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Abstract. Rainbow is a signature scheme that is based on multivariate
polynomials. It is one of the Round-2 candidates of the NIST’s Post-
Quantum Cryptography Standardization project. Its computations rely
heavily on GF (28) arithmetic and the Rainbow submission optimizes
the code by using AVX2 shuffle and permute instructions. In this pa-
per, we show a new optimization that leverages: a) AVX512 architec-
ture; b) the latest processor capabilities Galois Field New Instructions
(GF-NI), available on Intel “Ice Lake” processor. We achieved a speedup
of 2.43×/3.13×/0.64× for key generation/signing/verifying, respectively.
We also propose a variation of Rainbow, with equivalent security, using
a different representation of GF (28). With this variant, we achieve a
speedup of 2.44×/4.7×/2.1× for key generation/signing/verifying, re-
spectively.
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1 Introduction

The potential threat to public key cryptography that large-scale quantum com-
puters pose triggered the National Institute of Standards and Technology (NIST)
to launch a standardization process for quantum-resistant crypto-algorithms [12].
This is currently a vibrant research topic. From the 69 Round-1 submission
candidates only 17 Key Encapsulation Mechanisms (KEMs) and 9 signature
schemes made it to Round-2 of this project. Rainbow [1] is one of these signature
schemes and its security relies on the generic (NP-hard) Multivariate Quadratic
(MQ) problem. It is a generalization of the Unbalanced Oil and Vinegar (UOV)
scheme [11]. Rainbow enjoys a small signature size (64/156/204 bytes for the
Ia/IIIc/Vc variants, respectively) in addition, the signing and verifying opera-
tions are relatively quick these features make it an appealing candidate. The sub-
mission includes several variants, from which we focus here on IIIc-Classic
(the reasons are explained in Section 2.2).

The KeyGen/Sign/Verify computations of Rainbow rely on multiplications

and inversions in GF (28). A specific representation of GF (28) as the GF (22
2

)
tower is named in the specification itself and we denote this representation by
FTower. The authors of Rainbow motivate this choice by the ease of a constant-
time implementation of the code. However, we point out that any other field
representation could also be used, with equivalent security.



In this paper, we explore the potential advantage that can be derived from a
judicious use of new processor instructions in order to speedup Rainbow. Specif-
ically, the GF-NI instructions [8] that are available on the latest x86-64 CPUs
(microarchitecture codename “Ice Lake”) [8]. The use of the GF-NI is demon-
strated in [5] for some use-cases. Note that the GF-NI instructions operate over
a specific representation of GF (28), which we denote by FAES. To leverage these
instructions, we first need to calculate the conversion between FTower and FAES.
Furthermore, if one agrees to define Rainbow over FAES, conversion is no longer
needed, and the implementation becomes faster.

The paper is organized as follows. Section 2 describes the new GF-NI in-
structions and the Rainbow signature scheme. We discuss the details of FTower

and the conversion from/to FAES in Section 3. Section 4 discusses different imple-
mentation choices for Rainbow. Section 5 describes the experimental setup and
Section 6 provides the performance results that we obtain. We conclude with
Section 7.

2 Preliminaries

In this paper, we mark hexadecimal notation with a 0x prefix, and place the
LSB on the right-most position. For example, the byte 0x11C is the binary
string 000100011100. Let X be a string of bits. We use X[j : i], j ≥ i to
denote the sub-string of X that includes all the bits in the positions between i
and j (included). We define X[i : i] = X[i]. For example, if X = 000100011011
we have X[4 : 2] = 110 and X[7 : 7] = X[7] = 0. Let FAES be the polynomial
representation of GF (28) with polynomial reduction PAES = x8 +x4 +x3 +x+1.

2.1 Vectorized GF-NI

GF-NI includes the instructions VGF2P8MULB, VGF2P8AFFINEQB, and
VGF2P8AFFINEINVQB. For short, we denote them by MULB, AFFINEB, and
AFFINEINVB, respectively. Alg. 1 describes MULB. It performs vectorized multi-
plication in FAES, ofKL = 16/32/64 8-bit elements that reside in two 128/256/512-
bit registers (the registers are called xmm, ymm, zmm, respectively).

We note that MULB can be used for different GF (28) representations. This
requires some conversions to/from these representations that can be performed
with the AFFINEB(and AFFINEINVB) instruction described in Alg. 2. Here, an
affine transformation is C ·x+ b (or Cx−1 + b), for some 8× 8-bit matrix C that
is “vectorized” (duplicated) KL = 2/4/8 times and for some 8-bit vectors x and
b.
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Algorithm 1 MULB instruction

Inputs: SRC1, SRC2 (wide registers)
Outputs: DST (a wide register)

1: procedure VGF2P8MULB(SRC1, SRC2)
2: for j in 0 to (KL-1) do
3: DEST.byte[j] ← GF2P8MULBYTE(SRC1.byte[j], SRC2.byte[j])

4: procedure GF2P8MULBYTE(s1b, s2b) . s1b,s2b (8 bits)
5: T[15:0] = 0
6: for i in 0 to 7 do
7: if s2b[i] then
8: T[15:0] = T[15:0] ⊕(s1b� i)

9: for i in 14 downto 8 do
10: if T[i] then
11: T[15:0] = T[15:0] ⊕ (0x11b � (i− 8))

12: return T[7:0]

Algorithm 2 AFFINEB and AFFINEINVB instructions

Inputs: S1, S2 (wide registers) imm8 (8 bits)
Outputs: D (a wide register)

1: procedure VGF2P8AFFINE[INV]QB(S1, S2)
2: for j in 0 to KL− 1 do
3: for b in 0 to 7 do
4: k = 64j, q = k + 8b
5: D[q + 7 : q] = [Inv]AffB(S2[k + 63 : k], S1[q + 7 : q], imm8)

6: return D[64KL− 1 : 0]

7: procedure [Inv]AffB(s2, s1, imm8)
8: for i = 0 to 7 do
9: T[i] = parity(s2[8(7-i)+7 : 8(7-i)] & [inv](s1)) ⊕ imm8[i]

10: return T[7:0]

2.2 Rainbow

Rainbow is a multivariate-polynomial signature scheme defined over a finite field
F. It uses a system of m equations with n variables. Let us fix the number of
layers u and to set v1, . . . , vu+1 ∈ Z such that 0 < v1 < . . . < vu+1 = n. In
addition set Vi = {1, . . . , vi} and Oi = {vi + 1, . . . , vi+1}, i = 1, . . . , u. Here,
m = n− v1, |Vi| = vi and set oi = |Oi|. The Rainbow operations are as follows.

KeyGen. The private key consists of two invertible affine maps S : Fm =⇒ Fm

and T : Fn =⇒ Fn, and a quadratic central map F : Fn =⇒ Fm, consisting of
m multivariate polynomials f(v1 + 1), . . . , f(n). The public key is the composed
map P = S ·F ·T : Fn =⇒ Fn and therefore consists of m quadratic polynomials
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in the ring F[x1, . . . , xn].

Sign. To sign a message m, compute its hash digest h = H(m) with a hash
function1 H : {0, 1} =⇒ Fm. Compute x = S−1(h) ∈ Fm and its pre-image
y ∈ Fn under the central map F . Then, compute the signature z = T −1(y) ∈ Fn.

Verify. To verify a signature z ∈ Fn on a message m, calculate h = H(m) and
h′ = P(z) ∈ Fm. Accept z if and only if h′ = h.

Parameters choice. The Rainbow submission proposes three parameter sets
in the form (F, v1, o1, o2) as follows:

– Ia: (GF (24), 32, 32, 32) with m = 64 equations and n = 96 variables. This is
designed to meet NIST’s security category Level-1/2.

– IIIc: (GF (28), 68, 36, 36) with m = 72 equations and n = 140 variables. This
is designed to meet NIST’s security category Level-3/4.

– Vc: (GF (28), 92, 48, 48) with m = 96 equations and n = 188 variables. This
is designed to meet NIST’s security category Level-5/6.

This paper focuses on the IIIc option, and the use of GF-NI to optimize its
implementation.

Round-2 Rainbow variants. The Round-2 submission [9] adds two variants
(“cyclic” and “compressed”) to the Round-1 submission (called “standard”). As
stated in [9], the KeyGen and Verify algorithms of cyclic-Rainbow are slower than
the KeyGen and Verify of the standard-Rainbow. The compressed-Rainbow is
similar to the cyclic-Rainbow and the only difference is that it views the private
key as a 512-bit seed. For this reason, it is enough to focus on standard-Rainbow.

3 Finite field representations for Rainbow

From the security viewpoint, the finite field representation used in [9] is imma-
terial. The specific choice of a tower field (FTower) targets a constant-time im-
plementation for the field multiplications. This representation views an GF (28)
element in GF (28) as a degree-1 polynomial over GF (24) as follows

– GF (22) = GF (2)[e1] = (e21 + e1 + 1)
– GF (24) = GF (22)[e2] = (e22 + e2 + e1)
– GF (28) = GF (24)[e3] = (e23 + e3 + e2e1)

Here, GF (28) multiplication translates to GF (24) operations, and these translate
to GF (22) operations. These can be easily executed in constant-time.

In particular, working in FTower is convenient to program on a small device
that can only perform GF (22) multiplications (in constant-time). However, for

1 The concrete instantiation of Rainbow IIIc Classic uses the SHA-384 algorithm as
its hash function H.
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typical modern server CPUs, different field representations are more appealing.
Specifically, the use of FAES allows for leveraging the MULB instruction efficiently.

We outline several Rainbow flavors, based on different field representations.

– Working with FTower : This requires conversion of inputs/outputs to/from
FAES.

– Working with FAES : This does not require any conversion.
– Hybrid 1: The signing party stores the secret key in FAES and converts the

signatures to FTower. The verifying party stores the public key in FTower.
– Hybrid 2: The signing party stores the secret key in FTower and converts the

signatures to FAES. The verifying party stores the public key in FAES.

The optimal choice depends on the compute power of the signing and verifying
parties.

Conversion across field representations. All the representations ofGF (28)[x]
are isomorphic. Therefore, it is possible to pass from one representation to an-
other by means of multiplying by an 8×8-bit matrix. The AFFINEB instruction
is ideal for this purpose, and all that remains is to compute the conversion matrix
and its inverse [6].

For our purposes we show how to compute the conversion matrix A from
FTower to FAES. We first choose a primitive element δ ∈ FTower (e. g., δ = 0xbc)
such that δ is a root of PAES (arithmetic in FTower). Then, we compute the 8× 8
binary matrix

A = [δ7, δ6, δ5, δ4, δ3, δ2, δ1, δ0]

with arithmetic in FTower, where δ0 is the multiplicative unit (i. e., 0x01). These
are the matrices

A =



1 0 1 1 1 0 1 0
1 0 1 1 0 1 0 0
0 0 1 1 1 0 1 0
1 0 0 1 1 1 1 0
1 0 0 0 0 1 1 0
1 0 1 0 0 1 1 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 1


Fig. 1. The conversion matrix from FTower to the FAES.

For using in AFFINEB the matrixA is represented by 0xf1f0a6869e3ab4ba
and the matrix A−1 by 0x03349c68700cdea0.

4 Our implementation

The official Round-2 implementation of Rainbow is found in [10]. It includes
several variants one of which, is called “alternative”, uses AVX2 (technically C
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A−1 =



1 0 1 0 0 0 0 0
1 1 0 1 1 1 1 0
0 0 0 0 1 1 0 0
0 1 1 1 0 0 0 0
0 1 1 0 1 0 0 0
1 0 0 1 1 1 0 0
0 0 1 1 0 1 0 0
0 0 0 0 0 0 1 1


Fig. 2. The conversion matrix from FAES to FTower.

Table 1. The performance of different implementations of Rainbow KeyGen/Sign/Ver-
ify. The numbers represent cycles count (in thousands), i. e., smaller is better. The code
is profiled in the two measurement methodologies explained in Section 5.

KeyGen Sign Verify
(106 cycles) (103 cycles) (103 cycles)

Impl. Method: Orig [10] This work Orig [10] This work Orig [10] This work

Baseline 102 102 699 657 146 106
Baseline w/ 88.5 (1.16×) 88.5 (1.15×) 732 (0.95×) 675 (0.97×) 152 (0.96×) 106 (1.00×)
CTR DRBG [3]

Impl1 42.1 (2.43×) 41.7 (2.44×) 264 (2.64×) 210 (3.13×) 226 (0.65×) 166 (0.64×)
Impl2 42.1 (2.43×) 41.7 (2.45×) 172 (4.05×) 142 (4.62×) 103 (1.41×) 56 (1.88×)
Impl3 42 (2.44×) 41.7 (2.45×) 168 (4.17×) 141(4.64×) 106 (1.38×) 59 (1.81×)
Impl4 42 (2.43×) 41.8 (2.44×) 168 (4.17×) 143 (4.60×) 100 (1.47×) 50(2.13×)

intrinsic) and is the fastest provided option. This “alternative” code performs
fast GF multiplication of a, b ∈ GF (28) by storing or calculating some multipli-
cation tables using the same technique as described in [7,13]. Subsequently, the
tables are placed in 256-bit ymm registers and the multiplication is computed
by 2 shuffle instructions (using VPSHUFB), 2 AND instructions and one XOR
instruction. By comparison, our implementation (available at [4]) simplifies the
code because a multiplication involves only one MULB instruction with no ta-
bles at all. This also allows us to suggest further optimizations that are based
on pipelining the code. Surprisingly, we found that although modern compilers
can unroll loops (automatically through a flag), hand written pipelining can still
achieve faster results.

IIIc Classic dedicated code. The Rainbow implementation [10] supports mul-
tiple variants of Rainbow mentioned above with portable, SSE-based and AVX2
implementations. Our implementation is dedicated to the IIIc Classic variant
only. This facilitates dedicated optimizations for o1 = o2 = 36.

Inversion. To perform inversion during Sign, we use AFFINEINVB as follows.
We set C = I and b = 0 so that AFFINEINVB computes I · x−1 + b = x−1. The
hex representation of I is 0x0102040810204080.
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Using AVX512. The computations of Rainbow IIIc classic operate on 72-byte
rows, while AVX512 architecture has 512-bit zmm registers (64-bytes). Therefore,
we use the AVX512 masking architecture that allows reading/writing only a part
of a 512-bit zmm register. This saves some copies to/from temporary buffers and
simplifies our code.

5 The experimental setup

The platform. For the experiments, we used a Dell XPS 13 7390 2-in-1 laptop.
It has a 10th generation Intel R©CoreTM processor (microarchitecture codename
“Ice Lake”[ICL]). The specifics are Intel R©CoreTM i7-1065G7 CPU 1.30GHz.
This platform has 16 GB RAM, 48K L1d cache, 32K L1i cache, 512K L2 cache,
and 8MiB L3 cache. For the experiments, we turned off the Intel R© Turbo Boost
Technology (in order to work with a fixed frequency and measure performance
in cycles).

The code. We wrote the code mainly in C with some x86-64 assembly routines.
The implementations use the GF-NI as well as other AVX512 instructions. We
compiled the code with clang (version 9) in 64-bit mode, using the “-O3” opti-
mization flag and ran it on a Linux OS (Ubuntu 18.04.2 LTS).

Remark 1 We note that GCC-8/9 also support the GF-NI instructions. How-
ever, during our study we identified a bug in GCC that causes incorrect results
when using GF-NI. The bug is still present at the time of writing this paper. We
reported it in [2] and the proper fix is underway.

Measurements methodology. The performance reported hereafter is mea-
sured in processor cycles (per single core), where lower count is better. We obtain
the results using two measurement methodologies.

– The methodology of [10]: Taking the average of 10 runs for the key genera-
tion, and the average of 500 runs for the Sign and Verify operations.

– Our methodology: Every measured function was isolated, run 25 times (warm-
up), followed by 100 iterations that were clocked (using the RDTSC instruc-
tion) and averaged. To minimize the effect of background tasks running on
the system, every experiment was repeated 10 times, and the minimum result
was recorded.

The difference is in the minimization of background noise on the platform.

Code packages. Our baseline is the official “Alternative” code package that is
submitted to the PQC project [10]. This implementation is written with AVX2
instructions. We compare it to our implementations of Rainbow:

– Impl1 - using GF-NI with elements in FTower.
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– Impl2 - using GF-NI with elements in FAES.
– Impl3 - using GF-NI with elements in FAES compiled with -funroll-loops

clang flag.
– Impl4 - using GF-NI with elements in FAES compiled with -funroll-loops

clang flag and manual pipelining optimization for Verify.

6 Results

Table 1 shows the performance results of our study. The first row shows the
baseline, which is compared to our implementations in the subsequent rows.
The heaviest operations in the key generation implementation are: a) GF (28)
multiplications; b) random number generation (noted already in [9]). To help
isolating the performance contribution of GF-NI and AVX512 instructions we
also replaced the DRBG of [10] with our faster CTR DRBG implementation [3].
It is 1.16× faster.

For the Rainbow flavors that use FAES, we obtain a speedup factor of 4.64× for
signing and 2.13× for verifying. Similar speedup is achieved for Rainbow flavors
that use FTower for signing. However, verifying is slowed down by a factor of
(0.65×). This is due to the cost of converting the public key across from FTower

to FAES. This overhead can be eliminated by simply storing a copy of the public
key in FAES (converting it only once).

The difference between Impl2 and Impl3 is very small. This indicates that
adding the -funroll-loops compilation flag has a negligible effect (in this
case). Note that manual pipelining achieves observable speedups with our mea-
surement methodology (best versus average).

7 Conclusion

This paper shows how the new GF-NI instructions can be used for Rainbow
IIIc classic. We achieve speedups of 2.44×, 4.7×, and 2.1× for KeyGen/
Sign/Verify, respectively, when the chosen field is FAES. This makes Rainbow a
much more competitive candidate for the PQC standardization. Our results are
measured on a laptop platform (the only platform with GF-NI that is currently
available), and we expect to see even a stronger effect in future CPUs for server
parts. We therefore recommend that the authors of Rainbow [9] consider a flavor
of rainbow that operates in FAES as part of the modifications for Round-3.

The new optimized code of this paper is publicly available in [4].
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