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Abstract. Deep Learning based Side-Channel Attacks (DL-SCA) are an emerging se-
curity assessment method increasingly being adopted by the majority of certification
schemes and certification bodies to assess the resistance of cryptographic imple-
mentations. The related published investigations have demonstrated that DL-SCA
are very efficient when targeting cryptographic designs protected with the common
side-channel countermeasures. Furthermore, these attacks allow to streamline the
evaluation process as the pre-processing of the traces (e.g. alignment, dimensionality
reduction, ...) is no longer mandatory. In practice, the DL-SCA are applied following
the divide-and-conquer strategy such that the target, for the training and the attack
phases, only depends on 8 key bits at most (to avoid high time complexity especially
during the training). Then, the same process is repeated to recover the remaining bits
of the key. To mitigate this practical issue, we propose in this work a new profiling
methodology for DL-SCA based on the so-called multi-label classification. We argue
that our new profiling methodology allows applying DL-SCA to target a bigger chunk
of the key (typically 16 bits) without introducing a learning time overhead and while
guaranteeing a similar attack efficiency compared to the commonly used training
strategy. As a side benefit, we demonstrate that our leaning strategy can be applied
as well to train several intermediate operations at once. Interestingly, we show that,
in this context, our methodology is even faster than the classical training and leads
to a more efficient key recovery phase. We validated the soundness of our proposal
on simulated traces and experimental data-sets; amongst them, some are publicly
available side-channel databases. The obtained results have proven that our profiling
methodology is of great practical interest especially in the context of performing
penetration tests with high attack potential (e.g. Common Criteria, EMVCO) where
the time required to perform the attack has an impact on its final rating.

Keywords: Deep Learning based Side-Channel Attacks - Multi-label training - Side-
Channel Countermeasures.

1 Introduction

1.1 Profiling Side-Channel Attacks

Side Channel Attacks (SCA) are nowadays well known and most designers of secure
embedded systems are aware of them. Among the SCA, profiling attacks play a fundamental
role in the context of the security evaluation of cryptographic implementations. Indeed,
the profiling attacks provide a security assessment in the worst-case scenario. That is,
the adversary has full-knowledge access to a copy of the target device and uses it to
characterize the physical leakage. Besides, the profiling attacks consist of two steps: (1)
a profiling step (a.k.a. learning or training) during which the adversary estimates and
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characterizes the distribution of the leakage function and (2) an attack step during which
he performs a key recovery attack on the target device.

Several profiling approaches have been introduced in the literature. A common profiling
side channel attack is the template attack proposed in [CRR02] which is based on the
Gaussian assumption!. It is known as the most powerful type of profiling in SCA context
when (1) the Gaussian assumption is verified and (2) the size of the leakage observations
is small (typically smaller than 1,000).

When the Gaussian assumption is relaxed, several profiling side-channel attacks have
been suggested including techniques based on Machine Learning (ML). Actually, ML
models make no assumption on the probability density function of the data. For example,
random forest model builds a set of decision trees that classifies the data-set based on a
voting system [LPBT15] and Support Vector Machine (SVM)-based attack discriminates
data-set using hyper-plane clustering [HZ12]. Besides, one of the main drawbacks of the
template attacks is their high data complexity [CK14] as opposed to the ML-based attacks
which are generally useful when dealing with high-dimensional data [LPBT15].

Following the current trend in ML area, recent works have investigated the use of
Deep Learning (DL) models as an alternative to the existing profiling SCA [CDP17,
CCC*19, MPP16, PSBT18]. The related practical results have demonstrated that these
techniques are very efficient to conduct security evaluations of embedded systems even
when some well-known countermeasures are involved to ensure protection against SCA. In
the following, we provide an overview of deep learning techniques and then we describe
the results derived from the recent investigations on the use of DL in side-channel context.

1.2 Classification of Deep Learning Techniques

Among DL models, three classes may be distinguished:

e The fully connected networks: are the basic type of neural networks. The major
advantage of fully connected networks is that they are "structure-agnostic’. That is,
no special assumptions need to be made about the input data. A fully connected
network can be described as a function f : R™ — R™ such that each output depends
on the n inputs. The simplest fully connected neural network is the perceptron [Bis95].
It is a linear classifier that uses a learning algorithm to tune its weights and minimize
a so-called loss function. It is possible to connect several perceptrons between each
other to build a classifier for more complex data-sets. The resulting fully connected
network is called MultiLayer Perceptron (MLP) [Bis95].

e The features extractor networks: are often used in image recognition and classification.
The goal is to learn higher-level and deep features in data that are the most useful
for the classification and/or target detection. This can be done via computing a
convolution between the data and some filters followed by a down-sampling operation
to keep only the most informative features. A typical example of features extractor
networks is the Convolutional Neural Network (CNN) [LB98, ON15]. Typically, a
CNN is composed of alternating layers of (1) locally connected convolutional filters
and (2) down-sampling, followed by a fully connected layer that works as a classifier
(a.k.a. SoftMaz layer).

e The time dependency networks: are a set of neural networks that differs from the
other ones in their ability to process information shared over several time-steps.
Indeed, in a traditional neural network, we assume that all inputs (and outputs) are

1The Gaussian assumption stipulates that the distribution of the leakage when the algorithm inputs
are fixed is well estimated by a Gaussian Law.
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mutually independent. However, for some applications, this assumption is unrealistic?.
So, the core idea of this type of networks is that each neuron will infer its output
from both the current input and the output of previous neurons. This feature is
quite interesting in side-channel context since the leakage is spread over several
time samples. The Recurrent Neural Networks (RNN) [HS13] and especially the
Long-and-Short-Term-Memory units (LSTM) [HS97] are the most suitable time
dependency neural networks.

1.3 Existing Works on Deep Learning based Side-Channel Attacks

Several works have investigated the application of DL techniques to conduct security
evaluations of cryptographic implementations. These contributions have focused mainly
on:

¢ Defeating both unprotected and protected symmetric cryptographic im-
plementations. In the seminal work on the use of DL techniques in SCA con-
text [MPP16], Maghrebi et al. demonstrated that the Deep Learning based SCA
(DL-SCA) are very efficient to break both unprotected and masked AES implemen-
tations. The authors experienced several types of DL models (MLP, CNN, LSTM
and stacked Auto-Encoders [MMCS11]) and the obtained results highlighted the
overwhelming advantage of this profiling technique compared to the well-known tem-
plate attack. Later, Cagli et al. proposed an end-to-end profiling approach based on
CNN that is efficient in the presence of trace misalignment [CDP17]. This property
is of a great practical interest since it helps to streamline the evaluation process as
no pre-processing of the traces is needed. Recently, Prouff et al. revisited different
methodologies to select the most suitable hyper-parameters, i.e. the parameters that
define a DL architecture (e.g. number of layers, number of epochs, etc.), for the CNN
and MLP DL models [PSB*18]. More interestingly, the authors published an open
database, named ASCAD, that contains electromagnetic traces of a masked AES
implementation along with the source code of the used neural network architectures.
Nowadays, this database is serving as a common basis for the side-channel community
to progress on this DL-SCA topic.

e Defeating secure asymmetric cryptographic implementations. In [CCCT19],
authors presented several profiling SCA against a secure implementation of the RSA
algorithm. Indeed, the targeted implementation relies on a certified EAL4+ arith-
metic co-processor and is protected with the classical side-channel countermeasures
(blinding of the message, blinding of the exponent and blinding of the modulus).
Through their practical experiments, the authors pinpointed the high potential
of deep learning attacks (and in particular the CNN models) against secure RSA
implementations. Besides, Weissbart et al. have proposed in [WPB19] a CNN based
side-channel attack on the EADSA signature scheme. The attack requires one single
measurement to successfully break the Ed25519 implementation in WolfSSL.

e Using the DL-SCA in non-profiling context. Timon suggested in [Tim19] a
methodology to apply DL as a partition based SCA [SGV08]. The core idea consists
in partitioning the collected traces along with their labels according to a selection
function that depends on the key hypotheses. Then, for each key hypothesis, a DL
training (based on CNN or MLP models) is performed to evaluate the consistency of
the obtained partitions. Finally, to recover the good key value, the author proposed
several kinds of metrics that are based either on the used DL network input layers
(i.e. the obtained weights on the first layer) or the DL training outcomes (i.e. the

2For instance, if we want to predict the next word in a sentence then the previous words are required
and hence there is a need to remember them.
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accuracy and the loss). The different reported experiments have shown the efficiency
of this approach against higher-order masking implementations compared to the
classical non-profiling SCA (i.e. higher-order Correlation Power Analysis [PRB09]).

e Using DL as a Points of Interest (Pol) detection method. In several
works [HGG19a, MDP19, Tim19], researchers tried to answer the question of whether
the DL can be used as a leakage assessment method? Indeed, the question was
answered positively and several methodologies based on different strategies were
suggested: the analysis of the gradient of the loss function used during the train-
ing [MDP19], the application of the well-known attribution methods as suggested
in [HGG19a] and the exploitation of the sensitivity analysis techniques [Tim19]. The
different obtained results have shown that DL based Pol detection method is at least
as good as the state-of-the-art leakage assessment methods,e.g. the Signal to Noise
Ratio (SNR).

e Enhancing the training and the key recovery outcomes. For instance, Zaid et
al. have proposed in [ZBHV19] a methodology for building efficient CNN architectures.
Indeed, they suggested to select the hyperparameters based on the outcomes of
some well-known visualization techniques (e.g. Weight Visualization, Gradient
Visualization and Heatmaps). In other works, researchers have emphasized the usage
of regularization layers [PEC19] or the addition of artificial noise [KPH"19] to not
only enhance the training of DL-SCA but also to improve the efficiency of the key
recovery phase.

1.4 Contributions

The aforementioned investigations have shown that DL-SCA have significantly improved
the profiled side-channel attacks against embedded systems. However, to the best of our
knowledge, all the related works on DL-SCA (as well as those related to template attacks)
have focused on:

e Performing the profiling when targeting a small subset of the key (commonly a subset
of 8 key bits) following a divide-and-conquer strategy. In theory, one can target up
to 32 key bits at once [GGS18]. However, adopting this approach in practice leads to
an unrealistic time complexity (during the learning phase) and heavy computation
complexity (during the attack phase). Then, the security evaluator has to repeat
the same process when targeting the remaining subsets of the key (e.g. in total
16 profiling/attack steps must be performed to recover the master key of an AES
implementation). As the profiling step is known to be time-consuming, the arising
question is whether it is possible to perform a DL profiling for a bigger key subset
(e.g. 16 bits) within an acceptable time-frame?

e Performing the profiling when targeting a single sensitive operation. To select this
operation, the security evaluator commonly runs a leakage detection method (by
targeting several intermediate ones) and then he selects the most leaky one for his
DL-SCA evaluation. The most leaky operation is often defined as the one for which
we obtain the highest peak of leakage. However, there is no published work so far that
demonstrates (theoretically and/or experimentally) that the most leaky operation
will provide the most successful key recovery. Yet, one wonders if it is possible to
run the DL profiling when targeting more than one operation while preserving a
reasonable computation time?

To answer the above questions, we propose in this work a new profiling methodology
for the DL-SCA based on the so-called multi-label classification. The core idea consists in
building the profiling for two subsets of the sensitive key (e.g. the first and the second
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bytes of an AES key) or two distinct sensitive operations sharing the same subset of
the key (e.g. an AES Sbox input and an AES Sbox output) at once®. Through several
simulations and practical experimentation, we demonstrated that the time required to run
our new profiling method is similar to the time needed to profile a single key subset (or a
single operation). Furthermore, the obtained key recovery results based on our proposed
learning are comparable, in terms of efficiency, to the ones resulting from classical learning.
More interestingly, for some DL architectures, using our methodology, the profiling step is
even less time-consuming and the resulting key recovery is more efficient compared to the
state-of-the-art learning methodology.

That is, our proposal can be considered as a twofer as it allows the profiling on two
variables such that (1) the corresponding learning time is equivalent to the learning time
cost needed to run a straightforward profiling on a single variable and (2) the attack
efficiency remains similar. From a security analyst’s perceptive, our profiling methodology
is of great practical interest, especially in the context of a Common Criteria (CC) security
evaluation, as it reduces (by at least half) the time required to perform DL-SCA.

2 Evaluation Methodology
2.1 Attacker Profile

Since we are dealing with profiling attacks, we assume an attacker who has full control of a
training device during the profiling phase and is able to measure the physical leakage during
the execution of a cryptographic algorithm (a.k.a. the training data-set). Then, during the
attack phase, the adversary aims at recovering the unknown secret key, processed by the
same device, by collecting a new set of the physical leakage (a.k.a. the attack data-set). In
addition, the adversary collects an extra data-set called wvalidation data-set (different from
the attack data-set). Indeed, it is worthy to highlight that having a validation data-set
is essential when dealing with DL [Guy97] as it allows the user to detect if there is an
over-fitting effect.

Furthermore, for all the experiments that we consider in the present work, the three
data-sets (training, attack, and validation) were scaled by removing the median and
applying the well-known min-maz method*, that is, having data-sets whose values are
within the range of [0;1].

2.2 Deep Learning Architectures Used

For our experiments, we target the CNN and the MLP models which are the most often
used DL models by the SCA community. For the sake of comparison, we consider the
LSTM model as well due to its ability to process information shared over several time-steps
which is very suitable in the SCA context [MPP16].

Regarding the targted DL architectures, we study the same ones from the seminal
work on the use of DL in the SCA context [MPP16]. This choice is motivated by their
simplicity (learning time) and their efficiency (key recovery results obtained on several
data-sets). Namely, we study:

e A CNN that is composed of 2 convolutional layers, one dense layer, and a SoftMax
layer, denoted CNN.

e An MLP that consists of 2 dense layers and one SoftMax layer, denoted MLP.

e An LSTM that contains 2 LSTM layers and a SoftMax layer, denoted LSTM.

3Please note that another option, not considered in this work for clarity reasons, is to the build the
profiling for two distinct sensitive operations using two different subsets of the key.
4This method was used as it provides the best results for the targeted data-sets.
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In the sequel, depending on the targeted implementation, we tuned some of hyper-
parameters of these DL architectures (e.g. size of filters, number of neurons, ...) or
we added some regularization layers to avoid the over-fitting issue. However, the main
architecture (i.e. the number of layers) remains unchanged. To enable the reproducibility
of our results, we provide in Appendix A a detailed description of each DL architecture
used for the assessment of the targeted implementations in this work.

Regarding the gradient descent optimization method (also called optimizer), we use the
adam approach for all the experiments performed in this work. This choice is motivated
by the fact that this function provides good results in terms of classification and matching.
It is worthy to highlight that for each targeted database, we check the efficiency of each
DL architecture using the well-known t-fold cross-validation estimator (with t = 10) to
reduce the uncertainty on the evaluation metrics (i.e. accuracy and loss).

Finally, our implementations of DL models have been developed with the Keras
library [ker] (version 2.2.4) and we run the training using a PC equipped with 128G B of
RAM and a gamer market GPUs Nvidia RTX 2080 Ti.

2.3 Training Time and Attack Evaluation Metrics

To estimate the training time for each used DL architecture, we repeat the profiling step
50 times when considering a new randomly shuffled training data-set at each iteration.
Then, the average learning time over the 50 iterations is provided. We stress the fact that
we only compute the time needed for learning; i.e. the execution time of the fit function
of the Model class in Keras library following the method described in Appendix D.

Similarly, for our attacks, we consider a fixed attack setup. In fact, each attack is
repeated 50 times on different sets of traces (randomly shuffled from the attack data-
set at each iteration). Then, we compute the average rank of the correct key among
all key hypotheses and over all experiment repetitions (a.k.a. the guessing entropy
metric [SMY09]).

3 Towards a new Profiling Methodology

3.1 Overview of Multi-Label Classification

Deep learning classification is the process of approximating the function that maps the
input data samples to target a predefined label/class. Mainly, two types of classification
can be distinguished:

e The single-label classification. For this type of classification, we assume that the
input samples correspond to only one target label. Under this type of classification,
two subcategories can be emphasized:

— The binary classification. In traditional classification problems, the input
samples belong to either of the two classes 0 or 1. Hence, the number of disjoint
labels is 2 for this type of classification. Disease diagnosis and quality control
are some of the major application areas of this method. In side-channel context,
this classification is often used to classify the bits of a secret key involved in a
modular exponentiation computation during the execution of an RSA signature
for instance.

— The multi-class classification. This subcategory involves classifying the
input samples into more than two classes with the main assumption that each
input sample must correspond to only one target class. Said differently, the
labels are mutually exclusive and form a disjoint set. Image recognition and
biometric identification are some of the typical application areas of multi-class
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classification. In side-channel area, all the related works on DL-SCA are based
on this classification method [CDP17, CCC*T19, MPP16, PSB™18]. For instance,
256 classes are used to run the training on an AES Sbox output operation.

e The multi-label classification. In this category, we assume that the input samples
can belong to multiple target labels (that are not mutually exclusive) [TKV10]. For
instance, the Leptograpsus crabs data-set [Rip96] contains some images of males
and females of two color forms (blue and orange) of crab. Hence, in a multi-label
classification, each image can belong to two different labels such that one label
would be male/female (to characterize the sex) and the other blue/orange (to
characterize the color). The multi-label context is receiving increased attention due
to the wide range of application domains including audio and video recognition and
bio-informatic.

To perform the learning following a multi-label classification fashion, one has to
pay attention regarding the choice of some hyperparameters of the DL architecture to
use [NKM*14]:

e The activation function. In a multi-label context, the final score of each class
should be independent of the score obtained for the other classes. Thus, we can not
apply the SoftMax activation function as it converts each score into a probability
such that all label probabilities will sum up to one. So, it is recommended for the
multi-label classification to rather use the sigmoid activation function on the final
layer [LK17a, LK17b]. Indeed, the sigmoid function converts each score of the final
layer into a probability independently of what the other scores are’.

e The loss function. It has been demonstrated in [NKM™14] that the binary cross-
entropy is the most suitable loss function to consider (for a multi-label classification)
instead of the categorical cross-entropy usually used for a single-label classification.

e The label binarization function. To binarize a set of several labels, for multi-label
classification, it is often recommended to use the scikit-learn library’s MultiLabelBi-
narizer class. In fact, this transform function of this class allows the encoding of
multiple labels into a binary matrix indicating the presence of a class label. We recall
that for the single-label classification, the to-categorical function from the Keras
library or the LabelBinarizer class from the scikit-learn library are often used.

To the best of our knowledge, the multi-label classification has never been used to
classify data in the side-channel context. In the following section, we describe how we can
take advantage of this classification strategy to propose a new profiling methodology that
allows us profiling side-channel traces for more than one subset of the key and for several
targeted operations at once.

3.2 New Profiling Methodology Description

A side-channel trace contains typically the processing of several intermediate operations
which involve the manipulation of different subsets of the key. Hence, a side-channel trace
can belong to different non-mutually exclusive labels. For example, to characterize this
data one set of label can include: the value of the first subset of the key, the value of the
second subset of the key, the output of the first executed intermediate operation, ...

5Based on the aforementioned Leptograpsus crabs data-set, we provide here a toy example: let’s
consider an image of female orange crap. After the training, let’s assume that the output value for the
labels (male, female, blue, orange) on the last layer is (—0.5,1.2, —0.1,2.4). The SoftMax function converts
this result to (0.04,0.21,0.05,0.70) while with the sigmoid activation function we get (0.37,0.77,0.48,0.91).
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So, it is obvious from this example that profiling side-channel data can be seen as
a multi-label classification problem. So far, the published works on DL-SCA have only
considered the multi-class classification, ¢.e. building the profiling for only one operation
or only one subset of the key. In this work, we extend this profiling approach, by relying
on the multi-label classification method, to enable the learning on more than one subset of
the key (denoted as the first-case scenario) and more than one operation sharing the same
key (denoted as the second-case scenario).

Traditionally, it is common to label the traces by a function ¢(P, K) where P and K
are respectively a subset of the plaintext and the key. In our new profiling methodology,
we propose to label each side-channel observation by a set of different labels defined as:

e First-case scenario: (¢(P;, K;))1<i<n when considering N subsets of the key and the
plaintext at once.

e Second-case scenario: (¢;(P, K))i<j<n when considering N intermediate operations
at once.

However, one can notice that for some indexes i; and iy (respectively j; and ja) in
[1; N] the outputs of ¢(P;,, K;,) and ¢(P;,, K;,) (respectively ¢;, (P, K) and ¢;,(P, K))
may collude. This implies that the i{® and if® (respectively the j* and ji*) labels may
have some common values. To avoid this issue, we suggest the following strategy for
labeling our side-channel observations:

e First-case scenario: (¢(P;, K;) + (1 — 1) X 2"*)1,<n where ng denotes the size (in
bits) of the outputs of ¢.

e Second-case scenario: (¢;(P, K)+ (j —1) x 2"%i-1);j<n where ng, denotes the size
(in bits) of the outputs of ¢,.

The complexity of our new profiling methodology depends on the size of the set of
labels NV to use for the learning. Indeed, to efficiently run the training, the used DL
architecture should process data that are labeled with every possible combination of the
labels. This implies that the minimum number of side-channel observations that should be

N
provided during the training phase is 27¢>*¥ for the first-case scenario and 221:1 "5 for
the second-case scenario such that these data are tagged with all possible combination of
labels. The size of the training data set has a significant effect on the learning time and
the memory usage. Therefore, the size of the set of labels should be carefully chosen.

Regarding the AES algorithm, a typical size of the labels set should be equal to N = 2.
In such context, the training the data are labeled as follows:

e First-case scenario: (AES-Sbox (P, K1),256 + AES-Sbox(P,, K3)) such that P; and
K; are receptively the it? bytes of the plaintext and the key and the AES-Sbox is
the AES Sbox function.

e Second-case scenario: (P @ K, 256 + AES-Sbox(P, K)).

Doing so, at least 2'6 side-channel traces are needed for the training step in both case
scenarios. Please note that setting N = 3 for the AES implies that at least 224 side-
channel observations should be collected for the learning step which is very time-consuming.
Without loss of generality, we consider the AES block cipher as a practical use-case for
our study. We stress the fact that our learning approach could be applied to run DL-SCA
evaluation of any symmetric or asymmetric cryptographic algorithm.

In the following sections, we apply our methodology on different simulations and some
publicly available data-sets. The targeted AES implementations are unprotected and
protected (using some common SCA countermeasures) and designed in either hardware
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or software fashion. Besides, we compare the performance of our training methodology
with the common training approach in terms of learning time and key recovery efficiency
following the evaluation metrics described in Sec. 2.3. For our comparison, we didn’t
focus on the time to classify the data (i.e. the time needed to predict the data after the
training). The reasons are basically that (1) the prediction time is negligible compared to
the learning time (of the order of milliseconds) and (2) when running our experiments we
checked that both training approaches require similar time to predict the data.

4 Training and Recovering Two AES Key bytes

4.1 Context and Motivations

To assess the security of an AES implementation with respect to DL-SCA, in the context
of an EMVCO/CC certification process, an evaluator usually applies a divide-and-conquer
approach. That is, he targets commonly byte by byte the secret key: (1) select one sensitive
operation manipulating a byte of the key, (2) run the training for this specific subset and
(3) perform a key recovery. Then, the adversary repeats, ideally, the same process 15 times
to recover the complete key. It is well-known that the most time-consuming step in this
described process is the training phase. To mitigate this issue, we propose to apply our
new profiling methodology to run the training for two AES key bytes at once. Our goal is
to verify if our propsal allows us to obtain an acceptable learning time while keeping an
efficient key recovery outcome. To do so, we consider three data-sets: simulated traces
with different levels of side-channel protection, a software masked AES implementation on
the ChipWhisperer (CW) board [OC14] and a hardware AES implementation from DPA
contest V2 [TEL10]. For each data-set, we run the profiling of two different Sbox output
operations. The results of our experimentation are provided in the following sections.

4.2 Training Methodology Validation on Simulated Traces

For our simulation set-up, we generate L simulated traces (T;)1<i<r, of 8 time samples
each, corresponding to the computation of two AES Sbox outputs, denoted as Z; and
71, generated respectively using two key-bytes Ky and K;. For comparison purposes, we
consider several levels of protections: unprotected version, first-order masking (s.t. Zy
and Z; are protected with two different masks My and M), a combination of first-order
masking and jitter and a combination of first-order masking and shuffling. The pseudo-code
used to generate the respective simulated traces is described in Appendix B.

Following the above-mentioned simulation set-up, we generate L = 80,000 traces for
the profiling phase, L = 10,000 traces for the validation phase and L = 10,000 traces for
the attack phase®. For the training data-set, we make sure that all possible combinations
of the pair (Zy, Z1) are available for the learning.

Then, we run the training phase when considering the three DL models described in
Sec. 2.2. For each DL model, we adopt three strategies for the training: (1) a straightforward
profiling when only targeting Zy, (2) a straightforward profiling when only targeting Z; and
(3) our new profiling methodology based on the multi-label classification when targeting
the pair (Zy, Z1) as described in the first-case scenario in Sec. 3.2. The different hyper-
parameters of the considered DL architectures are provided in Tab. 7 in Appendix A.
The evolution of the training and validation loss functions according to an increasing
number of epochs is provided in Fig. 10 in Appendix E. These training outcomes have
demonstrated that the multi-label classification allows to achieve a good fit (i.e. both

6Said differently, the generated data-set is split into training, validation and test sets using a 80 — 10— 10
ratio (which provide an efficient performance in terms of accuracy and loss).



Deep Learning based Side-Channel Attack: a New Profiling Methodology based on
10 Multi-Label Classification

Table 1: Comparison of the average training time (in seconds).

’ Countermeasure \ DL model \ Ky \ K \ multi-label ‘
CNN 264.09 | 260.55 230.54
Unprotected LSTM 500.84 | 505.06 525.58

MLP 205.71 | 210.24 188.18

CNN 266.68 | 260.78 235.39
Masking LSTM 527.57 | 496.59 496.54
MLP 214.60 | 210.98 177.56

CNN 263.09 | 271.83 224.30
Masking & jitter LSTM 513.70 | 508.90 493.42
MLP 213.27 | 211.79 166.93
CNN 267.19 | 268.56 234.56

Masking & shuffling LSTM 510.43 | 504.40 483.26
MLP 220.46 | 215.21 175.74

training and validation loss functions decrease to a point of stability with a minimal gap
between their values).

To estimate the time of learning for each DL architecture, we follow the metric
described in 2.3. That is, the time of learning is the average time over 50 training iterations
each performed on a new randomly shuffled training data-set. The obtained results are
summarized in Tab. 1.

Our simulation results demonstrate that the average learning time of our training
methodology based on the multi-label is similar (and even lower in some cases, e.g. for the
MLP architecture) than the classical training strategy based on the multi-class classification.
This observation is valid for all the used DL models and all the targeted implementations.
So, running the training on a pair of data requires almost the same time as running it for
a single sensitive data. However, the arising question is whether the attack step based on
our methodology is as efficient as the one based on classical training?

To answer this question, we run the key recovery phase for each targeted implementation
following the methodology described in 2.3. For the sake of comparison, the attack phase
was performed for both training strategies (i.e. to recover Ky and k; separately and the
pair of key bytes (Ko, K1) at once). We plot the evolution of the correct key rank according
to an increasing number of traces in Fig. 1.

From Fig. 1, it is obvious that the efficiency of the key recovery based on our training
methodology is similar to the one based on the classical training on a single sensitive
operation. The same conclusion holds for all the targeted implementations that we consider
for our simulation set-up. Finally, we argue that our proposal is a “Two for the Price
of One” approach, i.e. train two sensitive data at once for the time-cost of one while
guaranteeing similar key recovery results.

4.3 Training Methodology Validation on a Software AES Implementa-
tion

To confirm the simulation results, we conduct some practical experiments on the Chip-
Whisperer platform. Mainly, we implement a first-order masked AES implementation on
an 8-bit AVR microprocessor ATxmegal28d3 and we acquire the power-consumption traces
thanks to the ChipWhisperer-Lite (CW1173) basic board. We collect a similar amount of
traces as for the simulation set-up: 80,000 traces for the profiling phase, 10,000 traces for
the validation phase and 10,000. For the sake of comparison, we generate from this initial
database a new set of desynchronized traces. The desynchronization (a.k.a. jitter effect) is
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Figure 1: Simulation results: evolution of the correct key rank (y-axis) according to an
increasing number of traces (x-axis).
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Table 2: Comparison of the average training time (in seconds).

’ Countermeasure \ DL model \ Ky \ K \ multi-label ‘
CNN 278.43 | 275.07 245.37
Masking LSTM 549.54 | 512.56 493.62

MLP 225.09 | 211.33 175.26
CNN 281.83 | 286.23 249.789
Masking & jitter LSTM 512.24 | 519.15 508.44
MLP 220.07 | 224.99 187.93
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Figure 2: CW results: evolution of the correct key rank (y-axis) according to an increasing
number of traces (x-axis).

simulated by generating for each trace a random number § in [0; 20] and by shifting the
original trace of § points to the right. The idea is to validate the efficiency of our training
methodology on misaligned traces in practice. Then, we run the training using the DL
architectures described in Tab. 7 in Appendix A and estimate the average learning time
when targeting the first two Sbox outputs of the first AES round. The resulting timings
are given in Tab. 2.

The obtained results on the CW data-set are in-line with the simulation outcomes and
even better. Indeed, independently of the targeted implementation and the DL model used,
our training methodology is faster than the traditional learning approach. For instance,
when the implementation is protected with masking and jitter, training two sensitive data
using the multi-label approach is almost 18% faster than training each data separately.

To compare both approaches from an attack efficiency perspective, we perform the key
recovery phase. The outcomes of our practical attacks are depicted in Fig. 2. As expected,
the obtained results for DL-SCA with real traces are in-line with those obtained with the
simulation. In fact, our training methodology ensures good learning which turns into an
efficient key recovery phase. Again, when comparing the attack results obtained for both
training approaches, we observe that the curves of the evolution of the correct key rank
follow the same pattern of decreasing when increasing the number of traces.

4.4 Training Methodology Validation on the DPA contest V2 Database

To further validate the advantages of our proposal, we carry out some experiments on the
DPA contest V2 data-set. It is an FPGA-based unprotected AES implementation [TEL10].
Each trace contains 3,253 samples measuring the power consumption of an AES execution.
Our target for the training and the attack phases is the hardware register update during
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Table 3: Comparison of the average training time (in seconds).
DL model Ky Ky multi-label
CNN 187.69 | 192.372 162.56
LSTM 349.81 | 34741 324.93
MLP 149.90 | 155.61 123.18

the last AES round, i.e. the Hamming distance between the ciphertext and the result of
the intermediate output value of the 9*" round. More practically, we focus on the interval
of time samples [2, 300; 2, 500] where this register update occurs” and we select the register
updates related to the manipulation of the first and the fourth bytes (denoted repetitively
Ky and K; in the sequel) of the last AES key round for our profiling and key recovery.
From the available data-set, we select 200,000 traces for the training, 20,000 traces for
the validation and 20, 000 traces for the attack. Then, we run the learning using the DL
architectures described in Tab. 7 in Appendix A and estimate the average learning time for
both studied classification approaches. The evolution of the training and validation loss
functions according to an increasing number of epochs is provided in Fig. 12 in Appendix F.

The experimental results from Tab. 3 demonstrate again that our profiling methodology
is faster than performing the learning when targeting a single sensitive operation. This
observation is consistent with all the DL architectures we used.

The question now being asked is whether both profiling approaches can detect the
same Pol during the learning?

In answering this query, we apply the Gradient Visualization (GV) method suggested
in [MDP19] when only considering the profiling outcomes of the CNN architecture for clarity
reasons®. So, the GV analysis is applied when training the data based on our multi-label
approach as well as when training the register updates related to the manipulation of
key bytes Ky and K; individually. For the sake of comparison, we process the SNR
computation to detect respectively the leakage of the key bytes Ky and K7 denoted SNRg
and SNR; respectively. In the interests of transparency, the GV and the SNR computation
results are normalized following the min-max method.

The results reported in Fig. 3 show that both computations succeed to reveal the
leakage related to the manipulation of the two targeted key bytes. This result is in-line
with the investigations from [MDP19] performed on the ASCAD database. Meanwhile, one
can notice that the leakage area detected by the GV processing (approx 200 time samples)
is bigger than the one detected by the SNR computation (approx 150 time samples). This
observation proves that the leakage detection based on DL techniques can reveal more
leaky points compared to the SNR analysis®. Another side observation is that the leakages
of the two key bytes are located in the same area. This result is quite expected as we are
targeting a hardware implementation, i.e. the processing of the different key bytes of a
round is done in parallel.

More interestingly, we observe that the GV analysis results for both profiling approaches
are pretty similar. This demonstrates that our profiling methodology based on the multi-
label classification is as efficient as the classical profiling in detecting the leakage of the
sensitive data. This observation is of great interest as it further proves that it is more
advantageous to apply our proposal to save learning time while keeping good performance
in terms of leakage detection capabilities.

Finally, we run the key recovery on the attack data-set and we provide the results in

"To reveal this interval, we run an SNR. computation whose results are shown in Fig. 3.

8We stress the fact that other DL-based leakage detection techniques [HGG19a, Tim19] were applied
and similar results were obtained.

9For the sake of completeness, we run a DL-SCA on the interval of time samples [0; 50], i.e. where the
GV methods detect some leakage while the SNR does not, and we succeed to recover the two key bytes.
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Fig. 4. The obtained curves follow the same pathway which is coherent and consistent
with the outcomes of our investigations based on simulation and the CW. Besides, we
observe that for CNN architecture the guessing entropy curves overlap. This observation
is in-line with the result of the GV analysis reported in Fig. 3 where the standardized
leakage curves overlap as well. This result highlights again that the training based on our
methodology is as efficient as the classical training to detect and exploit the leakage. It
is worthy to notice that for the MLP architecture, the key recovery results obtained for
K for both training methods are not efficient compared to other DL architectures and
even compared to the results obtained for K based on MLP. This could be explained by
the fact that the MLP architecture is not optimal to run efficiently the training on this
key byte. To overcome this issue, one can design a more appropriate MLP architecture to
enhance the training and hence the key recovery results. We kindly recall that our goal is
not to find the most optimal DL architectures for a specific data-set nor to compare the
studied DL architectures (MLP, CNN and LSTM) from a training/key recovery efficiency
point of view. Our objective is to compare two training approaches, for a predefined DL
architecture, from a learning time-cost and attack efficiency perspectives.

5 Training Two AES Intermediate Operations

5.1 Context and Motivations

When performing a leakage assessment of a cryptographic implementation, it may happen
that several intermediate operations leak information about the same subset of the master
key (e.g. the AddRounKey and the SubByte operations in the case of an AES). To choose
the targeted operation for the attack, the evaluator often selects the most leaky one (i.e.
the operation for which we obtain the highest leakage). Nevertheless, no published work
has demonstrated (theoretically and/or experimentally) that the most leaky operation
will provide the most successful key recovery, to the best of our knowledge. Furthermore,
the evaluator’s choice becomes even tough to make in the case where he obtains for two
intermediate operations a similar amount of leakage. Ideally, an evaluator has to run the
attack on every leaky operation. However, due to the evaluation’s time constraints, this
process is rarely applied.

Based on the conclusions reached in the previous section, one wonders if the multi-
label classification may solve this issue? Indeed, we have seen that, with our learning
methodology, the time needed to train two operations that use two different subsets of
the key is similar to the time needed to train one single operation based on the classical
training method. So, intuitively, our training approach can be easily applied for this
studied use-case to perform the training on two different operations sharing the same
subset of the key without introducing additional run-time overhead.

More interestingly, since the two operations used for the training share the same subset
of the key, this multi-label learning can be equivalently represented as a classification of
this subset of the key based on the knowledge of the values of these two operations. Said
differently, when reusing the notations from Sec. 3.2, the training done on the pair (Y; =
$1(P,K),Ys = ¢o(P, K)) is equivalent to the training on (K = ¢(;(Y1, P), K = (o(Ya, P)),
for some pair of functions (1, (2), and thus equivalent to the training on the subset K of
the key'®. As such, this training can be seen as a classification of one variable (i.e. K)
when exploiting the information provided by two different operations (instead of one as it
is the case for the classical training).

It is worth mentioning that our proposal differs from the work proposed by Hettwer et
al. in [HGG19b] in two aspects: (1) the labeling in [HGG19b] is done directly using the

10For the AES, when considering respectively that ¢1(P, K) = P ® K and ¢2(P, K) = Sbox(P ® K)
then ¢1(Y1, P) = Y1 ® P and (2(Ya, P) = Sbox—1(Y2) & P.
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Table 4: Comparison of the average training time (in seconds).

’ Countermeasure \ DL model \ Sbox in \ Sbox out \ multi-label ‘
CNN 202.12 203.38 182.38
Unprotected LSTM 392.93 393.52 392.82
MLP 155.44 163.23 147.73
CNN 200.32 232.71 185.89
Masking LSTM 389.36 400.07 378.00
MLP 161.27 169.04 138.64
CNN 210.02 207.03 181.28
Masking & jitter LSTM 396.28 385.98 386.32
MLP 169.17 166.15 134.94
CNN 202.02 214.30 184.07
Masking & l-amongst-2 LSTM 396.56 410.05 378.68
MLP 163.49 179.88 138.06

key (to not stick to a particular operation or a leakage model) while our labeling is done
based on two intermediate operations and (2) a classical multi-class apporach is applied
in [HGG19b] while we suggest in this work a multi-label training approach. We keep the
comparison of both approaches as a future work!!.

It is well-known in DL that the more information you provide on the targeted data,
the more accurate the training you get and the more efficient the matching you obtain.
Thus, one expects that the key recovery (matching phase) would be enhanced in such a
situation.

To verify these exceptions, we perform several experimentations by targeting three
data-sets: simulated traces with different levels of side-channel protection, a software
masked AES implementation on the CW board and the traces from the new ASCAD
database [ANSb]. For the multi-label classification, we follow our proposed training
methodology described in Sec. 3.2 (second-case scenario). In following sections, our
targeted operations are the AddRounKey and the SubByte of the first AES round denoted
respectively as “Sbox in” and “Sbox out”.

5.2 Training Methodology Validation on Simulated Traces

For our simulation, we apply the same setup used in Sec. 4.2. So, we study an unprotected
implementation of the AddRounKey and the SubByte operations, a first-order masked
version (such that each operation is protected with an independent mask), a combination
of first-order masking and jitter and a combination of first-order masking and a 1-amongst-
2 countermeasure. The pseudo-code used to generate the different simulated traces is
described in Appendix B when considering Z and Z; as the AddRounKey and the SubByte
operations of the first AES round.

Then, we generate 80, 000 traces for the profiling phase (of 8 time samples each), 10,000
traces for the validation phase and 10,000 traces for the attack phase and we make sure
that all possible combinations of the pair (Zy, Z1) are available for the learning. We run
the training, following our multi-label based methodology, for the same DL architectures
studied in Sec. 4.2. For the sake of comparison, the training is performed for each targeted
operation (“Sbox in” and “Sbox out”) independently. The evolution of the loss function
according to an increasing number of epochs is provided in Fig. 11 in Appendix E. The
average leaning time is summarized in Tab. 4.

111t is worthy to highlight that the used DL architectures in both works are different and the data-sets
used in [HGG19b] are not publicly available.
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Figure 5: Simulation results: evolution of the correct key rank (y-axis) according to an
increasing number of traces (x-axis).

As expected, the time needed to train two sensitive operations is similar (and even
shorter) than the time required to train one single operation. This result is of great interest
as the security evaluator can run the training based on our methodology on two different
operations sharing the same key without introducing a time overhead. Now, to assess the
efficiency of the key recovery step related to this multi-label training, we run the DL-SCA.
The attack results corresponding to each used DL architecture are plotted in Fig. 5.

The obtained results show that, independently of the targeted implementation and
the used DL architecture, the attack based on the multi-label training performs better.
Indeed, fewer traces are needed to recover the correct value of the key involved in the
execution of the “Sbox in” and the “Sbox out” operations. This observation confirms our
expectations and highlights an additional advantage of our profiling methodology. Based
on this result, we argue that applying our proposal will not only avoid increasing the
cost-time during the profiling but also enhances the key recovery results. Thus, when a
security evaluator identifies several leaky operations depending the same chunk of the key,
it is more advantageous for him to apply our training approach (instead of only targeting
the “most leaky operation”).

At this stage, one may think that the obtained attack results are quite expected as there
is an obvious link (i.e. a bijective function) between the two targeted operations in our
experiments: the “Sbox in” and the “Sbox out” of an AES. For the sake of completeness,
we run a similar assessment (i.e. training and key recovery) on some simulated traces of a
first-order masked DES implementation when targeting the “Sbox in” and the “Sbox out”
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Table 5: Comparison of the average training time (in seconds).
’ Countermeasure \ DL model \ Sbox in \ Sbox out \ multi-label ‘

CNN 227.68 215.57 193.67

Masking LSTM 430.64 400.32 396.81

MLP 195.19 184.65 146.97

CNN 218.38 229.81 198.83

Masking & jitter LSTM 411.69 429.59 387.86

MLP 170.51 169.19 149.73
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Figure 6: CW results: evolution of the correct key rank (y-axis) according to an increasing
number of traces (x-axis).

operations of the first round'?. The outcomes of our investigation, provided in Appendix C,
demonstrate that the same conclusions hold. That is, our training methodology enhances
the key recovery without introducing an extra time overhead during the learning phase.

5.3 Training Methodology Validation on a Software AES Implementa-
tion

To validate the simulation results in practice, we run some experiments on the same
masked AES implementation on the CW board targeted in Sec. 4.3. We consider the same
collected database as well as the derived set of traces obtained by introducing the jitter
effect. The main difference is that our targets for the training and the key recovery steps
are the first “Sbox in” and “Sbox out” operations of the first AES round. To estimate the
average learning time, we perform the training based on the different DL architectures
listed in Tab. 7 and follow the procedure defined in Sec. 2.3. The obtained timing results
are provided in Tab. 5.

The experimental results obtained on the CW board are in-line with the simulation
outcomes. The multi-label training is faster than the classical training on a single operation.
For instance, when running the MLP architecture on the AES implementation protected
with masking and jitter, the learning time is reduced by about 14%. Finally, to validate
the consequent advantage of our training methodology in terms of attack efficiency, we
perform the key recovery and plot the obtained results in Fig. 6.

From Fig. 6, one can conclude that applying our profiling methodology enhances the
results of the key recovery compared to the classical training approach. This observation

12Different masks are applied to protect both operations.
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Table 6: Comparison of the average training time (in seconds).

DL model | Sbox in | Sbox out | multi-label
CNN 2682.86 | 2598.16 2059.58
LSTM 3259.89 | 3173.50 2955.83
MLP 1960.50 | 2131.96 1723.15

is quite noticeable when focusing on the attack results obtained for the MLP architecture
on the AES implementation protected with masking and jitter. Indeed, roughly 50 traces
are needed to recover the correct value of the key when applying the multi-label training
while 100 traces are not enough to recover this value when running the classical training
on one sensitive operation (either the “Sbox in” or the “Sbox out”). The same conclusion
holds for the other used DL architectures with different level of improvement on the attack
efficiency.

5.4 Training Methodology Validation on the new ASCAD Database

The last targeted data-set to validate our new training methodology is the ASCAD
database. Indeed, this database was made publicly available by Prouff et al. to serve as
a common basis for the side-channel community to progress on DL-SCA topic [PSBT18].
It contains some electromagnetic traces of a masked AES implementation running on
ATMega8515 device. The first version of ASCAD consists of 60,000 traces collected for a
fixed encryption key [ANSa]. Recently, a new version of ASCAD was published [ANSD]. It
contains 300, 000 traces in total (200,000 for the training and 100, 000 for the attack phase)
collected while encrypting data with a set of random keys. Each trace consists of 1,400
points and represents the EM leakage captured during the execution of the third “Sbox
in” and “Sbox out” operations of the first AES round. For the present experiment, we
focus on the new version of the ASCAD database and we split the 100,000 traces, initially
provided for the attack phase, such that the first half is used for the validation and the
second half for our attack phase. The whole 200,000 available training traces are used
for our profiling phase. As for the previous experiments, we first compare the learning
time of the different training methods when targeting the third “Sbox in” and “Sbox out”
operations of the first AES round. The learning time-cost is summarized in Tab. 6.

Yet again, the obtained timing results show that our training is faster than the
commonly applied multi-class training. For instance, the training time is speeding up
by 13% when running the MLP architecture. Moreover, these results show that the gain
in time is more significant when targeting high-dimensional traces (e.g. a gain of one
hour for LSTM) compared to the previously targeted data-sets (e.g. a gain of few minutes
when targeting the DPA contest V2 traces). In fact, it is obvious that the training time
increases when the size of the manipulated data increases and therefore the gain in time
using our training methodology will increase as well. This observation is of great practical
interest for real-world security evaluation where the typical size of traces is roughly tens of
thousands of time samples'?.

Similarly to the experiments performed on the DPA contest V2 data-set, we run a
DL-based leakage detection method on the ASCAD database for both training approaches.
The purpose is to verify if the multi-label training can detect the leakages of both targeted
operations. For the sake of completeness, we select another DL-based Pol selection
method compared to the GV analysis done in Sec. 4.4. Namely, we apply the sensitivity
analysis method suggested in [Tim19] when considering the training outcomes of the MLP
architecture obtained for both learning approaches'¢. For the sake of comparison, we

13The estimated gain in time is about several hours in such context.
14We stress the fact that other DL-based Pol methods were applied and similar results were obtained.
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Figure 7: Leakage detection results on the ASCAD data-set.

process as well the SNR for several intermediate operations and values described hereafter
using the same notations as in [PSBT18]:

e Masked Sbox output Sbox(p[3] @ k[3]) @ rout, denoted snrl.
e Masked Sbox output Sbox(p[3] @ k[3]) @ r[3], denoted snr2.
e Masked Sbox input p[3] @ k[3] @ rin, denoted snr3.

e Masked Sbox input p[3] @ k[3] @ r[3], denoted snr4.

e Mask 7oy, denoted snr5.

e Mask ry,, denoted snr6.

e Mask r[3], denoted snr7.

The leakage detection results obtained for the ASCAD database are shown in Fig. 7.
It is worthy to highlight that our training methodology (as well as the classical training
method) detects the same leakages revealed by the SNR method and that are related to all
the above-listed intermediate operations expecting the one denoted snrl. This result can
be justified by the fact that the SNR level obtained for snrl is quite low compared to snr2.
For this reason, we believe that the MLP architecture has focused on the time samples
around the snr2 peak to do the training for the masked Sbox output operation. Still in
the comparison with the SNR results, we observe that DL based detection techniques
reveal some “ghost” peaks of leakage (e.g. around the time samples 250, 300, 750).
The same observation was noticed in [MDP19] where the authors claim that these extra
peaks are non-informative and more related to an over-fitting issue!®. We run some key
recovery when selecting these time samples but we fail to recover the key. We recall
that the same observation was highlighted in Sec. 4.4. The main difference is that the
conducted attack, on the area where the mismatch is noticed between both Pol methods,
was successful. Furthermore, we check that our training is not overfitting. So, we conclude
that even these extra leakage peaks are not directly related to the leakage, they are very

15To avoid the detection of these peaks, authors in [MDP19] suggested to apply an early-stopping as a
regularization technique.
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Figure 8: ASCAD results: evolution of the correct key rank (y-axis) according to an
increasing number of traces (x-axis).

useful for the training and the classification. This observation pinpoints the fact that the
relationship between the classical leakage detection methods and those based on the DL
techniques needs to be further investigated despite the several published papers on this
topic [HGG19a, MDP19, Tim19]. We keep this study as future work.

Now, when comparing the obtained results for both training methodologies (multi-class
and multi-label), one can see that the leakage detection curves are very similar. Indeed,
the same Pol were detected (including the ghost peaks) and only the leakage level (i.e.
the amplitude) differs. This result is quite surprising as it pinpoints that by running
the classical training on the Sbox output operation, we can detect the Pol related to the
Shox input (and vice versa). Certainly, not all the Pol are contributing at the same level
(which explains the difference in amplitude) for each training target. This implies that
by restricting the training to a single operation, we are not exploiting all the available
information. Regarding the multi-label leakage detection result, one can see that the
Pol have (almost) the sample amplitude which implies that our training methodology is
equivalently exploiting the Pol (related to the Sbox input and output operations). Thus,
one would expect that this will lead to a more efficient key recovery. To validate this
expectation, we run the key recovery for each training approach and provide the outcomes
in Fig. 8.

The reported results in Fig. 8 prove that, as expected, our training methodology
enhances the key recovery results. Indeed, fewer traces are needed to recover the third key
byte of the AES implementation. For instance, when considering the MLP architecture and
the mutli-label classification, about 50 traces are sufficient to recover the targeted key byte
value. However, when the training is performed for a single leaking operation, more traces
are needed (about 150). This observation is valid for all considered DL architectures.
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6 Conclusion

In this paper, we proposed a new training methodology for the DL-SCA based on the
multi-label classification. Our proposal can be applied to mitigate two practical issues
related to the application of DL-SCA. On one hand, it extends the ability of DL-SCA to
target a bigger subset of the key bits. For the AES use-case, we have shown that our new
training methodology allows efficient profiling on two bytes of the key at once while the
needed learning time is equivalent to the learning time required to run the profiling on
one byte of the key using the classical training approach. Our validation results obtained
on simulated traces and experimental data-sets have proven that the key recovery phase
related to our training methodology is as efficient as the one based on the commonly
used training approach. On the other hand, our proposal extends the ability of DL-SCA
to target two operations, at once, sharing the same chunk of the key. This feature is of
great interest especially when the security evaluator hesitates on the choice of the most
appropriate operation to target for this attack. The outcomes of our investigations have
shown that not only our methodology will not introduce a learning time overhead but also
enhances the key recovery results. This claim was verified through several experiments
based on simulation data and real traces data-set. At the end, we argue that our proposal
is a twofer: as it allows the profiling on two variables such that (1) the corresponding
learning time is equivalent (and even shorter compared) to the computation cost of a
straightforward profiling on a single variable and (2) the attack efficiency remains similar
(and even better).

As future work, we plan to apply our training methodology on the evaluation of
asymmetric cryptographic implementations. Another research avenue will consist in
revisiting the relationship between the classical side-channel Pol methods and the DL-
based ones when the multi-class and the multi-label classifications are applied. Indeed, we
noticed, during this work, that there is a mismatch when comparing the outputted results
of both strategies. We believe that this observation is worth pursuing a bit further.
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A Hyper-Parameters of the Used DL Architectures to Tar-
get AES implementation

We provide in this section a detailed description of the DL architectures used in our work
to ease the reproducibility of our results by the SCA community. The DL architectures
used to target the simulated AES traces, the observations acquired on the CW board
and the ones from the DPA contest V2 are described in Tab. 7. The DL architectures
designed to train the traces from the ASCAD database are depicted in Tab. 8. The specific
configuration for the multi-label training is highlighted in blue while the one specific to
the classical multi-class training is highlighted in red.

It is worthy to highlight that for each DL model we used the same architecture for the
multi-class classification and the multi-label classification (i.e. number of layers, number of
neurons, ... ). Our main goal is to provide a fair comparison of both approaches in terms
of learning time. In this work, we are not claiming that the described DL architectures are
the optimal ones to break the targeted database. Indeed, one can select other DL designs
(for the multi-label classification) that lead to a more efficient key recovery.
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Table 7: Hyper-parameters of the basic DL architectures used to train the simulated AES
traces, the observations acquired on the CW board and the ones from the DPA contest V2.
CNN

nb__epoch = 100

batch_size training = 128

Convolution1D(8, 16, padding=’same’, input_ shape=(nb_ samples,1), activation="relu")
Dropout(0.2)

MaxPooling1D(pool_size=2)

Convolution1D(8, 8, padding=’same’, activation="tanh")

Flatten()

Dropout(0.4)

Dense (256, activation="softmax")

compile(loss=’categorical-crossentropy’, optimizer="adam’, metrics=["accuracy’])
Dense(512, activation="sigmoid")

compile(loss="binary-crossentropy’, optimizer="adam’, metrics=["accuracy’])

MLP

nb__epoch = 100

batch_size_ training = 128

Dense(20, activation="relu", input_ shape=(nb__samples,))

Dense(50, activation="relu")

Dense (256, activation="softmax")

compile(loss="categorical-crossentropy’, optimizer="adam’, metrics=["accuracy’])
Dense(512, activation="sigmoid")

compile(loss=’binary-crossentropy’, optimizer="adam’, metrics=["accuracy’])

LSTM

nb__epoch = 100

batch_size training = 128

LSTM(26, input_ shape=(nb_ samples,1), return_ sequences=True)

LSTM(26)

Dense(256, activation="softmax")

compile(loss=’categorical-crossentropy’, optimizer="adam’, metrics=["accuracy’])
Dense(512, activation="sigmoid")

compile(loss=’binary-crossentropy’, optimizer="adam’, metrics=["accuracy’])
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Table 8: Hyper-parameters of the basic DL architectures used to target the ASCAD
database.

CNN

nb__epoch = 200

batch__size_ training = 128

Convolution1D(8, 128, padding=’same’, input_ shape=(nb_ samples,1), activation="relu")
Dropout(0.5)

MaxPooling1D(pool__size=2)

Convolution1D(8, 64, padding="same’, activation="tanh")

Flatten()

Dropout(0.4)

Dense(100, activation="relu")

BatchNormalization()

Dense (256, activation="softmax")

compile(loss=’categorical-crossentropy’, optimizer="adam’, metrics=["accuracy’])
Dense(512, activation="sigmoid")

compile(loss="binary-crossentropy’, optimizer="adam’, metrics=["accuracy’])

MLP

nb__epoch = 200

batch_size_ training = 128

Dense(50, activation="relu", input_ shape=(nb__samples,))
BatchNormalization()

Dense(100, activation="relu")

BatchNormalization()

Dense(256, activation="softmax")

compile(loss=’categorical-crossentropy’, optimizer="adam’, metrics=["accuracy’])
Dense(512, activation="sigmoid")

compile(loss=’"binary-crossentropy’, optimizer="adam’, metrics=["accuracy’])

LSTM

nb__epoch = 200

batch_size training = 128

LSTM(26, input_ shape=(nb_ samples,1), return_ sequences=True)

LSTM(26)

Dense(256, activation="softmax")

compile(loss=’categorical-crossentropy’, optimizer="adam’, metrics=["accuracy’])
Dense(512, activation="sigmoid")

compile(loss="binary-crossentropy’, optimizer="adam’, metrics=["accuracy’])
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Table 9: The set-up used to generate the unprotected and protected simulated traces
where R denotes a random integer in [0, 255] and A/(0, o) denotes a white Gaussian noise
of null mean and standard deviation ¢ = 0.5.

Unprotected Masking

Zo+N(0,0) if s=2, My + N(0,0) if s =1,
Ti[s] =< Z1+N(0,0) ifs=25, Zo® My +N(0,0) if s=2,
R+ N(0,0) otherwise, Ti[s] =¢ M;+N(0,0) if s =4,
Zl@Ml—l—N(O,U) 1f8=5,

R+ N(0,0) otherwise,

Masking and Jitter Masking and Shuffling

pick 7 in [0,1] and compute s’ = (s + 3 x 7)%8
My + N(0,0) %fs:lv My + N(0,0) if s/ =1,
ZO@MO+N(O7U) %f3:27 Zo® Mo+ N(0,0) if s’ =2,
Ti[s] = ¢ Mi+N(0,0) if s = 4, Ti[s] ={ M;+N(0,0) if s =4,
Zv® M+ N(0,0) if s =5, Zy® My +N(0,0) ifs =5,

R+ N(0,0) otherwise, R+ N(0,0) otherwise,

pick r in [0,2] and do T; > p

Masking and 1-amongst-2

pick r1 and 75 in [2,3] and [5, 6] respectively

M0+N(0,0') ifS:L
Zo® Mo+ N(0,0) if s=ry,
Ti[s] = ¢ M +N(0,0) if s =4,
Zl@M1+N(O,U) ifS:’r’Q,
R+ N(0,0) otherwise,

B Simulation Set-Up

The simulation set-up is described in Tab. 9.
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Table 10: Comparison of the average training time (in seconds).

DL model | Sbox in | Sbox out | multi-label
CNN 53.02 49.02 52.52
LSTM 58.27 54.40 57.17
MLP 23.37 17.60 22.82
12 4} —— Sboxin ® CNN
i —-~ Sboxout ® IST™M
'|‘ ——= Multilabel ® MLP
10 + i

[e2]
|

Average rank of the correct key

T T T T T T
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of queries

Figure 9: Experimental results: evolution of the correct key rank (y-axis) according to an
increasing number of traces (x-axis).

C Results when Targeting the DES

For this experiment, we consider a first-order masked DES implementation and we target
the first “Sbox in” and “Sbox out” of the first round. Then, we generate 8,000 traces for
the profiling phase, 1,000 traces for the validation phase and 1,000 traces for the attack
phase

The training phase is performed when considering the three DL models described in
Tab. 11. The specific configuration for the multi-label training is highlighted in blue while
the ones related to the classical multi-class training on the “Sbox in” and the “Sbox out”
operations are highlighted respectively in green and red.

The estimated leaning time for each training methodology is summarized in Tab. 10.
As expected, the profiling time required for our multi-label training strategy is similar to
the one required to train the “Sbox in” and the “Sbox out” operations independently.

The results of the key recovery phase are shown in Fig. 9. Similarly to the AES case,
the attack results based on our profiling methodology are more efficient as fewer traces are
needed to recover the good value of the key independently of the used DL architecture.
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Table 11: Hyper-parameters of the basic DL architectures used to target a DES implemen-
tation.

CNN

nb__epoch = 100

batch_size training = 128

Convolution1D(8, 16, padding="same’, input_shape=(nb_samples,1), activation="relu")
Dropout(0.2)

MaxPooling1D(pool_size=2)

Convolution1D(8, 8, padding=’same’, activation="tanh")

Flatten()

Dropout(0.4)

Dense(16, activation="softmax")

compile(loss=’categorical-crossentropy’, optimizer="adam’, metrics=["accuracy’])
Dense(64, activation="softmax")

compile(loss=’categorical-crossentropy’, optimizer="adam’, metrics=["accuracy’])
Dense(80, activation="sigmoid")

compile(loss=’binary-crossentropy’, optimizer="adam’, metrics=["accuracy’])

MLP

nb__epoch = 100

batch_size training = 128

Dense(20, activation="relu", input_ shape=(nb_ samples,))

Dense(50, activation="relu")

Dense(16, activation="softmax")

compile(loss=’categorical-crossentropy’, optimizer="adam’, metrics=["accuracy’])
Dense(64, activation="softmax")

compile(loss=’categorical-crossentropy’, optimizer="adam’, metrics=["accuracy’])
Dense(80, activation="sigmoid")

compile(loss="binary-crossentropy’, optimizer="adam’, metrics=['accuracy’])

LSTM

nb__epoch = 100

batch__size_ training = 128

LSTM(26, input_ shape=(nb_ samples,1), return_ sequences=True)

LSTM(26)

Dense(16, activation="softmax")

compile(loss=’categorical-crossentropy’, optimizer="adam’, metrics=["accuracy’])
Dense(64, activation="softmax")

compile(loss="categorical-crossentropy’, optimizer="adam’, metrics=["accuracy’])
Dense (80, activation="sigmoid")

compile(loss=’binary-crossentropy’, optimizer="adam’, metrics=["accuracy’])
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D Estimation of the Learning Time

We provide hereafter a procedure to estimate the learning time.

1. Add the following class in your python script:

class TimeHistory(keras.callbacks.Callback):
def on_train begin(self, logs={}):
self.times = []

def on_ epoch_ begin(self, batch, logs={}):
self.epoch__time_ start = time.time()

def on_epoch__end(self, batch, logs={}):
self.times.append(time.time() — self.epoch_ time_ start)

2. perform the following to recover the learning time spent for each epoch:

time__callback = TimeHistory()
model fit(..., callbacks=]..., time__callback],...)
times = time callback.times

E Simulation Training Outcomes

We provide the evolution of the training loss and the validation loss values according to
an increasing number of epochs in Fig. 10 (training of two AES key-bytes) and Fig. 11
(training of two AES intermediate operations). For the sake of clarity, we reported only
these training metrics for the MLP architecture but we stress the fact that similar behaviors
were observed for the other studied DL architectures.

The obtained results prove that for all the considered DL architectures we obtain a
good fit. That is, we obtain a training and a validation loss that decreases to a point of
stability with a minimal gap between the two loss values. This result is especially valid
when the multi-label classification is applied. Indeed, for all targeted implementations,
the gap between the training loss and the validation loss curves is too small; the curves
are overlapping with few number of epochs. This observation demonstrates again that
the multi-label classification will lead to a better training (and hence a better matching)
compared to the classical multi-class classification.

F DPA Contest V2 Training Outcomes

From Fig. 12, one can see that the training and validation loss curves obtained for the
multi-label classification (using the the MLP architecture) overlap when the number of
epochs increases. This result demonstrates again that for the DPA contest v2 data-set we
get a good fit.
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Figure 10: Simulation results (two AES sub-keys): evolution of the training loss and the
validation loss (y-axis) according to an increasing number of epochs (x-axis).
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Figure 11: Simulation results (two AES intermediate operations): evolution of the training
loss and the validation loss (y-axis) according to an increasing number of epochs (x-axis).
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