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Abstract

This paper revisits the Abe–Okamoto signature scheme to present a
version of their signature scheme augmented with modern best practices,
with major influences taken from EdDSA. Implementation guidance is
given on how to reuse existing Ed25519 code.

1 Introduction

1.1 Message recovery and EdDSA

Message recovery in the context of a digital signature schemes minimizes the
amount of information transferred. This is an important property for very space-
constrained applications, such as QR codes which might identify and validate
some kind of ticket. For very short messages, it even may become entirely unnec-
essary to send a message at all. Instead, the message can be contained entirely
in the message recovering signature. This is of particular interest for product
keys in software protection schemes. Though the scheme as presented here with
Ed25519 will likely be too large for software protection schemes nonetheless.
Requiring users to input 64 bytes (103 characters in base 32) will likely not be
acceptable for typical applications.

Nyberg and Rueppel note that hash functions can be done away with for
signature schemes based on discrete logarithms.[11] Unlike their scheme, how-
ever, the Abe–Okamoto scheme, which this paper is based on, relies on several
distinct hash functions (modeled as random oracles for the proof); negating this
particular advantage of message recovery.[3]

EdDSA is a signature scheme that uses twisted Edwards curves introduced
by Bernstein et al. in [5]. It popularized deterministic nonce generation as a
safeguard against failure to generate sufficiently random numbers, a technique
introduced by Barwood in a post to sci.crypt.[4] Recently, however, efforts
have been made to re-introduce randomness into EdDSA in a variant called
XEdDSA such that the result is at least as secure as EdDSA, to additionally
guard against power analysis attacks and fault injection.[12] Subsequent research
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by Samwel et al. has found that the mitigations against power-relate attacks in
XEdDSA are insufficient as-is.[13] An internet draft by Preuss Mattson et al.
takes the results of continued analysis of these mitigations and proposes a new
version of these mitigations.[8]

While the scheme presented this paper will not be adopting these additional
mitigations, in my view it is nonetheless worth pointing out the existence of
deterministic nonces with additional random noise considering that one of the
applications of message recovery is in the context of embedded scenarios, which
see themselves particularly vulnerable to power-related attacks.

1.2 Paper organization

This paper first reviews the EdDSA and the Abe–Okamoto signature schemes,
comparing them side by side. Care has been taken to use the same variable
names for both when they refer to the same concept.

It then proceeds to merge the ideas contained in EdDSA into the Abe–
Okamoto signature scheme, explaining why none of them impact the security
proof in [3].

It then closes by giving the algorithm of the new scheme accompanied by spe-
cific advice on how to implement this scheme given an existing implementation
of Ed25519 or Ed448.

2 Comparison of the two schemes

Common parameters:

q An odd prime power. The elliptic curve is defined over the finite field Fq.

B The base point of the curve.

` The order of the subgroup generated by B (`B = 0; h` = #E). ` must be
prime.

b An integer so that 2b−1 > q, i.e. at least the bit size of a field element in Fq.

h The cofactor of the elliptic curve.

c The number of bits in the cofactor, i.e. c = log2 h.

n An integer so that c ≤ n ≤ b.

2.1 Key generation

2.1.1 EdDSA

The keys are generated as follows:

1. Generate the secret key k, a b-bit string, and save it.

2. Apply a hash function H that generates 2b-bit output to k to obtain a′:
a′ = H(k)
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3. Trim a′ to obtain a: Set the n-th bit of a′ to 1. Clear the bottom c bits
of a′ to zero. Store the result of this in a.

4. Perform scalar multiplication to get public key point A = aB.

5. Encode public key point A to byte string A, and save it.

2.1.2 Abe–Okamoto

1. Select scalar k uniformly at random such that 0 ≤ a < `.

2. Encode scalar k to byte string a and save it.

3. Perform scalar multiplication to get a public key point A = −aB.

4. Encode public key point A to byte string A, and save it.

2.1.3 Differences in key generation

Abe–Okamoto does not use a hash function with trimming, instead selecting a
secret scalar directly uniformly at random. It also negates the public key point
(or the scalar before scalar multiplication).

The reason the n-th bit of a′ is set to 1 is to help prevent kangaroo attacks;
the difficulty for curves with a cofactor relates to the difference between n−c,[7]
so that a large n is beneficial. This issue only affects curves with h! = 0, such
as all curves in (twisted or untwisted) Edwards form and Montgomery form.
No special precautions like this must be taken for curves with a prime order
(including the Ristretto groups).

2.2 Signing

Common parameters:

M The message to be signed (bit string).

k The private key (scalar).

2.2.1 EdDSA

Given a hash function H that produces 2b-bit outputs:

1. Hash k. Save two halves of the hash in H: H = H(k)

2. Use the first d b8e bytes to re-generate a, the public key A and its encoding
A as in key generation.

3. Use the second d b8e bytes to generate the nonce scalar prefix rprefix.
rprefix = H[32..64]

4. Generate a nonce scalar r by hashing rprefix and M , then trimming
it as for key generation above (optionally reducing it modulo `): r =
H(rprefix||M)trimmed mod `

5. Generate a nonce point R with scalar multiplication: R = rB. Encode R
to the byte string R.
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6. Generate a hash C by applying H to the nonce point, the public key and
the message: C = H(R||A||M)

7. Generate scalar S = (r + a · C) mod `. Encode it to the byte string S.

The signature is (R,S).

2.2.2 Abe–Okamoto

Parameters:

u The bit length of a serialized point, i.e. u = |E(P )| for any given point P .

u1, u2 such that u1 + u2 = k. It is desirable to choose u2 such that it is
a multiple of 8, i.e. byte-aligned, which makes it possible for M to be
byte-aligned.

F1 A random oracle function that maps u2-bit strings to u1-bit strings.

F2 A random oracle function that maps u1-bit strings to u2-bit strings. This
parameter determines the length of M that can be encoded.

H A random oracle function that maps u1 + u2-bit strings to |`|-bit strings.

The signature is calculated thus:

1. Get a k-bit string M ′: M ′ = F1(M)||(F2(F1(M))⊕M).

2. Select a nonce scalar r uniformly at random such that 0 ≤ r < `.

3. Generate a nonce point R with scalar multiplication: R = rB. Encode
the X-coordinate of R as a bit string R.

4. Generate a value t = R⊕M ′

5. Generate a hash C by applying H to t: C = H(t)

6. Generate scalar S = (r + a · C) mod `. Encode it to the byte string S.

The signature is now (t, S).

2.2.3 Differences in signing

The most obvious difference is the generation of M ′ and xoring with the X-
coordinate of the shared nonce point. Everything else is identical in concept :

The nonce scalar r can be generated using EdDSA methodology, i.e. de-
terministically based on (half of a hash of) the secret key and the message,
reduced modulo ` and then trimmed. The security argument goes the same
as for deterministic nonces with elliptic curve signature schemes in general, de-
tailed in [10]: Abe–Okamoto signatures only require that the nonce scalar be
chosen uniformly at random. In fact, Abe–Okamoto signatures are a variant of
Schnorr signatures,[9] so that the arguments in [10] can be applied wholesale
for Abe–Okamoto signatures.

The (encoded) public key A can be added into the random oracle function
H during the generation of S. EdDSA adds A into the hash (key-prefixing) to
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eliminate key-substitution attacks and avoid issues regarding attacking multiple
public keys simultaneously; the single-key security of all Schnorr-like signatures
(such as the Abe–Okamoto scheme) implies multi-key security if key-prefixing is
used.[5][6] This is a straight security improvement and should be incorporated
into all modern instantiations of Abe–Okamoto and other Schnorr-like systems.
Moving to a key-prefixed variant does not affect the proof in [3] either, as they
assume that H(t) (c in their paper) is random in the first place. The properties
of a hash function as a stand-in for a random oracle is not affected by an
additional input.

Unlike EdDSA, it is not feasible to add the message into C because the
receiver needs to arrive at the same nonce point R before it can actually recover
the message (which it would require for the EdDSA method of generating C),
putting the figurative cart before the horse.

H doesn’t need to output u-bit output since a reduction modulo ` immedi-
ately follows, so we can use EdDSA’s H as a stand-in for the H in Abe–Okamoto
here. Abe–Okamoto seem to implicitly assume that the order of the curve is a
power of two. The proof in [3] wants H to be a random oracle, but using a hash
function with reduction is the closest approximation.

2.3 Verification

2.3.1 EdDSA

1. Extract R and S from the signature byte string.

2. Decode R as a point R. Verify that it is a point on the curve. If this fails,
return ⊥.

3. Decode S as a scalar S. Verify that it is below `. If this fails, return ⊥.

4. Decode the encoded public key A as a point A. Verify that it is a point
on the curve. If this fails, return ⊥.

5. Check that hSB = hR+h·H(R||A||M)·A. (EdDSA as originally specified
would ignore the cofactor h.) If this equation is true, return ok, else return
⊥.

2.3.2 Abe–Okamoto

1. Extract t and S from the signature byte string.

2. Decode S as a scalar S. Verify that it is below `. If this fails, return ⊥.

3. Decode the encoded public key A as a point A. Verify that it is a point
on the curve. If this fails, return ⊥.

4. Recover the alleged hash C = H(t).

5. Recover the alleged nonce point R = (SB+CA). Encode the X-coordinate
of R as a bit string R.

6. Recover the alleged M ′ by xoring t and R: M ′ = t⊕R
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7. Recover the candidate for the message M by xoring the right-hand side of
M ′ with the output of F2 for the left-hand side: M = M ′u2

⊕ F2(M ′u1)

8. Verify the equation M ′u1 = F1(M). If this equation is true, return M ,
else return ⊥.

2.3.3 Differences in verification

The algorithms share a common core: Recovering a point with the sum of two
scalar multiplications. We can make this match EdDSA more closely by also
hashing in A for the multiplicand of the public key for reasons outlined in the
section about signing.

Regarding the X-coordinate, both ends must reach the same encoding of the
nonce point R or message recovery will fail.

For minimal code changes to an existing implementation as well as support
for Decaf (Ed448) and Ristretto (Ed25519), it is possible to use the Decaf or
Ristretto point serialization of R as R instead of its X-coordinate. Depending
on the format, this directly impacts the encoding length of the point, and thus
u1 and u2, which indirectly affects F1 and F2. The proof in [3] makes no
assumptions about the Y-coordinate being a secret, hence it is safe to use point
encodings that contain information about the whole point, rather than just the
X-coordinate and having to go through extraordinary measures to reach the
same X-coordinate with Decaf and Ristretto. What would invalidate the proof,
however, is when the value xored against M ′ includes information other than
that contained in the shared point.

In particular, this means that having “dead bits” that are not covered by
point information encoding (be it just the encoded X-coordinate, affine point
encoding with sign bit or Ristretto) causes them to not be part of the verification
process. The excess bits in a byte when encoding a point thus allow storage of
bits of the encoded message M ′ that are not covered by a point encoding, but
verifying that part of it would become impossible. Therefore, the encoding of a
point dictates the maximum length of the encoded message M ′. Exact counting
of the available bits is required.

3 The merged Abe–Okamoto scheme with Ed-
DSA elements

Common parameters reiterated here for convenience:

q An odd prime power. The elliptic curve is defined over the finite field Fq. For
Edwards25519, q = 2255 − 19. For Ed448, q = 2448 − 2224 − 1.

b An integer so that 2b−1 > q, i.e. at least the bit size of a field element in Fq.
This is normally the bit length of q rounded up to the nearest multiple
of 8. For Ed25519, b = 256. For Ed448, b = 456.

n An integer so that c ≤ n ≤ b. For Ed25519, n = b − 2 = 254. For Ed448,
n = b− 9 = 447.

B The base point of the curve.
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` The order of the subgroup generated by B (`B = 0; h` = #E). ` must be
prime.

c The number of bits in the cofactor, i.e. c = log2 h. For Ed25519, c = 3. For
Ed448, c = 2.

E, D A point encoding function and a point decoding function, respectively.
The point encoding function encodes a point from an internal representa-
tion to a sequence of bytes. The point decoding function decodes a point
from a sequence of bytes to an internal representation, returning ⊥ if the
encoded point (byte sequence) is invalid. This may simply encode and
decode the X-coordinate of a byte string, or be a more involved point se-
rialization format such as standard affine point compression (as specified
in RFC 8032 for Ed25519 and Ed448) or Decaf/Ristretto.

3.1 Key generation

1. Generate a secret key k, a b-bit string, and save it.

2. Apply a hash function H that generates 2b-bit output to k to obtain a′:
a′ = H(k)

3. Trim a′ to obtain a: Set the n-th bit of a′. Clear all bits between b and n
of a′. Clear the bottom c bits of a′ to zero. Store the result of this in a.

4. Perform scalar multiplication to get the public key point −A: −A = −aB.
This can be accomplished by either negating B before multiplication,
negating a before multiplication or negating the resulting point.

5. Encode public key point −A to byte string A.

3.2 Signing

Static parameters:

u The bit length of a serialized point, i.e. u = |E(P )| for any given point P .

u1, u2 such that u1 + u2 = k. It is desirable to choose u2 such that it is
a multiple of 8, i.e. byte-aligned, which makes it possible for M to be
byte-aligned.

F1 A hash function that produces u1-bit digests.

F2 A hash function that produces u2-bit digests. This parameter determines
the length of M that can be encoded. Note that F1! = F2! = H.

H A hash function that produces 2b-bit length digests. For Ed25519, this is
SHA-512. For Ed448, this is SHAKE256 with 114 bytes of output.

It is strongly recommended to have domain separation strings in the imple-
mentation of F1, F2 and H. Additionally, all of F1, F2 and H should also take a
context string for application-level domain separation. Given different domain
separation strings (and optionally a context string), F1 and F2 can be imple-
mented as truncated verisons of H invoked with different domain separation
and context strings.

The signature for a message M given secret key k is calculated thus:
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1. Compute the u-bit string M ′: M ′ = F1(M)||(F2(F1(M))⊕M)
For efficiency, observe that F1(M) needs to be computed only once.

2. Hash k. Save two halves of the hash in H: H = H(k)

3. Use the first d b8e bytes to re-generate a, the public key A and its encoding
A as in key generation.

4. Use the second d b8e bytes to generate the nonce scalar prefix rprefix.
rprefix = H[32..64]

5. Generate a nonce scalar r by hashing rprefix and M , then trimming
it as for key generation above (optionally reducing it modulo `): r =
H(rprefix||M)trimmed mod `

6. Generate a nonce point R with scalar multiplication: R = rB. Encode R
to the byte string R: R = E(R)

7. Generate a u-bit value t: t = R⊕M ′

8. Generate a hash C by applying H to t and the public key: C = H(t||A)

9. Generate scalar S = (r + a · C) mod `. Encode it to the byte string S.

The signature is now (t, S).

3.3 Verification

The signature (t, S) for a given encoded public key S is verified (with recovery
of the message) thus:

1. Extract t and S from the signature byte string. If b > k, ensure that the
top bits of t are clear. If |S| > |S| (i.e. the bit length of the encoding of
S has “dead bits”), ensure that the top bits of S are clear.

2. Decode S as a scalar S. If S ≥ `, return ⊥.

3. Decode the encoded public key A as a point A. If the decoding fails or A
does not actually refer to a valid point on the curve, return ⊥.

4. Recover the alleged hash C = H(t||A).

5. Recover the alleged nonce point R = (SB + CA). Encode R to the byte
string R: R = E(R)

6. Recover the alleged value of M ′ by xoring t and R: M ′ = t⊕R

7. Recover the candidate for the message M by xoring the right-hand side
(recall that M ′ was formed by a concatenation) of M ′ with the output of
F2 for the left-hand side: M = M ′u2

⊕ F2(M ′u1)

8. If M ′u1 = F1(M), return M , else return ⊥.
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4 Notes on changing existing EdDSA implemen-
tations to fit

When using Ed25519 in particular, note how using compressed affine point en-
coding (regular Ed25519 point encoding) yields a perfectly byte-aligned 256 bits
for encoding M : A field element in F2255−19 requires 255 bits to encode; the sign
bit for the other coordinate makes for the 256th bit. On the other hand, be-
ware when using Ristretto, which requires no sign bit and thus cannot cover
a perfectly byte-aligned M : Additionally, the X-coordinate method cannot be
used with Ristretto because a point may decompress to different coordinates
(but an identical point). Instead, the point encoding must be used, not the X-
coordinate; a (computationally wasteful) alternative is to encode and re-encode
the point in Ristretto until the encoding yields the same coordinates every time.

5 Discussion: Efficiency

This scheme is not efficient for messages whose length does not exceed the size of
u if the alternative short Schnorr signatures are considered. Short Schnorr signa-
tures, brought up by Schnorr in the paper introducing Schnorr signatures them-
selves, compress the signature by transmitting H(R||M) instead of R, where
for a signature aiming at the equivalent of b-bit symmetric security, only b bits
of H would be used, bringing the total down to a size of 3b.[1] However, it has
never been possible to fully prove the security of short Schnorr signatures with
a tight security reduction.

The (less than) b bits available with full message recovery with Abe–Okamoto
is approximately equally efficient with regards to space, but less efficient than
short Schnorr signatures with regards to computation due to several hash func-
tions being involved. Considering that EdDSA is a relative of Schnorr sig-
natures, it is trivial to change EdDSA to instead use short Schnorr signa-
tures, especially considering that the hash is a byproduct of EdDSA signature
verification.[2]

Message recovery thus becomes only attractive for partial message recovery.
Partial message recovery can be achieved by splitting the message M in two
parts M1 and M2, where the bit length of M1 is u2. M1 is compressed into and
recovered from the signature. M2 is sent along with the signature, and hashed
as part of the hash value C after all other inputs.[3]

Table 1 illustrates the sizes in bits (rounded up to the next multiple of 8)
when using Edwards25519 given a message M of bit length |M | and a signature z
of bit length |z|. Observe in particular how the size of a short Schnorr signature
plus the size of a message is always equal to a size of an Abe–Okamoto signature
with full message recovery. In fact, for messages that are smaller than u2 bits,
short Schnorr signatures end up having a lower total entirely.
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Method |M | |z| M bits in z M bits outside Total
Abe–Okamoto ≤ 128 512 |M | 0 512

> 128 512 u2 |M | − 128 512 + |M | − 128
Short Schnorr ≤ 128 384 0 |M | 384 + |M |

> 128 384 0 |M | 384 + |M |
EdDSA/Schnorr ≤ 128 512 0 |M | 512 + |M |

> 128 512 0 |M | 512 + |M |

Table 1: Signature sizes for full and partial message recovery
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