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Abstract. In this paper, we present an instruction set coprocessor architecture for
the module lattice-based post-quantum key encapsulation (KEM) scheme Saber. To
achieve fast computation time, the architecture is a full-hardware, i.e., all the building
blocks (including CCA transformations) are implemented in the hardware. Since
polynomial multiplication plays a performance-critical role in the module and ideal
lattice-based public-key cryptography, a parallel polynomial multiplier architecture is
proposed that overcomes memory access bottlenecks and results in a highly parallel
yet simple and easy-to-scale design. Besides optimizing polynomial multiplication, we
make important design decisions and perform architectural optimizations to reduce
overall cycle counts as well as improve resource utilization.

For the module dimension 3 (security comparable to AES-192), the coprocessor
computes CCA key generation, encapsulation, and decapsulation in only 5,453, 6,618
and 8,034 cycles respectively. On a Xilinx UltraScale+ XCZU9EG-2FFVB1156
FPGA, the entire instruction set coprocessor architecture runs at 250 MHz clock
frequency and consumes 23,708 LUTs, 9764 FFs, and 2 BRAM tiles (including 5124
LUTs and 3070 FFs for the Keccak core).

Keywords: Lattice-based Cryptography - Post-Quantum Cryptography - Hardware
Implementation - Saber KEM - High-speed Instruction-set Architecture

1 Introduction

In October 2019, Google’s 54-qubit quantum processor ‘Sycamore’ completed a task in 200
seconds, the equivalent of which can be computed in 10,000 years using a state-of-the-art
supercomputer [Aeal9]. To break our present-day public-key cryptographic primitives,
namely the RSA and Elliptic Curve cryptosystems, Shor’s algorithm [Sho97] needs a
significantly more powerful quantum computer. However, several quantum computing
scientists anticipate that powerful enough quantum computers to break these cryptosystems
will be feasible in the next 15 to 20 years. Post-quantum cryptography is a branch of
cryptography that focuses on designing quantum attack resistant public-key primitives and
analyzing their securities. Existing post-quantum public-key cryptographic primitives have
been built based on different problems that are presumed to be computationally infeasible
for both present-day as well as quantum computers. In 2017 the National Institute of
Standards and Technology (NIST) called for the standardization of post-quantum public-
key algorithms. The majority of the candidate submissions use computationally infeasible
lattice-problems. One such candidate scheme is Saber [DKRV19], which is a Chosen
Ciphertext Attack (CCA) resistant module lattice-based key encapsulation mechanism
(KEM). It is one of the nine lattice-based public-key encryption or encapsulation schemes
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that has proceeded to the second round of NIST’s standardization project. Saber is based on
the Module Learning With Rounding (MLWR) problem [BPR12] and it uses power-of-two
moduli to achieve flexibility, simplicity, high security and efficiency [DKRV19].

It is well-known that in ideal or module lattice-based public-key cryptography, the
performance of polynomial multiplication plays a big role in the overall performance of the
cryptographic primitive. Number Theoretic Transform (NTT), which is a generalization of
Fast Fourier Transform (FFT), has the asymptotically fastest time complexity O(nlogn).
However, the NTT requires the ciphertext modulus to be a prime. To achieve computational
efficiency, several lattice-based schemes [ADPS16, BDK 18, ABB*19] use NTT-friendly
parameter sets. Efficient hardware and software implementations of NTT-based polynomial
multiplications [PG14, RVM™14a, ADPS16, BDKT18] have been reported in the literature.
However, Saber uses power-of-two moduli, thus making it devoid of asymptotically fastest
NTT-based polynomial multiplication. This non-typical parameter set in Saber makes
its implementation an interesting as well as challenging research topic. Efficient software
implementations of Saber have been reported in [DKRV19, KMRV18, Roy19, BMKV20].
However, the only published hardware implementation of Saber are [MTK 20, DFAG19)
and both use HW/SW codesign. While HW /SW codesign has its benefits, such as flexibility
and shorter design cycle, a full-hardware (i.e., including all building blocks) implementation
of Saber can offer better latency and throughput. At the same time, implementing such
an accelerator is a challenging research topic as it requires making careful design decisions
after taking into account both algorithmic and architectural alternatives for the internal
building blocks and their interaction in the protocol level.

Contributions

In this paper, we present an instruction-set coprocessor architecture for the module
lattice-based post-quantum key encapsulation scheme Saber [DKRV19]. The architecture
implements all the building blocks in the hardware thus making it one of the fastest
implementations of Saber. In particular, we make the following contributions:

1. Since polynomial multiplication plays a central role in Saber, we analyze different
algorithmic alternatives for implementing high-speed polynomial multiplication in
hardware. By taking into account both computation and memory access overheads, we
use a simple yet parallel and hardware-friendly polynomial multiplication algorithm
targeting the parameter set of Saber.

2. We take advantage of the power-of-two moduli and small secret in Saber and imple-
ment a custom architecture for the polynomial multiplication algorithm. Additionally,
we perform architectural optimizations to reduce both cycle, logic and register counts.
The designed polynomial multiplier architecture is massively parallel and doesn’t
suffer from memory-access bottlenecks. With this multiplier, one polynomial multipli-
cation operation requires only 256 cycles (excluding the overhead of operand loading).
To compare with, the polynomial multiplier architecture by Roy et al. [RVM™14b]
uses asymptotically fastest NTT-based polynomial multiplication and requires around
5,000 cycles to compute one polynomial multiplication.

3. The polynomial architecture is easy to scale to meet different performance-area
trade-offs. We further show how to pipeline the polynomial multiplier architecture
and achieve higher clock frequency with a negligible increase in the latency.

4. Several arithmetic operations in Saber use non-multiple of 8-bit operands, making
their resource-shared and optimized hardware implementation challenging. We
analyze these building blocks and perform optimizations to reduce both cycle and
area counts.
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5. The optimized building blocks are integrated to realize an instruction-set coprocessor
architecture that computes all KEM operations, namely key generation, encapsula-
tion and decapsulation in the hardware. Since several existing software implementa-
tions [KRSS19] of lattice-based KEMs reported that Keccak-based pseudo-random
number generation takes the lion’s share of the overall computation time, we used the
high-performance Keccak core that was developed by the Keccak team [Teal9]. The
unified architecture computes CCA-secure Saber key generation, encapsulation and
decapsulation in only 5,453, 6,618 and 8,034 cycles respectively for the parameter
set with security similar to AES-192.

6. Our design methodology is generic and hence can be followed to design instruction-set
coprocessors for other lattice-based schemes. We will make the HDL source codes
available to fellow researchers once the paper gets accepted.

2 Preliminaries

2.1 Notation

In this section, we introduce the notation used throughout the paper. Let p and g be two
powers of 2, i.e. p = 2% and ¢ = 2°¢. We denote with Z, the ring of integers modulo
q. Define then the ring of polynomials R, = Z,[z]/(z" + 1), for some integer N, and
the corresponding R, = Z,[z]/(z" 4+ 1). We write a[i] to denote the ith coefficient of
polynomial a(x). A vector is represented in bold, such as a. Let the operator |-] denote
rounding, i.e. [a] = [a+ 3]. This can be extended to polynomials coefficient-wise.

Let 3,, denote a centered binomial distribution with even parameter p. The distribution
takes on values in the range [—u/2, 1/2] with probability

p(z) = a0 27
(1/2+ 2)l (/2 — 2)!

We write x <— 3, to denote x randomly sampled from a 3, distribution. Given a set S,
we write x < U(S) for z uniformly randomly selected from S. In a straightforward way,
these notations can be applied to a polynomial or a vector or a matrix.

2.2 Saber

Saber [DKRV19] is a IND-CCA secure Key Encapsulation Mechanism (KEM) that relies
on the hardness of the module variant of the Learning With Rounding (Mod-LWR)
problem [BPR12]. A Mod-LWR sample is given by

(a,b: E(aTs)D € RXUx R, (1)

where a < U(R,*'), the secret s + f,(RL*!) is generated from a centred binomial
distribution with parameter p and is fixed, and the moduli p < ¢. The decisional variant of
the problem asks to distinguish between Mod-LWR samples and uniformly random samples
S qu“ x Rp. This Mod-LWR problem is presumed to be computationally infeasible, both
on classical and quantum computers.

Saber [DKRV19] uses the Mod-LWR problem with both p and ¢ power-of-two to
construct a Chosen Plaintext Attack (CPA) secure public-key encryption scheme. Following
that, a CCA-secure Saber KEM is realized using a post-quantum variant of the Fujisaki-
Okamoto transformation [HHK17]. In the following, we describe the algorithms used in
CPA-secure ‘Saber Public Key Encryption’ (Alg. 1, 2, 3) and CCA-secure ‘Saber Key
Encapsulation’ (Alg. 4, 5, 6). The function gen is a pseudorandom number generator
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based on SHAKE-128 [20115] and G : {0,1}* — {0,1}}*™ and H : {0,1}* — {0,1}" are
hash functions SHA3-512 and SHA3-256 respectively, standardized in FIPS 202 [20115].
We refer to the original paper [DKRV19] for further information on the matter.

Algorithm 1 Saber.PKE.KeyGen() [DKRV19]
seeda + U({0,1}255)

A = gen(seeda) € RYX!

r—U({0, 1)

s = Bu(BY ;)

b= ((ATs +h) mod q) > (e — ¢,) € R
return (pk := (seeda,b), sk := (8))

Algorithm 2 Saber.PKE.Enc(pk = (seeda,b),m € Ra;r) [DKRV19]
A = gen(seedy) € B!
if r is not specified then
L r=u({0.1y)
s = BM(RZM;T)
b = ((As' + h) mod q) > (¢; — €,) € RL!
v = b7 (s’ mod p) € R,
em = (V' + h1 — 2 Im mod p) > (¢, — €7) € Rr
return c := (¢, b')

Algorithm 3 Saber.PKE.Dec(sk = 8,c = (¢p,,b')) [DKRV19]
v="bT(smod p) € R,

m' = ((v—2%"T¢,, + he) mod p) > (e, — 1) € Ry

return m’

Algorithm 4 Saber.KEM.KeyGen() [DKRV19]

(seeda,b,s) = Saber.PKE.KeyGen()

pk = (seeda,b)

pkh = F(pk)

2 =U({0,1}*)

return (pk := (seeda,b), sk := (s, z, pkh))

Algorithm 5 Saber.KEM.Encaps(pk = (seeda,b)) [DKRV19]
m + U{0,1})

(K, 7) = G(F(pk), m)

¢ = Saber.PKE.Enc(pk, m;r)

K =H(K,c)

return (c, K)
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Algorithm 6 Saber.KEM.Decaps(sk = (s, z, pkh), pk = (seed,b), c) [DKRV19]
m’ = Saber.PKE.Dec(s, ¢)
(R, ") = Glpkh, )
¢’ = Saber.PKE.Enc(pk, m’;r’)
if ¢ = ¢ then
| return K = H(K', ¢)
else
| return K = H(z,c)

Parameters Saber defines three sets of parameters which match NIST security levels 1,
3 and 5. They have been called LightSaber, Saber and FireSaber. All three levels use
polynomial degree N = 256, and moduli ¢ = 2'3 and p = 2!°. The three variants differ
in the module dimension, the binomial distribution parameter and the message space.
Namely, LightSaber uses module dimension 2, secrets sampled from [—5,5] and t = 22;
Saber uses module dimension 3, secrets sampled from [—4,4] and ¢ = 23; and FireSaber
upgrades the parameters to module dimension 4, secrets sampled from [—3,3] and t = 25.

3 Design Decisions

In the previous section, we outlined the operations that are computed during key generation,
encapsulation and decapsulation. These computations are composed of several elementary
operations such as hashing, pseudo-random number generation, polynomial addition and
multiplication, rounding, etc.

Since Saber uses power-of-two moduli p and ¢, all modulus reductions are free in
hardware. Additionally, the rounding operation is cheap as it comprises only of additions,
modulo reductions and finally bit selection. In the following subsections, we describe
various design choices and the design decisions that we make while implementing Saber on
hardware platforms. Our aim is to achieve both high speed and flexibility for the KEM
operations.

3.1 High-level Architecture

There are two general methodologies to implement a computation-intensive cryptographic
algorithm in hardware, namely HW/SW codesign, and full-HW design. While a HW/SW
codesign strategy offers a shorter design cycle and higher flexibility, it may not result in
the best performance. On the other hand, designing a full-HW architecture, i.e., with
all the building blocks in the hardware, can offer significant speedup over a HW/SW
codesign architecture. However, the HW-only design methodology demands significant
implementation effort (hence a longer design cycle) and may result in diminished flexibility.
In this paper, we target speed and hence we opt for a full-hardware implementation with
all building blocks residing in the hardware. At the same time we try to make design
decisions such that the hardware remains flexible to a great extent (e.g., can compute all
of key generation, encapsulation and decapsulation for multiple Saber parameter-sets).

When a HW-only implementation is considered, a design option is to cascade different
building blocks in the data-path, if required in multiple parallel instances, following the
standard data-flow model. However, this approach results in large area and demands
customized data-paths for different protocol-level operations namely, key-generation, encap-
sulation and decapsulation. Additionally, such an architecture becomes somewhat inflexible
to different parameter-sets [GFST12]. Hence, we do not follow this design methodology in
this work.
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Figure 1: Instruction-set Hardware Architecture of Saber

To achieve programmability and flexibility, we realize an instruction-set coprocessor
architecture for Saber. The advantages of this design strategy are: instruction-level
flexibility and modularity, ease to add new instructions or modify them, and above
all a unified architecture that can be used for multiple tasks. We analyzed the SW
implementation of Saber [DKRV19] and identified the high-level instructions that are needed
to support all the CCA-secure KEM routines, namely the key generation, encapsulation,
and decapsulation. A high-level architecture diagram of the instruction-set coprocessor
architecture (ISA) is shown in Fig. 1.

We would like to remark that, although in this work we implement the architecture
targeting only Saber KEM (as a case study), the implementation strategy is quite generic
in nature and hence can be followed to implement other lattice-based public-key schemes
in the hardware. In the following sections, we describe the architectures for the building
blocks.

3.2 SHA3-256/SHA3-512/SHAKE-128

As shown in Alg. 4, 5, and 6, Saber uses the hash functions SHA3-256 and SHA3-512 that
were standardized in FIPS 202 [20115]. Moreover, to generate pseudorandom numbers,
the extendable output function SHAKE-128, also standardized in FIPS 202 is used. Since,
all of these functions use the Keccak sponge function [20115], we implement the block
SHA3-256/SHA3-512/SHAKE-128 in Fig. 1 as a wrapper around a single Keccak core.

In this paragraph, we justify why we use a single Keccak core in our implementation.
Software benchmarking [KRSS19] of several lattice-based KEM schemes have reported that
50-70% of the overall computation time is spent in executing the Keccak function, thus
making it the most performance-critical component. On software platforms with Single
Instruction Multiple Data (SIMD) processors, such as Intel AVX2, the overhead pseudo-
random number generation is reduced in Kyber KEM [BDK™ 18] (which is also based on
module lattices) by using a vectorized implementation (factor 4) of Keccak. However,
the Saber algorithm [DKRV19] calls the Keccak operations in a serial manner and thus a
single call to a Saber KEM operation cannot leverage from a vectorized implementation of
Keccak on software platforms with SIMD.

This serial execution of Keccak in the Saber algorithm does not cause concern as
Keccak is very efficient [20115] on hardware platforms. In this work, we use the open-
source high-speed implementation of the Keccak core that was designed by the Keccak
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Team [Teal9]. This high-speed implementation of Keccak computes ‘state-permutations’
at a gap of only 28 cycles, thus generating 1,344 bits of pseudo-random string after every
28 cycles during the extraction-phase. Furthermore, we observed that one instance of
the Keccak core consumes around 5K LUTs and 3K registers which are nearly 21% and
30% of the overall area in our implementation. The area consumption results indicate
that instantiating multiple high-speed Keccak cores in the hardware would make the
implementation area-expensive. Additionally, as the Keccak core is already very fast, the
use of multiple such cores in parallel would help little in improving the speed. Due to these
reasons, we instantiate only one high-speed Keccak core in the hardware. Furthermore,
the serial use of the Keccak core makes our implementation simpler.

3.3 Data Memory

In the instruction-set architecture (Fig. 1), the building blocks read their operand-data from
the data memory, and write their results back to the data memory. The data memory is of
size 8KB such that all the parameter sets of Saber can be computed, and it is implemented
using Block RAM tiles. An important design parameter is the word-size of the memory. We
set the word-size to 64-bit as the high-speed Keccak core reads/writes data in 64-bit words.
Additionally, when we consider integration of the instruction-set coprocessor architecture
to a host computer (32-bit or 64-bit), the use of a 64-bit data-memory simplifies the data
transfer protocol between the two sides. All the remaining compute blocks in Fig. 1 have
been optimized to use 64-bit data read/write operations efficiently.

3.4 Binomial Sampling

A binomial sampler with parameter u computes a sample from a u-bit pseudo-random
input string, say r[u — 1 : 0], by subtracting the Hamming weight of the least-significant
/2 bits from the Hamming weight of the most-significant 1/2 bits, i.e., by computing
HW(r[p —1: p/2]) — HW(r[p/2 — 1 : 0]), where HW() stands for the Hamming weight.

In Saber, the secret coefficients are drawn from a centered binomial distribution with the
parameter u = 10, 8, and 6 for LightSaber, Saber, and FireSaber respectively [DKRV19].
Hence, the secret coeflicients are in [—5, 5] for LightSaber, [—4,4] for Saber, and [—3, 3]
for FireSaber. As p is small in all the variants of Saber, the sampler requires simple bit
manipulations. In our architecture, the sampler is a combinational block that directly
maps pseudo-random bits from an input buffer to a sample value.

For all the variants of Saber, a sample is represented as a 4-bit signed-magnitude
number (pair of sign and an absolute value) in our implementation. Note that existing
software implementations of Saber [DKRV19, KMRV18, Roy19] use the two’s complement
number system to represent the samples in the C data type uint16_t. The use of ‘4-bit
signed-magnitude’ representation simplifies the hardware architecture as we can store 16
such samples easily in a 64-bit word of the data memory. Additionally, in Sec. 3.5.1 we
show that this representation simplifies the polynomial multiplier.

For Saber, since p = 8 divides the word-length of the data memory, two 64-bit pseudo-
random words are read from the memory, then they are stored in a 128-bit buffer register,
then 16 samples are generated in parallel and they are stored in an output buffer register
of length 64-bit, and finally the output buffer is written to the data memory.

3.5 Polynomial Multiplication

In ideal and module lattice-based cryptosystems, the performance of polynomial multipli-
cation plays a critical role. Since Saber uses power-of-two moduli p = 2!° and ¢ = 23,
it is devoid of the asymptotically fastest Number Theoretic Transform (NTT)-based
polynomial multiplication. Software implementations [DKSRV18] of Saber have used the
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Toom-Cook polynomial multiplication algorithm [Knu97] which is a generic algorithm and
is asymptotically the second best after the NTT-based polynomial multiplication. A recent
TCHES-2020 paper [BMKV20] by Bermudo Mera, Karmakar, and Verbauwhede proposes
arithmetic optimization techniques to speed up the Toom-Cook polynomial multiplication
algorithm targeting software platforms. Hardware implementation of the Toom-Cook
multiplication by Bermudo Mera, Turan, Karmakar, Roy, and Verbauwhede [MTK™20]
describes the challenges in implementing the recursive function calls in the hardware and
proposes efficient architectures.

In this work, we use the quadratic-complexity schoolbook polynomial multiplication
algorithm and realize a simple, yet parallel and very fast polynomial multiplier architecture.
Since the polynomials in Saber are only of degree 256, the asymptotic inferiority of
the quadratic-complexity algorithm is outweighed by its simplicity and amiability to
parallelization. The schoolbook polynomial multiplication algorithm for polynomials of
degree N is described in Alg. 7.

Algorithm 7 Schoolbook polynomial multiplication.

Input: Two polynomials a(x) and b(z) in Z,/(z™¥ +1).
Output: The product a(x) - b(z) in Zy/(x +1).

1: acc(zx) < 0.

2: fori=0;i<N;i=i+1do

33 forj=0;j<N;j=j+1do

4: acclj] = acc[j] + b[j] - a[i] mod Z,
5. end for

6: b=">b-xmodaN +1.

7: end for

8:

return acc.

In line number 1, an accumulator which consists of N registers to contain the result
of the polynomial multiplication is initialized to zero. Next, in line 4 inside the nested
loops, the i-th coeflicient of a(z) is multiplied to the j-th coefficient of b(x) and then the
result of the multiplication is accumulated in the j-th register of the accumulator acc. This
operation consists of an integer multiplication, followed by modular reduction and finally a
modular addition. During a schoolbook multiplication, one polynomial needs to be rotated
inside the outermost loop. In Alg. 7, b(x) is rotated by multiplying it by = in R.

Although the schoolbook polynomial multiplication algorithm looks rather simple, its
efficient implementation on a hardware platform requires making wise design decisions as
well as design-space exploration. In the remaining part of this section, we describe the
optimizations that we perform, the implementation strategies that we follow, and their
advantages (and a few drawbacks) over alternative design strategies.

3.5.1 Optimization of coefficient-wise modular multiplier

In the Saber protocol [DKSRV 18], polynomial multiplications are computed between public
polynomials in R, or R, and secret polynomials. For simplicity, we will denote the former
by a(x) and the latter by s(x). As mentioned in section 2.2, the coefficients of the secret
polynomial s are randomly generated from a binomial distribution and—depending on the
version of Saber—they are contained in the interval [—3, 3], [—4,4] or [—5, 5], hence small.
Additionally, since both p and g are power-of-two in Saber, modular reduction by p or ¢
are free.

We exploit ‘short’ secret-size and reduction-free modular multiplication to optimize
the coefficient-wise multiplications in Alg. 7. A coefficient-wise multiplier is implemented
using simple shift and add operations, as shown in Algorithm 8, instead of requiring a true
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Figure 2: The polynomial multiplier architecture. Blue blocks denote processing units,
orange blocks are registers and wide arrows represent 64-bit input/output to the multiplier.

integer multiplier. We compute up to times-five multiplication to fully support all variants
of Saber. Implementations targeting exclusively the regular version of Saber or FireSaber
can obtain slight gains in area consumption by avoiding unnecessary computations at this
stage. Note that we represent the coefficients of s with a sign-magnitude system (Sec. 3.4)
and perform multiplications only with their absolute values. The accumulator is then
updated by adding or subtracting the results depending on the sign-bit of the coefficient of
s. Furthermore, since the modulus ¢ is a power of 2 and the coefficients of a are represented
as 13-bit numbers, modulus reduction is implicit and requires no additional operation. In
hardware, a bit-parallel combinatorial circuit is used to implement Alg. 8 and hence the
multiplier is constant-time.

Algorithm 8 Coeffient-wise shift-and-add multiplier.
Input: a;: 13-bit number, s;: 3-bit number with 0 < s; <5.
Output: a; - s; modulo ¢ = 213,

o < 0,

T < Gy,

ro — a; K 1,

r3 < a; + (ai < ].)7

44— a; K 2,

s < a; + (ai <K 2)7

return ry, where k = s;.

3.5.2 Parallel polynomial multiplier architecture

Fig. 2 shows the polynomial multiplier architecture that implements a parallelized version
of the schoolbook multiplication described in Algorithm 7. Since the coefficient-wise
modular multiplication has a small area (Sec. 3.5.1), the schoolbook polynomial multiplier
architecture instantiates several multiply-and-accumulate (MAC) units in parallel to
compute line 4 of Alg. 7 in parallel. For example, by instantiating 256 MAC units in
parallel, the innermost loop in Alg. 7 can be computed in one cycle, thus requiring only
256 cycles to compute one polynomial multiplication for N = 256.

The overhead of memory access during polynomial multiplication plays a critical role
in lattice-based cryptography (e.g., [RVM™14a]) and could hinder or complicate logic-
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level parallel processing. For example, in NTT-based polynomial multiplication, the
pattern of memory access changes with the iterations. Hence, special memory management
technique is required to reduce the overhead of memory access [RVM™14a]. Additionally,
the ‘complicated’ memory access pattern of NTT makes its parallel implementation rather
challenging as special care must be taken to eliminate memory access conflicts [RJV 18,
RTJ*19].

The schoolbook multiplication algorithm has a regular and simple data read/write
pattern. To attain maximum parallelism in data read/write, and to avoid the above-
mentioned memory-access bottlenecks, we store the entire secret polynomial s(x) in a
shift register (composed of flip-flops) (Fig. 2). It is well-known that all the bits of a
register can be accessed simultaneously on a hardware platform. At the beginning of a
polynomial multiplication, s(z) is read from the data memory (block RAM) and then
loaded into the shift register. That allows the architecture to access all the coefficients of
s(z) simultaneously.

As shown in Alg. 7, only one coefficient of the other polynomial a(z) is required at a
time to compute the scalar multiplication s(x) - a[i]. Hence, it is not necessary to store the
entire a(x) polynomial in a register. The ‘coefficient selector’ block in Fig. 2 provides the
required coefficient of a(x) during the multiplication s(x) - a[i] by the parallel MAC cores.
In the next subsection we describe, how the ‘coefficient selector’ block is designed for this
purpose.

After the multiplication s(z) - a[i], s(z) needs to be multiplied by z. This operation
is a simple nega-cyclic left-shift operation that moves each coeflicient from positions ¢ to
position ¢+ 1 and sends the 256th coefficient to the first position after a modular subtraction
from zero. This nega-cyclic rotation happens because the reduction-polynomial is 2% + 1.
In our implementation, the binomial distributed coefficients of s(x) are represented in the
signed magnitude system. Hence, the sign of the 256th coefficient is just flipped instead of
computing a true subtraction operation.

3.5.3 Data loading

In the previous subsection, we described a fast polynomial multiplier core for Saber. In
practice, we can leverage from its speed if we can load the operands and also read the
result of a polynomial multiplication in minimum cycle count. In this section we describe
how we design a fast data exchange interface between the data-memory (block RAM in
Fig. 1) and the polynomial multiplication core (Fig. 2).

The public polynomial a(z) lives in the field Ry = Zg[z]/(x™ + 1), where either
¢ =q=23or ¢ =p=2' In the former case, the coefficients of a(z) are 13-bits long
and they are output from the SHAKE-128 block by expanding a seed. The output of the
SHAKE-128 implementation that we use is a continuous stream of 64-bit words. Hence, an
entire polynomial in R, is stored in data-memory (block RAM) as a continuous string of
length 256 - 13 = 3328 bits, divided into 64-bit words. Since the coefficient length (13-bit)
clearly does not divide the block size, the information of a single coefficient may be split
across different words.

On the other hand, coefficients of polynomials in R, are 10-bit wide and are not
generated by the SHAKE-128 block. To simplify the read/write of polynomials in R, the
coefficients are zero-padded up to 16-bit long, so that exactly four coefficients are contained
in one data-memory word and no coefficient is split across different blocks. Our multiplier
accommodates both situations while reusing most of its architecture, thus requiring only a
few ad hoc modifications.

There are different possible approaches to solve the issue of coefficients being split over
different blocks. The simplest approach involves a two-words long, i.e. 128-bit long, buffer.
Whenever at least 64 bits are empty, a new word is written, while each cycle 13 bits are
consumed at the end. This solution, the most software-like, however requires incoming
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data to be written at different indices (to ensure that coefficients are packed continuously).
This approach can be problematic from a hardware-implementation point of view, as it
requires a variable bit-shifter for each possible index, thus increasing the area consumption
as well as the critical path delay.

Another possible solution that achieves lower area consumption relies on a long buffer,
namely a 832-bit long buffer, since that is the least common multiplier of 13 and 64.
After 13 cycles of loading, the buffer is filled with exactly 64 coefficients (each of size 13
bits), which can then be consumed. This approach avoids multiple writing indices, but
requires a long buffer and a delay (13 cycles) to load 64 coefficients. When we consider a
256-coefficient polynomial, this data-load overhead is around 20% of the pure computation
time.

We developed a solution that improves on the second strategy (i.e., use of a long buffer)
and reduces both the buffer-size and the cycle overheads. We do not wait for the entire
buffer to get filled; instead we start processing as soon as the first few coefficients (from the
first word) are available in the buffer. This strategy requires a small multiplexer circuit.
This multiplexer reads data from the positions where the first coefficient is on the first cycle,
the second coefficient is on the second cycle, etc. More in details, after the first cycle, the
first coefficient a[0] is at the location buffer[624 : 612], because 612 = len(buffer) — 64.
After the second cycle, the second coefficient a[1] is at the location buffer[573 : 561]
because the first block has been shifted and we have 561 = len(buffer) —2 x 644 13. More
generally, the multiplexer reads the data for the ith coefficient, for 1 < i < 12, starting
at index len(buffer) — 64¢ + 13(¢ — 1). Fig. 4 shows the first three cycles of data loading
and where the multiplexer receives the input from. Furthermore, since we are reading
one coefficient per cycle while loading, we can thus shorten buffer as we do not need to
store the coeflicients that have already been used. Twelve coefficients are thus read during
loading since there is a one-cycle delay between writing to the buffer and reading from it.
Hence, our architecture uses a buffer that is 676-bit long, since 676 = 64 x 13 — 12 x 13.
This means that at the cost of a 13 to 1 multiplexer, our solution—compared to the longer
buffer solution-requires almost 20% fewer registers for the buffer and adds a one-cycle
delay, compared to 13.

The loading of 10-bit coefficients follows a similar but simplified pattern. Since each
coefficient is zero-padded to 16 bits of length, we need to store only two blocks at a time.
The loading phase consists of only two cycles. In the first cycle, the first block is loaded;
in the second cycle, we read the first coefficient, shift the first block and load the second.
Just before the buffer is emptied, we repeat the loading process. Hence we only require a
112-bit buffer. This is because two blocks require 128 bits of memory, but we consume one
coeflicient while loading.

Lastly, since the multiplier reads the coefficient values from the least-significant part of
the buffer, it is possible to load the next 64-bit block of data in the most significant part
of the buffer before the buffer is completely emptied out. In this way, multiplication can
continue uninterrupted and thus, the overhead due to loading the polynomial a(z) is only
one cycle, the cycle needed to load the initial block into the buffer.

3.5.4 Alternative design decisions

Our multiplier loads the secret polynomial s(x) into a register at the start and then
progressively reads the coefficients of the polynomial a(x). An alternative to this design
decision will be to interchange the positions of a(z) and s(z), i.e., load a(x) entirely into a
register and then progressively read the coefficients of s(z). The former design choice has
several advantages over the latter, with some minor drawbacks.

Firstly, if the polynomial a(x) were stored in a register, note that we would be doing
operations that involve only one coefficient of s(x) at a time. Considering that a potential
attacker has control over the values of a(z), such architecture would increase the chances
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Figure 3: Buffer loading of polynomial data for the first three cycles. Each row represents
the buffer at different cycles, and green indicates the polynomial data that has been loaded.

of mounting a successful simple side-channel attack. For instance, if a(z) was set to
be a(x) = 1, it could be possible to retrieve the secret s(x) by retrieving the Hamming
distance of the different states of the accumulator. By storing the secret into a register,
any coefficient of a(z) is simultaneously multiplied by all the coefficients of s(z) in parallel,
which makes the traces of such operations much noisier and thus making it harder for a
side-channel attacker.

Secondly, the decision of storing the entire s(z) in the register simplifies the overall
architecture, as the register and the data exchange interface with the data-memory (block
RAM) does not have to deal with different sizes of coefficients. Note that the coefficients
of s(z) are always 4-bits wide (a divisor of 64) and each load stores 16 coefficients into
the buffer for s(x). This architecture requires less overhead for data loading: loading s(z)
into the register takes 16 cycles only, whereas loading an entire a(z) into the buffer would
require 52 cycles.

Finally, our design optimizes the number of flip-flops and logic elements for the shift
register. To store s(x) we need only 4 x 256 = 1,024 flip-flops as opposed to 13 x 256 = 3,328
flip-flops in the other strategy.

This comes at the cost of a more complicated loading process, since the coefficients of
a(x) are stored over multiple RAM blocks, unlike the coefficients of s(z). However, the
loading techniques described in Section 3.5.3 ameliorate the problem and the advantages
detailed so far greatly outweigh the drawbacks.

| Multiplication

Result reading |

| | | |
T T T 1

16 1 12 51 112 51 112 51 112 52 64

Figure 4: Timeline of polynomial multiplication when the public polynomial has 13 bit
coefficients, from input loading to output reading. Darker blue areas denote when the
multiplier reads coefficients from the loading data instead of the end of the buffer.
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3.5.5 Pipelining the multiplier

It is possible to reduce the length of the critical path in the multiplier by pipelining the
MAC units. A MAC unit receives a 13-bit coefficient of a(x) and a 4-bit coefficient of
s(z). A pipelined implementation of the MAC computes at one cycle the product between
the coefficient of a(z) and the magnitude of the coefficient of s(x) and buffers the result,
together with the sign of the secret coefficient. The following cycle updates the accumulator
by adding or subtracting the stored result, depending on the buffered sign. Figure 5b
contains a representation of the pipelined architecture.

This design allows new inputs to be processed continuously. Thus, an entire polynomial
multiplication now takes 257 cycles, which is virtually the same as the non-pipelined
architecture (there is only a one-cycle overhead due to pipelining). These changes allow
shortening of the critical path, but come at the cost of an additional 14-bit register per
MAC unit, which implies an added 3384-bit register for the entire polynomial multiplier.

The same changes can also be applied to MAC units when they fit two multipliers,
as described in the next subsection. In this case, the number of required registers is also
doubled.

3.5.6 Scalability

The current polynomial multiplier architecture with 256 MACs achieves high performance
with a moderate area consumption. However, such architecture can be extended to scale up
or down to achieve different performance/area trade-offs. Reducing the area consumption
can be achieved by decreasing the number of MACs used. For example, we can use 128 or
64 MACs and only multiply as many coefficients per cycle, which doubles or quadruples
the number of cycles.

Increasing performance, on the other hand, requires somewhat more involved modifica-
tions. In order to reduce the multiplication cycle count to 256/d, the multiplier must be
changed to compute the multiplication of s(z) with d coefficients of a(z) in one cycle, i.e.
compute s(x) - (a; + @12 +...+ aHd,lxd_l). Since the current architecture round-shifts
the secret polynomial at each cycle (equivalent to multiplying it by «), the new architecture
needs to cycle-shift the secret by d increments (equivalent to multiplying it by x¢) and
the MAC units need to simulate the in-between shifts. In the regular architecture, if at
one cycle we update the accumulator at position ¢ with s[i] - a[j], the next cycle we shift s
and use the next coefficient of a, so we increase the accumulator by s[¢i — 1] - a[j + 1]. The
following cycle will compute s[i — 2] - a[j + 2], the one after that s[i — 3] - a[j + 3] and so
on. Thus, each MAC unit now needs to compute d such operations in one cycle. Namely,
the MAC associated to position 4 in the accumulator needs to update the accumulator
by s[i] - alj]+s[i —1]-a[j+ 1]+ ...+ s[i — (d—1)] - a[j + d — 1]. This means that each
MAC unit should receive in input s[i],...,s[¢ — (d — 1)] and a[j],...,a[j + d — 1] and be
equipped with d multipliers (see Figure 5c for the MAC architecture when d = 2). Note
that the indexing of the coefficients of s(x) must be interpreted in a round way, i.e. if
j =0, then sj — 1] denotes the 256th coefficient with its sign flipped.

These changes have a positive impact on the registers required. Since we are now
consuming d coefficients per cycle, the polynomial buffer length should be decreased. If
d = 2, the buffer can be 520-bit long, since 24 coefficients can be read during loading and
520 = lem(64, 13) — 24 x 13. This means we can reduce the buffers needed by 23%. More
generally, the number of coefficients that can be consumed while loading is 12d, thus the
buffer should be (lem(64,13) — 13 - 12d)-bit long.

However, increasing the performance comes with an expensive cost in terms of area
consumption. For d = 2, each MAC unit needs to be equipped with two multipliers
and twice as many buffers, thus its area requirements are almost exactly doubled. More
generally, we can achieve polynomial multiplication in 256/d cycles by multiplying d times
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Figure 5: Different architectures of MAC units.

the area consumption of each MAC unit.

4 Results

The instruction-set coprocessor architecture was described in mixed Verilog and VHDL and
was compiled using Xilinx Vivado for the target platform Xilinx ZCU102 board that has
an UltraScale+ XCZU9EG-2FFVB1156 FPGA. The implemented hardware architecture
contains all the building blocks that are required to compute all KEM operations (key
generation, encapsulation and decapsulation). During a KEM operation, the operand data
is transferred to the coprocessor at once from a host processor, then all the computations
are performed in the FPGA, and finally the result is read by the host processor.

4.1 Timing results

The hardware coprocessor runs at 250 MHz clock frequency. Such a high clock frequency on
an FPGA demonstrates the impact of the design decisions that we made while implementing
the instruction-set coprocessor architecture. All cycle counts are obtained from the
hardware using a counter. The implementation is constant-time.

Table 1 shows the cycle counts for the individual low-level operations that are computed
during the execution of Saber (module dimension 3). The polynomial multiplier here uses
256 MAC units in parallel, where each MAC fits one multiplier. Although a polynomial
multiplication requires around 256 cycles, the KEM operations compute polynomial
vector-vector and matrix-vector multiplications. Hence, the time spent on polynomial
multiplications is 49%, 54%, and 56% of key generation, encapsulation, and decapsulation
respectively. The total time spent on Keccak-based [PA11] functions, namely SHA3-256,
SHA3-512, and SHAKE-128, is 33%, 31%, and 22% of key generation, encapsulation,
and decapsulation respectively. The results show that, despite having a fast architecture,
polynomial multiplication is the most time-consuming primitive, requiring more than half
of the overall time.



Sujoy Sinha Roy and Andrea Basso 15

Table 1: Total cycles spent in low-level operations for Saber (module dimension 3). Clock
frequency is 250 MHz. The polynomial multiplier uses 256 MAC units in parallel, with
each MAC equipped with one multiplier.

Instruction Cycle Count

Keygen Encapsulation Decapsulation
SHA3-256 339 585 303
SHA3-512 0 62 62
SHAKE-128 1,461 1,403 1,403
Vector sampling 176 176 176
Polynomial multiplications 2,685 3,592 4,484
Remaining operations 792 800 1,782
Total ‘ 5,453 6,618 8,034

Table 2: Area results for the instruction-set coprocessor architecture for Saber.

Block ‘ LUTs Flip-flops DSPs BRAM Tiles
SHA/SHAKE 5,125 3,068 0 0
| Keccak 4,978 2,964 0 0
Binomial sampler 949 412 0 0
Poly-vector multiplier (256 MACs) | 17,493 5,113 0 0
| Polynomial multiplier 17,466 5,100 0 0
Other blocks 1,512 2,157 0 0
Saber Coprocessor (256 MACs) 25,079 10,750 0 2
(% of overall FPGA) 9.5% 2.18% 0% 0.2%

4.2 Area consumption

The area results for our coprocessor architecture are shown in Table 2 along with a
breakdown of the internal building blocks. The data-memory consists of 1,024 words of
width 64-bit and it consumes 2 Block RAM tiles on the FPGA platform. The program-
memory (Fig. 1) is a small memory and it is implemented using LUTs. Despite the high
performance, our proposed architecture manages to achieve a moderate area consumption:
only 9% of LUTs, 2% of flip-flops, 0% of DSP slices, and 0.2% of block RAMs on the target
platform. The Keccak-based SHA3/SHAKE block occupies nearly 20 to 28% of the entire
COProcessor.

4.3 Results for a higher-speed variant of the architecture

As the polynomial multiplier architecture is scalable, we implemented a variant of it with
MAC units fitting two multipliers. With this higher-performing architecture, the cycle
counts for polynomial multiplications nearly halves, thus balancing the time between
Keccak-based functions and polynomial multiplications. The overall cycle count for Saber
(module dimension 3) is 4,320, 5,231 and 6,461 for key generation, encapsulation, and
decapsulation respectively. Thus, the cycle count is reduced by 21%, 21%, and 20%
respectively. The increased speed comes with increased area consumption by 83% for LUTs
and 74% for flip-flops (this is due both to the increased area consumption of the MAC
units with two multipliers and of the pipelining).
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Table 3: Comparisons with existing implementations of CCA-secure KEM schemes

Implementation Platform Time in pus Frequency Area
(KeyGen./Encaps./ (MHz) (LUT/FF/DSP/BRAM)
Decaps.) (or mm? for ASIC)
Kyber-768 [BUC19] ASIC 1.5K/2.4K/2.6K 72 0.28 mm?2
NewHope-1024 [BUC19] ASIC 1.3K/3.2K/3.6K 72 0.28 mm?
FrodoKEM-976 [HOKG18] Artix-7 45K /45K /ATK 167 ~T.7TK/3.5K/1/24
SIKEp503 [MLRB20] Virtex-7 (HW/SW) 8.2K/13.9K/14.8K 142 21.2K/13.6K/162/38
Saber [MTK™*20] Artix-7 (HW/SW) 3.2K/4.1K/3.8K 125 7.4K/7.3K/28/2
Saber [DFAG19] UltraScale+ (HW/SW) -/60/65 322 ~12.5K/3.5K/256/4
Saber [this work] UltraScale+ 21.8/26.5/32.1 250 25K /10.7K/0/2

4.4 Comparisons with existing implementations

In Table 3 we compare our flexible coprocessor architecture with some of the recent
hardware implementations of post-quantum KEM schemes. We remark that a fair com-
parison between the listed hardware implementations is not always possible since the
implementations target different schemes, use different platforms and follow different design
methodologies, and sometimes report simulation results. Nevertheless, our coprocessor has
been tested in the hardware and the timing results in the table show that our architecture
has a very fast computation time for the Saber KEM while consuming a modest area.

The fairest comparisons are with the existing implementations of Saber by Bermudo
Mera et al. [MTK™*20] and Dang et al. [DFAG19]. Both implementations follow HW /SW
codesign to split the computation of a Saber operation among the hardware and software
platforms. For example, [MTK™20] accelerates Saber by computing only the polynomial
multiplications in the hardware. The high-speed implementation [DFAG19] implements
matrix-vector multiplication and inner product computations, matrix and secret generation,
and hashing in the hardware and additionally uses dedicated data-paths for key generation,
encapsulation and decapsulation, thus lacking flexibility. On the other hand, our instruction-
set coprocessor architecture is able to compute all protocol-operations. The results in
Table 3 shows that our full-hardware architecture is faster than the two other HW/SW
codesign implementations [MTK 20, DFAG19] of Saber.

Banerjee et al. [BUC19] implemented a unified architecture that can be used for multiple
lattice-based schemes including Kyber [BDK™18], which is also a module lattice-based
KEM scheme. Their design methodology aims at reducing power consumption. In TSMC
40nm technology, their cryptoprocessor occupies 0.28 mm? area. For Kyber-768 (module
dimension 3), their architecture is around 100 times slower compared to our architecture.

We also compare our results with the hardware implementation of Frodo KEM by Howe
et al. [HOKG18]. Their architecture uses dedicated data paths for the key generation,
encapsulation and decapsulation operations. Since Frodo is based on the standard LWE
problem, computationally expensive matrix-vector multiplications are computed several
times, thus making Frodo significantly slower than other ring or module lattice-based
schemes.

We also compare our results with non-lattice-based KEM schemes. The SIKE [FJP11]
scheme relies on the computational hardness of the supersingular isogeny problem. Its
most recent hardware implementation by Massolino et al. [MLRB20] targets high speed
and even beats Frodo KEM. Our hardware implementation of Saber is around 500 to 600
times faster.

5 Conclusions

In this work, we proposed a flexible instruction-set coprocessor architecture for lattice-based
public-key cryptography with Saber KEM as a case study. We showed how to design a
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fast yet simple and scalable polynomial multiplier using the schoolbook multiplication
algorithm. We optimized the implementation targeting the parameter sets of Saber. For
a security level similar to AES-192, the architecture achieves fast computation time and
computes Saber key generation, encapsulation and decapsulation in 21.8, 26.5, and 32.1 us
respectively and consumes only 9% of LUTs and 2% of flip-flops on an UltraScale+ FPGA.
The results show that the modular structure of Saber and the use of power-of-two moduli
simplifies the architecture and results in better performance.
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