
Dedicated Security Chips in the Age of Secure Enclaves ∗

Kari Kostiainen, Aritra Dhar, Srdjan Capkun
ETH Zurich

Abstract
Secure enclave architectures have become prevalent in
modern CPUs and enclaves provide a flexible way to im-
plement various hardware-assisted security services. But
special-purpose security chips can still have advantages.
Interestingly, dedicated security chips can also assist en-
claves and improve their security.

Keywords — secure enclaves, security chips, trusted path,
remote attestation, proximity verification

Trusted Computing Base (TCB) minimization is one of
the most fundamental computer security principles. The main
idea is to reduce the amount of software and hardware that
needs to be trusted for the secure operation of a particular ap-
plication. A common technique to achieve TCB minimization
is to run the application inside a Trusted Execution Environ-
ment (TEE). The TEE protects the application’s execution,
despite any other compromised software on the same system.

One TEE implementation approach that has gained signifi-
cant popularity recently is to realize the TEE by enhancing the
main CPU of the computing platform with new features like
special instructions and access control checks. Intel’s SGX,
designed for the x86 architecture, is a prime example of such
TEE. In SGX, the CPU ensures that no other process can ac-
cess the memory of the protected application that is called an
enclave. By doing this, SGX guarantees that enclaves enjoy
execution integrity, and their data remains confidential.

Several other TEE designs exist too. ARM TrustZone is
a popular TEE architecture that is used in many commercial
mobile devices, while Sanctum [1] serves as a good example
of a research TEE system. For simplicity, we focus on Intel’s
SGX and use it as a case study to discuss the strengths and
limitations of enclaves.

SGX-style enclaves are powerful security primitive. They
are programmable, and thus developers can implement almost

∗This article has been accepted for publication in IEEE Security & Privacy
magazine’s special issue on hardware-assisted security (Fall 2020).

arbitrary hardware-protected security services using them.
This is in contrast to previous secure elements like TPMs
that support only a fixed set of operations. Enclaves are also
fast, as they run on the main CPU of the computing platform,
compared to significantly slower security elements like smart
cards. And furthermore, enclaves are cheap, since they require
no additional hardware in contrast to expensive separate co-
processors like HSMs.

This combination of programmability, high performance,
and low cost makes enclaves an attractive way to deploy
various hardware-assisted security services. Indeed, after a
decade of research and development into secure enclaves, the
first large-scale commercial deployments are now starting.
For example, Microsoft’s Confidential Computing service
uses SGX enclaves to protect customer data in the cloud.

The wide adoption of enclave architectures in modern
CPUs is probably the most prominent trend in hardware-
assisted security over the last decade. However, there is also
another, more subtle trend appearing. Recently, computing
service providers like Google and computer manufacturers
like Apple have started to enhance their systems with special-
purpose security chips. Google’s cloud servers have a security
chip called Titan in them [2], while Apple’s computers come
with the T2 security chip [3].

At first glance, these two trends seem almost contradic-
tory. If enclaves enable arbitrary hardware-protected security
services, why do we still need dedicated security chips?

In this article, we discuss the rationale behind this trend.
We explain the benefits of dedicated security chips and out-
line two of our research projects where we designed such.
These projects showcase an interesting new pattern — one
where special-purpose security chips assist enclaves and thus
improve their security.

Dedicated Security Chips

Computing platform providers have recently added new secu-
rity chips to their systems. We look at two examples.



Figure 1: Google Titan [2] and Apple T2 [3] security chips.

Google Titan

Titan [2] is a security chip implemented as a low-power mi-
crocontroller on Google’s purpose-built server platforms. The
Titan chip communicates with the main CPU via the Serial
Peripheral Interface (SPI), and it interposes between the boot
firmware flash and the Platform Controller Hub (PCH).

One of the main functionalities that Titan implements is
secure boot. When the server machine is powered up, Titan
executes code, known as boot ROM, from its embedded read-
only memory. This code is immutable and thus implicitly
trusted. The boot ROM code loads Titan’s firmware from
the embedded flash and verifies its integrity using a digital
signature. Once Titan’s firmware is securely verified and run-
ning, it can verify the boot process of its host. Titan blocks
PCH’s access to the firmware flash until it has cryptographi-
cally verified the content of the flash, and then it releases the
lock and allows the verified boot firmware to configure the
machine and load the boot loader which subsequently verifies
and loads the OS. Such an iterative process allows precise
control over which system software is booted.

Apple T2

Apple’s latest PCs come with a security chip called T2 [3] that
also supports secure boot. When the machine with the T2 chip
is turned on, T2 executes code from its read-only memory.
This code verifies the next step of the T2’s own boot process.
Once T2 is fully running, it can verify the UEFI firmware,
which will ensure that only authorized kernel will be booted
on the host CPU.

Besides secure boot, T2 also provides other security fea-
tures such as protecting the user’s fingerprint values or making
sure that the microphone is disconnected from the main CPU
when the laptop’s lid is closed.

Specific Security Objectives

Both Titan and T2 implement secure boot. Secure boot is also
a good example of a security mechanism that is outside the
security objectives of SGX.

SGX was designed to provide a specific set of protec-
tions [4]. These protections include detection of integrity
violation of an enclave instance, confidentiality of enclave’s

Textbox 1: ARM TrustZone is a processor-based
TEE architecture that is commonly used on smart-
phones. The main idea of TrustZone is to implement
two separate execution modes on the main CPU. All
untrusted software, like the OS and third-party apps,
are executed in the normal world, while applications
that need protection run in a separate execution mode
called the secure world. The processor and mem-
ory controllers ensure that any process in the normal
world cannot access the secure world.

TrustZone can enable secure boot [5]. A mobile
device can be configured such that when the device is
powered up, the main CPU starts executing implicitly
trusted code that is loaded from read-only memory in
secure world. This code can then verify the normal
world boot loader before the CPU starts executing the
main boot sequence of the normal world OS. Many
smartphone manufacturers implement this approach.

data, isolation between enclaves, and enforcement that en-
clave’s execution always starts from an authorized location.
The overall goal of these protections can be loosely summa-
rized as enabling secure computation on untrusted computing
platforms.

Because the above-listed protections do not include OS in-
tegrity verification, platform providers have added dedicated
security chips, like Titan and T2, to implement such function-
ality. Disconnecting the microphones from the main CPU is
another example of a security feature that is not provided by
enclaves. (As noted in Textbox 1, other TEEs like the ARM
TrustZone architecture can accommodate a secure boot.)

Security Weaknesses

Besides limited objectives, enclaves also have security weak-
nesses. Since enclaves and untrusted code share the same
CPU, they can be susceptible to side-channel leakage and
microarchitectural attacks. The recently discovered Spectre
and Meltdown vulnerabilities showed how transient execution
could leak information across isolation boundaries. The same
idea was successfully applied to extract secret keys from SGX
enclaves in the Foreshadow attack [6].

While specific attacks can be, and have been, mitigated
(e.g., Intel’s microcode updates include Spectre and Melt-
down patches), side-channels and microarchitectural attacks
continue to be a concern for enclaves. The root cause is that
modern processors are extremely complex systems that have
been optimized over decades. Enclave support was added on
top of many layers of performance optimizations, and now, in
hindsight, one can easily say that this approach was not the
ideal foundation for strong isolation. In this regard, dedicated
security chips have a clear advantage over enclaves.

2



Another security challenge is the rich interface between
the untrusted OS and the enclave. Enclaves must interact with
the operating system in many ways. For example, enclaves
communicate by sending and receiving messages through the
OS. Enclaves also need to pause their execution for interrupts
safely. While enclave architectures provide coarse-grained
memory isolation primitive at the hardware level, developers
need to ensure that the interface is protected on the software
level. Common implementation tasks include sanitization of
buffers and safety checks for pointers.

Because such checks are tedious, several enclave runtimes
like the Open Enclave SDK have been developed to assist
enclave developers. However, recent research has shown that
many such enclave runtimes have classical memory safety
vulnerabilities [7]. Because dedicated security chips do not
need equally extensive interaction with the OS, the interface
towards the untrusted OS is easier to protect tightly.

Other Security Services?

To summarize our discussion so far, enclaves do not imple-
ment all useful security mechanisms, and they also have sig-
nificant security issues. Dedicated security chips can address
both of these concerns.

Obviously, the security services that can be implemented as
dedicated security chips are not limited to the above-discussed
examples. Which other services could be implemented as
special-purpose security chips?

Titan and T2 are integrated security chips that are perma-
nently attached to the computing platform. Are there also use
cases that would benefit from plug-and-play security tokens?

In the rest of this article, we explore these questions by
examining two examples from our recent research. Our first
example is trusted path [8], and after that, we focus on plat-
form identification and remote attestation [9].

Trusted Path

The main goal of SGX is to enable secure computation for en-
claves. Such enclaves do not easily lend themselves to secure
user interaction. The main reason for this is that, in archi-
tecture like SGX, enclaves communicate with I/O devices
through the untrusted OS. When an enclave needs to receive
user input, the OS needs to pass data from an input device
like a keyboard to the enclave. When an enclave creates user
output, the OS must forward data to an output device like
display. Such TEE design means that a compromised OS can
easily modify any user inputs and outputs. Indeed, trusted
path — a secure channel from the human user to a trusted
application like enclave — is outside the security objectives
of SGX [4].

User input manipulation can have severe consequences. If
a malicious OS modifies the user input that is provided to
a financial enclave, the enclave can be tricked to perform

unauthorized payments. If enclaves are used to implement
hardened medical devices or industrial systems, user input
modifications may cause serious safety and health risks. Also,
any enclave that needs user passwords or similar credentials
is difficult to implement securely.

Design Principles

Several projects have explored the idea of complementing
computing platforms with dedicated hardware modules for
building a trusted path. While proposing extra hardware may
be easy, the more difficult and interesting question is what ex-
actly should the added hardware do? To answer this question,
we look at previous approaches, examine their limitations, and
identify design principles for trusted path implementation.

The first approach that we look at is transaction confirma-
tion [10]. In such a solution, the user first completes the user
interaction, such as payment, by interacting with the UI of the
untrusted platform that may be manipulated by the OS or the
browser. Once this is done, the user is expected to confirm
his input, like a payment value and account number, using a
separate hardware token, to detect and prevent any possible
modifications.

This approach has two main problems. The first is the fact
that the user now has to interact with two separate devices and
two user interfaces, which reduces usability. The second, and
more severe, problem is that such extra confirmation step is
vulnerable to user habituation. Habituation refers to behavior
where the user begins, after a few successful transactions,
confirming new payments without verifying their correctness.
These observations lead us to the first design principle.

Principle 1: Out-of-context security confirmations
have a high cognitive load and risk of user habitua-
tion. Thus, user interaction should be protected in the
context of the normal user interface.

The next approach that we examine is input signing [11].
Here, the main idea is to use a simple hardware device that
sits in-between a user input device, such as a keyboard, and
the untrusted computing platform. The device intercepts every
keypress, or similar user input event, and sends a signed trace
of them to the trusted application.

Input signing conforms to our first principle because the
user does not have to interact outside the main UI. However,
such solutions are vulnerable to attacks, where the adversary
manipulates the user’s input by showing false information on
the output channel. That is, output manipulation leads to user
input integrity violation. One example is a fake-typo attack.
Assume that the user types in value “10”, but the adversary
shows “1” on the screen. The user is likely to think that he
mistyped and press “0” again. As a result, a signed trace of
“100” will be sent to the trusted application. This simple attack
leads us to our next design principle.

3



Principle 2: User input and output integrity cannot
be considered in isolation. Both must be protected
simultaneously.

The last approach that we examine is secure overlays. Fi-
delius [12] is an example research system that follows this
approach. In Fidelius, one device intercepts keyboard presses
and signs them for the trusted application, while another de-
vice intercepts the HDMI output signal and modifies it with
secure overlays of security-critical UIs such as payment web
forms.

Fidelius addresses the above-mentioned problems but is
still vulnerable to a different type of user input manipulation
that we call early-submission attack. This attack is possi-
ble because Fidelius only protects keyboard input, but not a
mouse. While this may seem only a functional limitation, it
turns out that it is a security problem. Assume again that the
user intends to submit value “10”. Once the user has typed
“1”, the untrusted OS or browser generates a fake mouse event
that submits the web form. Mouse inputs could be disabled
altogether, but such naïve solution hurts usability. Now we
can state our last design principle.

Principle 3: All user input modalities must to be pro-
tected simultaneously.

ProtectIOn System

Given these principles, we designed a new trusted path system
called ProtectIOn [8]. In the following, we focus on the use
case where the trusted path is established between the user and
a remote web server. That is, we want to protect interactions
where the user completes and submits a security-critical web
form. The same solution could be easily modified to create a
trusted path between the user and a local enclave as well.

Figure 2a shows the overview of ProtectIOn system. The
central component of the solution is a low-complexity embed-
ded device called IOHub that intercepts key presses from a
keyboard and movement events from a mouse, tracks mouse
movements, and draws secure overlays.

When the user visits a web page that contains a protected
web form, the remote server sends a QR code to the untrusted
browser, as shown in Figure 2b on the left. The QR code
contains a specification of the protected web form signed by
the server to prevent its modification in the browser. By using
QR codes, we enable communication from the webserver to
the IOHub device via an unmodified browser, which simplifies
deployment significantly.

By periodically examining the HDMI signal, IOHub detects
the QR code on the screen, decodes it, and verifies its signa-
ture. After that, as shown in Figure 2b in the middle, IOHub
renders the protected web form as an overlay on top of the

IOHubHost

Frames

Input forward

IO signals

Network

Server

(a) ProtectIOn system.

Attacker’s view User’s view on the monitor Focusing user’s attention

a b c

(b) ProtectIOn user interface.

Figure 2: ProtectIOn system.

HDMI frame that it receives from the untrusted OS. This step
ensures that the security-critical UI elements are presented to
the user correctly, and thus output integrity of the protected
web form is preserved.

IOHub tracks mouse movement events, and when the mouse
pointer enters the secure overlay, as shown in Figure 2b on
the right, IOHub dims the rest of the screen to focus the user’s
attention to the secure overlay. Such protection is needed
to prevent the user from following a possible fake mouse
cursor, drawn by the untrusted browser or OS, elsewhere on
the screen. Dimming parts of the screen have been shown to
be an effective way to focus the user’s attention to the correct
cursor [13].

While the user interacts with the protected web form, IOHub
intercepts all input events, and when the user clicks on the
submit button, the IOHub signs all inputs and sends them to
the server via the untrusted browser (e.g., by encoding them
to a requested URL). Since the submit button is part of the
protected overlay and all mouse clicks are intercepted and
signed by the IOHub device, early-submission attacks are not
possible. The server verifies the signed user inputs it receives.

If input confidentiality is needed, the user can be required to
trigger a secure attention sequence (SAS), like Ctr+Alt+Del,
before entering any secrets. The untrusted OS and the browser
cannot observe sensitive data on the secure overlay since they

4



are rendered by IOHub and never accessible to them.
Such a design complies with our three design principles.

Principle 1 is met because the user only interacts with the
main UI. Secure overlays support Principle 2, and mouse
tracking combined with input trace signing ensures that all
input modalities are protected (Principle 3).

ProtectIOn prototype We implemented a prototype of the
IOHub device as a combination of Raspberry Pi and Arduino
boards and a simple HDMI interceptor. Our prototype shows
that proposed functionalities are feasible to implement with
small TCB on low-cost hardware. Full details of the Protec-
tIOn system are explained in our recent paper [8].

Attestation and Platform Identification

Remote attestation is a key feature of enclave architectures
like SGX. In remote attestation, an external verifier checks
that an enclave was constructed as expected. To do this, the
verifier sends a challenge to the attested CPU. The CPU signs
the challenge together with a previously recorded measure-
ment of the enclave’s code using a processor-specific attesta-
tion key. The signature can also include application-specific
data, such as the public key of the enclave, that allows se-
cure communication with the attested enclave. The attestation
key is part of a group signature scheme that is managed by
Intel. The signed attestation statement is then sent back to
the verifier. If the signature can be verified correctly, the re-
mote verifier knows that the attested enclave was correctly
constructed and runs the expected code inside a legitimate
SGX processor.

Remote attestation process allows remote verifiers to detect
enclave integrity violations before provisioning secrets to
them or before accepting signed messages from them.

Relay Attacks

The above outlined remote attestation protocol is a useful
security mechanism, but it also has a well-known problem.
An adversary that controls the OS on the attested platform can
easily redirect the attestation challenge to another platform
that computes the response. The verifier cannot notice such
relay attacks, since the SGX attestation mechanism is based
on a group signature scheme, and all processors from the
same group produce indistinguishable signatures. (Even if
attestation used traditional digital signatures, it would be very
difficult in practice for the verifier to know which signing key
corresponds to which CPU.) In other words, SGX guarantees
detection of enclave’s integrity violation, but identification
of the computing platform in which the attested enclave is
running is not part of its security objectives.

Relay attacks have been known for a long time. Parno
identified them in the context of TPM attestation over a decade
ago and called them “cuckoo attacks” [14]. However, the full

implications of relay attacks have not been well understood.
Since attestation can only be redirected to another legitimate
processor that executes exactly the same attested enclave code,
it may appear that such relay attacks do not have noteworthy
negative implications. Our analysis shows that such a belief
is misguided.

Relay attack implications Many computer systems, like
servers at data centers, use multiple layers of protection. These
protections may include using TEEs to protect certain ap-
plications, but also other defenses such as running software
components at different privilege levels, physically protect-
ing access to the computing platform, and frequent patching
of discovered vulnerabilities. The main implication of relay
attacks is that they increase the adversary’s ability to attack
the attested enclave by circumventing many such protections.

Our first observation is that by redirecting the attestation
to the adversary’s platform, the adversary enables physical
side-channel attacks such as acoustic, electric, and electro-
magnetic monitoring which otherwise would not be possible
to mount on the victim’s platform. Such side channels have
been shown to be effective and inexpensive means to extract
secrets [15] and hardening enclaves against all possible phys-
ical side channels is difficult.

Relay attacks can also enable privilege escalation. In cases
where the adversary has only compromised the user-space
application that manages the enclave on the victim platform,
the application can redirect the attestation to the attacker’s
platform where he controls the OS as well. In such cases, the
relay enables digital side-channel attacks that require system
privileges.

The third and perhaps most subtle implication of relay is
that it can enable software-based side-channel attacks that
would not be otherwise possible due to the timing of certain
events. One example is a scenario where the victim plat-
form OS is compromised at the time of attestation and secret
provisioning, and the attested enclave is hardened against
known digital side-channel attacks (e.g., using tools like Rac-
coon [16]). After secret provisioning, the OS compromise is
detected, and the platform is cleaned and patched. Later, a
new side-channel attack vector (that is not prevented by the
used tools) is discovered. If the adversary performed redi-
rection during attestation and the secret was provisioned to
the attacker’s machine, the new side-channel is exploitable.
Without the relay, the attack is not possible. In this case, the at-
testation relay eliminates the security benefit of good platform
maintenance.

Finally, we note that attacks based on leaked attestation
keys (e.g., ones obtained through the Foreshadow attack [6])
are independent of relaying. If the adversary has obtained a
valid attestation key, he can emulate an SGX processor on the
target platform and steal any secrets that are provisioned to it.

5



Trust on first use A commonly suggested solution to re-
lay attacks is the principle of trust on first use (TOFU). In
one example solution, a platform-specific enclave generates
a key pair and exports the public part of the key for certifica-
tion right after a fresh OS installation. When remote verifiers
need to attest other enclaves on that platform, they can first
authenticate the certified enclave which in turn performs lo-
cal attestation of the target enclave (SGX provides a local
attestation primitive that cannot be relayed).

Such TOFU solution has several problems. The first is large
temporary TCB, as a complete general-purpose OS needs to
be trusted during the first boot. The second is difficulty in
deployment because fresh OS re-installation is not always
possible. The third is the need for online authorities which
increases their attack surface, assuming that the certification
process is automated. Further problems are discussed in [9].

ProximiTEE System

Parno identified relay attacks more than a decade ago and,
at the same time, suggested proximity verification as a solu-
tion [14]. The main idea was to verify that the attested CPU is
in the proximity of the verifier device, which should prevent
attestation redirection to remote platforms.

Proximity verification using an external device overcomes
the above listed main problems of TOFU approaches. First,
the TCB is small, as the verifier device can be a single-purpose
and thus very simple. Second, the adoption of such a solution
is easy, as there is no need to reset the target platform fully.
And third, the authority that certifies the verifier device can
remain fully offline.

Although the idea of proximity verification sounds simple
to realize, the research efforts that followed failed to imple-
ment secure proximity verification. The main reason for the
failure was that TPM, the secure element commonly available
at the time, supported only fixed identification operations like
digital signatures. TPM signatures may take up to one second,
which allows the redirected attestation request to travel a long
distance, and thus TPMs were simply too slow for secure
proximity verification.

Because SGX enclaves are programmable, it is possible
to implement proximity verification protocols that leverage
simple operations like XOR that enable fast challenge-response
rounds. Based on this observation, we designed a hardened
SGX attestation scheme, called ProximiTEE [9].

Our solution uses a simple embedded device called Prox-
imiKey that is attached to the target platform over a local
communication interface like USB. In hardened remote attes-
tation, the verifier first establishes a secure channel a Prox-
imiKey whose public key the verifier learns from its issuer.
ProximiKey performs standard remote attestation on the local
enclave, establishes a secure TLS channel to it, and verifies
its proximity using a simple distance-bounding protocol that
consists of repeated and fast challenge-response rounds. If

ProximiKey latency

time (µs)
150 200 250 300 3500.

00
0.

03
0.

06

Rerouting over Ethernet
Local USB interface

Tcon

Tdetach

Figure 3: Latency distributions for legitimate challenge-response
rounds and simulated relay attack.

such proximity verification succeeds, ProximiKey facilitates
the creation of a secure channel between the remote verifier
and the attested enclave.

Proximity verification security While the above design is
mostly straightforward, the more interesting aspect is whether
such a system prevents relay attacks in practice. To answer
this question, we implemented our solution using a USB pro-
totyping board and simulated a strong attack scenario where
the adversary performs a relay to another SGX platform that
is connected to the target platform over a one-meter long
Ethernet wire. We also assumed that the adversary is able to
perform all protocol computation instantaneously.

Figure 3 shows the results from our experiments, where we
measured both the legitimate and relayed challenge-response
latencies. The vast majority of the benign latencies range from
145 to 250µs, while the attack round-trips take from 200 to
750 µs. The average delay of our adversary is only 80µs. (To
put this into perspective, even the highly-optimized network
connections between major data centers in the same region
exhibit latencies from one millisecond upwards.)

As can be seen from Figure 3, these two latency distri-
butions are distinguishable. Our analysis confirms that it is
possible to set protocol parameters (number of challenge-
response rounds, latency threshold, etc.) such that very fast
relay attacks can be detected with high probability and legit-
imate attestations fail only with negligible probability. The
full details of the ProximiTEE system and our analysis can be
found from our recent paper [9].

Discussion

Now that we have seen two commercial, integrated security
chips (Titan and T2) and two user-attachable, research to-
kens (ProtectIOn and ProximiTEE), we can discuss their de-
ployment aspects, security benefits, and previous comparable
solutions.

Deployment options Integrated security chips like Titan
and T2 are, obviously, limited to deployments by major ser-
vice and platform providers that have the possibility to design
and build their own systems.

6



ProximiTEE is an example of a plug-and-play security to-
ken that can be attached to the target platform over a standard
interface like USB. Deployment of security solutions is a fea-
sible option for a larger set of service providers. For example,
cloud computing providers can enhance off-the-shelf servers
with ProximiKey tokens and communicate their public keys
to their clients to support more secure attestation. Another
interesting use case is the setup of a permissioned blockchain
where every consensus node is hardened with SGX enclaves.
The trusted authority that appoints the consensus nodes can
issue a ProximiKey token to each organization that operates
one node.

Also ProtectIOn could be deployed as a plug-and-play se-
curity module. Such deployment allows service providers
like voting authorities and banks to increase the security of
their services without restricting the users’ choice of client
platform. In medical and industrial domains, an externally-
attached ProtectIOn module can improve the security of
safety-critical systems, even when modifications to the com-
puting platform itself are prohibited due to strict regulations.
Alternatively, ProtectIOn could be deployed as an integrated
security chip such that its functionality is implemented as part
of the integrated keyboard, mouse, and display controllers.

Security benefits Titan and T2 are chips that enable se-
curity functionality like a secure boot that is not provided
by enclaves. Thus, the operation of Titan and T2 is largely
orthogonal to the operation of enclaves.

In comparison, ProximiTEE is a security chip that is de-
signed to work in collaboration with enclaves and improve
their security guarantees by enabling secure TEE identifica-
tion for hardened remote attestation.

ProtectIOn is a solution that can either assist enclaves or
operate independently of them. One possible usage for Protec-
tIOn is to enable a trusted path from the user to a local enclave,
which can communicate securely with remote servers. In such
a deployment, ProtectIOn works together with an enclave. Al-
ternatively, ProtectIOn could be used to create a trusted path
from the user to a remote server without the use of enclaves.
Such deployment is beneficial when the risk of microarchitec-
tural attacks on enclaves is considered too high, for example.

Dedicated chips and early TEEs Some previous TEE de-
signs have leveraged dedicated security chips to implement a
TEE that can be attested.

AMD’s Secure Virtual Machine technology is one such ex-
ample where the TEE is created as follows: the CPU measure
code in a specific memory region, enables DMA protections
for that region, disables interrupts, records the measurement
into a PCR register of a TPM chip, and finally begins execut-
ing the measured code. Essentially, this sequence of events
provides a clean execution of the measured code without
restarting the whole platform, and therefore this technique
is often called “late launch”. The main role of the dedicated

chip (TPM in this case) is to securely record the code that was
launched so that an external verifier can check its integrity
using attestation.

Outlook

Future computing platforms are likely to combine various
computing units like CPUs, GPUs, TPUs, FPGAs and more.
Similar to the current enclave architectures that enhance CPUs
with secure execution capabilities, also other processing units
like GPUs and FPGAs will need secure computation. There
are already several on-going research efforts that explore the
design of such TEEs [17].

Our research on trusted path (the ProtectIOn system [8])
highlights that I/O devices need secure communication with
enclaves. Similarly, also other peripherals like GPS units and
fingerprint sensors would benefit from secure communica-
tion with enclaves. Protected communication between TEEs
and other platform components requires authentication, en-
clave identification and access control mechanisms. The ARM
TrustZone architecture has limited support towards this di-
rection. In TrustZone, hardware components like memory
controllers can make coarse-grained access control decisions
based on the CPU’s execution mode [5].

Extending this paradigm for more fine-grained access con-
trol and secure inter-component communication is one promis-
ing direction. We envision future computing platforms where
enclaves, peripherals and special-purpose security chips can
communicate and work together to provide a rich set of
hardware-assisted platform security services.

References

[1] V. Costan et al., “Sanctum: Minimal hardware extensions for
strong software isolation,” in USENIX Security’16.

[2] Google, “Titan in depth: Security in plaintext.”
https://cloud.google.com/blog/products/gcp/
titan-in-depth-security-in-plaintext.

[3] Apple, “About the Apple T2 security chip.” https://
support.apple.com/en-us/HT208862.

[4] F. McKeen et al., “Innovative instructions and software model
for isolated execution.,” HASP’13.

[5] J.-E. Ekberg et al., “The untapped potential of trusted execution
environments on mobile devices,” S&P magazine, 2014.

[6] J. Van Bulck et al., “Foreshadow: Extracting the keys to the
Intel SGX kingdom with transient out-of-order execution,” in
USENIX Security’18.

[7] J. Van Bulck et al., “A tale of two worlds: Assessing the vul-
nerability of enclave shielding runtimes,” in CCS’19.

[8] A. Dhar et al., “ProtectIOn: Root-of-trust for IO in compro-
mised platforms,” in NDSS’20.

[9] A. Dhar et al., “ProximiTEE: Hardened SGX attestation by
proximity verification,” in CODASPY’20.

7

https://cloud.google.com/blog/products/gcp/titan-in-depth-security-in-plaintext
https://cloud.google.com/blog/products/gcp/titan-in-depth-security-in-plaintext
https://support.apple.com/en-us/HT208862
https://support.apple.com/en-us/HT208862


[10] A. Filyanov et al., “Uni-directional trusted path: Transaction
confirmation on just one device,” in DSN’11.

[11] A. Dhar et al., “Integrikey: End-to-end integrity protection of
user input.” https://eprint.iacr.org/2017/1245.

[12] S. Eskandarian et al., “Fidelius: Protecting user secrets from
compromised browsers,” in S&P’19.

[13] L.-S. Huang et al., “Clickjacking: Attacks and defenses,” in
USENIX Security’12.

[14] B. Parno, “Bootstrapping trust in a trusted platform,” in Hot-
Sec’08.

[15] D. Genkin et al., “Physical key extraction attacks on PCs,”
Communications of the ACM, 2016.

[16] A. Rane et al., “Raccoon: Closing digital side-channels through
obfuscated execution,” in USENIX Security’15.

[17] S. Volos et al., “Graviton: Trusted execution environments on
GPUs,” in OSDI’18.

8

https://eprint.iacr.org/2017/1245

