
Hierarchical One-out-of-Many Proofs
With Applications to Blockchain Privacy and Ring

Signatures
Aram Jivanyan

Zcoin
www.zcoin.io
aram@zcoin.io

Tigran Mamikonyan
Zcoin

www.zcoin.io
tigran@zcoin.io

Abstract—The one-out-of-many proof is a cryptographic zero-
knowledge construction enabling the prover to demonstrate
knowledge of a secret element among the given public list of cryp-
tographic commitments opening to zero. This method is relying
on standard Deci-sional Diffie-Hellman security assumptions and
can result in efficient accountable ring signature schemes [4] and
proofs of set memberships [5] with a signature size smaller than
all existing alternative schemes relying on standard assumptions.
This construction also serves as a fundamental building block for
numerous recent blockchain privacy protocols including Anony-
mous Zether [1], [2], Zerocoin [3], Lelantus [11], Lelantus-MW
[9], Triptych [14] and Triptych-2 [15]. One-out-of-many proofs
require O(logN)-sized communication and can be implemented
in O(N) time for the verifier and O(NlogN) time for the prover. In
this work, we introduce anew method of instantiating one-out-of-
many proofs which reduces the proof generation time by an order
of magnitude and in certain practical applications also helps to
fasten the verification process of multiple proofs two or more
times. Our approach still results in shorter proofs comprised
of only a logarithmic number of commitments and does not
compromise the highly efficient batch verification properties
endemic to the original construction. We believe this work can
also foster further research towards building more efficient one-
out-of-many proofs which are extremely useful constructions in
the blockchain privacy space and beyond.

Index Terms—group signatures, ring signatures, confidential
transactions, blockchain privacy, Zerocoin, Lelantus, one-out-of-
many proofs, zero-knowledge proofs

I. INTRODUCTION

The one-out-of-many proof is a zero-knowledge proof of
knowledge for a list of cryptographic commitments having at
least one commitment that opens to zero. Being introduced
by Groth and Kohlweiss [3] and further optimized by Bootle
et al [4], these proofs are particularly attractive from the
communication point of view requiring only the transmission
of a logarithmic number of commitments. From the computa-
tional efficiency standpoint, the most efficient one-out-of-many
protocol construction [4] requires O(NlogN) group exponen-
tiation operations for the proof generation and O(N) group
exponentiation operations for each proof verification. This
important primitive has been used to construct ring signatures,
group signatures, Zerocoin, and proofs of set membership
in [3], accountable ring signatures [4], Lelantus, a privacy

cryptocurrency scheme enabling anonymous and confidential
blockchain transactions. It has been further extended to support
many-to-many proofs [2] which efficiently prove statements
about many messages among the given list. These techniques
have been used to build a protocol for Anonymous Zether, a
confidential payment system in the account based model. One-
out-of-many proofs has also been re-instantiated in the setting
of lattices [28] which in turn can further lead to the design
of quantum-secure ring signatures and blockchain privacy
schemes. Optimizing the proof generation and verification
processes is important in all use cases where a support of
larger sets is desirable and the cardinality of the referred set of
commitment has an immediate business impact. For example
in the blockchain privacy payment applications the size of the
referred set of commitments defines the anonymity level of
the conducted transactions. With bigger anonymity sets, the
speed of transaction generation is downgrading which has a
direct impact on the end user experience. The efficiency of
the proof verification in turn defines the network’s bandwidth
(how many transactions can be processed per second) and
should be kept low enough to support practical high-bandwidth
applications. With current methods, the proof generation of
1-out-of-262144 proof takes 1̃5s according to the benchmarks
from [11]. This practicality issue forces to limit the anonymity
set size to smaller numbers which in turn decreases the
provided anonymity.

A. Applications to Blockchain Privacy

Recently multiple blockchain privacy protocols have
emerged designed for both public cryptocurrency and
enterprise settings which are based upon one-out-of-many
proofs or its extensions.

Zerocoin: Zerocoin, designed as an extension to Bitcoin
and similar cryptocurrencies [6], was the first anonymous
cryptocurrency proposal to ensure high anonymity for the
blockchain transactions. It enables users to transform their
base layer coins(e.g. Bitcoin) into shielded coins and later
spend the shielded coins without revealing their origins.
When spent, a zero-knowledge proof is generated convincing

that the spent coin was not already spent before and it is
one of the previously minted shielded coins. The list of all
shielded coins that the spent coin belongs to is referred to as
an anonymity set. Intuitively, the size of the anonymity set
defines how strong is the guaranteed anonymity. The bigger
is the anonymity set size, the stronger anonymity is archived
for each transaction. In [3] authors presented an efficient
Zerocoin protocol design based on their one-out-of-many
proof system, which does not require any trusted setup
operations, supports much smaller proof sizes and efficient
computations compared to the original Zerocoin construction
[6]. Zerocoin protocol consists of four algorithms (Setup,
Mint, Spend, Verify) which can be implemented with help
of one-out-of-many proofs over the homomorphic Pedersen
commitments [5]

1) Setup: Generates the commitment scheme parameters
by specifying the group G and fixing two generators g
and h with no known discrete logarithm relation.

2) Mint: For minting a new coin, the user generates a
unique coin serial number secret S, and then commits to
S using the Pedersen commitment scheme and a fresh
randomness r: The resulted coin C = gShr is published
to the blockchain and is added to the list of all previously
minted coins C0, C1, ...CN−1. The coin serial number S
and the opening r are used later to spend the coin.

3) Spend: The user parses the set of all previously minted
coins C0, C1, ...CN−1 and homomorphically substracts
the serial number value S from all these coins. This
results in a new set of commitments where one will
obviously be opening to 0. Next the user generates a one-
out-of-N proof of knowledge of this secret commitment
opening to 0 without revealing its index in the referred
set. The proof transcript and the serial number S are
published to the blockchain.

4) Verify: All network participants can take the revealed
serial number S and homomorphically substracts it
from all coins resulting to a new set of commitments.
Next network participants can check the validity of the
provided one-out-of-N proof against the new composed
set.

Zerocoin is powering several decentralized privacy focused
cryptocurrency projects [7], [8].

Lelantus: Zerocoin provides strong anonymity for blockchain
transactions but it works with fixed denominated coins
and also does not support direct confidential payments.
These drawbacks are significant user experience issues
and also creates privacy risks. Lelantus [11] is a new
protocol which extends the Zerocoin functionality to support
confidential transactions of arbitrary amounts and enable
direct anonymous payments. It is based on a modified version
of one-out-of-many proofs which work with generalized
Pedersen commitments. In Lelantus coins are represented
through generalized Pedersen commitments and each coin is
associated with the recipient’s shielded address, a unique coin

serial number and a coin value which can be an arbitrary
number from the specified range. All ideas of implementing
hierarchical one-out-of-many proofs discussed in this paper
can be immediately applied to the modified one-out-of-many
proof scheme used in Lelantus.

Lelantus-MW MimbleWimble is another popular blockchain
privacy protocol which powers few cryptocurrency projects
including Beam [9] and Grin [17]. The transaction inputs
and outputs are introduced through Pedersen commitments
and this protocol uses the commitment blinding factors
of transaction inputs and outputs as private keys. Sender
and receiver must interact to construct a joint signature
to authorize a transfer of funds. This construction enables
to aggregate all transaction within the block into one
giant transaction resulting to significantly smaller ledgers.
Mimblewimble also enables benefits from cut-through, in
which all spent outputs cancel against corresponding inputs
which erases most of the blockchain history. Although this
property enhances property but it does not fully break the
linkability of transactions which remains a major privacy
issue of the protocol. Recently Beam designed a hybrid
scheme of Lelantus and MimbleWimble [10] which provides
further anonymity to MimbleWimble by enabling anonymous
spends in the MimbleWimble transaction. This hybrid scheme
is planned to be launched on Beam’ main network in 2020
[10].

Anonymous Zether Zether [1] remains a primary blockchain
privacy technique designed for the account based setup for
addressing enterprise blockchain payment use cases. In Zether,
each user account is associated with an El-Gamal ciphertext
which encrypts the account balance. The private balance can
be updated confidentially through dedicated incoming and/or
outgoing transactions using the homomorphic properties of
the El-Gamal cryptosystem. In order to make the Zether
transfer anonymous, the sender can select a ring of accounts
containing himself and the recipient, and next encrypt the
transfer amount under the ring’s respective keys. Next each
transaction should provide a zero-knowledge proof that it
preserves all required monetary invariants including the
fact that the value is preserved and is flowing from the
authenticated sender account without creating any overdraft
risks. This proof relation for anonymous Zether is defined in
[1] and its practical instantiation is powered by one-out-of-
many proofs [1] and a recent extension of this method called
many-to-many proofs [2].

B. Our Contribution

In this paper, we show how to scale one-out-of-many proofs
through a hierarchical approach which enables to efficiently
prove the knowledge of opening of one commitment among
the given list of N commitments through a cascade of
smaller one-out-of-many proofs. Assuming that N = M · T ,
the two-layer cascade’s intuition is first dividing the set of
N commitments into T small ordered subsets of size M .

Next, the user takes the subset containing the actual secret
commitment opening to zero and privately blinds all subset
elements with extra blinding factors without changing the
ordering of the set elements. The resulted set of extra-blinded
commitments is published and the user provides a proof that
these new M elements form a valid masking of one out of T
subsets of size M . The user finishes the proof by proving the
knowledge of opening of one out of M new commitments to 0.

0 1 2 4 6 8 10 16
7.5

8

10

12.5

15

17.5

20

Input Batch Size

Pe
rf

or
m

an
ce

ga
in

m
ul

tip
lic

at
or

Proving time acceleration by hierarhical approach(N =16384, T=16)

X Times Faster

Following to this intuition and assuming that N = 262144,
M=16, and T=16384, the 1-out-of-262144 proof generation
boils down to the generation of separate 1-out-of-16 and 1-out-
of-16384 proof. These two proofs jointly requires significantly
less computational efforts than a single 1-out-of-262144 proof.
We provide the design and formal security proofs of this new
method, which significantly optimizes the proof generation
complexity and also helps to optimize the verification for
proofs generated in batch.

• Assuming the number of commitments is N = T ·M , the
proving time for the proof generation will require only
O(N+TlogT+MlogM) group exponentiation operations
compared to the O(NlogN) exponentiation operations
required by the previous work [3], [4]

• A typical blockchain transactions in the UTXO model
usually spend two or more inputs simultaneously. For ex-
ample, the typical Monero transaction has two inputs but
there are special type transactions that can have dozens
or even hundreds of inputs [19]. With our construction
the generation of K simultaneous proofs by the same
user will require only O(N + K · (T logT + MlogM))
exponentiation operations instead of O(K · N · logN)
operations.

• Verifying simultaneously generated K proofs will require
O(N+K ·(T+M)) exponentiation operations instead of
O(kN) operations. We also show how independently gen-
erated proofs with multiple inputs could be batched and
verified requiring only O(N) exponentiation operations.

The diagram below shows how much the proof generation
process differs in the hierarchical and original setups in case
of multiple inputs.

C. Related Works

Privacy remains one of the most important issues for
blockchain [31] and there is a significant amount of active re-
search on efficient zero-knowledge proofs. Currently numerous
constructions achieve different tradeoffs between transaction
proof sizes, proving and verification times, but also under
different trust models as well as cryptographic assumptions.
The most efficient proof systems to date are zk-SNARKs
[16] which require a trusted setup processing [?]. Recently,
there have been designed powerful transparent systems such
are zk-STARKS [22] and Supersonic [26], which are zero-
knowledge proofs for Rank-1 Constraint Satisfaction (R1CS).
When applied to the private blockchain transactions use case,
their proving time and proof sizes still seems to be beyond
the practicality limit for large-scale payment applications [31].
Relatively shorter proofs compared to STARKs are produced
by Aurora

, which uses a transparent setup and is plausibly post-quantum
secure. Bulletproofs [23] are another powerful zero-
knowledge proof technology based on standard cryptographic
assumptions and not requiring any trusted setup procedures.
They are particularly efficient for providing zero-knowledge
range-proofs over committed values and are ubiquitously
used in private digital currency systems [7], [9], [17], [18].
Halo [30] is another recent scientific breakthroughs which
enables recursive proof composition without a trusted setup
and using the discrete log security assumption. Sonic [25] is
another zero-knowledge SNARK system which supports a
universal and continually updateable trusted setup process.
There is also ongoing active research toward improving the
RingCT construction which is powering the biggest privacy
cryptocurrency Monero [29]. RingCT does not require
any trusted setup and is based on standard cryptographic
assumptions but the existing constructions support relatively
small anonymity sets [29].

The recent growing interest towards one-out-of-many
proofs [1]–[3], [11], [14], [15] and the emergence of novel
blockchain privacy cryptocurrencies [7] [9] based on this
paradigm highlights the importance of novel designs and/or
optimization of existing schemes for one-out-of-many proofs.
This mechanisms are particularly well suited to build
anonymous and confidential cryptocurrencies with a minimal
trust required, fast proving times, efficient batch verification
mechanisms and small proof sizes. We hope our work will
inspire broader scientific research towards the improvements
of 1-out-of-N schemes.

II. PRELIMINARIES

Let G be a cyclic group of prime order p where the discrete
logarithm problem is hard, and let Zp be its scalar field.
Let g and h be random generators whose discrete logarithm
relationship is unknown. A Pedersen commitment scheme [5]
enables to commit to m ∈ ZP by picking a random blinding

factor r ∈ Zp and computing Com(m, r) = gmhr. It possess
homomorphic properties as

Com(m1, r1) · Com(m2, r2) = Com(m1 +m2, r1 + r2)

This Pedersen commitment scheme is perfectly hiding and
computationally strongly binding under the discrete logarithm
assumption as defined below.

Definition 1 (Hiding). A commitment scheme is perfectly
hiding if the commitment does not leak any information
about the committed value. More formally for all probabilistic
polynomial time stateful adversaries A and the given
commitment key ck = (G, p, g, h)

Pr[(m0, r0,m1, r1)←− A(ck); b←− {0, 1};

cb = Com(mb, rb) : A(c) = b] =
1

2

Definition 2 (Binding). A commitment scheme is compu-
tationally strongly binding if the commitment can only be
opened in one way. More formally for all probabilistic poly-
nomial time stateful adversaries A and the given commitment
key ck = (G, p, g, h)

Pr[(m0, r0,m1, r1)←− A(ck); (m0, r0) 6= (m1, r1) :

Com(m0, r0) = Com(m1, r1)] ≈ 0

We consider zero-knowledge proofs of knowledge consisting
of a common reference string generator algorithm Setup,
the prover P and the verifier V . All three (Setup,P,V)
are probabilistic polynomial time algorithms and this proof
of knowledge allows the computationally bounded prover to
convince a verifier that a statement is true. For the given
inputs s and t, we denote the proof execution result as
〈P(s),V(t)〉 = b where b = 1 in case the verifier accepts the
proof transcript produced by the prover and b = 0 otherwise.
Let R ⊂ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ be polynomial-time-
decidable ternary relation. Given σ, the w is the witness for
the statement x if (σ, u, w) ∈ R Let’s define

Lσ = {x | ∃w : (σ, u, w) ∈ R}

as the set of all u, which have a witness w satisfying to the
relation R.
Definition 3 (Perfect completeness). The completeness prop-
erty of the proof of knowledge implies that if the prover knows
a witness w for the given statement u then he can convince
the honest verifier. More formally, the proof of knowledge
(Setup,P,V) has perfect completeness if for all polynomial-
time adversaries A

Pr[σ ←− Setup(1λ), (u,w)←− A, (σ, u, w) ∈ R
land〈P(σ, u, w),V(σ, u)〉 = 1] = 1

Definition 4 (Computational Witness-Extended Emula-
tion). We use witness-extended emulation to define the sound-
ness property of the proof of knowledge as is defined in

[13] [21] and used for example in [12]. Informally witness-
extended emulation implies that whenever an adversary pro-
duces an proof which satisfies the verifier with some proba-
bility, then there exists an emulator producing an identically
distributed proof with the same probability of acceptance, but
also the corresponding witness. Let’s denote s the internal
state of P including the verifier challenge . The emulator is
permitted to rewind the interaction between the prover and
verifier to any move, and resume with the same internal state
s for the prover, but with fresh randomness for the verifier. So,
whenever the prover makes a convincing argument for some
statement u, the emulator E can extract the corresponding
witness w such that (σ, u, w) ∈ R, and therefore, we have an
argument of knowledge of w. Following to the notations from
[23], we can formally define if the (Setup,P,V) has witness-
extended emulation if for any deterministic polynomial time
prover P and for all pairs of interactive adversaries A1, A2

there exists an expected polynomial time emulator E and a
negligible function µ(λ) so that

Pr
[
σ ←− Setup(1λ), (u, s)←− A2(σ),

tr ←− 〈P∗(σ, u, s),V(σ, u)〉;A1(tr) = 1
]

− Pr
[
σ ←− Setup(1λ), (u, s)←− A2(σ),

(tr, w)←− E〈P
∗(σ,u,s),V(σ,u)〉(σ, u);A1(tr) = 1∧

(tr is accepting =⇒ (σ, u, w) ∈ R)
]
≤ µ(λ)

Definition 5 (Perfect Special Honest-Verifier Zero-
Knowledge). A proof of knowledge is honest-verifier zero
knowledge if given the verifier challenge z it is possible
to efficiently simulate the entire proof without knowing the
witness w. Obviously, honest-verifier zero-knowledge proof
does not leak any information about the witness w except what
can be learned from the fact that (σ, u, w) ∈ R. Formally, a
proof of knowledge (Setup,P,V) is a perfect special honest
verifier zero knowledge (SHVZK) argument of knowledge for
R if there exists a probabilistic polynomial time simulator S
such that for any polynomial-time adversary A

Pr
[
σ ←− Setup(1λ), (u,w, z)←− A(σ),

tr ←− 〈P∗(σ, u, w),V(σ, u, z)〉;
(σ, u, w) ∈ R ∧A(tr) = 1

]
= Pr

[
σ ←− Setup(1λ), (u,w, z)←− A(σ),

tr ←− S(u, z);

(σ, u, w) ∈ R ∧A(tr) = 1
]

This definition implies that the adversary will not be able to
distinguish between the real and simulated proofs even after
choosing the distribution of statements and witnesses. A proof
of knowledge is called a public coin if all messages sent from
the verifier to the prover are chosen uniformly at random.

A. Overview on One-out-of-Many Proofs

One-out-of-many proof is a 3-move public coin special hon-
est verifier zero-knowledge proof of knowledge (also called as
Sigma protocol) of one out of N public Pedersen commitments

C0, . . . , CN−1 is opening to 0. More formally, it is a Σ-
protocol for the following relation

R = {(ck; (C0; . . . ;CN−1); (l, r) |
∀i : Ci ∈ Cck ∧ l ∈ {0, . . . , N − 1} ∧ r ∈ Zp

∧Cl = Comck(0, r))}

In the first move the prover sends an initial message to the
verifier, then the verifier picks a random public coin challenge
z and next, the prover responds to the verifier challenge.
Finally, the verifier takes the initial message, the challenge,
and the challenge response to check the transcript of the
interaction and decide whether the proof should be accepted
or rejected.

The fundamental technique of one-out-of-many proofs
is the special prover method of building certain polynomials
Pi(x) of degree logN, i ∈ {0, 1, . . . , N − 1} and the efficient
transmission (requiring only log(N) communication) of these
polynomial’s evaluation pi = Pi(x) at the verifier challenge
point x to the verifier. The polynomial Pi(x) has high degree
if and only if i = l. It is worth to mention that the proof
verification requires a multi-exponentiation operation of
Cp00 · C

p1
1 · · · · · CpN−1

N−1 of size N, which although requires
N group exponentiation operations but can be significantly
optimized through efficient multi-exponentiation and batch
verification techniques.

This proof system satisfies to the completeness, special
honest verifier zero-knowledge and n-soundness security
properties. The completeness and special honest verifier
zero-knowledge properties are defined above, and the n-
soundness property implies that for any statement u, one can
extract the witness w having n different accepting transcripts
corresponding to unique verifier challenges. Assuming
N = nm, the one-out-of-many construction proposed in [4] is
providing (m+ 1)-soundness. We will leverage the soundness
property and efficient zero-knowledge simulation of the
original one-out-of-many proofs for proving the security of
our proposed construction.

III. CONSTRUCTION OF HIERARCHICAL
ONE-OUT-OF-MANY PROOF

We describe an efficient non-interactive zero-knowledge
proof system for the one-out-of-many relation defined in
Section 2.1. Our construction requires more interaction rounds
between the prover and verifier than the original 3-move
constructions.

Note, that due to the homomorphic properties of Pedersen
commitments [5], any commitment C = gshr can be
masked by an extra blinding element r′ so the resulted new
commitment C ′ = C · hr′ still will be opening to the original
message s. Given the public canonical set of N Pedersen
commitments (C0, C1, . . . , CN−1), we assume N = T · M
where T = nm1

1 and M = nm2
2 . Without loss of generality,

let’s assume the secret commitment CL = Com(0, r) has

the index L ∈ {0, . . . , N − 1} and a blinding factor r where
L = kM + l. The commitment CL belongs to the k-th subset
of size M referred as: Sk = (CkM , . . . , CkM+M−1). Our
construction is based on the following observation that if the
prover could reveal M fresh elements (d0, d1, . . . , dM−1) and
convince that these elements are actually the masked elements
of some ordered subset Sk of size M of the original set of
commitments without revealing any other information about
the subset index k, then he could simply finish the proof by
demonstrating the knowledge of one out of (d0, d1, . . . , dM)
commitments opening to zero.

Further in this section we assume that an original 1-
out-of-N proof construction is given as a black box and we
will describe our hierarchical approach by using this given
proof system [4] as the main building block.

We need a helper function for computing unique fingerprints
for any given set of size M. Given n scalars x1, . . . , xn,
we compute the digest of any set of n group elements
S = (s1, s2, . . . , sn) as

Hashx1...xn(S) = sx1
1 · s

x2
2 · . . . · sxn

n

This hash function is homomorphic in the sense that given two
different sets S1 = (s11, . . . , s

1
n) and S2 = (s21, . . . , s

2
n) of n

group elements, where s1i = s2i · hri for all i ∈ {1, 2, . . . , n},
then we will have Hashx1...xn

(S1) = Hashx1...xn
(S2) ·

hr1x1+...+rnxn , or alternatively,

Hashx1...xn
(S1)

Hashx1...xn
(S2)

= Com(0,

n∑
i=1

rixi)

Now we describe the two-layer one-out-of-many proof
construction in details.

Hierarchical One-out-of-Many Proof
1) Given the public parameters T and M, both Prover and

Verifier split the commitment set {C0, . . . , CN−1} into
T ordered subsets of size M as follows:

S0 = {C0, C1, . . . , CM−1},
· · ·
ST−1 = {CN−1−M , CN−M , . . . , CN−1}

As the index of the subject secret commitment is L =
kM + l, it belongs to the subset Sk.

2) Prover generates M random elements
(r0, . . . , rM−1)←−R ZMP

3) Prover blinds all elements of the subset Sk as follows.

d0 = CkMh
r0 ,

...
dM−1 = CkM+M−1h

rM−1

Obviously all elements d0, . . . , dM−1 will be valid
Pedersen commitments and in particular, the element

dl = CkM+lh
rl = g0hr+rl will be opening to 0.

4) Prover proves the knowledge of one out of M commit-
ments (d0, d1, . . . , dM−1) being a commitment to zero
via an interactive 1-out-of-M proof method described in
[3] or [4]. We denote this proof statement as P1 and the
verifier challenge used in this proof as y.

5) All elements (d0, d1, . . . , dM−1) and the proof transcript
P1 are sent to the Verifier.

Next the prover engages into another public coin protocol to
convince that all elements (d0, d1, . . . , dM−1) are indeed the
blindings of the corresponding elements of some subset Sk ∈
(S0, . . . , ST−1) without revealing any information about the
subset index k or the random factors (r0, . . . , rM−1).

6) Verifier sends a randomly generated challenge vector
~x = (x0, x1, . . . , xM−1)←−R ZMp

7) Prover computes the digest of the set (d0, d1, . . . , dM−1)
as

D = Hash~x(d0, d1, . . . , dM−1)

8) Prover computes the digests of all subsets
S0, . . . , ST−1 as follows
• D0 = Hash~x(C0, C1, . . . , CM−1)
• D1 = Hash~x(CM , . . . , C2M−1)
• DT−1 = Hash~x(CN−1−M , . . . , CN−1)

If the elements d0, d1, . . . , dM−1 are generated properly
by following to the protocol description, then obviously
D
Dk

= Com(0,
∑M−1
i=0 rixi) will be a commitment to 0

blinded by the randomness
∑M−1
i=0 rixi.

9) The prover computes the values D
D0
, . . . , D

DT−1

10) The prover engages into an interactive 1-out-of-T pro-
tocol of proof of knowledge of one out of these T
commitments is opening to 0 without revealing the index
k. Let’s denote the verifier challenge used at this step by
z and let’s denote the final transcript of this 1-out-of-T
proof as P2.

So far we presented the proof as an interactive protocol with
several rounds. But as the verifier is a public coin verifier and
all the honest verifier’s messages are random elements from
Zp, we can therefore convert the protocol into a non-interactive
protocol that is secure and full zero-knowledge in the random
oracle model using the Fiat-Shamir heuristic [?]. All random
challenges are replaced by hashes of the transcript up to that
point. The final transcript of the non-interactive 2-layer one-
out-of-many proof is comprised of the following data

πH1ooN = {(d0, d1, . . . , dM−1), P1, P2}

Note that as the initial set of commitments
(C0, C1, . . . , CN−1) is public and the elements
(d0, d1, . . . , dM−1) are published to the blockchain as
part of the proof transcript, all network participants will
be able to independently perform the following verification
computations.

11) Compute the digest D = dx1
0 , d

x2
1 , . . . , d

xM

M−1.
12) Compute the set D0

D , . . . , DT−1

D which is the referred
public list of commitments for the proof P2.

13) Validate the proof P1 against the public list of com-
mitments (d0, d1, . . . , dM−1). If the validation fails, the
verifier rejects to accept the proof.

14) Validate the proof P2 against the public list of commit-
ments D0

D , . . . , DT−1

D . If the validation fails, the verifier
rejects to accept the proof. Otherwise the verifier accepts
the proof.

Theorem 1. This Σ protocol for knowledge of one out
of N = T · M commitments opening to 0 is perfectly
complete. It is special honest verifier zero-knowledge if the
commitment scheme is perfectly hiding and has a statistical
witness-extended emulation.

We will sketch the formal proof for this theorem in
Chapter V.

IV. EFFICIENCY ANALYSIS

For a commitment set of N = nm coins, the original 1-out-
of-N proof design requires respectively (mN+3mn+2m+4)
and (N +2mn+2m+7) group exponentiation operations for
the proof generation and verification processes. We select N =
T ·M where M = nm1

1 and T = nm2
2 , and our construction

requires the following computational efforts.
• Both Prover and Verifier perform N exponentiation op-

erations for computing the helper elements
D0, D1, ..., DT−1

• Prover computes two separate 1-out-of-T and 1-out-of-
M proofs by performing respectively (m1T + 3m1n1 +
2m1 + 4) and (m2 ·M + 3m2n2 + 2m2 + 4) operations.
Prover also performs extra 2M operations for computing
the values d0, . . . , dM−1 and next computing the digest
D of these elements.

• The Verifier next performs T + 2m1n1 + 2m1 + 2M +
2m2n2 + 2m2 + 14 group exponentiation to check the
provided two proofs.

When k different proofs are generated by the prover within
the scope of a single transaction, our scheme allows to re-use
the verifier challenge variables x1, x2, . . . , xM and compute
common digests D1, D2, . . . , DT for all k different proofs.
As the computation of D1, D2, . . . , DT requires O(N) com-
putational efforts for both prover and verifier, re-using the
digests will result to significant performance gains. Obviously,
the generation of k simultaneous proofs will require only
N + k(m1T + 3m1n1 + 2m1 + 4) + k((m2 + 3)M +
3m2n2+2m2+4) group exponentiation. The verification of k
proofs which reuse the same subset digests, will require only
N +k(T + 2m1n1 + 2m1 + 2M + 2m2n2 + 2m2 + 14) group
exponentiation operations instead of O(K ·N) operations.
The provided graphic compares proof generation performances
for three different anonymity sets of sizes 16384, 65536 and
262144(N) and different batch sizes (k). In all cases we fix
M = 16 and divide the full set into small ordered subsets

of 16 elements. The first diagram at right shows that 2-Layer
1-out-of-N scheme improves a single proof generation time
almost 5x in all cases while making only an insignificant
increase in the verification time. For N = 65536 and k=2,
we get 1048808 and 115088 group exponentiation operations
for proof generation respectively through the original and our
2-layered protocols. Referring to the benchmark data from
[11], this takes approximately 10s to submit a blockchain
transaction with 2 inputs on an Intel I7-4870HQ system with
a 2.50 GHz processor, while our method fastens this time
to 1.1s. For N = 262144 and a single proof generation, our
method results to a factor of 6.25 faster generation process
than the method in [?]. For two simultaneous proof generation
it results to a factor 9.6 faster generation process. Referring
to the implementation data from [11], the original 1-out-of-
262144 proof generation takes approximately 14s on an Intel
I7-4870HQ system with a 2.50 GHz processor with proof sizes
of 2016bytes. With the original proof method, the generation
of a blockchain transaction with two inputs would take up
to 30s while our method will accelerate the transaction
submission process up to 3 seconds.
The verification process for proofs generated with our method
is a bit slower compared to the original proof verification
process, but on the same time it becomes significantly faster
for proofs generated in batches. For the anonymity set of
size 16384, the verification of a single proof generated via
our method requires 17524 group exponentiation operations
while the original method would require only 16461 which
is smaller by 6%. But the verification of two simultaneously
generated 2-layer proofs requires only 18671 exponentiation.
At the same time the verification of two proofs generated with
the original method would require 32922 operations, which
would result to a slower verification process by a factor of
1.75. In blockchain applications where transactions are usually
comprised of two or more inputs and all proofs for all inputs
are generated in batches, this will help to increase the overall
network bandwidth with a factor 1.75 and more in case the
transactions are verified individually.
Our construction results in lower overall verification and proof
generation complexity at the expense of overall size scaling.

1 2 4 8 10 16
2.17 · 10−20.11

0.38
0.52

1.28

2.36

4.72

·106

Input Batch Size

P
er

fo
rm

an
ce

ga
in

m
ul

ti
pl

ic
at

or

Proof Generation Efforts

(Our)N = 47

(GK15)N =47

(Our)N = 48

(GK15)N=48

(Our)N = 86

(GK15)N=86

The proof sizes of the Growth-Kohlweiss method are com-
prised of (4log2N)G + (3log2N + 1)ZP elements and the
proofs from [4] are comprised of (m+4)G+(m∗(n−1)+3)Zp
elements where N = nm. With our approach, a single 2-
layer proof will be comprised of separate 1-out-of-T and a
1-out-of-M [4] proofs and an extra M group elements. For the
anonymity set of size 216 the size of a single proof generated
through the [4] method is 1412 bytes while the 2-layer proof
size will be 1887 bytes.

A. Batch Verification of Independently Generated Proofs

In blockchain applications the network nodes receiving a
block of transactions have to verify all transactions and their
corresponding proofs in parallel. The 2-layer proof generation
method significantly optimizes the verification of simultane-
ously generated proofs, but the verification of all batch proofs
still will require O(N) group exponentiation operations. Here
we discuss how all independently generated proofs can be
efficiently batched and verified together.
Let us assume the verifier has to verify L different 2-layer
1-out-of-N proofs all referring to the same anonymity set
C = (C0, C1, . . . , CN−1). Each proof description contains
two associated 1-out-of-M and 1-out-of-T proofs (P1 and
P2) along with other transaction specific data. As discussed
in Section 2, the verification of original 1-out-of-N proof
boils down to a multi-exponentiation of size N. For the joint
verification of P1 proofs, which are 1-out-of-M proofs with
M being a small integer (16 in our experiments), all 1-out-of-
M proofs can be concatenated together and verified through a
single big multi-exponentiation operation in order to leverage
the fast multi-exponentiation techniques [27].The verification
of the t-th P2 proof boils down to multi-exponentiation of the
following form [4]

T−1∏
i=0

(Dt
i+1

Dt

)ft
i

≡ Kt

where

Dt
i+1 =

(
C
xt
1

iM · C
xt
2

iM+1 · . . . · C
xt
M

iM+M−1

)
and all the values Dt, Dt

i and Kt are unique per proof.
Obviously, the alternative verification operation will be

T−1∏
i=0

(
C
xt
1

iM+1C
xt
2

iM+2 . . . C
xt
M

iM+M

)ft
i

=

Kt · (Dt)
∑T−1

i=0 ft
i

The left size of this equation requires computation of N
exponentiation operations. But the verifier can batch the proof

verification of L different proofs together by generating L
random values y1, . . . , yL and compute the following equation.

L∏
t=1

(T−1∏
i=0

(
C
xt
1

iM+1C
xt
2

iM+2 . . . C
xt
M

iM+M

)ft
i
)yt

=

T−1∏
i=0

(
C

∑L
t=1(x

t
1f

t
i yt)

iM+1 C
∑L

t=1(x
t
2f

t
i yt)

iM+2 . . . C
∑L

t=1(x
t
Mft

i yt)
iM+M

)
=

L∏
t=1

(
Kt · (Dt)

∑T−1
i=0 ft

i

)yt
With this approach the verification of L different proofs

will still require only O(N) exponentiation operations instead
of O(N · L). This technique helps to save approximately
N exponentiation operations for each extra proof verification
resulting to highly efficient batch verification process.

V. SECURITY ANALYSIS

In this section we provide the high level details of the
security proof of the proposed scheme while leaving the fully
detailed formal description to the full paper.

Perfect Completeness: The perfect completeness of
our 2-layer protocol basically follows from the perfect
completeness of the original construction. As the prover
possesses the witness L and r, where CL = Com(0, r)
and L = kM + l, and he generates the random values
(r0, . . . , rM−1) ←−R ZMP to compute the elements
(CkMh

r0 , . . . , CkM+lh
rl , . . . , CkM+M−1h

rM−1), then
obviously he knows the secret index l and the blinding
factor r + rl of the commitment dl = CkM+lh

rl as well
as the secret index k ∈ {1, . . . , T} and the blinding factor∑M−1
i=0 rixi of the commitment D

Dk
both are opening to

0. Consequently the perfect completeness of our scheme
will follow from the perfect completeness of the original
1-out-of-N proof construction which is used to generate the
corresponding P1 and P2 one-out-of-many proofs referring to
set of commitments (d0, d1, . . . , dM−1) and D

D1
, DD2

, . . . , D
DT

respectively.

SHVZK: It is easy to build a SHVZK simulator using
the the SHVZK simulator of the original 1-out-of-N proof
construction which can simulate both proofs P1 and P2.

1) The simulator generates the elements d0, d1, . . . , dM−1
at random. Note that as random values r0, r1, . . . , rM are
used to compute the elements d0, d2, . . . , dM−1 during
the real proof generation, this makes them indistinguish-
able from the simulated elements.

2) Our simulator uses the SHVZK simulator pf the original
1-out-of-N proof as an oracle to simulate the proofs
P1 and P2 which both will be indistinguishable from
real proofs based on the special honest verifier zero-
knowledge property of the original construction.

Noting that D1, D2, . . . , DT and D are uniquely determined
both in the real proof and in the simulation we see that the

simulation and the real proof will be indistinguishable in all
steps and variables which means the protocol is SHVZK.
Witness-Extended Emulation For witness extended
emulation we leverage the (m+1) soundness of the original
1-out-of-N construction to build an efficient extractor. It
uses polynomial number of valid proof transcripts to extract
the prover witness. The extractor is allowed to rewind the
interaction between the prover and verifier to any move
and resume the interaction with a fresh verifier challenge.
Assuming N = nm, the m + 1-special soundness means the
adversary can recover the witness being provided (m + 1)
accepting transcripts for (m + 1) different verifier challenge
values. In our scenario N = T · M and without loss of
generality we can assume M = nm1

1 and T = nm2
2 .

The emulation process is described as follows:

• The extractor first runs the prover (m1+1) times and gets
(m1+1) accepting transcripts for the proof of knowledge
of one commitment out of (d0, . . . , dM−1) opening to 0.
Having different accepting transcripts P (1)

1 , . . . , P
(m1+1)
1

and using the (m1 + 1)-special soundness of the 1-out-
of-M protocol the emulator recovers the secret index l ∈
{0, . . . ,M − 1} and the random value R0 such that dl =
g0hR0 . Note that R0 = r + rl where r is the random
blinding factor of the commitment CL and rl is generated
by the prover at the Step 2 to further blind CL.

• After extracting the values l and R0 the emulator con-
tinues to run the prover. At the protocol Step 6 he
gets the verifier challenge vector x10, x

1
1, . . . , x

1
M−1. He

continues to run the prover up to the Step 10 and gets
an accepting proof transcript P (1)(1)

2 . Next it continues
to rewind the prover to the point of Step 10 before the
verifier sends his challenge value z1, and asks the verifier
to send a new random challenge. The emulator keeps
rewinding until it gets (m2 +1) different accepting proof
transcripts P (1)(1)

2 , P
(1)(2)
2 , . . . , P

(1)(m2+1)
2 for the 1-out-

of-T commitments opening to 0 all for different verifier
challenge values (z1, . . . , zm2+1).

• The emulator uses the (m2 + 1)-special soundness of
the 1-out-of-T proof and the valid proof transcripts
P

(1)(1)
2 , P

(1)(2)
2 , . . . , P

(1)(m2+1)
2 to recover the index k

and the blinding factor R1 of the commitment D
Dk

=
Com(0, R1). According to the protocol description R1 =∑M−1
i=0 ri · x(1)i where (x

(1)
0 , . . . , x

(1)
M−1) was the verifier

challenge sent at Step 6.
• After recovering both indexes l and k, the emulator

computes the secret index L = k ·M + l and identify the
secret commitment CL = Com(0, r) which is opening
to 0.

• Note that the value R0 = r + rl is already known to the
extractor and for recovering the value r it is only required
to extract the value rl, the secret random blinding factor
generated by the prover during the protocol execution
Step 2.

• After recovering the value R1, the emulator rewinds

the prover to the protocol Step 6 where verifier sends
the challenge vector and resumes with fresh ran-
domness (x

(2)
1 , . . . , x

(2)
M). After new challenge vector

(x
(2)
0 , . . . , x

(2)
M−1) is provided, the emulator keeps running

the prover till the Step 10 when he gets an accepting proof
transcript P (2)(1)

2 . It continuous to rewind the prover to
the point of Step 10 when the verifier sends the challenge
variable z and then proceeds with the proof generation.
Eventually the emulator gets another m2 + 1 accepting
transcripts for the 1-out-of-T proof which help to recover
a value R2 =

∑M−1
i=0 ri · x(2)i .

• The emulator keeps iterating over the last two steps
jointly M times and at the end it gets M different
values (R1, R2, . . . , RM) each corresponding to a unique
challenge vector (x

(i)
1 , . . . , x

(i)
M). This gives the emulator

M linear equations defined as
x
(1)
0 x

(1)
1 . . . x

(1)
M−1

x
(2)
0 x

(2)
1 . . . x

(2)
M−1

. . .

x
(M)
0 x

(M)
1 . . . x

(M)
M−1

 ∗

r0
r1
. . .
rM−1

 =

R1

R2

. . .
RM

As all the x

(i)
j elements are generated randomly, with

an overwhelming probability we will have an invert-
ible matrix of coefficients. Therefore, the emulator can
solve the linear equation system to find the unknowns
(r0, r1, . . . , rM−1). The yielded value rl will help to
finalize the extraction of the witness by computing the
random blinding factor of the commitment CL r =
R0 − rl. Thus the emulator successfully extracts the
witness (l, r) so that Cl = Com(0, r).

In order to assess the computational efforts of the emulator,
note that it first rewinds the prover m1+1 times to get all m1+
1 accepting transcripts for the P1 relation. After the emulator
rewinds the prover M ∗(m2+1) times to get enough accepting
transcripts for recovering the values R1, R2, . . . , RM . At last,
the solution of the linear equation system of size M can be
found in a polynomial time which overall makes the emulator
work in expected polynomial time.

REFERENCES

[1] B. Bunz, S. Agrawal, M. Zamani, and D. Boneh, “Zether: Towards
privacy in a smart contract world.” IACR Cryptology ePrint Archive,
vol. 2019, p. 191, 2019

[2] Benjiamin Diamong. Many-out-of-many proofs with Applications
to Anonymous Zether. https://github.com/jpmorganchase/anonymous-
zether/blob/master/docs/AnonZether.pdf

[3] J. Groth and M. Kohlweiss. One-out-of-many proofs: Or how to leak a
secret and spend a coin. In EUROCRYPT,vol. 9057 of LNCS. Springer,
2015.

[4] Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: “Short
accountable ring signatures based on DDH”. In: Pernul, G., et al. (eds.)
ESORICS. LNCS, vol. 9326, pp. 243–265. Springer, Heidelberg (2015).

[5] Torben P. Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In CRYPTO, volume 576 of Lecture Notes
in Computer Science, pages 129 -140,1991.

[6] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zero-
coin: Anonymous distributed e-cash from bitcoin. In IEEE Symposium
on Security and Privacy, 2013.

[7] Zcoin’s upcoming privacy protocols: https://zcoin.io/lelantus-zcoin/

[8] “PIVX,” https://pivx.org/.
[9] MimbleWimble-based Privacy Coin. https://beam.mw/

[10] Lelantus-MW: The symbiosis: https://docs.beam.mw/2019-11-22-
Vladislav-Gelfer-at-grincon1.pdf

[11] Aram Jivanyan. Lelantus: Towards Confidentiality and Anonymity
of Blockchain Transactions From Standard Assumptions
www.lelantus.io/lelantus/pdf, 2019.

[12] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and
Christophe Petit. Efficient zero-knowledge arguments for arithmetic
circuits in the discrete log setting. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages
327-357. Springer, 2016.

[13] Jens Groth and Yuval Ishai. Sub-linear zero-knowledge argument for
correctness of a shuffle. In Advances in Cryptology - EUROCRYPT
2008, pages 379-396, 2008.

[14] Sarang Noether and Brandon Goodell. Triptych:
logarithmic-sized linkable ring signatures with applications.
https://eprint.iacr.org/2020/018.pdf

[15] Sarang Noether. Triptych-2: efficient proofs for confidential transactions.
https://eprint.iacr.org/2020/312.pdf

[16] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized
anonymous payments from Bitcoin. In IEEE Symposium on Security
and Privacy. IEEE, 2014.

[17] Grin: The private and lightweight mimblewimble blockchain.
https://grin-tech.org/

[18] Monero: A Reasonably Private Digital Currency.
https://web.getmonero.org/

[19] Analysis of Monero transaction inputs and outputs.
https://github.com/noncesense-research-lab/monero transaction io

[20] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and
Madars Virza. SNARKs for C: Verifying program executions succinctly
and in zero knowledge. In CRYPTO, 2013.

[21] Yehuda Lindell. Parallel coin-tossing and constant-round secure two-
party computation. J. Cryptology, 16(3):143–184, 2003.

[22] Eli Ben-Sasson, Iddo Ben-Tov, Yinon Horesh, and Michael Riabzev.
Scalable, transparent, and post-quantum secure computational integrity.
https://eprint.iacr.org/2018/046.pdf, 2018.

[23] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, and
Greg Maxwell. “Bulletproofs: Short proofs for confidential transac-
tions and more. Cryptology ePrint Archive, Report 2017/1066, 2017.
https://eprint.iacr. org/2017/1066”

[24] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza,
N. Ward. Aurora: Transparent Succinct Arguments for R1CS.
https://eprint.iacr.org/2018/828.pdf

[25] M. Maller, S. Bowe, M. Kohlweiss, S. Meiklejohn. Sonic: Zero-
Knowledge SNARKs from Linear-Size Universal and Updatable Struc-
tured Reference Strings:https://eprint.iacr.org/2019/099.pdf

[26] Benedikt Bünz, Ben Fisch, and Alan Szepieniec.Transparent snarks from
dark compilers. https://eprint.iacr.org/2019/1229, 2019.

[27] Bodo Moller. Algorithms for Multi-exponentiation
https://www.bmoeller.de/pdf/multiexp-sac2001.pdf

[28] Muhammed F. Esgin, Ron Steinfeld, Amin Sakzad, Joseph K. Liu, and
Dongxi Liu. Short lattice-based one-out-of-many proofs and applications
to ring signatures. In Robert H. Deng, Valerie Gauthier-Uma na, Martin
Ochoa, and Moti Yung, editors, Applied Cryptography and Network
Security, pages 67-88. Springer International Publishing, 2019.

[29] Tsz Hon Yuen, Shi-feng Sun, Joseph K. Liu, Man Ho Au, Muhammed
F. Esgin, Qingzhao Zhang, and Dawu Gu. 2019. RingCT 3.0 for
blockchain confidential transaction: shorter size and stronger security.
https://eprint.iacr.org/2019/508.

[30] S. Bowe, J. Grigg, and D. Hopwood. Halo: Recursive
Proof Composition without a Trusted Setup. Cryptol-
ogy ePrint Archive, Report 2019/1021. 2019. URL:
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf.

[31] Vitalik Buterin. Hard Problems in Cryptocurrency: Five Years Later.
https://vitalik.ca/general/2019/11/22/progress.html

