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Abstract. In recent years, deep learning-based side-channel attacks have
established its position as mainstream. However, most deep learning tech-
niques for cryptanalysis mainly focused on classifying side-channel infor-
mation in a profiled scenario where attackers can obtain the label of
training data. In this paper, we introduce a novel approach with deep
learning for improving side-channel attacks, especially in a non-profiling
scenario. We also propose a new method that trains autoencoder through
the noise from real data using the noise-reduced-label. It notably di-
minishes the noise in a trace by adapting the autoencoder framework
to the signal preprocessing. We show the convincing comparison from
our custom dataset, which captured that our works outperform conven-
tional preprocessing methods such as principal component analysis and
linear discriminant analysis. Furthermore, we apply the method to re-
align desynchronized traces that applied hiding countermeasures, and
we experimentally validate the performance of the proposal. Also, for
masking countermeasures, we experimentally show that we can improve
the performance of side-channel analysis by using an existing combining
function or proposed method using domain knowledge.

Keywords: Side-channel attack · Non-profiling · Deep learning · Au-
toencoder · Preprocessing

1 Introduction

Side-channel analysis, which exploits physical leakage from a cryptographic de-
vice, was introduced by Kocher in 1996 [11]. For the successful side-channel anal-
ysis against cryptographic implementations, it generally consists of three steps.
The first step is to collect side-channel information, such as power consump-
tion or electromagnetic radiation, from the target cryptographic device, which
is highly dependent on the performance of the measurement equipment. Second,
preprocessing steps, such as noise reduction, trace alignment, dimensionality re-
duction, and feature selection, is required to extract meaningful information in
the measurements. Finally, it consists of modeling and exploiting secret infor-
mation on the preprocessed information to recover the correct key.
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However, in the real world, attackers could fail to extract secret information,
e.g., cryptographic key, from power traces obtained in the actual analysis envi-
ronment, even if the analytical technique is performed correctly, because of noise
and misalignment. In the context of side-channel analysis, several methods have
been applied to preprocess the physical information leakages for reducing the
attack complexity in terms of the number of traces needed. To briefly review the
commonly used preprocessing techniques, averaging method, Singular Spectrum
Analysis (SSA), Principal component analysis (PCA) and Linear discriminant
analysis (LDA) with sliding window are used as preprocessing methods for de-
noising. To realign the desynchronized traces, cross-correlation for a matching
pattern with sliding window [13] and Elastic alignment [20], which is based on
Dynamic Time Warping (DTW), are introduced in side-channel context.

These methods have shortcomings that depend on the capability of the at-
tacker and require to handle the parameter search manually. To overcome the
difficulty of preprocessing, end-to-end deep learning based side-channel attacks
have been significantly interested in recent years. The attacks have an advan-
tage that it could obtain similar (or better) results without the preprocessing
processes, which depend on the attacker’s ability. Early research based on deep
learning was studied regression that attempted to characterize the power model
by Yang et al. [22]. However, subsequent studies using deep learning as a method
of solving the classification problem were performed. In this case, assuming pro-
filing attack scenario, the attacker trains a deep neuron network through the
traces obtained from a profiling device, and then uses the network as the way of
classifying the traces from a target device. Results of Maghrebi et al. [12] confirm
that profiling attacks with deep neural networks such as Multi-Layer Perceptron,
Convolutional Neural Network, Stacked Autoencoder, Long Short-Term Mem-
ory (LSTM), can be analyzed regardless of whether masking countermeasure is
applied or not. Through the study of Cagli et al. [4], we could recover the se-
cret information only through deep learning based side-channel attack without
performing preprocessing techniques like trace alignment, when we use the con-
volutional neural network. Hettwer et al. [8] introduced a new architecture of
convolutional neural network, and it show that additional input, Domain knowl-
edge neurons which are concatenated with output of flatten layer, can improve
the performance of convolutional neural networks.

While most of the studies have focused on applying deep learning to perform
profiling attacks, Differential Deep Learning Analysis (DDLA), which can use the
power of deep learning in the non-profiled context, is proposed by B. Timon[18].
DDLA is the method which uses deep learning as distinguisher, and it show that
different training trends, such as loss, accuracy, sensitivity, appear depending
on key guessed label. Using the training trends, the attacker distinguishes right
key guessed label from wrong key label in non-profiling context. This study has
shown that deep learning based side-channel attacks can be performed in non-
profiling attack scenarios.

Recent methods, which is related to this paper’s work, profiled correlation
electromagnetic analysis using Correlation Optimization proposed by Robyns et
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al. [17]. Correlation Optimization is a novel approach that improves side-channel
attack by encoding the leakage so that the correlation coefficient is maximized.
Also, as one of the studies similar with our works, a technique for preprocessing
side-channel Measurements using autoencoders has been proposed [21], but it
is the technique in the profiling attack environment using a convolutional au-
toencoder. However, by limitation of supervised learning, which can not perform
without a label (in this case, the trace that easy to analyze), profiled deep learn-
ing based side-channel attacks are limited to research in the profiled context
where training data and its labels can be obtained.

1.1 Our Contributions

Our main contributions of this paper can be summarized as follows.

– Introducing a new approach of deep learning based techniques to
improve non-profiled side-channel attacks. To the best of our knowl-
edge, side-channel attacks that apply the deep learning techniques in non-
profiling context is only Differential Deep Learning Analysis, which proposed
by Timon[18]. We introduce a novel approach based on deep learning to im-
prove non-profiling side-channel attacks.

– Presenting denoising preprocessing with neural network which can
outperform the classic preprocessing methods. We propose a new au-
toencoder which can reduce the noise by modifying a training principle to
the context of side-channel analysis. Through experiments, we demonstrate
that the proposed method outperforms conventional preprocessing methods.

– Extending the proposed method to realign de-synchronized traces
with convolutional autoencoder. We show that the proposed method
can help to re-synchronize the traces that misaligned by countermeasure
such as random delay, jitter. We confirm that it is possible experimentally.

1.2 Organization

The structure of this paper is oranized as follows. Section 2 briefy describes
non-profiled side-channel attacks, deep learning, Autoencoder and Denoising
Auto-Encoder. In section 3, we introduce a novel approach of improving side-
channel attacks with autoencoder, and propose a new methods that preprocess
the traces by modifying autoencoder framework to the context of non-profiled
side-channel analysis. Section 4 compares the performance of noise reduction
and alignment between the classic preprocessing techniques and the proposed
method from experiments performed on traces obtained from ChipWhisperer-
Lite, random delays countermeasure dataset and first order masking countermea-
sure database, ASCAD. Finally, section 5 concludes this paper with conclusion
and future works.
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2 Preliminaries

2.1 Non-profiled Side-Channel Attack

Non-profiled attack is a part of side-channel analysis which performs in non-
profiled context where measurements can be collected only from a target device
which has a fixed key. Depending on the number of traces, there are Simple
Power Analysis (SPA) which analyze through one or a few traces, and Differ-
ential Power Analysis (DPA) [10], Correlation Power Analysis (CPA) [3] that
perform statistical analysis through a large number of traces. Especially, CPA,
which is proposed by Brier et al in 2004 [3], is a power analysis using the cor-
relation between the power consumption from the target device that performs
cryptographic operation and the hypothetical power consumption value to be
calculated. The leakage model is defined as the following:

Power = δ +HW (Data) +Noise (1)

where δ is a fixed constant offset, HW (·) is the Hamming Weight function,
and Noise is gaussian random noise centered in zero with a standard deviation
σ. In order to perform CPA, first step is that attacker measures the power
consumption of target device while it calculates the cryptographic operations.
Next, attacker calculates the hypothetical consumption with guessing key, and
then calculates a correlation between hypothesis and power consumption. The
correlation coefficient between two values is calculated as follows:

ρ(X,Y ) =
Cov[X,Y ]√

V ar[X] · V ar[Y ]

=

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

(2)

It can be deduced that the hypothesis with the largest correlation coefficient with
the measurements is the hypothetical power consumption which calculated by a
right key. Thus, attacker can recover the correct key. Since the statistical analysis
techniques are affected by the noise of the data, noise reduction is required for
successful side-channel attacks.

2.2 Deep Learning

Deep Learning is a subset of machine learning that approximates a function using
neural network and is used in various fields such as image, natural language
and speech processing. Training is a process of modifying the parameters to
approximate a neuron network with a function that we want to get. If label,
which is output of function that the attacker want to approximate, is given, it
is classified into supervised learning, and unsupervised learning if not.

When a neural network is a function f(x) and function that want to approxi-
mate is f∗(x), f(X; θ) is output of the neural network for input X with trainable
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parameters θ. To approximate the function f∗(x) means that it minimize a dif-
ference between the output of the neural network f(x; θ) and the output of the
actual function, label y(= f∗(x)). The difference, called loss (or cost, error), is
followed as:

Loss(X,Y ) = L(f(X; θ), Y ) (3)

In equation (3), L(·) is a loss function, which is also called the objective function,
cost function and error function, and usually uses Mean Squared Error or Cross
Entropy. By the training, the neural network learns the optimal parameters θbest
that satisfy (4). In other words, the neural network searches the parameters θbest
that minimize loss through the training.

θbest = argmin
θ

(L(Y, f(X; θ))) (4)

We usually use the Gradient Descent method to find the optimal parameters
that minimize the loss. α is a learning rate that decides how much to change
the parameters of neural network with respect the gradient. For scheduling the
learning rate, there are various methods such as RMSProp and Adam [7].

A neural network is represented by composing three different type functions,
called layers. The layers are organized in three types: an input layer correspond-
ing to the input of data, an output layer corresponding to the output of the
network, and the remaining hidden layer. The input layer and the output layer
have a number of neurons corresponding to the dimension of the input data and
the output data, respectively, and are fixed according to the training data. In
the case of the hidden layer, there are parameters to be set by the attacker such
as the number of hidden layers, the activation function, and the number of each
hidden layer’s neurons, and are called hyperparameters. The hyperparameters
are not trainable parameter in neural network so that the attacker have to be
carefully set for best results.

Multi-Layer Perceptron. Multi-Layer Perceptron (MLP), is also called Deep
Neural Network (DNN) or Artificial Neural Network (ANN), is a basic model
of neural network. Each hidden layer of MLP consists of a linear function and a
nonlinear function. MLP consists of multiple hidden layers, and can be expressed
as follows:

f(x) = s ◦ λ ◦ σ ◦ λ ◦ · · · ◦ σ ◦ λ(x) (5)

λ is called Fully-Connected layer and is the linear function that calculates as
WX + b, W and b are the trainable parameters, called weight and bias. σ is
called Activation layer and is the nonlinear function that usually uses sigmoid,
ReLU(Rectified Linear Unit), SELU(Scaled Exponential Linear Unit) or Hyper-
bolic Tangent. s is a classification layer, that is a little different with activation
layer, which is to re-normalize the output. It usually uses softmax function when
neural network is multi-class classifier, sigmoid function when it is binary classi-
fier and output cell is one unit. According to universal approximation theorem,
it show that a multi-layer perceptron with single hidden layer can approximate
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arbitrary continuous functions. In deep learning based side-channel analysis,
the most of researchs study method to approximate a function that outputs a
intermediate value (or its hamming weight, least significant bit) by inputting
measurements.

Convolutional Neural Network. Convolutional Neural network (CNN) is a
particularized class of neural networks that additionally contain convolutional
layers and pooling layers. Convolutional layers are linear layers that share weights
and apply convolution operation to the input. The weights of the convolutional
layer are called kernels or filters, which can detect a feature in the input. The
kernels also are optimized by the gradient decent method. Similar to the MLP,
convolution layers have an activation function, which is a nonlinear operation
followed by convolution operations.

The other kind of layer, pooling layers are usually performed after the con-
volution layers. Pooling layers performs down-sampling on the input dimension
to output the reduced volume by averaging local or sub-sampling maximum. By
pooling steps, small changes in input do not have a large effect on the feature
extraction. For example, eyes, ears and mouth positions are slightly different for
each person, but when using max pooling, this difference will not have a big
impact on recognizing people.

Convalutional Layer with 2 kernels and
kernel size 3. Max Pooling Layer with pooling size 2.

Fig. 2: Example of (a) Convolutional Layer and (b) Pooling Layer.

2.3 Basic Autoencoder

Autoencoder is a unsupervised learning model of neural network that the output
of neural network is similar to the input, and used for pre-learning of neural net-
work, compression of input data and denoising. In earlier studies where training
about the deep layers was difficult, autoencoder was usually used for initializa-
tion and pre-training of the network’s parameters. After learning the weights of
each layer by pre-learning using autoencoder to best express the input data, the
network is learned by adjusting the overall weight through fine-tuning. However,
it is not well used due to the inconvenience of learning time and design, and the
new initialization techniques are proposed such as xavier and he initializer [].
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Secondly, autoencoder can be used as a way to compress the dimensions of
input data. Autoencoder used for dimensionality reduction basically consists of
an encoder part for compressing the dimension of the input data and a decoder
part for reconstructing the compressed data through the encoder into the original
input data. Figure 3 is the basic architecture of autoencoder.

Fig. 3: Basic Architecture of Autoencoder

In Fig. 3, X = (x1, x2, ..., xn) ∈ Rn is the input of autoencoder, Z =
(z1, z2, ..., zt) ∈ Rt is called Code that is data compressed by the encoder of
autoencoder, and Y = (y1, y2, ..., yn) ∈ Rn is the output of autoencoder. A neu-
ral network consisting of hidden layers between input and Code is called the
encoder. Also, a neural network consisting of hidden layers between Code and
output is called the decoder. Generally, the dimension of the code t is smaller
than the dimension of the input n, and if the autoencoder satisfy the condition,
it is called an undercomplete autoencoder. If not, it is called an overcomplete
autoencoder. The operation of autoencoder in which encoder and decoder are
each composed of one layer is calculated as follows:

zi = σ(

n∑
j=1

weightenc(j,i)xj + biasenci ) (6)

yi = σ(

t∑
j=1

weightdec(j,i)zj + biasdeci ) (7)

LossAE = L(X, g(f(X; θ))) (8)

θbest−AE = argmin
θ

(L(X, g(f(X; θ)))) (9)

When the encoder is a function f() and the decoder is a function g(), the loss
of autoencoder is defined as (8). If training is successful and the output Y is the
same for input X, then X = g(f(X)) = g(Z), X = g(Z) : Rt → Rn. It means
that the compressed data, code can be reconstructed to the original through the
decoder function g, while the dimension of data is smaller than the dimension of
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input data. Therefore, the code has all of the features of the input, but is also
low-dimensional data.

2.4 Denoising Autoencoder

Autoencoder which reduce the noise, called Denoising Autoencoder (DAE), is
proposed by Vincent et al [19] in 2008. The structure of DAE and autoencoder
are the same, but the main difference lies in the input data used for training.
Unlike autoencoder that uses input data as it is, DAE is trained through ran-
domly added noise by an attacker. Fig. 4 is the basic architecture of denoising
autoencoder.

Fig. 4: Denoising Autoencoder Architecture

As shown in Fig. 4, the attacker adds random noise to data X, which col-
lected, to generate new data X̃ and use it as training data. The learning is
performed to minimize the loss which calculated using the output of the neu-
ral network Y and the original data X before adding the noise as a label. It
trains noisy data to recover the original undistorted input, and the new training
principle for autoencoder can make the neural network to remove the noise.

LossDAE = L(X, g(f(X̃; θ))) (10)

Equation (10) represents the loss of the DAE. There are two ways to add
noise to input data in the DAE: adding gaussian noise to the data, or zeroing
some elements of the data randomly. By adding random noise, the model learns
with X̃ to project them back into original X, it can make to decide the data in
the close range as the same data. Also, by making some elements zero, the model
can be learned about the whole data, not just by focusing on specific parts of
the data. Using this method, the autoencoder can train to output noise-reduced
data.
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3 Side-Channel Preprocessing using Autoencoder

3.1 Conventional Methods and Traditional Autoencoder in
Side-Channel Analysis

In side-channel analysis, PCA and LDA based noise reduction methods are
mainly used. In terms of dimensional reduction, PCA and LDA are the meth-
ods that project data to linear hyperplane, but autoencoder is the method that
project data to non-linear hyperplane, like Isomap, and is the deep learning
based technique with the advantage that the more data, the higher the dimen-
sion, the better the performance. When t is smaller than n, the decoder is linear
layer and loss function is mean squared error, an autoencoder learns to span the
same subspace as PCA [7]. Therefore, conventional techniques can be replaced
by autoencoder theoretically. For similar reasons, denoising autoencoder is ap-
plicable, and according to previous studies, better performance can be expected
when applying the denoising autoencoder.

Initialization method using autoencoder is called stacked autoencoder that
Maghrebi at el [12] had used in side-channel analysis to classfy the power traces.
Through their experiments, it show that stacked autoencoder is better than MLP
in same case.

However, there are two disadvantages to using the denoising autoencoder in
the side-channel analysis due to the differences from the image processing field.
First, if noise is added to the collected traces and used as training data, the
noise already existing in the collected traces is further added to the noise, that
may make class classification more difficult and fail to learn. Assuming that the
power model is Equation (1) as described above, Equation (11) is the denoising
autoencoder’s loss when the input data is the power traces.

LossDAE = L(g(f(X̃; θ), X)

= L(g(f(δ +HW (D) +Noise+Noise′)), δ +HW (D) +Noise)
(11)

When the value of the noise Noise of the actual traces is low, it is not
necessary to remove the noise for the waveform. On the contrary, when the
value of Noise is high, the weight of the noise in the training data δ+HW (D)+
Noise+Noise′ calculated by adding the new noise Noise′ becomes larger than
before. This make it difficult to learn. If the attacker set the Noise′ too low to
train, the denoising autoencoder will only train about low noise, reducing the
effect of noise reduction. In addition, in the context of side-channel analysis, the
operation to be attacked is performed only at a certain point in time. When
training data is generated with a random sample point of 0, training data may
be generated in which sample related to the secret key is excluded. Therefore,
this method is not suitable for the side-channel analysis environment. Thus, it is
difficult to apply denoising autoencoder easily due to the problems. Also, when
using this approach, other features may appear larger in the dataset and may
not focus on data which is meaningful to the attacker. In this paper, we propose
a new autoencoder model modified to solve the problems.
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3.2 Side-Channel Autoencoder for Denoising

In this section, we introduce our approach to preprocess the measurements by
modifying the training principle of autoencoder to the context of side-channel
analysis, which is called Side-Channel Autoencoder (SCAE). Figure 5 is the
basic architecture of autoencoder proposed in this paper. The proposed model is
similar to the basic structure of the autoencoder. However unlike the denoising
autoencoder, the input data is used as training data. Also, by using preprocessed
data as the label, the autoencoder can be learned about the real noise to output
noise-reduced traces.

Fig. 5: Side-Channel Autoencoder Architecture

As you can see in Fig. 5, input X is used as the input of the autoencoder, and
denoise trace X̂ is used as the label for the input data. The loss of the proposed
autoencoder is as follows.

LossSCAE = L(δ +HW (D), g(f(δ +HW (D) +Noise))) (12)

In the conventional autoencoder which denoises, the network is trained to
remove the newly added noise which is added by attacker, but the proposal is
trained to remove the noise in the collected traces. In contrast to the loss of the
denoising autoencoder in Equation (11), we calculate the loss as the difference
between output Y obtained by inputting X and denoise trace X̂.

There are many ways to preprocess side-channel traces to perform the pro-
posed method, but we use the simplest and reasonable approach ’average’. By
maximum likelihood estimation in equation (1), expectation value is an average
value of the traces with the same intermediate value [2]. If the key K is a fixed
value, the intermediate value D = Sbox(P ⊕K) is determined according to the
plaintext P , so that the traces performed with the same plaintext P have the
same intermediate value D. Since the average trace for the same plaintext is
the average trace for the same intermediate value, thus, the proposed prepro-
cessing technique can be performed even in a nonprofiling attack environment
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in which the intermediate value is not known. The label for each trace can be
set to the average trace corresponding to the plaintext of the trace. Algorithm
1 summarizes the proposed method to perform with averaging technique. After
the preprocessing step, secret key can be exploited by using side-channel attack
such as DPA, CPA.

Algorithm 1 Label preprocessing for denoising

Input: Traces (Tn)0≤n≤N with corresponding plaintexts (Pn)0≤n≤N , when 0 ≤
Pn ≤ p.

Output: Label traces Y

1: for i = 0...p do
2: Calculate mean traces Ri ← mean({Xj |Pj = i})
3: end for
4: for i = 0...N do
5: Set label trace as Yi = Rj , when j = Pi

6: end for
7: return Y

Such a method is difficult to perform in an image processing context but can
be performed due to differences in data in the context of side-channel analysis.
For example, in an image processing implementation that classifies handwritten
digits like MNIST database, the number of classes that the attacker has to
classify is 10, and the samples that attacker must be analyzed are separated into
several samples in 784 (28 × 28) samples. Therefore, two different data of the
same class can have features at different points in samples, thus, average value
of the image with same digit is a meaningless value. We easily expect that if we
use the method with mean trace, the traces for a particular plaintext are always
output as the same trace (label trace). Nevertheless, such a situation is not easy
to occur, unless overfitting.

3.3 Side-Channel Autoencoder for Hiding Countermeasure

When the alignment of the traces are disturbed by side-channel countermeasures
such as random delay and jitter, the point of samples as the attack target is dif-
ferent for every trace. Therefore, it is difficult to acquire the noise-reduced traces
through the averaging, and to apply the above-described proposed method. In
this case, preprocessing is required to align the traces rather than the noise
reduction in order to apply the conventional side-channel attack. In this subsec-
tion, by modifying the proposed labeling technique, we propose a simple labeling
preprocessing to encode the traces into aligned data.

In the previous description, the method of obtaining a representative trace
of each class from which 256 noises have been removed is described, the follow-
ing description is for a method of collecting an aligned representative trace of
each class (intermediate value). Algorithm 2 summarizes the labeling method to
obtain the realigned traces in de-synchronized traces.
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Algorithm 2 Label preprocessing for alignment

Input: Traces (Tn)0≤n≤N with corresponding plaintexts (Pn)0≤n≤N , when 0 ≤
Pn ≤ p.

Output: Label traces Y

1: Set first representative trace R0 = Ti where Pi = 0
2: for i = 0...p do
3: Ri = Tj where j = argmax(corr(R0, Tk)), k ∈ {n|Pn = i}
4: end for
5: for i = 0...N do
6: Set label trace as Yi = Rj , when j = Pi

7: end for
8: return Y

Similar to the method for noise reduction, a representative label for each
plaintext is selected in de-synchronized traces having the same intermediate
value. First, one traces is selected at random in some plaintext (like 0), and
the correlation coefficient is calculated with traces having different plaintexts (1
255). Next, one of the traces with the highest correlation coefficient is selected
for each plaintext set and used as a label trace of each set. Thereafter, additional
alignment can be performed using an conventional alignment technique for 256
traces. In this way, it is possible to obtain labels by not performing the alignment,
or by performing the alignment only on a small number of traces, 255.

3.4 Side-Channel Autoencoder for Masking Countermeasure

In the implementation applied masking countermeasure, the intermediate values
are changed by masking value, which is the unknown, so that the proposed meth-
ods described above can not be used. Therefore, we introduce a new autoencoder
with domain knowledge neurons. The domain knowledge (DK) neurons, which
is proposed by Hettwer et al. [8] in 2018, provide the plaintext or ciphertext
as additional information into neural network to learn the leakage in regard to
the secret key. The research of Hettwer et al. show that better results can be
obtained when using side-channel traces with domain knowledge. We also get
better results when using the domain domain knowledge in the autoencoder.

Furthermore, in our experiments, we use one byte of the plaintext as do-
main knowledge, however, we encode the plaintext into bit-encoding, not one-
hot encoding. Bit-encoding represent the plaintext as vector of 8 variables like
binary representation, where one-hot encoding encodes the plaintext into vector
of 256 variables. The bit-encoding can represent data in a smaller dimension
than one-hot encoding, and also represent vector of binary variables. The basic
architecture of autoencoder with domain knowledge can be shown in Fig. 6.

The methods described in section 3.1, 3.2 are similar to autoencoder with do-
main knowledge. When domain knowledge provide additional information to the
input, the methods described above were processed using additional information,
plaintext on the label.
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Fig. 6: Autoencoder with domain knowledge

4 Experiment Results

In this section, we validate the performance of the proposed methods through
experiments and compare with conventional preprocessing methods. All exper-
iments have been performed with TensorFlow (Version 1.13.1) [1] and Keras
(Version 2.2.4-tf) [5] library from Python on a single NVIDIA GeForce GTX
1080 8GB.

4.1 Implementation Result of Unprotected AES

XMEGA. In order to analyze the noise reduction performance of proposed
approach, we capture the power traces of the AES-128 implementation with-
out side-channel countermeasures. We gether 10,000 side-channel traces from
the first round of the software AES implementation on the ChipWhisperer-Lite
platform [14], the target board is an Atmel XMEGA128 with a fixed clock fre-
quency of 7.37MHz. The power consumption traces, which contain 800 samples,
are captured with 29.538 MS/s sampling rate (4 points-per-cycle).

To validate the performance of the proposed method, we compared the
Signal-to-Noise Ratio (SNR) of the traces according to the preprocessing meth-
ods. The results are illustrated in Fig. 7. In our implementation, PCA with sliding
window technique showed the best results in window size 24, components 2, and
LDA showed in window size 23, components 21. The maximum value of Both
SNR results 9.5489, 5.9725 are higher than the original traces’ result 5.1782, but,
as presented in Fig. 7, the maximum value of SNR is 20.4902 in SNRproposal.
Comparing preprocessing methods, the results indicate that, proposed method
outperforms classic preprocessing methods, PCA and LDA.
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Fig. 7: Comparison of signal-to-noise ratio results for preprocessing method

4.2 Implementation Result of AES Protected by Random Delay

RandomDelay. In order to validate the performance of Realignment, we use
a protected software AES implementation obtained from an 8-bit Atmel AT-
mega16 AVR microcontroller. The implementation of AES is protected by ran-
dom delay countermeasure which is proposed by Coron et al. [6]. The measure-
ments were performed with a LeCroy WaveRunner 104MXi DSO equipped with
ZS1000 active probe, and the details of the measurement setup and the im-
plementation are in [9]. 3 we normalize the traces by minmax scaling Xnew =
X−Xmin

Xmax−Xmin
. The dataset contains 50,000 traces of 3,500 samples each, but we

only use 25,000 traces as training set.
To validate the performance of alignment of the proposed method, we com-

pared the absolute correlation coefficient of the traces according to the pre-
processing methods. The results are illustrated in Fig. 9. In Fig. 7, the x-axis
presents the number of traces used in the attack, the y-axis presents the absolute
correlation coefficient, and the gray lines are the correlation coefficient for the
wrong key, the red line is the correlation coefficient for the correct key. Starting
from 100 traces, the absolute correlation coefficient was calculated using up to
5000 traces while increasing by 100 traces. Side-channel autoencoder with CNN
encoder means that CNN is used for the encoder part of the autoencoder, and
the decoder part of side-channel autoencoder is MLP. As showed in Fig. 8a,
the CPA on the raw traces failed. The maximum value of absolute correlation
coefficient is in side-channel autoencoder with CNN encoder, but the noise level
is highest. However, considering the number of traces required for CPA, the at-
tack can be successful with the fewest traces using the proposed technique. This
results imply that the proposed methods can perform alignment.

In order to visually confirm the results, the 100 traces according to alignment
technique are illustrated in Fig. 11. The results from Simple Power Analysis can

3 The dataset is available at Kizhvatov’s github ’randomdelays-traces’ page,
http://github.com/ikizhvatov/randomdelays-traces.
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100 1000 2000 3000 4000 5000

The number of traces

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
b

s
o

lu
te

 c
o

r
r
e
la

ti
o

n
 c

o
e
ff

ic
ie

n
t

SCAE with MLP encoder

100 1000 2000 3000 4000 5000

The number of traces

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
b

s
o

lu
te

 c
o

r
r
e
la

ti
o

n
 c

o
e
ff

ic
ie

n
t

SCAE with CNN encoder

Fig. 9: Comparison of absolute correlation coefficient for preprocessing method

not demonstrate exactly, but it is clear that the raw traces and Cross-correlation
with sliding window based realigned traces did not align well. Dynamic Time
Warping based realigned traces 10c and proposed method based realigned traces
10d are better aligned than the two results 10a, 10b.

4.3 Implementation Result of AES Protected by First-Order
Masking

ASCAD. In order to analyze the performance of proposed method, we use a
software Masked AES implementation obtained from an ATMega8515 device.
The dataset called ASCAD (ANSSI SCA Database) is introduced by Prouff et
al. [16] to provide a benchmarking reference in side-channel analysis, like MNIST
database in machine learning. The dataset ASCAD.h5 contains 60,000 traces of
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Fig. 11: Comparison of power traces for preprocessing method

700 samples each, but we only use 50,000 traces as training set. The implement
of AES is protected by the masking countermeasure with different masking value
for each byte. The ASCAD dataset is available at https://github.com/ANSSI-
FR/ASCAD. We also normalize the traces by feature scaling, and newly add
gaussian random noise centered in zero with a standard deviation 0.1 for noise
reduction experiments.

In our experiments, we apply a product combining Second Order CPA with
the improved product combining function [15]:

Cprod(L(t1), L(t2)) = (L(t1)− E[L(t1)])× (L(t2)− E[L(t2)]) (13)

We combine 140 to 190 point as masking value into t1 and 490 to 540 point
as Subbytes value into t2, and the length of combining traces is 2601. In result of
raw traces, the maximum value of the absolute correlation coefficient is 0.109672
at 539 point, and the maximum value of the difference between the correlation
of correct key and highest correlation in wrong keys is 0.076478. The maximum
value of the correlation with our proposal is 0.193304 at 900 point, and the
maximum value of the difference between the correlation of correct key and
highest correlation in wrong keys is 0.136384, roughly twice higher than the
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ASCAD with Noise

Preprocessed by autoencoder with Domain Knowledge

Fig. 13: Comparison of Second Order CPA results

result of raw traces. Also, we can not confirm the leakage at the result from the
raw traces at 180 point, however, the correlation of correct key is higher than
all correlation of wrong key in Fig. 12b. This results show that the proposed
methods can improve the conventional side-channel analysis, even if the masking
countermeasure is applied in implementation.

5 Conclusion

One of the reasons why the study on the deep learning based side-channel attacks
are noticed is that it is possible to analyze without performing preprocessing
step, which were required in the conventional side-channel analysis, regardless
of whether or not the countermeasures are applied. However, end-to-end attack
which perform preprocessing and analysis steps at a time can only be trained
when attacker already know intermediate values of traces. Therefore, there are
limitations that it performs only in profiling attack context, or that training is
required as many as the estimated number of secret key. In this paper, we can
perform side channel analysis using deep learning in nonprofiling attack as well
as profiling attack environment by separating preprocessing and analysis steps.
Furthermore, it can improve the performance of conventional side channel anal-
ysis, and we confirmed the performance experimentally. In this paper, we only
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have focused on side-channel analysis in non-profiling attack environment, but
we expect that the performance of profiling attack may be improved through
the proposed techniques. Also, proposed method may be used to stack autoen-
coder to initialize a neural network for improving profiled attack, like Maghrebi’s
stacked autoencoder. The proposed training principle of autoencoder model in
this paper is not applicable in all situations, however it can improve the per-
formance of side-channel attacks without compromising the constraints in the
non-profiling context. In addition, it can be said that the proposed techniques
have given us a new approach to how deep learning can be applied to side-channel
analysis, not simply classify the side-channel information.
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A Experiments over Hyperparameters

We do not claim that our hyperparameters of neural network are not optimal an-
swer for proposal. Although the hyperparameters presented in the paper are not
always the correct answer for side-channel analysis, we believe that our experi-
ments can be used as a reference for future research. It means that the hyperpa-
rameters, used in this paper, is not essential. Therefore, through the appendix,
we experimentally show that how hyperparameters affect the performance of the
proposed technique.

A.1 Experiments over number of hidden layer’s node using our
method
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Fig. 15: Result of SNR over number of hidden layer’s node using our method (1)
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Fig. 17: Result of SNR over number of hidden layer’s node using our method (2)
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Fig. 19: Result of SNR over number of hidden layer’s node using our method (3)
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A.2 Experiments over hidden layer’s activation function using our
method
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Fig. 21: Result of SNR over hidden layer’s activation function using our method
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A.3 Experiments over each byte using our method
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Fig. 23: Results of SNR over each byte using our method (1 6)
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Fig. 25: Results of SNR over each byte using our method (7 12)



26 D. Kwon et al.

0 100 200 300 400 500 600 700 800

samples

0

5

10

15

20

25

30

S
N

R

13th byte

0 100 200 300 400 500 600 700 800

samples

0

5

10

15

20

S
N

R

14th byte

0 100 200 300 400 500 600 700 800

samples

0

5

10

15

20

25

30

S
N

R

15th byte

0 100 200 300 400 500 600 700 800

samples

0

5

10

15

20

S
N

R

16th byte

Fig. 27: Results of SNR over each byte using our method (13 16)

B Performances of Dimensionality Reduction

In order to compare the performance of dimensionality reduction, SNR results
are performed according to the preprocessing techniques, proposed methods with
code size 30, PCA and LDA with component 30.

5 10 15 20 25 30

Samples

0

5

10

15

20

S
ig

n
a

l-
to

-N
o

is
e

 R
a

ti
o

SNR
SCAE Code

SNR
PCA ALL

SNR
LDA ALL

Fig. 28: Comparison of compressed traces of signal-to-noise ratio results


