate from gates in layers 0 to i− 1.

2.2 Oblivious Transfer

1-out-of-2 oblivious transfer (OT) is a fundamental functionality in secure computation that is engaged
between a sender S and a receiver R where a receiver learns only one of the sender’s inputs whereas the
sender does not learn anything about the receiver’s input. In this paper we consider a generalized version
of t-out-of-n OT where the receiver learns t values and which will be useful in establishing the watchlist
channels; see Figure 1 for its formal description.

2.3 Oblivious Linear Evaluation

An extension of the oblivious transfer functionality for larger fields is the oblivious linear evaluation func-
tionality (OLE). More concretely, OLE over a field F takes a field element x ∈ F from the receiver and a pair
(a, b) ∈ F2 from the sender and delivers ax + b to the receiver. Note that in the case of binary fields, OLE
can be realized via a single call to standard (bit-) 1-out-of-2 OT functionality; see Figure 2 for its formal
description.
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Functionality FCOM

Functionality FCOM communicates with with sender S and receiver R, and adversary S.

1. Upon receiving input (commit, sid,m) from S where m ∈ {0, 1}t, internally record (sid,m) and
send message (sid, S,R) to the adversary. Upon receiving approve from the adversary send sid, to
R. Ignore subsequent (commit, ., ., .) messages.

2. Upon receiving (reveal, sid) from S, where a tuple (sid,m) is recorded, send message m to adver-
sary S and R. Otherwise, ignore.

Figure 3: The string commitment functionality.

2.4 Commitment Schemes

Commitment schemes are used to enable a party, known as the sender S, to commit itself to a value while
keeping it secret from the receiver R (this property is called hiding). Furthermore, in a later stage when the
commitment is opened, it is guaranteed that the “opening” can yield only a single value determined in the
committing phase (this property is called binding). The formal description of functionality FCOM is depicted
in Figure 3.

2.5 Secret-Sharing

A secret-sharing scheme allows distribution of a secret among a group of n players, each of whom in a
sharing phase receive a share (or piece) of the secret. In its simplest form, the goal of secret-sharing is to
allow only subsets of players of size at least t+ 1 to reconstruct the secret. More formally a t+ 1-out-of-n
secret sharing scheme comes with a sharing algorithm that on input a secret s outputs n shares s1, . . . , sn
and a reconstruction algorithm that takes as input ((si)i∈S , S) where |S| > t and outputs either a secret s′

or⊥. In this work, we will use the Shamir’s secret sharing scheme [Sha79] with secrets in F = GF(2κ). We
present the sharing and reconstruction algorithms below:

Sharing algorithm: For any input s ∈ F, pick a random polynomial p(·) of degree t in the polynomial-field
F[x] with the condition that p(0) = s and output p(1), . . . , p(n).

Reconstruction algorithm: For any input (s′i)i∈S where none of the s′i are ⊥ and |S| > t, compute a
polynomial g(x) such that g(i) = s′i for every i ∈ S. This is possible using Lagrange interpolation
where g is given by

g(x) =
∑
i∈S

s′i
∏

j∈S/{i}

x− j
i− j

.

Finally the reconstruction algorithm outputs g(0).

Packed secret-sharing. The concept of packed secret-sharing was introduced by Franking and Yung in
[FY92] in order to reduce the communication complexity of secure multi-party protocols, and is an extension
of standard secret-sharing. In particular, the authors considered Shamir’s secret sharing with the difference
that the number of secrets s1, . . . , s` is now ` instead of a single secret, evaluated by a polynomial p(·) on `
distinct points. To ensure privacy in case of t colluding corrupted parties, the random polynomial must have
a degree at least t + `. Packed secret sharing inherits the linearity property from Shamir’s secret sharing
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with the additional benefit that it supports batch (block-wise) multiplications, which is very useful to achieve
secure computation with honest majority and constant amortized overhead [DI06]. For this reason we use
this tool in our optimized honest majority MPC protocol Π from Section 4.1 and leverage its advantages in
order to improve the overhead of Π.

2.6 Secure Multiparty Computation (MPC)

Secure two-party computation. We use a standard stand-alone definition of secure two-party computation
protocols. Following [HL10], we use two security parameters in our definition. We denote by κ a compu-
tational security parameter and by s a statistical security parameter that captures a statistical error of up to
2−s. We assume s ≤ κ. We let F be a two-party functionality that maps a pair of inputs of equal length to
a pair of outputs over some field F.

Let Π = 〈P0, P1〉 denote a two-party protocol, where each party is given an input (x for P0 and y
for P1) and security parameters 1s and 1κ. We allow honest parties to be PPT in the entire input length
(this is needed to ensure correctness when no party is corrupted) but bound adversaries to time poly(κ)
(this effectively means that we only require security when the input length is bounded by some polynomial
in κ). We denote by REALΠ,A(z),Pi

(x, y, κ, s) the output of the honest party Pi and the adversary A
controlling P1−i in the real execution of Π, where z is the auxiliary input, x is P0’s initial input, y is P1’s
initial input, κ is the computational security parameter and s is the statistical security parameter. We denote
by IDEALF ,S(z),Pi

(x, y, κ, s) the output of the honest party Pi and the simulator S in the ideal model
where F is computed by a trusted party. In some of our protocols the parties have access to ideal model
implementation of certain cryptographic primitives such as ideal oblivious-transfer (FOT) and we will denote
such an execution by REALFOT

Π,A(z),Pi
(x, y, κ, s).

Definition 1 A protocol Π = 〈P0, P1〉 is said to securely compute a functionality F in the presence of
active adversaries if the parties always have the correct output F(x, y) when neither party is corrupted, and
moreover the following security requirement holds. For any probabilistic poly(κ)-time adversaryA control-
ling Pi (for i ∈ {0, 1}) in the real model, there exists a probabilistic poly(κ)-time adversary (simulator) S
controlling Pi in the ideal model, such that for every non-uniform poly(κ)-time distinguisher D there exists
a negligible function ν(·) such that the following ensembles are distinguished by D with at most ν(κ) + 2−s

advantage:

• {REALΠ,A(z),Pi
(x, y, κ, s)}κ∈N,s∈N,x,y,z∈{0,1}∗

• {IDEALF ,S(z),Pi
(x, y, κ, s)}κ∈N,s∈N,x,y,z∈{0,1}∗

Secure circuit evaluation. The above definition considers F to be an infinite functionality, taking inputs of
an arbitrary length. However, our protocols (similarly to other protocols from the literature) are formulated
for a finite functionality F : Fα1 ×Fα2 → F described by an arithmetic circuit C (where the computation is
performed over a finite field F). Such protocols are formally captured by a polynomial-time protocol com-
piler that, given security parameters 1κ, 1s and a circuit C, outputs a pair of circuits (P0, P1) that implement
the next message function of the two parties in the protocol (possibly using oracle calls to a cryptographic
primitive or an ideal functionality oracle). While the correctness requirement (when no party is corrupted)
holds for any choice of κ, s,C, the security requirement only considers adversaries that run in time poly(κ).
That is, we require indistinguishability (in the sense of Definition 1) between

• {REALΠ,A(z),Pi
(C, x, y, κ, s)}κ∈N,s∈N,C∈C,x,y,z∈{0,1}∗
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Functionality FTRIPLES

Initialize: On receiving (init) from parties P0 and P1, the functionality receives from the adversary S
corrupting party Pi the value ∆i ∈ F, samples ∆1−i ← F and sends it to party Pi.

Prep: On receiving (Prep) from both parties, generate a multiplication triple as follows:
- Sample a, b← F and compute c = a · b.
- For each x ∈ (a, b, c), authenticate x as follows:

1. Receive corrupted party’s share xi ∈ F from S .

2. Sample honest party’s share x1−i ← F subject to x0 + x1 = x.

3. Run FAUTH(x0, x1), obtain ([x]0, [x]1) and forward to the corresponding parties.

Figure 4: The authenticated triples functionality.

• {IDEALF ,S(z),Pi
(C, x, y, κ, s)}κ∈N,s∈N,C∈C,x,y,z∈{0,1}∗

where C is the class of arithmetic circuits that take two vectors of field elements as inputs and output a field
element, x, y are of lengths corresponding to the inputs of C, F is the functionality computed by C, and the
next message functions of the parties P0, P1 is as specified by the protocol compiler on inputs 1κ, 1s,C. We
assume that C is arranged in d layers where each layer either contains multiplication or addition gates that
are computed over some field F. The size of the circuit C is written as |C|, and it is defined to be the number
of gates plus the number of wires. Its multiplicative depth refers to the number of multiplicative layers.

Secure multi-party computation. We will further consider multi-party protocols with honest majority.
Our protocol in this setting is presented in the client-server model, where 2 clients C0 and C1 distribute the
computation amongst n untrusted servers s1, . . . , sn such that only the clients have inputs and outputs. Our
main theorem is proven in the presence of an active adversary that statically corrupts one of the parties P0

or P1. Nevertheless, our proof of the honest majority outer protocol (from Section 4.1) utilizes an adversary
that may adaptively and actively corrupt a subset of at most e servers, as well as statically and passively
corrupt at most t of the servers.

Definition 2 (Consistent views) We say that a pair of views Vi, Vj are consistent (with respect to a protocol
Π and some public input x) if the outgoing messages implicit in Vi are identical to the incoming messages
reported in Vj and vice versa.

2.7 Omitted Functionalities

We specify the omitted functionalities for authenticated triples and batch OLE in Figures 4 and 5, respec-
tively.

3 An Overview of the IPS Compiler

The protocols presented in [IPS08] were designed based on a novel compiler that achieves malicious security
using the “MPC-in-the-head” paradigm. This powerful paradigm established (amongst other results) the
first constant-rate two-party protocol in the OT-hybrid model (which also generalizes to a constant number
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Functionality FAUTH

This subroutine of FTRIPLES uses the global MAC keys ∆0,∆1 stored by the functionality.

On input (x0, x1), authenticate the share xi ∈ F, for each i ∈ {0, 1}, as follows:

For a corrupt Pi: receive a MAC mi ∈ F and a key ki ∈ F from S and compute the key k1−i =
mi + xi ·∆1−i and the MAC m1−i = ki + x1−i ·∆i.

Finally, output (xi, {ki,mi} to party Pi for each i ∈ {0, 1}.

Figure 5: The authenticated strings functionality.

Functionality FBOLE

Functionality FBOLE communicates with sender S and receiver R, and adversary S, and is parameterized
by an integer m.

1. Upon receiving the input (sid, (a1, b1), . . . , (am, bm)) from S where ai, bi ∈ F for every i ∈ [m],
record (sid, (b1, b1), . . . , (am, bm)).

2. Upon receiving (sid, x1, . . . , xm) from R where xi ∈ F for every i ∈ [m], send aix + bi to R for
all i ∈ [m]. Otherwise, abort.

Figure 6: The batch oblivious linear evaluation functionality.

of parties),4 as well as the first black-box constant round protocol with no honest majority. These generic
protocols securely realize an arbitrary functionality F with active security, and while making black-box use
of the following two ingredients: (1) an active MPC protocol which realizesF in the honest majority setting,
and (2) a passive MPC protocol in the dishonest majority setting that realizes the next-message function ρ
defined with respect to the players that participate in (1).

We briefly recall the details of the IPS compiler in the two-party case. We start with a multiparty
protocol among 2 clients and n additional servers (s1, . . . , sn) that is information-theoretically secure when
a majority of the servers are honest. This is referred to as the outer protocol. This outer protocol is simulated
by the actual parties P0 and P1 via a two-party protocol secure against passive adversaries which is referred
to as the inner protocol. The high-level approach is to make P0 and P1 engage in n sub-protocols ρ1, . . . , ρn
where in ρj , the parties jointly compute the next message of server sj . In typical instantiations of this
compiler the (simulated) servers do not have any input whereas the clients C0 and C1 share their inputs with
the n servers via a verifiable secret sharing scheme. Then, P0 and P1 respectively emulate the roles of C0

and C1, and for every step in the computation of server sj , securely execute its next message function using
ρj to produce the next message of sj , which is secret shared between the parties. In this work, this emulation
can be carried out by invoking the OLE functionality. Moreover, each server’s state is not available to any of
the parties. Instead, it is shared amongst them using an additive secret sharing scheme, for which the parties
keep updating via the two-party inner protocol ρj .

While the outer protocol is secure against active adversaries, the inner protocol is secure only against
passive adversaries. Therefore, there needs to be a mechanism for a party to enforce honest behavior of the

4Where the communication complexity of this protocol is O(|C|)+poly(κ, d, |C|) for C the computed circuit with depth d and
κ the computational security parameter.
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other party. To handle this issue, a novel concept called watchlists was introduced by [IPS08]. In essence,
each party gets to check the other party’s behavior on a subset of the servers that are on its watched list.
To do so, P0 and P1 generate each n keys, and party Pi uses key kij throughout the protocol to encrypt the
randomness it uses in ρj and send it to the other party. Each party Pi knows only t of the keys of the other
party (for some parameter t that will be fixed later), and can thus check that the ρj was executed honestly for
those t servers, by checking that the messages sent by P1−i as part of ρj are consistent with the encrypted
randomness they received. In this work we implement this mechanism using actively secure t-out-of-n OT
to exchange the keys between the parties. Note that the number of “watched” servers t should be carefully
chosen as it should not be too high to avoid compromising the privacy of the outer protocol, whereas it
cannot be too low to allow catching misbehavior of each party with sufficiently high probability. It was
shown in [IPS08] that in the two-party setting n = O(κ) servers is sufficient. In this work we provide a
concrete analysis of this mechanism.

4 Actively Secure Arithmetic 2PC

In this section, we provide our main protocol that achieves secure two-party computation for arithmetic
circuits against active adversaries. Our protocol is an instantiation of the IPS compiler [IPS08] with op-
timized components and a tighter analysis. While the inner protocol can be typically instantiated with the
classic GMW protocol [GMW87] that employs any passively secure protocol for the OLE functionality (cf.
Figure 2), the outer protocol may be instantiated with different honest majority protocols that dominate the
communication complexity of the combined protocol and introduce other properties. For the purpose of
feasibility results, the classical BGW protocol [BGW88] can be used as the outer protocol, whereas the
instantiation with [DI06] induces a constant-rate protocol for a constant number of clients. Another useful
instance is obtained from the constant round protocol from [DI05] that makes black-box access of the pseu-
dorandom generator, yielding a dishonest majority protocol with the same features. In this work, we refine
this approach by providing a concrete and optimized outer protocol for a slight variant of the IPS compiler
with a tighter analysis while extending ideas from [AHIV17].

4.1 Our Optimized Outer Protocol

In this section we present our optimized outer protocol in the honest majority setting which involves two
clients C0 and C1 and n servers. We consider a protocol variant where we allow the servers in the outer
protocol to have access to a coin-tossing oracle FCOIN which upon invocation can broadcast random values
to all servers. When compiling this variant, this oracle is implemented via a coin-tossing protocol executed
between the clients (cf. Figure 9). A crucial ingredient in our construction is the use of Reed-Solomon
codes as a packed secret sharing scheme [FY92] (as defined in Section 2.5). We start by providing our
coding notations and related definitions.

Coding notation. For a code C ⊆ Σn and vector v ∈ Σn, denote by d(v, C) the minimal distance of v from
C, namely the number of positions in which v differs from the closest codeword in C, and by ∆(v, C) the
set of positions in which v differs from such a closest codeword (in case of a tie, take the lexicographically
first closest codeword). We further denote by d(V,C) the minimal distance between a vector set V and a
code C, namely d(V,C) = minv∈V {d(v, C)}.

Definition 3 (Reed-Solomon code) For positive integers n, k, finite field F, and a vector η = (η1, . . . , ηn)
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Parameters. Public parameters of the protocol include the block width w, the soundness amplification
parameter σ, a RS code L = RSF,n,k,η and a vector ζ = (ζ1, . . . , ζw) used to encode/share blocks of values.
Client C0’s input is x = (x1, . . . , xα1

) and client C1’s input is y = (y1, . . . , yα2
). The clients and the n servers

share a description of an arithmetic circuit C : Fα1 × Fα2 → Fα3 × Fα4 that implements F , partitioned into
layers and blocks of gates.
Invariant. The execution maintains the invariant that, when evaluating blocks in layer i, the servers collectively
know encodings of the blocks of values for the previous layers. Moreover, the two clients know each a
2-out-of-2 additive share of such blocks of values.
1. Input sharing. For each of their own input layers, the clients C0 and C1 arrange their input values into blocks
of length at most w, and distribute L-encodings of such blocks among the servers. Moreover, each client
generates additive shares of their own input values, send one share to the other party and keep the other one for
themselves for the computation.
2. Evaluating computation layers. The parties process blocks of gates layer by layer. To process a block of
gates G in level i, they perform the following steps:
– 2.1 Generate encodings of the inputs of a block. The clients generate additive shares of the block of values
BGL = (v1, . . . , vw) which contains the values of the left wires of the gates in G. Since each such value vj
originates from a gate in a previous block, each client Ci already knows an additive sharing vij of vj (so that
v0j + v1j = vj), and so can simply rearrange these additive shares according to the order of the wires in G. Each
client then generates an L-encoding of its block (vi1, . . . , v

i
w) of additive shares, and distributes this encoding to

the servers. Each server can sum the encodings received by each client, which gives a share of an L-encoding of
BGL . Similarly, the servers obtain an encoding of BGR .
– 2.2a Addition/Subtraction. Blocks of addition/subtraction gates are handled without interaction. Namely,
each server adds/subtracts its shares of left and right blocks to obtain an L-share of the block BGO of values of the
gates in G. Clients can sum the additive shares of their blocks to obtain additive shares of the output as well.
– 2.2b Multiplication. Each server sQ multiplies its encodings lQ and rQ of BGL and BGR to obtain an encoding
o′Q = lQrQ of BGO . If the original encodings belong to L = RSF,n,k,η , then the product of the encodings
(o′1, . . . , o

′
n) ∈ L′ = RSF,n,2·k,η . The parties then perform a degree reduction, so that the servers obtain a fresh

L-encoding of BGO . In particular, each server generates a random additive share of o′GQ, by sampling a0Q, a
1
Q such

that a0Q + a1Q = o′
G
Q, and sends a0Q to C0 and a1Q to C1. The clients treat the (ai0, . . . , a

i
n) as an encoding in

RSF,n,n,η , and decode it to obtain each an additive share of BGO . Then, the clients generate fresh L-encodings of
these values and distribute them among the servers. The servers sum the two encodings received by each client
to obtain an L-encoding of BGO .
3. Generate encodings of output blocks. The parties can obtain each an additive share or a share of an
encoding of an output block analogously to how they do so for encodings of BGL in step 2.1.
4. Correctness tests. See Figure 8.
5. Output reconstruction. Each server sends to each client its shares corresponding to the output blocks of that
client. The clients decode (reconstruct) the output blocks and obtain the final outputs. If the received shares do
not form a valid codeword in L, the client aborts.

Figure 7: Optimized Outer Protocol Π.
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The parties perform each of the following tests σ times.
Degree test. This test verifies that all the L-encodings of the blocks collectively held by the servers are valid
codewords, namely belong to L. We recall that, for multiplication gates, we do not consider the encodings
(o′

G
1 , . . . , o

′G
n ) directly resulting from the multiplication the servers perform (and before the degree reduction),

as those encodings belong to L′.
The clients first distribute fresh L-encodings z0 = (z01 , . . . , z

0
n) and z1 = (z11 , . . . , z

1
n) of randomly sampled

values among the servers. Let U ∈ Lm+2 denote the matrix that contains z0 = (z01 , . . . , z
0
n), z1 = (z11 , . . . , z

1
n)

as the first two rows and the m blocks B2, . . . , Bm+1 to be tested as the remaining rows. The servers then
receive a vector r ∈ Fm+2 of m+ 2 random field elements from the coin-tossing oracle FCOIN and locally
compute l = rTU . That is, each server sc, who holds the Q-th component of each encoding and therefore the
column Uc, locally computes lc = rTUc and broadcasts lc to all other parties. The servers collect the vector
l = (l1, . . . , ln) and abort if l 6∈ L.
Permutation test. This test ensures that the constraints between the L-encodings of different blocks held by the
servers are respected (i.e. that steps 2.1 and 3 are performed honestly). In particular, the test verifies that the
encodings of the left and right input blocks of each computation layer correctly encode the values from the
previous layers (and similarly for the output blocks). Note that the set of constraints that the blocks of values
have to satisfy can be expressed as a set of linear equations in at most nw equations and nw variables, where
variable xi,j represents the j-th value of the i-th block. (For example, if the circuit had a wire between the 3rd
value of the 2nd block and the 5th value in the 3rd block the constraints would be x2,3 − x3,5 = 0.) These linear
equations can be represented in matrix form as Ax = 0mw, where A ∈ Fmw×mw is a public matrix which only
depends on the circuit being computed. The test simply picks a random vector r ∈ Fmw and checks that
(rTA)x = 0. To check these constraints, the clients first distribute the vectors z0 = (z01 , . . . , z

0
n) and

z1 = (z11 , . . . , z
1
n) that encode random blocks of values that sum to 0 in RSF,n,k+w,η . The servers then receive a

random vector r ∈ Fmw plus two elements b0, b1 from the coin-tossing oracle FCOIN and compute

rTA = (r11, . . . , r1w, . . . , rm1, . . . , rmw).

Now, let ri(·) be the unique polynomial of degree < w such that ri(ζc) = ric for every c ∈ [w] and i ∈ [m].
Then server sc locally computes lc = (r1(ζc), . . . , rm(ζc))

TUc + b0z
0
c + b1z

1
c and broadcasts it to the other

servers (where UQ is the vector which in position i has the Q-th component of the encoding of the i-th block
being tested). The servers collect the values and abort if l = (l1, . . . , ln) 6∈ RSF,n,k+w,η or x1 + · · ·+ xw 6= 0
where x = (x1, . . . , xw) = Decodeη(l).
Equality test. In the equality test, the parties check that the degree reduction step was performed correctly. This
procedure is similar to the permutation test but simpler. Namely, the clients distribute two vectors z0, z1 which
encode 0w in RSF,n,k+w,η . Then, the servers receive r ∈ Fmw, b0, b1 from the coin-tossing oracle FCOIN and
compute the polynomials ri(·) that encode (ri1, . . . , riw) as above. Next, each server constructs two vectors UQ
and VQ where UQ contains the Q-th components of the encodings in (L′)m and VQ contains the fresh encodings
after the degree reduction, namely in Lm. Server sc computes

lc = (r1(ζc), . . . , rm(ζc))
TUQ − (r1(ζc), . . . , rm(ζc))

TVQ + b0z
0
c + b1z

1
c

and broadcasts lc. The servers then collect these values and abort if l 6∈ L′ or if it does not encode the all 0s
block.

Figure 8: Correctness Tests for Protocol Π
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∈ Fn of distinct field elements, the code RSF,n,k,η is the [n, k, n − k + 1]-linear code5 over F that consists
of all n-tuples (p(η1), . . . , p(ηn)) where p is a polynomial of degree < k over F.

Definition 4 (Encoded message) Let L = RSF,n,k,η be an RS code and ζ = (ζ1, . . . , ζw) be a sequence of
distinct elements of F for w ≤ k. For u ∈ L we define the message Decodeζ(u) to be (pu(ζ1), . . . , pu(ζw)),
where pu is the polynomial (of degree < k) corresponding to u. For U ∈ Lm with rows u1, . . . , um ∈ L, we
let Decodeζ(U) be the lengthmw vector x = (x11, . . . , x1w, . . . , xm1, . . . , xmw) such that (xi1, . . . , xiw) =
Decodeζ(u

i) for i ∈ [m]. We say that u L-encodes x (or simply encodes x) if x = Decodeζ(u).

Moreover, we recall that Decodeζ(·) is a linear operation, i.e. for any a, b ∈ Fn (even if a, b not in L),
Decodeζ(a+ b) = Decodeζ(a) + Decodeζ(b).

In this protocol, the computation will be performed by the servers by operating on multiple gates at a
time. We assume that the parties agree on a way to split the gates in each layer of the arithmetic circuit
into groups of at most w gates. We refer to each group as a block and to w as the block width. During the
evaluation of the protocol on a specific input, we can associate to each block of gates G a vector (block)
of w values BG

O , which contains in position i the value that the i-th gate of the block is assigned with as
part of the evaluation (or 0 if the block has less than w gates). Moreover, for blocks of computation gates,
we can associate two additional blocks: the left block BG

L , which contains in position i the value of the
left predecessor of the i-th gate in the block, and the right block BG

R , which contains the values of the right
predecessors. In other words, the value of the i-th gate of a multiplication (resp. addition) block can be
expressed as (BG

O)i = (BG
L )i(B

G
R)i (resp. (BG

O)i = (BG
L )i + (BG

R)i).
In the protocol, the servers will collectively compute on Reed Solomon encodings (packed secret shares)

of these blocks. The protocol parameters include a description of L = RSF,n,k,η and a vector of elements
ζ = (ζ1, . . . , ζw) ∈ Fn to be used for decoding. We say that the servers collectively hold shares of a block
of values B ∈ Fw to mean that server sQ holds value lQ in such a way that B = Decodeζ(l1, . . . , ln).
Analogously, saying that a client shares a block of valuesB among the servers means that the client samples
a random codeword (l1, . . . , ln) in L which encodes B and sends lQ to server sQ. This sampling is achieved
by choosing a random polynomial pB(·) of degree smaller than k such that (pB(ζ1), . . . , pB(ζw)) = B. We
further say that a codeword l ∈ L encodes a block of secrets that sum up to 0 if (x1, . . . , xw) = Decodeζ(l)
and

∑w
i xi = 0. A codeword l ∈ L encodes the all 0’s block if (0, . . . , 0) = Decodeζ(l).

A formal description of our protocol is given in Figures 7, 8.

Theorem 1 Let k, t, e, w, n be positive integers such that k ≥ t + e + w, e < d/3, and 2k + e < n,
and let F : Fα1 × Fα2 → Fα3 × Fα4 be a two-party functionality, then protocol Π from Figure 7 securely
computes F between two clients and n servers, tolerating adaptive adversaries that actively corrupt at most
one client, e servers and passively corrupt at most t servers, with statistical security of (d+ 2)/|F|σ where
σ is a soundness amplification parameter and d = n− k + 1 is the distance of the underlying code.

Proof: Given an adversary A that corrupts one client and at most e servers, we describe our simulator S
and argue security. Since the actions of the clients are symmetric, it suffices to provide the simulation for
the case that A corrupts C0.

A description of the simulator. To simulate the view of C0, the simulator needs to generate all the messages
received by C0 from the honest client C1 and the not-actively-corrupted servers. Recall that the adversary is
allowed to adaptively corrupt up to t servers passively and e servers actively. Whenever a corruption occurs,
the simulator is required to produce the current view of these servers.

5We denote by [n, k, d]-linear code a linear code of length n, rank k and minimum distance d.
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The simulator begins the simulation by setting the inputs of the honest client C1 to all 0’s and simulates
the actions of C1 and all the uncorrupted servers honestly up until the end of the degree, permutation and
equality tests. Next, the simulator checks the following correctness conditions, and aborts if any of them is
not satisfied:

1. Let Sdeg denote the set of servers that are honest at the end of the degree test. Consider the matrix
USdeg

which contains as rows the shares (encodings) of all the blocks collectively held by the (sim-
ulated) servers in Sdeg during the protocol execution, except for the ones obtained after processing
multiplications (namely, in step 2.2b before the degree reduction). Note that USdeg

is a sub-matrix
of the one defined in the degree test. We require that this matrix is a valid codeword in L̂m where
L̂ = RSF,|Sdeg|,k,ηSdeg

. In particular, each row of this matrix can be decoded to a set of unique values
which can be associated with gates in the computation of the circuit.

2. We require that the degree reduction step is performed correctly. In more detail, we require that
condition 1 holds and that for each 3 rows u1, u2, u3 of USdeg

which encode blocks of values v1, v2, v3

representing the left inputs, right inputs, and outputs of a block of multiplication gates respectively,
it holds that v1 · v2 = v3 (where · denotes component-wise multiplication). Note that condition 1
guarantees that the encodings are valid and the values well defined.

3. We require that condition 1 holds, and that the relations between the gate/wire values induced by
the circuit structure (described in figure 8 as part of the permutation test) are respected by the values
obtained by decoding the rows of USdeg

.

If all the conditions are satisfied, the simulator proceeds to the output phase where the shares of the
output encodings sent from the honest servers to C0 are altered. More precisely, the simulator obtains C0’s
inputs by decoding the vectors corresponding to the input blocks shared by C0 held by the servers in Sdeg.
Since at this point all the vectors are valid codewords, valid input blocks can be decoded. The simulator
sends C0’s inputs to the ideal functionality and receives its output Y , which it then arranges in blocks of
values y analogously to what is done in the protocol. Next, the simulator needs to provide the field elements
transmitted by every honest server sc corresponding to each output block y. Let uSdeg

be a row in USdeg

corresponding to such output block for C0, which encodes a specific block of values x = Decodeζ(u)
different from y (as the simulator simulated the view of the adversary using 0’s as inputs for C1). The
simulator computes z = y − x and a random codeword v ∈ L such that Decodeζ(v) = z where the entries
in v that correspond to the currently (actively and passively) corrupted servers are set to 0. This is always
possible because at most t + e servers are corrupted by the adversary and the dimension of the code is
k ≥ t+ e+ w. Finally, the simulator sends vc + uc on behalf of a honest server sc as the component of the
encoding that corresponds to y.

Proof of indistinguishability. We argue security by a sequence of hybrid arguments. Consider the following
hybrid games:

• H0: This game is a real execution of the protocol.

• H1: In this hybrid, we introduce a simulator which simulates all honest parties as in H0, In addition,
the simulator aborts the execution whenever all the 3 tests pass, but the 3 correctness conditions
described above are not satisfied.

• H2a: This hybrid is defined as hybrid H1, except that the output of the degree test is simulated to
make it independent from the rest of the protocol execution conditioned on being consistent with
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the adversary’s view up to this point. In particular, let Sh be the set of servers that were honest at
the point of the degree test where FCOIN is invoked, and let USh

be defined analogously to USdeg
in

correctness condition (1), but adding two extra rows at the bottom for the encodings of the two random
blocks z0, z1 sent by each of the clients at the beginning of the degree test. Note that Sdeg ⊆ Sh.
Recall that each row in the USh

matrix is obtained either directly from the client or is the sum of the
vectors obtained from the clients. Therefore, we can write USh

= U0
Sh

+ U1
Sh

, where U iSh
contains the

components of the values of USh
sent by client Ci to the honest servers. Moreover, the simulator also

knows U1, which extends U1
Sh

to include the shares sent by the simulator on behalf of the honest client
to the corrupted servers. At the end of the degree test, instead of broadcasting lc = rT (USh

)c on behalf
of each sc in Sh, the simulator samples at random a codeword z in L (encoding random values) such
that for each corrupted server sj , zj = (rTU1)j . Then, the simulator broadcasts lc = rT (U0

Sh
)c + zc

on behalf of each honest server sc. Moreover, if the adversary later corrupts any additional server sc,
the shares z1

c received by such server sc from C1 as part of the degree test (i.e. the last entry in (U0
Sh

)c)
is updated to be z1

c = 1
rm+2

(lc −
∑m+1

i=j rj((USh
)c)j).

• H2b: This hybrid is defined as H2a, except that the output of the permutation test is altered to make
it independent from the rest of the protocol execution conditioned on being consistent with the adver-
sary’s view up to this point. This is done analogously to the previous hybrid, except that z is now an
encoding of degree smaller than k + w of a block of random values that sum to 0.

• H2c: This hybrid is defined as H2b, except that the output of the equality test is altered to make it
independent from the rest of the protocol execution conditioned on being consistent with the adver-
sary’s view up to this point. This is done analogously to the previous hybrids, except that z is now an
encoding of degree smaller than 2k of a block of 0s.

• H3: This hybrid is defined asH2c, except that the shares of the output blocks sent by the honest servers
to the malicious client follows the code of the actual simulation (as described above). In more details,
the output of the function is first computed honestly based on the honest party’s true input and the
input for the malicious party extracted from the encodings of its input blocks. Then, the components
of the encodings sent by the honest servers to the malicious parties are adapted accordingly to this
output.

• H4: This hybrid is defined as H3, but the protocol is executed using 0s as inputs for the honest client
C1 (in the last step, the shares of the output blocks sent to the malicious client are still computed using
C0’s true input)

• H5c: This hybrid is defined as H5b, except that the output of the equality test is altered analogously to
the definition of H2c.

• H5b: This hybrid is defined asH5a, except that the output of the permutation test is altered analogously
to the definition of H2b.

• H5a: This hybrid is defined as H6, except that the output of the degree test is altered analogously to
the definition of H2a.

• H6: This is an ideal execution of the protocol, where the simulator described above interacts with the
adversary and the ideal functionality for F .
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To prove security, we need to argue that the outputs of H0 and H6 cannot be distinguished with proba-
bility better than (d+ 2)/|F|, where d = n− k+ 1 is the minimum distance of L. We will do so by arguing
that H0 and H1 cannot be distinguished with probability better than (d + 2)/|F|, and that all other hybrids
are statistically indistinguishable.

H0 and H1 can be distinguished only if the simulator aborts when all the correctness tests pass but the
correctness conditions are not satisfied. The probability of this happening can be bounded by (d + 2)/|F|
based on the soundness properties of these tests, analogously to what is done in [AHIV17] and adapted to
the two-party setting.

Condition 1: We will bound the probability that the degree test passes given that condition 1 is not
satisfied. Consider the point of the execution before FCOIN is invoked as part of the degree test. Let edeg′ be
the number of actively corrupted servers at that point, Sdeg′ be the set of the remaining servers, and USdeg′

be defined analogously to USdeg
in correctness condition (1), but adding two extra rows at the bottom for the

encodings of the two random blocks z0, z1 sent by each of the clients at the beginning of the degree test.
Note that Sdeg ⊆ Sdeg′ . Moreover, note that even if the simulator does not know the values of the columns of
USdeg′ corresponding to passively corrupted parties, such values (and therefore the matrix) are well defined
since these parties follow the protocol honestly. Moreover, let LSdeg′ = RS|Sdeg′ |,k,ηSdeg′

, let e′ = e−edeg′ be

the number of servers the adversary can still actively corrupt, and let l = rTUSdeg′ be the encoding (defined
by USdeg′ and by the output r of FCOIN) which the servers in Sdeg′ would broadcast at the end of the degree
test. Since we know the degree test passes, this encoding l can be at most e′ far from LSdeg′ (since otherwise
the adversary will have to corrupt more than e′ servers before such broadcast to make the degree test pass).
We have two cases, depending on wether d(USdeg′ , L

m+2
Sdeg′

) > e′. If d(USdeg′ , L
m+2
Sdeg′

) > e′, then the following
lemma (proven in [AHIV17]) can be used to bound the probability that d(l, LSdeg′ ) ≤ e′ by d/|F| (where
d = n− k + 1). This also bounds the probability that the degree test passes.

Lemma 1.1 [AHIV17] Let L = RSF,n,k,η and e a positive integer such that e < d/3, where d is the
minimum distance of L. Suppose d(U,Lm) > e where U is as defined as above. Then, for a random l∗ in
the row-span of U , it holds that

Pr[d(l∗, L) ≤ e] ≤ d/|F|.

Consider the case where d(USdeg′ , L
m+2
Sdeg′

) ≤ e′. In this case, we prove that if i ∈ ∆(USdeg′ , L
m+2
Sdeg′

), then
i 6∈ Sdeg (i.e., server i must have been corrupted to make the degree test pass) except with probability 1/|F|.
Then by a union bound over the bad columns ∆(USdeg′ , L

m+2
Sdeg′

) we have that except with probability e/|F|
condition 1 holds. Note first that e < d

3 implies e′ < d′

2 , where d′ is the minimum distance of LSdeg′ . Let W
be the closest codeword to USdeg′ , i.e. USdeg′ = W + E where W ∈ Lm+2

Sdeg′
and E has at most e′ non zero

columns. We have that any random linear combination u := rTUSdeg′ is at most e′-far from LSdeg′ , since
rTUSdeg′ = rTW + rTE, w := rTW is in LSdeg′ and rTE has weight at most e′. Moreover, the above

proves that w is the closest codeword to u, since e′ < d′

2 and there can be only be one codeword in LSdeg′

with distance smaller than d′/2 from u. This means that ∆(u, LSdeg′ ) contains the columns corresponding
to the non-zero components of u − w. If i ∈ ∆(USdeg′ , L

m+2
Sdeg′

), then for some j-th row uj of USdeg′ we
have that i ∈ ∆(uj , LSdeg′ ). As above, the j-th row wj of W is the unique closest codeword to uj and
so the j-th row of E has a non zero i-th value Ei,j . Let u′ := u − rjuj , w′ := w − rjwj . We have that
u − w = (u′ − w′) − rjEi,j (where u′, w′ are constant with respect to rj). It follows that there is at most
one value of rj that will make the ith column of u − w vanish making i 6∈ ∆(u, LSdeg′ ), and this happens
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with probability at most 1
|F| as rj is uniformly sampled in F. If i ∈ ∆(u, LSdeg′ ), the adversary must have

corrupted si to make the degree test pass and correct the error, so i 6∈ Sdeg.
Finally, since the two cases (defined on whether or not it holds that d(USdeg′ , L

m+2
Sdeg′

) > e′) are mutually
exclusive, we can conclude that the probability that the degree test passes but condition 1 is not satisfied is
at most d/|F|.

Conditions 2 and 3: We will bound the probability that conditions 2 and 3 do not hold assuming con-
dition 1 holds and the degree and equality tests pass, by 2/|F|. Since condition 1 holds, there is a set of
columns Sdeg such that USdeg

contains valid codewords in each row.
Let u and v be the vectors of shares broadcasted as a result of the permutation and equality tests. Since

these tests pass, these codewords must each belong to RSF,n,k+w,η and RSF,n,2k,η respectively and thus can
each be decoded to a unique set of values. Call uSdeg

and vSdeg
the restrictions of u and v to servers in Sdeg.

The analysis in [AHIV17] shows that, if the columns of USdeg
do not satisfy condition 3 then, except with

probability 1
|F| , uSdeg

will not decode to values that sum to 0 which would make the permutation test fail.
Similarly, if the columns of USdeg

do not satisfy condition 2 then, except with probability 1
|F| , vSdeg

will not
decode to all 0’s values which would make the equality test fail. Note that the adversary cannot corrupt
enough parties after FCOIN is invoked in each test in order to change the values which u and v decode to and
make the tests pass since the distance of the code is at least n− (k+w) + 1 > e. Therefore, the probability
that condition 3 (or condition 2) is not satisfied given that condition 1 holds and the permutation test (the
degree test resp.) passes can be bounded by 1

|F| .
Therefore, we can conclude using a union bound that the overall simulation error is at most (d+ 2)/|F|.
H1 and H2a are statistically indistinguishable. To see why, note that the adversary’s view is generated

in the same way, except for the vector lSh
consisting of the lc values broadcasted by the honest servers in Sh

at the end of the degree test (and the entries z1
c of USdeg

which might be updated if any server sc is corrupted).
To show that the two hybrids have the same distribution, one can notice that first sampling ẑ1 on behalf of
C1 in H2a (denoted here as the encoding shared at the end of the degree test which defines U1), and then
sampling z to be random but consistent with the view of the malicious servers (in particular with U1), yields
to the adversary the same view as sampling the following

z1 =
1

rm+2
((z + rTU0)−

m+1∑
i=j

rj(USh
)j) =

1

rm+2
(z −

m+1∑
i=j

rj(U
1)j)

in hybrid H1. Since U1 consists of encodings generated by the honest client, the summation term is a fixed
valid codeword inL. Furthermore, we know that z1 is sampled uniformly inH1, and that z is uniformly sam-
pled in H2a conditioned on some components of rTU1, where these components are themselves uniformly
randomized by the choice of ẑ1. Therefore, the two distributions are statistically indistinguishable.

H2a, H2b and H2c can be proven statistically indistinguishable with an argument similar to the one
above.

H2c and H3 are statistically indistinguishable. The only difference between the two is in the output
phase: if the simulator aborts (as defined in H1) or the honest parties abort due to a failed test before such
phase, than the two hybrids are identical. Otherwise, the correctness conditions of H1 are satisfied, which
we will prove implies that the encoding delivered to C0 by the non actively corrupted servers for each of
C0’s output blocks encode the same value in both hybrids. Let’s focus on one such encoding, and prove
the above by induction on the number of rows in USdeg

. In other words, we want to prove that (in both
hybrids, and assuming all correctness conditions hold) each row of USdeg

(as defined in H1) decodes to the
values corresponding to the trace of an honest execution of the circuit, generated using the true input of the
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honest client and the input for the malicious client obtained by decoding its own input blocks in USdeg
. As

a base case, encodings of input blocks shared in step 1 encode the correct values by definition in the case
of C0, and because of honest behavior in the case of C1 (it correctly encodes its own input and sends it to
the servers). Now, assume that we are considering the encoding uj of a block vj , where the encodings of
all previous rows USdeg

are consistent with the trace. By condition 1, this encoding is in LSdeg
and thus the

block of values it encodes is well defined.

• If uj is an encoding of the (left or right) inputs of a set of gates (generated in step 2.1), then by
condition 3 the values it encodes are the same as those of the trace (since the matrix A ensures the
relationship induced by the wires in the circuit are respected, and the previous gates where the wires
originate hold the correct values by the inductive hypothesis).

• If uj is the result of an addition of two other encodings (step 2.2a), then its decoded values are
consistent with the trace by the additively homomorphic property of packed secret sharing.

• If uj is obtained while evaluating a block of multiplication gates (step 2.2b), then by condition (2) it
decodes to the pointwise product of the values encoded by two previous rows of USdeg′ , which encode
the left and right input values respectively by the inductive hypothesis. Therefore uj is consistent with
the trace.

• Finally, the same argument for the encodings of a block of input wire values (step 2.1) can be used for
encodings of output blocks in step 3 (for H2a). For H3, output blocks are consistent with the trace by
definition.

It remains to argue that the two hybrids have the same distribution when assuming that the encodings of
the output blocks delivered to C0 in both hybrids decode to the same blocks (as we have just argued). To
prove that, it is sufficient to notice that the output encodings delivered to C0 are independent from the rest
of the execution (conditioned on the values they encode being fixed and conditioned on the values held by
the non honest servers). This is the case in H3 by construction, and in H2c due to the uniformly random
encoding of its own additive shares of each output block generated by C1 in step 3 by C1 and sent to the
servers.

H3 and H4 are statistically indistinguishable. This is because, intuitively, the adversary corrupts at most
t+e servers throughout the execution and, by the privacy property of packed secret sharing, t+e shares give
no information on the block they encode. Whenever corrupted servers receive information from the honest
client, these are freshly generated encodings. Moreover, whenever the malicious client receives information
from the other client (in step 1) or the honest servers (in step 2.2b), these are 2-out-of-2 fresh uniformly
random additive shares which reveal no information of the value they are encoding. These properties are
independent from the adversary’s behavior. Moreover, the shares revealed in the correctness test have been
simulated in a way that is independent from the encoding of the block held by the honest servers, and thus
the adversary cannot learn from those either.

H4, H5c, H5b, H5a and H6 can be proven indistinguishable analogously to the arguments for H3,
H2c, H2b, H2a and H1 respectively.

4.2 The Inner Protocol

Recall that in the IPS compiler, the inner protocol is a two-party protocol executed between the two parties
P0 and P1 and security is required to hold only against corruption by a passive adversary. Furthermore,
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the functionalities considered are precisely the next message functions executed by the servers in the outer
protocol. On a high-level, the state of each of server is maintained jointly by the parties where each holds
a share. Emulating the internal computation of each server for our outer protocol boils down to securely
updating the states of the servers based on the computation specified in Figures 7 and 8. We remark that
all computations performed by the servers are arithmetic computations over the same field. For the inner
protocol and we will rely on the GMW protocol [GMW87] described in the (passive) OLE-hybrid, where
the OLE functionality can be instantiated with any passively secure protocol [NP99, IPS09].

4.3 The Combined Protocol

In this section we provide our complete two party protocol for realizing arithmetic functions over any field F
that achieve security against active corruptions. This is obtained by compiling our outer protocol described
in 4.1 and the inner protocol instantiated using the GMW protocol [GMW87] with a variant of the IPS
compiler, introduced in Section 3. In more details, we instantiate the IPS compiler by using the honest
majority protocol of section 4.1 as the outer protocol, and implementing the FCOIN oracle calls made by
such protocol with a simple commit and reveal coin-tossing protocol between the two parties (which can
be proved to maliciously secure assuming a random oracle is used to implement the commitment scheme).
The parties will also maintain additive shares of the state of the virtual servers of the outer protocol. The
operations of the servers are implemented as follows:

• To implement a server adding two values, the parties simply sum the additive shares of those values
they hold

• To implement a server multiplying two values and sending an additive share of the product to each
client, we use the passively secure GMW protocol (in the passive OLE-hybrid), where the OLE func-
tionality can be instantiated with any passively secure protocol [NP99, IPS09].

• To implement a server broadcasting a value, each party reveals its share of this value to the other party,
and both parties consider the public value as part of the state of all servers.

• To implement a sever sending a value to a client, the other client sends its share of such value to the
first client.

• To implement a client sending a value to a server, this client sets the value as its own share of the
server’s state, and the other clients sets 0 as a share.

A detailed description of the combined protocol is given in Figure 9. The work of [IPS08] provides
a formal proof of security for the combined protocol, however, their analysis provides only an asymptotic
guarantee. In this work, we consider a concrete security analysis while taking statistical security parameters
into account.

Theorem 2 Let Π be an MPC protocol that computes a two-party functionalityF : Fα1×Fα2 → Fα3×Fα4

between 2 clients and n servers, tolerating adaptive adversaries that actively corrupt at most one client and
e servers, and passively corrupt at most t servers with statistical error δ. Assume in this protocol the servers
only perform arithmetic operations over F, and that the protocol is described in the FCOIN-hybrid model.
Let FMULT be the multiplication functionality, that takes additive shares as inputs from the parties and
outputs additive shares of the product, and ρOLE a two-party protocol that realizes FMULT in the OLE-hybrid
setting, tolerating one passive corruption. Then, the protocol obtained by instantiating the IPS compiler,
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Setup. P0’s input is x = (x1, . . . , xα1
) and P1’s input is y = (y1, . . . , yα2

). The parties share a description of
an arithmetic circuit C : Fα1 × Fα2 → Fα3 × Fα4 that implements F . P0 and P1 simulate an execution of
protocol Π, playing the roles of C0 and C1 respectively, and also simulating the actions of the n servers through
the GMW protocol as follows:
Watchlists setup. To establish the watchlist, P0 and P1 run two instances of an actively secure t-out-of-n
oblivious-transfer (OT) protocol (cf. Figure 1) where t is the privacy parameter of the outer protocol. In one
instance P0 plays the role of the sender with n freshly sampled symmetric keys (k01, . . . , k

0
n) as input and P1

plays the receiver with an arbitrary t-subset of [n] as its watchlist. In the second instance, the parties execute the
same protocol with the roles reversed. Each key kiQ will be used to encrypt (and send to P1−i) the state and
randomness used by Pi to simulate server sQ.
Protocol emulation. P0 and P1 play the roles of C0 and C1 in Π, simulating the n servers as follows. Over the
execution, the two parties hold additive shares of the state of each server. Moreover, each party knows the
additive shares of the state held by the other party for the t servers in its watchlist and can thus check that the
simulation of those servers is performed correctly, aborting if any inconsistency is detected.
– Distributing encodings among the servers. Whenever a client Ci has to simulate distributing an encoding
l = (l1, . . . , ln) among the servers, such party computes mj = Enckij (lj) for all j and sends c = (c1, . . . , cn) to
the other party (which can decrypt only t of those ciphertexts using the keys in its watchlist). Moreover, Ci now
considers lQ as part of sQ’s state and, to maintain the invariant that the state has to be additively shared, the other
party implicitly uses 0 as a share for lQ.
– Linear combinations. Each time a server should sum two values, the two parties simply sum their additive
shares of those values. Analogously, to simulate the server performing a linear combination of its values with
public coefficients (as in the correctness tests), the client each perform this linear combination on their additive
shares of those values.
– Multiplications. To simulate a server sQ multiplying two values a, b and distributing additive shares of the
product among the clients, the two parties invoke the GMW protocol. Each party uses as input their additive
shares of the two values, and (consuming two OLE) obtains an additive share of the product. In addition, each
party Pi encrypts the randomness used in GMW (i.e. to compute the OLE) under kiQ and sends it to the other
party, which can thus check that the GMW execution is performed correctly for the servers in its watchlist.
– Coin tossing. Whenever Π invokes the coin-tossing oracle FCOIN, the parties run a coin-tossing protocol using
the commitment functionality FCOM (cf. Figure 3). Namely, P0 commits to a random value r0, then P1 samples
a random value r1 and sends it to P0, upon which P0 opens the commitment to r0 and the output of the
coin-tossing is set as r = r0 + r1.
– Messages from the servers. Whenever a server sQ sends a value to a client Ci, then party P1−i sends Pi its
additive share of that value, which Pi can then combine with its own share to reconstruct such value. Whenever
a server broadcasts a value, the parties exchange their share of such value and consider the reconstructed value as
common knowledge of all the servers. Moreover, each party checks that the shares sent on behalf of servers in its
watchlist are consistent with the state of such server.

Figure 9: The Combined Protocol Φ.
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as described in Figure 9, using t as the watchlist size, securely realizes F in the (passive OLE, active OT,
FCOIN)-hybrid model, tolerating one active (static) corruption, with statistical security δ + (1− e/n)t.

Proof sketch. The security proof of our combined protocol follows essentially from [IPS08, IPS09], but here
we are interested in concretely analyzing the statistical simulation error. In more detail, [IPS08] reduces
the security of the combined protocol to the security of the outer protocol, where for every adversary A
corrupting a party Pi in the combined protocol, there exists an adversary A′ corrupting the corresponding
client Ci in the outer protocol. In addition to corrupting one of the clients, A′ also (adaptively) corrupts a
subset of the servers. The servers that are on the watchlist of the corrupted party are passively corrupted
at the beginning of the computation. On the other hand, if A deviates in the emulation of some server sj ,
that server is adaptively corrupted by A′ (where the simulator knows whether a server is deviating as it
can observe all the information exchanged over the watchlist channels, by extracting all the symmetric keys
submitted by the adversary as inputs to the OT execution and decrypting all the communication channels).
In order to argue that A′ will corrupt at most e of the servers, the IPS analysis proves that if A deviates
in the emulation of more than e servers, it will be caught except with a small statistical error (1 − e/n)t.
Therefore, we can conclude that except with this small error A′ corrupts at most e servers. This reduction
fromA in the combined protocol toA′ in the outer protocol allows us to argue both privacy and correctness.
Therefore, the overall error can be bounded using an union bound as

(1− e/n)t + δ

where δ is the statistical security error of the outer protocol. We note that the actual proof is more intricate
as it allows A to adaptively corrupt all clients involved in the inner protocol instance for emulating the
computation of sj , where these corruptions can take place in the presence of erasing the states of the clients
(where this notion of security is much easier to achieve).6

Applying this theorem to the outer protocol of section 4.1 yields protocol Φ, described in Figure 9,
whose concrete statistical security is (d+ 2)/|F|σ + (1− e/n)t and communication complexity is:

2 · CCt-out-of-n OT︸ ︷︷ ︸
watchlist setup

+ r · n · CCρ︸ ︷︷ ︸
passive invoc.

+ 6 · r · n · log2 |F|︸ ︷︷ ︸
watchlist comm./ layer

+ 3 · κ︸︷︷︸
coin-toss

+ 2 · σ · (t+ e+ w) · log2 |F|︸ ︷︷ ︸
degree test

+ 8 · σ · (t+ e+ w) · log2 |F|︸ ︷︷ ︸
perm./equality test

where d = n−k+1, r is the number of multiplication layers, CCρ is the communication complexity of ρOLE

and σ is a soundness amplification parameter. Finally, the number of OLE invocations of Φ is r · n · rρOLE

where rρOLE is the number of OLE invocations of ρOLE.

5 Applications

In this section, we present our main applications as instantiations of our combined protocol.
6More formally, in order to carry out such a corruption phase, [IPS08] requires that the inner protocol meets an additional

property, denoted by a two-step passive corruption, where the second phase considers adaptive corruptions even in the erasing
model. This property is met by most natural protocols that include a preprocessing that is an input-independent phase.
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5.1 Choosing concrete parameters

Our combined protocol depends on different parameters. Below we discuss the constraints in order to
optimize concrete performance. Let s be the statistical security parameter. The set of parameters includes
the number of servers n, the block width w, the watchlist size t, the number of active corruptions in the outer
protocol e and the parameters k, d for the Reed Solomon encodings subject to the following constraints:
(1− e/n)t + (d+ 2)/|F| < 2−s, k ≥ t+ e+ w, 2k + e < n, and e < d/3.

The dominating costs in the execution of this protocol is the computation of the OLE functionality and
(to a minor extent) computing the Reed Solomon encodings. To optimize concrete efficiency, we first want
to minimize the number of OLE calls. Note that for every block ofw multiplication gates which is part of the
circuit, the outer protocol requires each of the n servers to perform one multiplication, which is simulated
in the combined protocol via the passive GMW protocol [GMW87] using 2 OLE calls. Therefore, if all the
blocks of w gates are “full”, i.e. they all contain exactly w gates, then the protocol requires 2 · n/w OLE
(amortized) calls per multiplication. Another useful optimization is setting k to be a power of two, as this
greatly increases the encoding efficiency by allowing to use finite field FFT algorithms.

We provide a few examples of different sets of parameters in Table 2, where we consider 40 bits statis-
tical security and where we additionally set k = t + w + e and d = n − k + 1. It can be inferred from
the table that as w grows, n/w approaches 2, which translates to roughly 4 OLE calls per multiplication
gate in the circuit. Note that, the higher the number of multiplication blocks with less than w gates within
the circuit, the lesser “utilized” the OLE calls to evaluate that block, where the concrete number of OLE
calls per multiplication is farther from 4. In general, given a circuit, finding a value of w that allows for a
small ratio of OLE calls per multiplication is easier the more multiplications the circuit has and the wider
the circuit is (i.e. the circuit has many multiplication gates condensed in few layers).

Table 2: Concrete parameters for our protocol with the overheads embedded within the parameter n/w
(which captures the amortized number of OLE invocations per multiplication gate with 40 bits statistical
security.)

w e t n n/w
1317 272 459 4640 3.52
3065 362 669 8916 2.91
6749 509 934 17402 2.58
14332 690 1362 34147 2.38
29864 987 1917 67493 2.26
61386 1369 2781 133769 2.18
125195 1964 3913 265987 2.12
253781 2778 5585 529690 2.09
512404 3951 7933 1056213 2.06

5.2 Main Application: Arithmetic 2PC with Active Security

Our main result provides a concretely efficient two-party protocol for arbitrary arithmetic computations
with active security against static corruptions. Given an arbitrary instantiation of a passive OLE protocol,
we describe two instantiations:
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• For “large and wide” arithmetic computations (in the sense explained in Section 5.1), we design a
protocol that makes 4 amortized black-box invocations of a passive OLE protocol per multiplication
gate in the computation.

• For arbitrary arithmetic computations, we design a protocol that makes 16 amortized black-box invo-
cations of a passive OLE per multiplication gate in the computation.

Variant 1: In our first variant we consider arithmetic circuits over an arbitrary field F for which we can pick
a large value w such that each layer has a multiple of w gates (or is a few gates short of such a multiple).
In these cases, the combined protocol of figure 9 can be directly instantiated with the appropriate w and the
parameters from table 2.

Common examples of wide computations include basic vector/matrix operations. Another concrete use
case is when the same circuit is evaluated on several inputs in parallel, eg ML classification or nearest-
neighbor database search of many inputs [EFG+09] and [ADI+17b]. Arguably, most circuits that arise in
real-life MPC applications are wide and shallow. Indeed, authenticated triples generation serves as a good
example for a wide circuit.

Variant 2: In our second variant we will rely on the work of Döttling et al. [DGN+17] to yield a secure
two-party protocol for general arithmetic circuits, which, in particular can have arbitrary few gates per layer.
In more detail, this work shows how to reduce the design of secure arithmetic computation to realizing
an input-independent offline arithmetic functionality. This functionality described in Figure 4 essentially
generates “authenticated” triples which are provided to the parties. We can instantiate their protocol by
securely realizing the offline functionality using our first variant. Note that these authenticated triples can
be computed using a wide circuit, where the width is proportional to the number of triples required in the
computation of the original circuit, which equals the number of multiplication gates in such a circuit. This
offline functionality requires 4 multiplications to be performed per triple. Furthermore, our first variant
implies 4 passive OLE per multiplication for wide circuits. Hence, we obtain a protocol that consumes 16
passive OLE per multiplication gate.

This is in contrast to the work of Ghosh et al. [GNN17] which provides a construction of actively secure
OLE in the OT-hybrid based on noisy encoding and requires 44 passive OLE per multiplication gate based
on this assumption.

5.3 Black-Box Active OLE from Passive OLE

Our second application is a concretely efficient protocol for achieving OLE with active security from active
OT and passive OLE in a black-box way, where the overhead is roughly 2 passive OLE. This is obtained
by instantiating our compiler with the batch (or parallel) OLE functionality as described in Figure 6. This
overhead can be achieved by instantiating our compiler with parameters specified in Table 2.

We remark that, in general, our compiler invokes 2 calls to the passive OLE protocol per server per
multiplication gate in the circuit. In order to realize w parallel invocations of the active OLE functionality
naively, this would result in 2 · n calls to the passive OLE protocol, i.e. an amortized overhead of 2 · n/w.
We now describe a simple optimization that can reduce this by a half to get an overhead of only n/w.
Our optimization exploits the fact that all the multiplications computed within the OLE functionality are
performed in the first layer, where the left input wires and the right input wires are respectively split between
the parties. Therefore, the input sharing phase can be avoided. This implies that we need only one passive
OLE call per server per multiplication and thus obtain an overhead of n/w calls which for large w results in
roughly 2.
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This protocol results in the following communication complexity.

ρOT
t−out−of−n︸ ︷︷ ︸
κ-bits OT

+ n · CCρ︸ ︷︷ ︸
passive OLE

+ 3 · κ︸︷︷︸
coin-toss

+ 2 · σ · (t+ e+ w) · log2 |F|︸ ︷︷ ︸
degree test

Our construction naturally extends to the setting when the underlying passive OLE protocol is batched.
This scenario is particularly interesting when instantiating our protocol with packed additively homomorphic
encryption schemes based on LWE that allow for parallel passive OLE computations.

5.4 Privacy-Preserving Secure Neural Network Inference

We next describe a concrete use case of outsourcing arithmetic computation in the two-server setting. Such a
model has already been considered by several works, focussing on machine learning computations [MZ17,
LJLA17], which are heavily arithmetic in nature, where most previous works in this area only achieve
passive security. In more detail, we consider two clients: C0 and C1 with private inputs, respectively x
and y, that wish to securely outsource an arithmetic computation F to two cloud servers s1 and s2. This
can be done by having the clients share their inputs with the servers that, upon receiving the inputs’ shares,
securely evaluate the function F and return the result to the clients. We require that the protocol will be
secure against an active corruption of at most one server and one client up to abort and employ our protocol
from Section 4.3 for this goal. In order to ensure the authentication of the inputs we employ a simple MAC.

We begin with a slightly modified (randomized) functionality F ′. Roughly speaking, F ′ takes as input
MAC keys kx and ky and MACs mx and my, in addition to the inputs x and y, and produces as output
(f(x, y),flag). The flag bit will be set to a random linear combination of the values dx = mx−MACkx(x)
and dy = my − MACky(y). The actual functionality F computed by the servers will essentially be F ′
with the exception that the inputs to F ′ are additively shared between the two servers. In other words, the
functionality takes the shares from the servers along with MACs and MAC keys, reconstructs the inputs and
evaluates F ′ on the outcomes. In the actual realization, the servers employ the protocol from Section 4.3
and return the results to the clients. If the flag bit is zero the clients accept the output, and reject it otherwise.

To formally argue security, we observe that a corrupted server can change the additive share received
as input before entering the computation. This can be captured as an additive input-independent attack on
the input of the protocol. We now have that if any corrupted server manipulates its input, the probability
that either dx or dy is non-zero and the output flag bit is zero is at most 1

|F| by the security of the MAC.
Therefore, the clients will reject the output with very high probability.

As a concrete instantiation of this framework, we implement a secure neural network (NN) inference
problem and consider a neural network that is an arithmetic circuit friendly. Specifically, following Ghodsi
et al., [GGG17], we consider the following neural network repeated verbatim from their work. Without
loss of generality, a standard L layer neural network can be modeled as follows. The input to the network
is x ∈ Fn0×b where n0 is the dimension of each input and b is the batch size. Layer i ∈ [1, L] has ni
output neurons, and is specified using a weight matrix wi−1 ∈ Fni×ni−1

p and biases bi−1 ∈ Fni
p . The output

yi ∈ Fni×b
p of Layer i ∈ [1, L] is defined by:

yi = σquad(wi−1 · yi−1 + bi−11
T )

∀i ∈ [1, L− 1]; yL = σout(wL−1 · yL−1 + bL−11
T )

where σquad(·) is the quadratic activation function, σout(·) is the activation function of the output layer and
1 ∈ Fbp is the vector of all ones. The final output layer uses the softmax activation. We consider a 3 layer
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NN with quadratic activation function. The performance of such NN has been discussed in [GGG17]. We
provide benchmark for this application in Section 7.

6 Active OLE from Imperfect OLE

In this section, we analyze the security of our compiler when applied to an imperfect passive OLE, which
may have a non-negligible simulation error. This is particularly relevant to lattice-based OLE constructions,
for which setting the parameters more aggressively can lead to better efficiency at the expense of such a
simulation error. We show that our compiler can indeed tolerate an imperfect OLE in a natural “exclusion
set” model described below.

We start by explaining why relevant techniques from the literature are insufficient for our purposes. One
approach towards amplifying the security of an imperfect OLE is to show that it perfectly realizes a simple
leaky OLE functionality that reveals the entire honest inputs to the adversary with small probability and
otherwise leaks nothing. When this OLE is plugged into the IPS compiler we can amplify it to full security
by increasing the security threshold t to be large enough to accommodate the leakage caused by a few faulty
OLE. To employ such an argument one would need a strong “statistical-to-perfect” style lemma [MPR07,
IKO+11, DDF19]. For example, Ishai et al. [IKO+11] proved that any implementation of functionality F
with statistical error ε perfectly realizes a weakened functionality F ε′ for ε′ = ε · |X| · |Y | where X and Y
are the respective domain and range of F , and where F ε′ is equal to F with probability 1−ε′ and reveals the
inputs to the adversary with the probability ε′. For OLE over small fields, the statistical-to-perfect lemma
gives good bounds. But for large fields, this lemma gives poor bounds that only apply when the statistical
error is smaller than the inverse of the field size. In fact, as shown in [IKO+11] such a loss in a inherent for
large domains in the worst case.

We consider the case of employing OLE over random inputs as this is what is needed for our compiler.
Furthermore, we will focus on the case of OLE that is (fully) computationally secure against passive corrup-
tion of the sender and is ε-statistically secure against passive corruption of the receiver on random inputs.
This will be sufficient to capture our OLE instantiations based on lattice assumptions. We start by defining
the notion of ε-secure OLE over uniformly random inputs. Let Π = 〈P0, P1〉 denote a two-party protocol,
where each party is given an input (x for P0 and y for P1). Denote by ViewPi(P0(x), P1(y)) the view of the
party Pi in the real execution of Π where x is P0’s initial input, y is P1’s initial input.

Definition 5 (ε-secure OLE) We say that a two party protocol Π = (S,R) is an ε-secure implementation
of an OLE over Fp w.r.t the uniform distribution, if for every x ∈ Fp the statistical distance between the
following two distributions is bounded by ε:

• {(a, b,ViewR(S(a, b),R(x)))}

• {(a′, b′,ViewR(S(a, b),R(x)))}

over a, b sampled uniformly from Fp and a′, b′ sampled uniformly from Fp subject to a′x+ b′ = ax+ b over
Fp.

We conjecture that given an ε-secure OLE, our compiler from the previous section can compile it to a
fully secure OLE. More formally:

Conjecture 1 Let Π be an ε-secure implementation of an OLE over a field F of size p. Then, the protocol
obtained by instantiating the IPS compiler with the MPC protocol from Theorem 1, where the calls to OLE
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are replaced with protocol Π and using parameters k, e, t, w and σ such that k ≥ w+e+t, e < d/3, 2k+e <
n, securely realizes FwOLE in the (FOT,FCOIN)-hybrid model, tolerating one active (static) corruption, with
security (d+ 2)/|F|σ + (1− e/n)t + p−k+1 ·O((ε · p)n−t−e).

We leave the question of proving or disproving this conjecture as an interesting open problem. In this
work we provide evidence supporting the conjecture by analyzing our compiler with an imperfect OLE
that is an instance of an ε-secure OLE. We consider an ideal OLE functionality that will ask the adversary
to specify an exclusion set A and will leak to the adversary one bit of information on whether the honest
party’s input belongs to the exclusion set. For this model, we are able to prove that if the exclusion set is
relatively small compared to the field size, we can amplify the security via the IPS compiler. On a high-
level, we will argue that, in the IPS compiler, even if the adversary learns all the shares in its watchlist and
a little bit of leakage (via exclusion sets) in each of the remaining shares, the actual secret remains hidden.
Recently, the leakage-resilience of Shamir’s secret sharing scheme was studied in the work of Benhamouda
et al. [BDIR18] who gave some parameter regimes under which the scheme is leakage resilient. However,
their results are not strong enough for our setting as they consider the case where 2k ≥ n such that k is the
degree of the Shamir shares. We establish a new result on the leakage resilience of Shamir’s secret sharing
scheme that will allow us to argue security also when 2k < n. We remark that their work studied the leakage
resilience where m bits of information were leaked on every share, while we will consider the exclusion-set
model where less than one bit of information is leaked on each share. Our approach extends the analysis
from [BDIR18] and sharpens the parameters. We remark that our bounds still look pessimistic and leave
room for improved analysis.

Our leakage model follows the one from [BDIR18], where the adversary can first choose a subset
Γ ⊆ [n] of the parties and obtain their entire shares, and then leak partial information from all the shares
of the remaining parties. The information learned by the adversary is captured as follows: LeakΓ,τ =
(s(Γ), (τ (i)(s(Γ), s(i)))i∈[n]) where τ = (τ (1), τ (2), . . . , τ (n)) is a family of leakage predicates and s(Γ) =

(s(j))j∈Γ are the complete shares of the corrupted parties. We allow the adversary to choose the functions τ
arbitrarily. In the exclusion set model, we restrict the functions in τ to be predicates and bound the fraction
of inputs on which the functions take the value 1. Next, we recall (a simplified variant of) the definition of
local leakage resilient from [BDIR18].

Definition 6 Let Γ ⊆ [n]. A secret sharing scheme (Share,Rec) is said to be (Γ, µ)-local leakage resilient
if for every leakage function family τ = (τ (1), τ (2), . . . , τ (n)) where τ (j) is a predicate for every j, and for
any pair of secretes s0, s1 we have that the statistical distance between the following two distributions is at
most µ:

• {s← Share(s0) : LeakΓ,τ (s)}

• {s← Share(s1) : LeakΓ,τ (s)}

We next prove Theorem 3 where we focus on the case where the leakage functions are “exclusion-sets”.
Namely, there exists an ε such that the leakage functions are predicates τ and the fraction of inputs on which
τ returns 1 is bounded by ε.

Theorem 3 Let C = RSFp,n,t,η be an RS code. Let τ = (τ (1), τ (2), . . . , τ (n)) be any family of leakage
predicates such that for all j, |{x← Fp : τ (j)(x) = 1}| ≤ ε · p, and let cε = sin(ε·π)

p·sin(π/p) . Then,

SD(τ(C), τ(Un)) ≤ 1

2
(p− 1)p−t(1 + 2 · cε · p)n.
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Proof: We follow the proof strategy of [BDIR18], which relies on the Fourier analysis, and adapt it to our
setting. We recall some basic definitions for the purpose of the analysis. Let G be any finite Abelian group.
A character is a homomorphism χ : G → C from the group G to C, i.e. χ(a + b) = χ(a) · χ(b) for all
a, b ∈ G. For functions f : G→ C, the Fourier basis is composed of the group Ĝ of characters χ : G→ C.
The Fourier coefficient f̂(χ) corresponding to a character χ is defined as:

f̂(χ) = E[x← G : f(x) · χ(x)].

We will be focussing on Reed-Solomon codes over Fp and we can describe the Fourier characters by
χα(x) = ωα·x where ω = e−2πi/p is a primitive p-th root of unity and α ∈ Fp. For ease of exposition
we will sometimes write f̂(χα) by f̂(α). We will rely on the following lemmas established in [BDIR18].

Lemma 3.1 Let C ⊂ Fnp be an [n, t − 1, n − t + 1] linear code. Let τ = (τ (1), τ (2), . . . , τ (n)) be a family
of leakage predicates τ (j) : Fp → {0, 1}. We then have

SD(τ(C), τ(Un)) =
1

2

n∑
j=0

∣∣∣∣∣∣
∑

α∈C⊥\{0}

∏
j

1̂j(αj)

∣∣∣∣∣∣
where 1j ≡ τ (j), C⊥ as the dual code of C and α = (α1, . . . , αn).

Lemma 3.2 Let cε = sin(ε·π)
p·sin(π/p) . Then for any set A ⊆ Fp such that |A| ≤ ε · p, we have:

|1̂A(α)|+ |1̂Ac(α)| ≤ 2cε if α 6= 0

|1̂A(α)|+ |1̂Ac(α)| ≤ 1 if α = 0

We now proceed to prove Theorem 3. Applying triangle inequality to Lemma 3.1, we have

SD(τ(C), τ(Un)) ≤ 1

2

∑
α∈C⊥\{0}

n∑
j=0

∣∣∣∣∣∣
∏
j

1̂j(αj)

∣∣∣∣∣∣
Using Lemma 3.2 and the fact that all the leakage function in τ satisfy that Pr [x ∈ Fp : τ (j) = 1] ≤ ε we
obtain

SD(τ(C), τ(Un)) ≤ 1

2

∑
α∈C⊥\{0}

(2 · cε)HW(α)

where HW(α) denotes the hamming weight of α.
We now use the following fact about the hamming weight distribution of Reed-Solomon codes.

Proposition 3.3 The number of codewords in a (n, n − t, t)p Reed-Solomon code of hamming weight j is
given by (

n

j

)
(p− 1)

j−t∑
i=0

(−1)i
(
j − 1

i

)
pj−t−i.
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We can now bound
∑

α∈C⊥\{0}(2cε)
HW(α) as follows:

∑
α∈C⊥\{0}

(2 · cε)HW(α) =
n∑
j=t

(
n

j

)
(p− 1)

j−t∑
i=0

(−1)i
(
j − 1

i

)
pj−t−i(2 · cε)j

≤
n∑
j=t

(
n

j

)
(p− 1)pj−t(2cε)

j

≤ 1

2
(p− 1)p−t(1 + 2 · cε · p)n

For small values of ε, we can approximate cε ≈ ε. Therefore, we have that

SD(τ(C), τ(Un)) ≤ 1

2
(p− 1)p−t(1 + 2 · ε · p)n.

We conclude by a simple hybrid argument that RSFp,n,t,η is (Γ, µ) locally leakage resilient if for all j,
|{x← Fp : τ (j)(x) = 1}| ≤ ε · p where µ = 1

2(p− 1)p−t(1 + 2 · ε · p)n. By setting

log2(ε) < − log2(p)

2
− s

n
(1)

the statistical distance becomes 2−O(s).

Remark 3.4 We remark that the preceding analysis still seems pessimistic and can most likely be further
tightened. For instance, the bound becomes worse as p increases but intuitively the leakage resilience should
get better with larger p.

Concrete LWE parameters based on our conjecture. We provide a crude analysis that suggests a choice
of parameters for imperfect LWE based OLE that our compiler can tolerate. To understand the leakage
in standard Ring-LWE based schemes [LPR10], we recall some relevant parameters. Denote the plaintext
modulus by p and the ciphertext modulus by q. Then the magnitude of the statistical error is bounded by
log2(q)− log2(O(c · p2 · Φ)) where c ≡ q mod p (typically made small by choosing an appropriate q) and
Φ is the packing factor. In other words, the statistical distance between encryptions of different inputs is
roughly c · p2 · Φ/q, which could be large when we set the parameters aggressively. Applying the standard
implementation of (passive) OLE based on additively homomorphic encryption, instantiated with the Ring-
LWE encryption with these parameters, will result in an imperfect OLE where the amount of entropy from
the sender’s inputs leaked to the receiver (on a random input) is roughly c · p2 · Φ/q bits. Our analysis only
considers a simple leakage where the leakage functions are exclusion sets. We conjecture that this model is
“complete” in the sense that (in the context of our IPS-style compiler) it captures a general leakage with the
same amount of entropy, namely, by setting log2(ε) as c · p2 · Φ/q.

In order to get a passive OLE, one needs the magnitude of this error to be at least the statistical parameter
(eg, 40, 80 or 128). For example, if p is a 20-bit prime and Φ = 213, then a 127-bit modulus q gives a passive
OLE with 64-bit security (where typically c and the constant behind O() are roughly 25). However, if we
use a 88-bit modulus q, the statistical error will be roughly 2−25. For these parameters, the error is roughly
1/
√
p which means Equation 1 is satisfied. Therefore, our compiler can amplify this to a fully secure OLE.

32



Since our compiler requires twice as many passive/imperfect OLEs, we can estimate the communication
overhead of actively secure OLE protocol against the passive OLE protocol by 2 · 88/127 = 1.38 < 2.

For some parameter regimes (e.g., larger statistical security parameter), our construction of actively
secure OLE is actually more communication efficient than a naive construction of passively secure OLE
with a bigger security parameter. If we used the parameters described above but demanded 128-bit security,
log2(q) will be 184 and 85 respectively for passive and active and the overhead will be 2 · 85/184 =
0.924 < 1.

7 Implementation and Results

We implemented our protocol in C++ using Shoup’s NTL library [Sho] to perform arithmetic over finite
fields, in particular vector linear operations and discrete Fast Fourier Transforms (which are used to ef-
ficiently perform encoding of Reed-Solomon code words). We ran all our experiments with 40 bits of
statistical security, using the parameters of table 2 and a 25 bit prime. We implemented our symmetric en-
cryption by xoring our plaintexts with a pseudorandom mask generated by NTL’s PRG implementation on
input a 256 bit seed. In addition, we used the cryptoTools library [Rin13] maintained by Peter Rindal for the
commitment functionality, as well as network communication (which is, in turn, based on Boost Asio). We
also used the libOTe library [OC13] for implementing the t-out-of-n oblivious transfer functionality which
is maintained by Rindal [Rin13]. We used the batched version of the (batched) passive OLE protocol due
to de Castro et al. (discussed in Section 6 [Juv18]). We point out that our protocol does not crucially rely
on the underlying OLE implementation. One of the main advantages of our compiler is that we can plug
in any passively secure implementation of OLE. The protocol of [Juv18] (based on [dCJV]) is a batch OLE
implementation from a (batched) additively homomorphic encryption scheme based on the LWE hardness
assumption.

All the operations were performed in a single thread, with the exception of network management which
was handled by a separate thread. The parties in our experiments were executed on two Amazon EC2
machines, located in Ohio and N. Virginia. Both machines were Amazon EC2’s “r4.8xlarge” instance (2.3
GHz Intel Xeon E5 Broadwell Processors, 244Gb RAM) running Ubuntu 16.08.
Online/offline tradeoffs. Our implementation allows to preprocess the OLE instances and setup the watch-
list before the parties’ inputs are known. In more detail, the protocol proceeds in two phases. In the first
“offline” phase, the parties setup the watchlist by performing t-out-of-n OT to exchange random strings
which will be used as PRG seeds to generate the randomness used for each of the servers. Moreover, they
precompute many OLE instantiations on random inputs. In the “online” phase, the parties perform the actual
computation, consuming the random OLE tuples to realize the OLE calls they need. Typically the offline
phase is the most expensive one, and across our experiments the online phase took at most 25% of the overall
running time.
Overdrive. We compare the performance of our protocol with the Low Gear protocol from Overdrive [KPR18],
which is considered the state-of-the-art. Low Gear generates authenticated triples in the two-party setting
and, when combined with the SPDZ protocol, can be used to evaluate any two-party arithmetic function-
ality with active security. We compiled and executed Low Gear with parameters similar to the ones of our
experiments. More precisely, we ran Low Gear on a single thread over a 25-bit prime field, 40-bit security.
The complexity of Overdrive varies linearly and increasing the batch size beyond a certain point would not
improve the per-triple costs significantly. On the other hand, our approach relies on packed secret sharing
and increasing batch sizes improves our per-triple costs. We chose a 25-bit prime because the (current im-
plementation of the) underlying OLE scheme could only support 25-bit primes and the packing needed for
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Table 3: Communication and computation costs to generate authenticated triples.

#triples block width triples/ms bytes/triple
1M 1317 1.90 5533

3065 2.12 5153
6749 2.20 4946

14332 2.48 4815
29864 2.49 4754
61386 2.35 4745
125195 2.86 2887

10M 14332 2.65 4006
29864 2.73 3929
61386 2.99 3877
125195 3.14 3851
253781 3.13 3850

Low Gear 3.10 2800

our experiments. We instantiated Overdrive with a 25-bit prime and 40-bit security. Increasing to a larger
prime (that fits in a long) should not affect our computation or communication overhead over the passive
OLE protocol. We ran both the protocols on the same AWS instances located in the same two places: Ohio
and N.Virginia. When generating about a third of a million authenticated triples, the Low Gear protocol
produced 3.1k authenticated triples per second, with 2.80kB of data transmitted (overall) per triple.

Authenticated triples As a warmup, our first benchmark consists of computing SPDZ-style authenticated
triples [DPSZ12]. Generating multiple authenticated triples in parallel can be implemented with a wide
and low-depth circuit. We further optimize our protocol for this functionality by directly using the additive
shares obtained by the outer protocol right before output reconstruction step, avoiding an additional sharing
phase required by the functionality.

We ran our benchmark generating 1 million and 10 million authenticated triples at a time with the various
block widths listed in Table 2, and report the computation time and communication per triple in Table 3,
using Low Gear as a reference. As one can see, our performance is comparable to Low Gear both in terms
of computation and communication, and increases for larger block widths.

Random “wide” circuits. While the above benchmark illustrates that we can match previous implementa-
tions for generating authenticated triples, the strength of our protocol comes in utilizing our combined IPS
protocol instead of relying on a SPDZ online phase consuming such triples. To showcase the protocol’s
potential in this scenario, we executed it on synthetic circuits. Random circuits consist of 2 input layers
(one per user) with g multiplication gates each, r multiplication layers (and 1 output layer). Furthermore, in
each gate, the left and right wires originate from the output of two gates chosen at random from the previous
layers. Figures 11 and 10 show the results for r = 4096 and various block widths. We highlight that the
efficiency of our protocol is improved with the block width. In particular, for w = 61386, the protocol
processed 15.7k multiplications per second at 662 bytes per multiplication. To compare this result with
Low Gear, we need to consider the cost of generating authenticated triples for our synthetic circuit using the
Low Gear protocol. When evaluating the performance of Low Gear, we ignore the costs of the online phase
which utilizes the SPDZ [DPSZ12] protocol. Our results show that our protocol is at least 5 times faster and
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Table 4: Communication and computation costs to generate 10 million active OLE.

block width mult/ms bytes/mult
1317 17.32 715
3065 20.07 650
6749 21.93 614

14332 23.11 592

with 4 times less communication compared to using SPDZ with Low Gear.
On the other hand, we also compare our protocol execution to a passively secure protocol. In Figures

10 and 11 we plot the communication and running times for generating passive OLEs required for a GMW-
style passive protocol to evaluate the same circuit (where the passive OLE protocol is instantiated with the
same OLE we used for our active protocol). We only plot the offline time (noting that the online time will
not be significant). Our results show that our communication and running times are within 4x slower than
the naive passive protocol.
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Passive to active OLE. We also benchmark our optimized active OLE protocol from section 5.3, and show
the results in table 4. When generating 10 million active OLE we obtain the fastest time performance of 23k
OLE/sec with 592 bytes/OLE with a block width w = 14332. The savings compared to other benchmarks
are explained by the fact that we only consume n/w passive OLE per active one, compared to the 2n/w
passive OLE per multiplication of generic circuits.
Actively secure neural-network inference. Last, we benchmark our system on a simple neural network
inference problem. We use a network trained on the TIMIT speech recognition dataset with the network
architecture described in [GGG17]. The neural network we used comprises of a four layer network with
3 hidden, fully connected layers with N neurons and quadratic activations. The input is encoded as an X
components vector, and the output layer is fully connected with O output neurons and relies on the softmax
activation. We do not perform the softmax activation function via a secure computation and delegate that
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computation back to the client. We assume that both the network and the input to be classified are shared
among the two parties, who also hold MACs on these values which are verified as part of the computation
as detailed in Section 5.4. We ran an experiment for X = 1845, N = 2000, O = 183 with a block
width w = 6749, which results in a circuit with about 16.1 million multiplications. The entire computation
took about 34.6 minutes and the total communication was 20.7GB. In comparison, evaluating the same
functionality using lowgear would require 86 minutes and 45.14GB of communication (this estimate only
takes into account offline authenticated triple generation and ignores the cost of the efficient lowgear online
phase). To given an idea of the overhead over the passive protocol, the offline part of the passive protocol to
compute the neural network would have required 6.2 minutes and 2.88GB.
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[ADI+17b] Benny Applebaum, Ivan Damgård, Yuval Ishai, Michael Nielsen, and Lior Zichron. Secure arithmetic
computation with constant computational overhead. In CRYPTO, pages 223–254, 2017.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. In CCS, pages 2087–2104, 2017.

[BDIR18] Fabrice Benhamouda, Akshay Degwekar, Yuval Ishai, and Tal Rabin. On the local leakage resilience of
linear secret sharing schemes. In Advances CRYPTO, pages 531–561, 2018.
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[DGN+17] Nico Döttling, Satrajit Ghosh, Jesper Buus Nielsen, Tobias Nilges, and Roberto Trifiletti. TinyOLE:
Efficient actively secure two-party computation from oblivious linear function evaluation. In CCS, pages
2263–2276, 2017.
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