
Cryptographic Scheme for analyzing protected files on

Sandboxes and share them privately

Ahmad Almorabea – ahmad@almorabea.net

Abstract- Sharing a documents with a business partner is not

always easy. since the sender often need to send sensitive

information. and he want to ensure the integrity and the secrecy

of the document. And in the same time. he wants to insure that

only the specific individual or the recipients are the only one who

can view it. So people tend to use some encryption software. or

protecting the document with some sort of password. and then

share the password with the recipient to make sure he is the only

one who can view the document. But Unfortunately in many

situations this method will not work. for a particular reason. and

that is once the sender send an email. the email will start his

journey into the company's network. and it will pass through

many appliances. such Firewalls, Exchange servers and most

likely Sandboxes. And there is one feature in sandboxes that we

are interested in. once the sandbox sees an encrypted file or a

protected file. it will immediately stop the email and quarantine

it. because the sandbox couldn’t scan it. or couldn’t ensure if it’s

malicious or not. so it will stop it for further analysis or a manual

analysis depending on the procedures there. And such an action

could stop a valid business transaction. and it could cause some

business interruption. In this paper we will introduce a scheme

for allowing the share of protected files. and analyzing them

through Sandboxes. and in the same time no one can view it

except for the authorized people.

Index Terms- ECC, Sandbox, AES, Signatures, Authenticated

Encryption, Public Key, GCM

I. INTRODUCTION

nternet and transactions are playing a big role on today's

world. and most of the companies are relaying on emails to

communicate. with their clients or other business associates. but

sometimes people needs the security and privacy part. that’s why

people tend to share the files they want and protect it by some

sort of password. and share that password with the intended

recipient. and here where the problem occurs. most of the

security appliances has an internal sandbox to scan the files.

before releasing the emails to the users. it looks for hashes or

some changes in the system to detect if it’s malicious or not. but

once the sandbox detects that there is a password the sandbox

can’t open the file to scan it. and most of the sandbox settings try

to discard the email or quarantine it. and here where the problem

comes. since this kind of behavior is not allowed in the

organization. and at the same time the sender doesn’t want to

share the file without any protection. and in this paper. we will

show a way to exchange the password with the sender and the

recipient. and in the same time will make the file accessible to

the sandbox. and then release it automatically without any

business interruption.

II. PROBLEM STATEMENT

Sharing a protected file will not be easy. if the security solution

in the organization has the feature of a sandbox. or they have

some rule. since the files can’t be accessed and scanned. and

sharing the files without a password is not an option in some

cases. and without this feature will cause business interruption.

sharing passwords between the sender and recipient is one thing,

but sharing the password with the sandbox is the goal to have in

this paper.

III. LITERATURE REVIEW

In 2016 Facebook introduced a concept of Message Franking.

and from this method. Facebook can have a cryptographic proof.

and verify and if someone request a service or comment abuse.

since they use end to end encryption, they don’t have a way to

formally verify the report abuse. By doing this method Facebook

can easily read the reported comments. and can take action and

verify the abuse request. And message franking schemes as they

presented is about having and encryption scheme. plus, a

verification algorithm added to it more formally:

Enc(K,M)=C_(1) + C_(2)

Where the Cipher text have two components (𝐶1 , 𝐶2) which is

the encryption of the message M and 𝐶2 is the commitment to the

message M or the “Binding Tag” which will be used later in the

verification algorithm. And the binding tag should reveal nothing

about the message and if it decrypts correctly should verify the

sent message and the sender can’t deny sending the message.

And the next point of how Facebook actually handle the

attachments, since attachments size varies from file to file

Facebook handles attachments differently, First the sender is

choosing a one-time file encryption key and then they will

encrypt it using AES-GCM, more formally:

C=AES_GCM_Enc(K_file,M)

But when Facebook try to authenticate the users. they can do it

easily since both sender and recipient are using the same

platform. but when it comes to handling attachments. researchers

found that. a malicious attacker can send a crafted attachment,

that will be received by the recipients. and It can be decrypted

successfully. but after this even if the recipients tried to report it

as abusive. the Facebook team will see an entirely different

image that is clean. And the reason for that. they have a problem

in binding the commitment tag with the AEAD scheme, another

I

attack found that a single message can be decrypted using two

keys the first key can decrypt the cipher text to the abusive

attachment, while the other key will decrypt the cipher text to

another unrelated clean attachment. Any Pseudo Random

Function PRF that have the collision-resistant property meets our

security goals for commitments and authenticity. In particular,

Facebook designed the commitment scheme CS[F] = (Com,

VerC) works from any sort of function F ∶ K × {0, 1} ∗ →
 {0, 1}n as follows. Commitment Com(M) chooses a new value

that never used K ← $ K, computes C ← F(K, M) and outputs

(K, C). with the Verification VerC(K, C, M) results one if F(K,

M) = C and zero otherwise if the conditions didn’t apply. Such

commitment scheme is good so far but it lacks of having multiple

parties can’t authenticate with their tags, unless we have the extra

tag which is kind of a downside to this scheme.

IV. METHODOLOGY

The main purpose of this scheme, is to make the sender and the

recipients exchange messages easily. more precisely

Attachments. The Idea is having a central system to handle the

cryptographic processes. such key generation, key validation and

file encryption and decryption. For starter the Sender will sign

the document by his private key. and then wait for the system to

generate the encryption key. in this case the key length will be

determined by the user and the available requirement in this case

is 256-key. The file will be encrypted by the encryption key.

Then the encryption key will be encrypted depending on the

recipients + 1. the one more encryption process is for the

Sandbox's public key. more specifically n +1 key encryption

process. and the reason for that to be able for the sandbox to

decrypt the data without the user interaction. After this the

encrypted key will be concatenated with the encrypted file. After

this the system will generate a 10-bits key. and this key will be

used to compress the file and make it “password protected”. and

this 10-bits key will be encrypted by the recipient’s public key.

and the reason for that to make the recipient in control of the

decrypted file. and it needs his confirmation first. After this the

sender will send the email with the attachments. the sandbox will

need the password to decrypt the file. since it’s password

protected. then the user will decrypt the key (Decryption

confirmation). and then pass it to the sandbox. after this the

sandbox will be able to decrypt the actual content, since it’s

already encrypted by its public key. and if it’s clean it will be

passed otherwise it will be discarded. In case it passed the use

will receive a copy of the email with the full two layers

encryption. and then the user will do the same steps to decrypt

except for one additional step. and that is validating the integrity

of the file by using the sender public key. so the integrity part

will be checked twice. the first time when it got decrypted. since

we are using authenticated encryption using AES-GCM. And the

diagram below will make it more clear.

Fig1

Fig2

Fig3

A. Technical Details Overview

In this section of the research, we will be talking about the

technical details regarding this scheme. we are using AES in

GCM mode. and the reason for this, we are trying to use

Authenticated Encryption schemes “AEAD”, to check for the

integrity while we are decrypting the files. In this case the user

can use the key length either 128 or 256 bits depending upon the

requirements. This is regarding the file encryption method. But

for the system key management. the user will first supply his

passphrase to be his master password once. we obtain a valid and

suitable passphrase we will pass it to TOHA key hardened

function and pass the resulting 32 bytes to generate elliptic curve

keys more precisely cuve25519 key. And TOHA will be invoked

using the following parameters:

M = 215

N = 210

The system will generate the final key to the user. but here is a

glance of what we are doing under the hood. Cuve25519 is

operating on the finite field 𝔽𝑝, 𝑤ℎ𝑒𝑟𝑒 𝑝 = 2255 − 19 and more

specific is on the Montgomery curve 𝑦2 = 𝑥3 + 48662𝑥2 + 𝑥 ,
And we used curve25519 for many reasons. first it has very high

speed volume. and the second reason, the number of points of

this curve over the base field is 8 times. the prime 2252 +
227423177777 and the other point is 4 times the prime 2253 −
554846355547447 which is good from a speed point of you.

And one other Important reason is the algorithm has been

thoroughly vetted by the public cryptography community. After

generating our keys, the system will generate another 10-bits,

also this could be changed as per the system requirements. And

the reasons we have it because this is will be used by the

recipients to confirm the decryption, note here we didn’t encrypt

the file by this 10-bits key, it’s used for sandboxes since they

have an option for protected files and this will be made easy

since it’s built in function, and it will be more suitable for many

sandboxes out there.

B. An overview on GCM mode:

Why we used GCM in our scheme, GCM is one of the modes

that provide randomized authenticated encryption mechanism for

any block cipher 𝐸 𝑜𝑛 𝑛 − 𝑏𝑖𝑡 inputs, So GCM’s MAC is built

upon arithmetic that based on finite field 𝐺𝐹(2𝑛), and this tag

will be computed using the data supplied by the cipher text and

the length of the data associated with it and to be coefficients of

having a polynomial of 𝐺𝐹(2𝑛), and the generated TAG it will

be GCM MAC, Need to say that GCM is not a very robust mode

of encryption, there are many attacks associated with it, but with

that being said, GCM has a great job of doing the integrity check

while decrypting the data.

C. Signing process using Elliptic curve:

Since we are using Elliptic curve function, then it is more

suitable to use Elliptic Curve Digital Signature Algorithm

ECDSA. In our case the sender will generate his private key for

the signing process. and store it let us denoted by d. where the

equation will be like 𝑷 = 𝒅𝑮 and the receiver or the verifier will

take the sender’s public key, and put it in the same verification

algorithm. over the same point base G, and all of this will be

shared in advance not on the time of the signing process. All will

be encoded using UTF-8 for compatibility issues. The following

code in java will give you sample over what is the approach we

are using. One thing we have to mention here that we are going

for Sign-then-Encrypt strategy. And the reason for this as

follows, Alice will share a message with Bob, Alice sign the

message with her private key appended it to the message and

then send the results or the cipher text Bob can decrypt the

encryption first and then he can verify it’ really came from Alice,

or in our case it will come from two parties at least the sender

and the sandbox it could be more! All of this steps used to

prevent numbers of attacks such existential forgery.

In the sender section he will do the following steps. Note here

that “initSign” will be responsible for doing the initialization for

the point base and the calculation over the same Field.

Signature ecdsaSign = Signature.getInstance("SHA256withECDSA");
ecdsaSign.initSign(privateKey);
ecdsaSign.update(plaintext.getBytes("UTF-8"));
byte[] signature = ecdsaSign.sign();
String pub = Base64.getEncoder().encodeToString(publicKey.getEncoded());
String sig = Base64.getEncoder().encodeToString(signature);

 Sample for the data before doing the AES-256 encryption. in the

first step on the next code snippet, you can see it has three part

(publicKey,Message,Algorithm).

{
 "publicKey":
"MFYwEAYHKoZIzj0CAQYFK4EEAAoDQgAEMEV3EPREEDc0t4MPeuYgreLMHMVfD7iYJ2Cnkd0ucwf3GYVySvYT
ttMVMNMEKF554NYmdrOlqwo2s8J2tKt/oQ==",
 "message": "Hello",
 "signature":
"MEUCIQCsuI4OcBAyA163kiWji1lb7xAtC8S0znf62EpdA+U4zQIgBcLbXtcuxXHcwQ9/DmiVfoiigKnefeYg
pVXZzjIuYn8=",
 "algorithm": "SHA256withECDSA"
}

Now the recipient received the message and he want to apply the

verification algorithm. he will do the following steps.

Signature ecdsaVerify = Signature.getInstance(obj.getString("algorithm"));
KeyFactory kf = KeyFactory.getInstance("EC");

EncodedKeySpec publicKeySpec = new
X509EncodedKeySpec(Base64.getDecoder().decode(obj.getString("publicKey")));

KeyFactory keyFactory = KeyFactory.getInstance("EC");
PublicKey publicKey = keyFactory.generatePublic(publicKeySpec);

ecdsaVerify.initVerify(publicKey);
ecdsaVerify.update(obj.getString("message").getBytes("UTF-8"));
boolean result =
ecdsaVerify.verify(Base64.getDecoder().decode(obj.getString("signature")));

 D. Signature Generation process:

in the previous step, we show how are we going to sign the

message. and you can see that we used SHA-256 as our hash

function, so this is how we complete the picture and give you in

details how we generate the signature. the system will generate a

random unassigned integer K where K is bigger than 1 and less

than n-1, and n in this case n is the number of points available in

the curve. Then we will compute kG using the coordinates (x,y),

the sender will set two parameters r and s, where 𝑟 = 𝑥 𝑚𝑜𝑑 𝑛

and then compute 𝑠 =
ℎ+𝑟𝑑

𝑘 𝑚𝑜𝑑 𝑛
, where h is the hash value, then

we can use the value of r,s ,the size of both r and s variables are

256-bits long so the total signature tag will be 512–bits long.

1.1. Definition

Normally every aspect on our scheme is private. yes, the scheme

is publicly available. but in this context I mean with the private

parameters, groups and generators, everything after this will be

vague from an attacker point of you. But one thing that could be

public for an adversary to check with some modification. and

that is verifying the attachment integrity. if the attachment is

coming really from the intended sender. because the sender’s

public key is already out there and anyone can find it and use it.

So we have to emphasis on some points, that the reader can’t be

mistaken. When we say authenticate we actually mean Sign not

just taking MAC, and the output will be signature not a TAG.

E. Chain Based Authentication:

Since we have a public system that generate parameters and keys

for the users. we have a big role of doing one mistake to make

the system collapse, and one issue that we focused on. and that is

the signing process. It is a huge drawback or disadvantage for the

user to sign many messages with only one private key d. yes

using an efficient hash function that is proven to be a collision

resistant will help. but we went to another variant for achieving

this goal. With the Definition 1.1 we just mentioned. we can use

such a scheme that will help the signer to keep track of used

signatures. and maintain a state that is updated after every

successful signing process obtained. So our scheme will be based

on three main functions, Key Generation Algorithm Gen. a

function for doing the signing process Sign. and a function for

doing the verification mechanism VrFy. Going with this

approach will keep it as a stateful scheme. which is immuned

against existential forgery. which fall into the adaptive chosen

message attack.

F. Tree Based Signature Management:

 The goal from taking this approach of having tree based scheme,

is to keep track of used signatures and update the tree

accordingly. A usual situation is to use a tree of degree 1 where

the public key will be the root of the tree. but we took another

solution is to use binary tree. where each node has a degree 2.

and with this we can construct a path for the Signed messages

throughout the leaf nodes to the root. and with this, it will make

the tree have a polynomial depth. and with this even the search

and the way of going to the leaf nodes will be achieved with a

polynomial time. Since the input will be handled by the big O

notion 𝑂(𝑛)𝑘. and once the key has been used we will append

the message so it will not be used again and we will continue

searching for leaf nodes to sign new messages. As shown on

Figure4.

Fig4

and for maintaining the tree integrity, we will use a Merkle tree

for computing the hashes of each node and storing them in a

similar graph as shown on Figure5.

 Fig5

G. Cyclic Group and Generators:

Definition1.2:

Let 𝔾 be our finite group of order m, for arbitrary 𝑔 𝜖 𝔾, the

order of g is the most smallest positive integer (unassigned

integer) j with 𝑔𝑗 = 1.

So 𝔾 is cyclic group of order n and every element we have

beside zero 0 < j < 𝑔𝑗−1 is the generator, and with

∅ 𝑖𝑠 𝐸𝑢𝑙𝑒𝑟′𝑃ℎ𝑖 function. Then 𝔾 has exactly ∅(𝑛) generator. So

if 𝑔2 = 1 𝑚𝑜𝑑 𝑝 we have to test another number also if the 𝑔𝑞 =
1 𝑚𝑜𝑑 𝑝 we to try another number to satisfy the rule, we used

BigIntger class in java so we can store the integer and achieve

this test.

If(generator.modPow(BigInteger.valueOf(2),p).equals(BigIntege

r.ONE)) continue;

H. Attachment analysis

Let us make something clear. the scheme we are proposing will

not encrypt the whole email. meaning it will not encrypt the

email body and header. The purpose of this scheme is to encrypt

the attachments associated with the email. So the attachments

will be encrypted with AES in GCM mode. and all of the

associated tags will be within the encrypted email file. and then

we will append the encrypted key to the file. The anatomy of the

full encrypted file as follows the first 4 bytes will be reserved for

the encrypted key size. and then the full encrypted key will be

after the size. after the key we put null bytes to indicate the end

of the portion. after this we have 4 bytes for the encrypted file

size. after this we put the nonce and initial data set, and lastly we

put the encrypted file at end of the file, you can see the Fig6.

 Fig6

1.1. Integrity

One of the security requirements is to ensure the document

integrity and validity. from two points. first that it came from the

sender. second the document has been never modified during

transition or rest. in the decryption process the recipient can

check by verifying the sender public key. And for the file

integrity, we have two steps. first verifying the digital signature

from the sender public key. and second step the GCM tag that

got appended during the encryption process will verify that.

I. Handling Padding Properties:

In this scheme we are using PKCS7 with the ANSI x.923

padding. and we used padding in case the block size is not

complete, in other words it will make the input a multiple of the

AES block size. and also while we decrypt the data it will verify

the padded block. this is not to say that padding will verify the

actual content. so it’s not a checksum, but it will give an

indication of the size of the plaintext. we used it since we don’t

want to pad the rest of the block with zeros.

J. Identification Scheme:

In Many situations the user wants change his public/private key

pairs. or the system want to authenticate the user, that he is really

who claims to be. and this method is common and we see it

almost daily in our life, when we authenticate for either a website

or a service. And usually we authenticate using password which

is good so far. So the second step a user authenticate himself into

the system. and ready to perform some activities right? But all of

the sadden there is an active attacker who is monitoring the

traffic and he can do actions. either passively or actively. With

that being said we have to ensure that the user is legit. we refer to

him as the prover. and the system will take part in verifying the

keys and it is legitimacy, we refer to it as the verifier. So a formal

definition will be. an Identification Scheme is an interactive way

to authenticate and prove authenticity between two parties. So

the scheme will take place in three rounds checks. It is like the

analogy of Challenge and Response. The analogy starts as

following. the prover has two PRFs. P1 and this function will

take one argument as input and that is the sender private key

P1(sk). and this function will output two things, an initial string

𝑰. and a state st, the verifier or the system will receive only the

initial string 𝑰. and from the system side “Verifier” it will

compute a challenge request let us denoted by 𝒓 using a PRF.

with one argument and that is the sender “prover” public key,

now the sender will have three parameters In hand P2(𝒔𝒌. 𝒔𝒕. 𝒓)

where sk is the prover private key, and then share the result to

the verifier let us denoted by 𝒔 . Now the verifier will compute it

by his verification algorithm with the following parameters

(𝑷𝒓𝒐𝒗𝒆𝒓𝒑𝒌, 𝒓, 𝒔) this should result the initial string 𝑰 we

exchanged in the first round.

Prover Verifier
(𝐼, 𝑠𝑡) ←P1(sk) → 𝑰 𝑰

 𝑟 ← 𝑟 ← 𝑉1(𝑝𝑟𝑜𝑣𝑒𝑟𝑝𝑘)

𝑠 ← 𝑃2(𝑠𝑘, 𝑠𝑡, 𝑟) → 𝑠 𝑉2(𝑝𝑟𝑜𝑣𝑒𝑟𝑝𝑘 , 𝑟, 𝑠) 𝑠ℎ𝑜𝑢𝑙𝑑 = 𝑰

K. Forward Secrecy:

Usually one of the biggest concerns in cryptography, is when an

adversary manages to break the encryption schemes. or when an

adversary finds a way to compromise the encryptions keys.

usually this means that the adversary can decrypt all of the

previous file sent. and he can recover data that been dropped

from a long time. since he has the decryption keys to the files.

and this where the problem begins. usually crypto systems have

great security. but it’s normal that a crypto system that is non-

breakable today could be breakable tomorrow. So all of the data

could be compromised. but for this proposed scheme we are

offering forward secrecy property. and that means once the

sender sent an email this email could be decrypted with one

encryption key. and this key will be drooped and discarded. and

this key can’t decrypt previous messages or future message.

which is good. simply because if the original key got

compromised, the adversary can’t recover the old messages.

simply because he can’t.

L. Possible Attacks Vectors:

2.1. Document Brute Force

The document file will be having 2 portions. the first one will be

reserved for the encrypted session key. and the next portion is for

the actual file content. And on top of that the file will be

protected by a password. normally is compressed in a zip file.

and that by default also provide some sort of encryption while its

locked. So for an attacker to break the file, he has first to break

the first encrypted layer. and then he has to decrypt the first

portion of the file to get to the actual key to decrypt the file. And

this will take time to break, and if the attacker manages to brute

force all of this. he will decrypt one message only. In the next

section you will see the actual work load needed from an attacker

to brute force one file.

2.2. Key Brute Force

We are using 256 bits of secret key so it will be like √2 . 2125

and the reason behind 2125 is because curve25519, 2128 is just

an approximation not the exact one so the number of point

additions needed by Pollard’s rho is about √2251 ≅ 2125 ,the

reason behind the √2 factor instead of 2 is for the fact that

Pollard’s rho allows to compute batch discrete logarithms, So

basically if you used a large prime factor 22𝑘 then the best

known attacks on keys is 𝑂(2𝑘) times, and that is in big O-

notation, and O-notation hide a constant which is approximately

larger than one, and it’s almost the same for other curves as will.

So it will not be feasible for an attacker to just brute force the

key.

2.3. Existential Forgery

Definition1.2:

 Before going to show how we prevent such an attack we have to

define what is existential forgery. An adversary succeeds in

forging the signature of one message. not necessarily of his

choice. in other words, an adversary manages to compute a

signature that is valid while verification.

In our scheme we went to the approach of Sign-then-Encrypt. so

an adversary can’t get to the signing process because It is already

layered by an encryption layer. And he can’t decrypt it and then

resign it again. keep in mind every signing process happen with

new public and private key pair.

M. Elliptic Curve 25519 vs RSA 4096:

After we explained how we are going to handle the attachments.

from signing phase till the phase of delivering the attachment to

the recipient. we have to give our point of you of why we didn’t

use RSA or the framework that related to it such PGP. Since we

are dealing with data that will be consumed throughout the

network. so it means more bandwidth and more and noisy traffic.

and we didn’t mention the network controllers that could affect

the performance or the utilization process. so we wanted to make

it easier and lighter for the network/appliances to handle the

amount of process. RSA tend to have heavy process starting from

generating the long prime numbers. until making the full math

behind it, and ending with a huge amount of data and huge block

size associated with it. With that being said, ECC has a

significantly low keys, cipher text and signature size. which is

light on the network from processing and doing other functions

as will. generating points on the curve is really easy in

comparison of generating the long prime numbers for RSA.

V. CONCLUSION

In this scheme we offered a way for organizations to share secret

attachments without the need of worrying about privacy. since

everything can be configured automatically. and in the scheme

we ensured confidentiality and integrity of the sender and the file

content. and even if the sender sent a message and the recipient

wasn’t aware of the message. the Sandbox can’t decrypt the

document until the recipient agrees the decryption process. and

the reason for this we wanted both parties agreeing that untrusted

third party can’t decrypt their messages.

ACKNOWLEDGMENT

I would like to thank my mother for her love and support

during the writing of this paper, couldn’t do this without you.

REFERENCES

[1] Talk and paper by Jon Millican at RWC 2017

[2] Fast Message Franking: From Invisible Salamanders to Encryptment,
Yevgeniy Dodis , Paul Grubbs , Thomas Ristenpart2 , Joanne Woodage

[3] Toha Key Hardened Function, Ahmad Almorabea, IACR,2019

[4] Curve25519: new Diffie-Hellman speed records, Daniel J. Bernstein

[5] Trust Networks on the Semantic Web, Jennifer Golbeck, Bijan Parsia,
James Hendler Lecture Notes in Computer Science, January 2003

[6] Efficient Elliptic-Curve Cryptography using Curve25519 on Reconfigurable
Devices, Pascal Sasdrich, Tim G¨uneysu, 10th International Symposium,
ARC 2014, Vilamoura, Portugal, April 14-16, 2014

[7] Serious Cryptography,Jean-Philippe Aumasson, No starch press, ISBN:
978-1-59327-826-7

[8] The Elliptic Curve Digital Signature Algorithm (ECDSA), Don Johnson,
Alfred Menezes 1999

[9] Merkle Signature Schemes, Merkle Trees and Their Cryptanalysis, Georg
Becker,2008

[10] Introduction to modern cryptography,Jonathan Katz,Yehuda Lindell, ISBN
978-1-4665-7026-9

