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Abstract. Decentralized and permissionless ledgers offer an inherently
low transaction rate, as a result of their consensus protocol demanding
the storage of each transaction on-chain. A prominent proposal to tackle
this scalability issue is to utilize off-chain protocols, where parties only
need to post a limited number of transactions on-chain. Existing solutions
can roughly be categorized into: (i) application-specific channels (e.g.,
payment channels), offering strictly weaker functionality than the un-
derlying blockchain; and (ii) state channels, supporting arbitrary smart
contracts at the cost of being compatible only with the few blockchains
having Turing-complete scripting languages (e.g., Ethereum).

In this work, we introduce and formalize the notion of generalized chan-
nels allowing users to perform any operation supported by the underlying
blockchain in an off-chain manner. Generalized channels thus extend the
functionality of payment channels and relax the definition of state chan-
nels. We present a concrete construction compatible with any blockchain
supporting transaction authorization, time-locks and constant number
of Boolean ∧ and ∨ operations – requirements fulfilled by many (non-
Turing-complete) blockchains including the popular Bitcoin. To this end,
we leverage adaptor signatures – a cryptographic primitive already used
in the cryptocurrency literature but formalized as a standalone primitive
in this work for the first time. We formally prove the security of our gen-
eralized channel construction in the Universal Composability framework.

As an important practical contribution, our generalized channel con-
struction outperforms the state-of-the-art payment channel construction,
the Lightning Network, in efficiency. Concretely, it halves the off-chain
communication complexity and reduces the on-chain footprint in case
of disputes from linear to constant in the number of off-chain applica-
tions funded by the channel. Finally, we evaluate the practicality of our
construction via a prototype implementation and discuss various appli-
cations including financially secured fair two-party computation.
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1 Introduction

One of the most fundamental technical challenges of decentralized and permis-
sionless blockchains is scalability. Since transactions are processed via a costly
distributed consensus protocol run among a set of parties (so-called miners),
transaction throughput is limited and transaction confirmation is slow. There
has been a plethora of work on improving scalability of blockchains, with off-
chain protocols being one of the most promising solutions.

Intuitively, off-chain protocols build a second layer over the blockchain (often
referred to as the layer-1 ) by allowing the vast majority of transactions to be
processed directly between the involved participants, with the blockchain be-
ing used only in the initial setup and in case of disputes, thereby drastically
improving transaction throughput and confirmation time.

While there exists a large variety of different off-chain (or layer-2) solutions
(see, e.g., [7, 60, 33, 35] and many more), payment channels [11, 20, 53] are by far
the most prominent one. Intuitively, a payment channel works in three phases.
First, the two users open a channel by locking a certain amount of coins on-
chain into an account controlled by both users. Then they perform an arbitrary
amount of payments by exchanging authenticated messages off-chain. Finally,
they close the channel by announcing the outcome of their trades to the ledger.

Off-chain computations in Ethereum. Ethereum supports on-chain transac-
tions specified in a Turing-complete scripting language, which enables the execu-
tion of arbitrarily complex programs, also called smart contracts, thereby going
beyond simple payments. The underlying blockchain is organized accordingly in
the account-based model, in which the balance associated to an account is explic-
itly stored in its memory and programmatically updated via smart contracts. By
leveraging the expressiveness of Turing-complete scripting languages, payment
channels can be generalized into so-called state channels [48, 23, 24], whose func-
tionality goes far beyond simple payments. Namely, state channels enable users
to execute arbitrarily complex smart contracts in an off-chain manner, thereby
making their execution faster and cheaper.

Turing-complete vs restricted scripting. The majority of current blockchains
(e.g., Bitcoin, Zcash, Monero, and Cardano’s ADA) only support a restricted
scripting language and are based on the Unspent Transaction Output (UTXO)
model: intuitively, they enable a restricted class of transactions, possibly con-
ditioned to some events, that transfer money from an unspent transaction to a
new unspent transaction. There are several reasons behind the choice of a limited
scripting language. First, the simplicity of design and usage, which is believed to
be beneficial for security: countless examples of smart contract vulnerabilities on
Ethereum show that complex contract logic and increased expressiveness pave
the way for critical bugs, which may have severe consequences for the stability
of the underlying currency as shown by the infamous DAO hack [54]. Second,
blockchains with simple transaction logic are less costly to maintain: this is im-
portant as transaction execution is done by many parties, and even normal users.
Finally, restricted scripting languages are expressive enough to encode many in-
teresting computations (e.g., lotteries [2], auctions [22], and more [9, 41, 8]).
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Unfortunately, current state channel constructions are not applicable with-
out a Turing-complete scripting language, thereby excluding the majority of
blockchains. In this work, we investigate the following question: Can we gener-
ically lift any transaction logic offered by layer-1 to layer-2 even for blockchains
with restricted transaction logic? Besides its practical importance, we believe
that this question is theoretically interesting. It may constitute a first step to-
wards a more general research agenda exploring the feasibility (or impossibility)
of generic off-chain computation from blockchains with limited expressiveness.

1.1 Our contribution

Our main contribution is to put forward the notion of generalized channels – a
generic extension of payment channels to support off-chain execution of arbitrary
transaction logic supported by the underlying blockchain. State channels can
hence be seen as a special case of generalized channels for blockchains with
Turing-complete scripting languages. We briefly outline our main contributions
below. A technical overview of our construction is given in Sec. 2.

Generalized channels. We show that if the underlying UTXO-based block-
chain supports transaction authorization, time-locks and basic Boolean logic
(constant number of ∧, ∨ operations), then any transaction logic available on
layer-1 can be lifted to layer-2 securely and generically.

As most cryptocurrencies, including the by far most prominent Bitcoin, sat-
isfy the assumptions of our construction, they can benefit from generalized chan-
nels as a scalability solution. This, in particular, implies that our construction
directly enables to execute any Bitcoin transaction off-chain. Moreover, we stress
that our construction can also be deployed over any blockchain that can simulate
a UTXO-based system, which, in particular, includes blockchains with support
for Turing-complete smart contracts, e.g., Ethereum or Hyperledger Fabric [1].

A novel revocation mechanism for generalized channels. The main technical
challenge in our generalized channel design is to propose an efficient mecha-
nism for old channel state revocation while putting minimal assumptions on the
scripting language of the underlying blockchain. The state-of-the-art approach,
put forward by the Lightning Network [53], uses a punishment mechanism which
allows the cheated party to claim all coins from the channel. As we argue, a
straightforward generalization of the Ligthning-style revocation is unsuitable for
generalized channels. Firstly, the blockchain communication complexity in case of
misbehavior depends on the number of parallel conditional payments funded by
the channel. This significantly increases the blockchain overhead when process-
ing a punishment (if triggered). Secondly, the security of the revocation mecha-
nism relies on state duplication, hence each off-chain transaction funded by the
channel has to be performed twice (once on each duplicate). This is particularly
problematic when channels are built on top of channels [27] as the off-chain com-
munication complexity grows exponentially with the number of channel layers.

To overcome these drawbacks, we design a novel revocation mechanism re-
ducing the on-chain complexity in case of a dispute from linear to constant, and
the off-chain communication complexity from exponential to linear.
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Formalization of adaptor signatures. A key idea of our novel revocation mech-
anism is to utilize an adaptor signature scheme [52] – a cryptographic primitive
introduced by the cryptocurrency community to tie together the authorization
of a transaction and the leakage of a secret value. Although adaptor signatures
have been used in previous works (e.g. [45, 31, 50]), a formal definition has never
been presented. We fill this gap by providing the first formalization of adaptor
signatures and their security (in terms of cryptographic games), and proving
that ECDSA and Schnorr-based schemes satisfy our notions. We believe that
our formalization and security analysis of adaptor signatures is of independent
interest (see details on the impact of our work below).

Formalization of generalized channels. In order to formally define the security
guarantees of a generalized channel protocol, we utilize the extended Universal
Composability model allowing for global setup (the GUC model for short) put
forward by Canetti et al. [16]. More precisely, we model money mechanics of an
UTXO-based blockchain via a global ledger ideal functionality and provide an
ideal specification of a generalized channel protocol via a novel ideal functional-
ity. Thereafter, we prove that our generalized channel construction satisfies this
ideal specification. The key challenges of our security analysis are to ensure the
consistency of timings imposed by the blockchain processing delay, and to ensure
that no honest party can ever lose coins by participating in a channel.

Evaluation and applications. We implemented our protocols and conducted
an experimental evaluation, demonstrating how to use generalized channels as a
building block for popular off-chain applications, like payment routing through
a payment channel network (PCN) [53, 46, 45] and channel splitting [27]. Con-
cretely, our evaluation demonstrates that, already when routing one payment
through a channel, the amount of blockchain fees in case of a dispute is reduced
by 28% compared to the state-of-the-art Lightning network solution. In practice,
there have been cases of disputes in channels with 50 concurrent payments [44],
which currently costs 553.66 USD in fees to resolve in Lightning and only 17.47
USD with generalized channels. For channel splitting, we reduce the transactions
to be exchanged off-chain per sub-channel from exponential to constant.

Moreover, we discuss how to use generalized channels to realize the Claim-
or-Refund functionality of Bentov and Kumaresan [9]. This functionality, can
be used to build a fair two-party computation protocol over Bitcoin, where fair-
ness is achieved by financially penalizing malicious parties. Realizing the Claim-
or-Refund functionality, in particular, implies that generalized channels allow
parties to execute any two-party computation off-chain.

Impact of our work. Our work has resulted in several interesting follow-
up works. In case of adaptor signatures, Esgin et al. [29] and Tairi et al. [56]
have proposed adaptor signature constructions secure against adversaries with
quantum computing power which allows for payment channels or atomic swaps
in post-quantum secure blockchains. Recently, Erwig et al. [28] showed how
to generically build single and 2-party adaptor signatures from identification
schemes. All these works follow our definition of adaptor signatures that we put
forth in this work. Our generalized channels have also been used as a basis for
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virtual channel constructions in [3] and have recently been extended to support
fair and privacy preserving watchtowers by Mirzaei et al. [49]. We will talk in
more details about some of these follow-up works in Sec. 7.

1.2 Other Related Work

We briefly discuss related work on off-chain protocols and adaptor signatures,
where the latter is an important building block in our construction.

Off-chain protocols. As already mentioned before, there has been an exten-
sive line of work on various types of payment channels [11, 20, 53] and payment
channel networks (PCNs) [53, 46, 45]. However, these constructions only sup-
port simple payments and do not extend to support more complex transaction
logic. The authors in [37] provide a formalization of the Lightning Network (LN)
in the UC framework. This formalization is, however, tailored to the details of
the current LN and cannot be leveraged to formalize generalized channels as we
propose here. Most related to our work is the research on state channels [48,
23, 24], as these constructions allow to lift any transaction logic supported by
the underlying blockchain off-chain. However, state channels crucially rely on
the underlying blockchain to support smart contracts and hence do not work
for blockchains with restricted scripting language. Finally, eltoo [21] is a pay-
ment channel construction which does not rely on a punishment mechanism, yet
requires Bitcoin to adapt a new scripting command (op-code). This op-code,
however, has not been included to Bitcoin’s scripting language in the past due
to security concerns. In the case of address reuse or lazy wallet designs, funds
can be stolen by replaying transactions [59]. Moreover, the security of the eltoo
protocol has not been formally proven and it only supports simple payments.

Apart from payment and state channels, numerous other solutions have been
proposed in order to perform heavy on-chain computation off-chain. For instance,
various previous works (e.g., [19, 18, 39]) focus on realizing on-chain functionality
off-chain by using Trusted Execution Environments which, however, inherently
add an additional trust assumptions that may not hold in practice (e.g., [13, 17,
14]). A proposal to remove these assumptions is to use MPC protocols [9, 41],
which however require collateral linear in the number of conditional payments. In
contrast, generalized channels only require constant collateral for the execution of
an arbitrary number of such payments. There have been proposals to remedy the
collateral requirement in MPC protocols [10, 40, 42] but they are incompatible
with many existing UTXO blockchains, including Bitcoin.6

Adaptor signatures. Poelstra [52] introduced the notion of adaptor signatures
(AS), which intuitively allows to create partial signatures whose completion is
conditioned on solving a cryptographic hard problem – a feature that has been
proven useful in off-chain applications such as PCNs [45] and payment-channel
hubs [55]. For instance, Malavolta et al. [45] use AS as building block to define

6 These solutions require the underlying blockchain to either support verification of
signatures on arbitrary messages or Turing-complete smart contracts.
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and realize multi-hop payments in PCNs. Moreover, AS have been used as an off-
the-shelf cryptographic building block for multi-path payments [26] and Monero-
compatible PCNs [58]. Banasik et al. [6] construct a scheme satisfying a similar
notion to AS in order to allow two parties to exchange a digital asset using
cryptocurrencies that do not support Turing-complete programs. None of these
works, however, define AS as a stand-alone primitive. Concurrently to our work,
Fournier [31] attempts to formalize AS as an instance of one-time verifiable
encrypted signatures [12]. Yet, the definition of [31] is weaker than the one we give
in this work and does not suffice for the channel applications. Also concurrent
to this work, Thyagarajan and Malavolta [57] define lockable signatures. While
similar to AS in spirit, lockable signatures are a weaker primitive as the partial
signature must be created honestly (e.g., through MPC) and the solution to the
cryptographic hardness problem must be known beforehand. On the other hand,
lockable signatures can be built from any signature scheme while AS cannot be
constructed from unique signatures [28].

2 Background and Solution Overview

Blockchain transactions. We focus on blockchains based on the Unspent Trans-
action Output (UTXO) model, such as Bitcoin. In the UTXO model, coins are
held in outputs. Formally, an output θ is a tuple (cash, φ), where cash denotes
the amount of coins associated to the output and φ defines the conditions (also
known as scripts) that need to be satisfied to spend the output.

A transaction transfers coins across outputs meaning that it maps (possibly
multiple) existing outputs to a list of new outputs. The existing outputs that fund
the transactions are called transaction inputs. In other words, transaction inputs
are those tied with previously unspent outputs of older transactions. Formally, a
transaction tx is a tuple of the form (txid, In,Out,Witness), where txid ∈ {0, 1}∗
is the unique identifier of tx and is calculated as txid := H([tx]), where H is a
hash function modeled as a random oracle and [tx] is the body of the transaction
defined as [tx] := (In,Out); In is a vector of strings identifying all transaction
inputs; Out = (θ1, . . . , θn) is a vector of new outputs; and Witness ∈ {0, 1}∗
contains the witness allowing to spend the transaction inputs.

To ease the readability, we illustrate the transaction flows using charts (see
Fig. 1 for examples). We depict transactions as rectangles with rounded corners.
Doubled edge rectangles represent transactions published on the blockchain,
while single edge rectangles are transactions that could be published on the
blockchain, but they are not (yet). Transaction outputs are depicted as a box
inside the transaction. The value of the output is written inside the output box
and the output condition is written above the arrow coming from the output.

Conditions of transaction outputs might be fairly complex and hence it would
be cumbersome to spell them out above the arrows. Instead, for frequently used
conditions, we define the following abbreviated notation. If the output script
contains (among other conditions) signature verification w.r.t. some public keys
pk1, . . . , pkn on the body of the spending transaction, we write all the public
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tx

x1

x2

h

pkA

+t

pkA, pkB

tx′ x

φ1

φ2

φ3

Fig. 1. (Left) tx is published on the blockchain. The output of value x1 can be spent by
a transaction containing a preimage of h and signed w.r.t. pkA. The output of value x2

can be spent by a transaction signed w.r.t. pkA and pkB but only if at least t rounds
passed since tx was accepted by the blockchain. (Right) tx′ is not published yet. Its
only output can be spent by a transaction whose witness satisfies φ1 ∨ φ2 ∨ φ3.

keys below the arrow and the remaining conditions above the arrow. Hence,
information below the arrow denotes “who owns the output” and information
above denotes “additional spending conditions”. If the output script contains
a check of whether a given witness hashes to a predefined h, we express this
by writing the hash value h above the arrow. Moreover, if the output script
contains a relative time-lock, i.e., a condition that is satisfied if and only if at
least t rounds passed since the transaction was published, we write “+t” above
the arrow. Finally, if the output script φ can be parsed as φ = φ1 ∨ · · · ∨ φn for
some n ∈ N, we add a diamond shape to the corresponding transaction output.
Each of the sub-conditions φi is then written above a separate arrow.

Payment channels. A payment channel [53] enables several payments between
two users without submitting every single transaction to the blockchain. The
cornerstone of payment channels is depositing coins into an output controlled
by two users, who then authorize new deposit balances in a peer-to-peer fashion
while having the guarantee that all coins are refunded at a mutually agreed time.

First, assume that Alice and Bob want to create a payment channel with
an initial deposit of xA and xB coins respectively. For that, Alice and Bob
agree on a funding transaction (that we denote by TXf) that sets as inputs two
outputs controlled by Alice and Bob holding xA and xB coins respectively and
transfers them to an output controlled by both Alice and Bob (i.e., its spending
condition mandates both Alice’s and Bob’s signature). When TXf is added to
the blockchain, the payment channel between Alice and Bob is effectively open.

Assume now that Alice wants to pay α ≤ xA coins to Bob. For that, they
create a new commit transaction TXc representing the commitment from both
users to the new channel state. The commit transaction spends the output of
TXf into two new outputs: (i) one holding xA − α coins owned by Alice; and
(ii) the other holding xB + α coins owned by Bob. Finally, parties exchange the
signatures on the commit transaction, thereby complete the channel update. Alice
(resp. Bob) could now add TXc to the blockchain. Instead, they keep it locally in
their memory and overwrite it when they agree on another commit transaction,
let us denote it TXc, representing a newer channel state. This, however, leads
to several commit transactions that can possibly be added to the blockchain.
Since all of them are spending the same output, only one can be accepted.
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TXf

xA + xB

publishable by A

publishable by B

TXAc

xA

xB

TXBc
xB

xA

spendable by B
knowing rA

spendable by A
knowing rB

pkA, pkB

pkB

+∆

pkA

hA

pkB

pkA

+∆

pkB

hB

pkA

Fig. 2. A Lightning style payment channel where A has xA coins and B has xB coins.
The values hA and hB correspond to the hash values of the revocation secrets rA and
rB . ∆ upper bounds the time needed to publish a transaction on a blockchain.

As it is impossible to prevent a malicious user from publishing an old commit
transaction, payment channels require a mechanism punishing such behavior.

Lightning Network [53], the state-of-the-art payment channel for Bitcoin, im-
plements such mechanism by introducing two commit transactions, denoted TXAc
and TXBc, per channel update, each of which contains a punishment mechanism
for one of the users. In more detail (see also Fig. 2), the output of TXAc repre-
senting Alice’s balance in the channel has a special condition. Namely, it can be
spent by Bob if he presents a preimage of a hash value hA or by Alice if certain
number of rounds passed since the transaction was published. During a channel
update, Alice chooses a value rA, called the revocation secret, and presents the
hash hA := H(rA) to Bob. Knowing hA, Bob can create and sign the commit
transaction TXAc with the built-in punishment for Alice (analogously for Bob and
TXBc). During the next channel update, parties first commit to the new state by

creating and signing TX
A
c and TX

B
c, and then revoke the old state by sending the

revocation secrets to each other thereby enabling the punishment mechanism. If
a malicious Alice now publishes the old commit transaction TXAc, Bob can spend
both of its outputs and claim all coins locked in the channel.

2.1 Solution Overview

The goal of our work is to extend the idea of payment channels such that parties
can agree on any conditional payment that they could do on-chain and not only
direct payments. Technically, this means that we want the commit transaction
to contain arbitrary many outputs with arbitrary conditions (as long as they
are supported by the underlying blockchain). The main question we need to
answer when designing such channels, which we call generalized channels, is how
to implement the revocation mechanism.

Revocation per update. The first idea would be to extend the revocation
mechanism explained above such that each output of TXAc contains a punishment
mechanism for Alice (analogously for Bob). While this solution works, it has
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several disadvantages. If one party, say Alice, cheats and publishes an old commit
transaction TXAc, Bob has to spend all outputs of TXAc to punish Alice. Although
Bob could group some of them within a single transaction (up to the transaction
size limit), he might be forced to publish multiple transactions thereby paying
high transaction fees. Moreover, such revocation mechanism requires a high on-
chain footprint not only for TXAc, but also for Bob getting coins from the outputs.

Our goal is to design a punishment mechanism whose on-chain footprint and
potential transaction fees are independent of the channel state, i.e., the number
and type of outputs in the channel. To this end, we propose the punish-then-split
mechanism which separates the punishment mechanism from the actual outputs.
In a nutshell, the commit transaction TXAc has now only one output dedicated
to the punishment mechanism which can be spent (i) immediately by Bob, if
he proves that the commit transaction was old (i.e., he knows the revocation
secret rA of Alice); or (ii) after certain number of rounds by a split transaction
TXAs owned by both parties and containing all the outputs of the channel (i.e.
representing the channel state). Hence, if TXAc is published on the blockchain,
Bob has some time to punish Alice if the commit transaction was old. If Bob
does not use this option, any of the parties can publish the split transaction TXAs
representing the channel state. Analogously for TXBc.

One commit transaction per channel update. Another drawback of the Light-
ning-style revocation mechanism is the need for two commit transactions for the
same channel state. While this is not an issue for simple payment channels, for
generalized channels it might cause undesirable redundancy in terms of com-
munication and computational costs. This comes from the fact that generalized
channels support arbitrary output conditions and hence can be used as a source
of funding for other off-chain applications, e.g., a fair two-party computation
or another off-chain channel as we discuss later in this work (see Sec. 7). Such
off-chain application would, however, have to “exist” twice. Once considering
TXAc being eventually published on-chain and once considering TXBc. Especially
when considering channels built on top of channels, the overhead grows expo-
nentially. Our goal is to construct generalized channels that require only one
commit transaction and hence avoid any redundancy.

A naive approach to design such a single commit transaction TXc would be to
“merge” the transactions TXAc and TXBc. Such TXc could be spent (i) by Alice if she
knows Bob’s revocation secret; (ii) by Bob if he knows Alice’s revocation secret or
(iii) by the split transaction TXs representing the channels state after some time.
Unfortunately, this simple proposal allows parties to misuse the punishment
mechanism as follows. A malicious Alice could publish an old commit transaction
TXc and since she knows Bob’s revocation secret, she could immediately try to
punish Bob. To prevent such undue punishment of honest Bob, we need to make
sure that Alice can use the punishment mechanism only if Bob published TXc.

The main idea of how to implement this additional requirement is to force the
party publishing TXc to reveal some secret, which we call publishing secret, that
the other party could use as proof. We achieve this by leveraging the concept of
an adaptor signature scheme – a signature scheme that allows a party to pre-
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TXf

xA + xB

publishable by A,
reveals yA

publishable by B,
reveals yB

TXc

xA + xB TXs .
.
.

x1

xn

spendable by B
knowing rA, yA

spendable by A
knowing rB , yB

pkA, pkB

pkB , hA,YA

pkA, hB ,YB

+∆

pkA, pkB

φ1

φn

Fig. 3. A generalized channel in the state ((x1, φ1), . . . , (xn, φn)). In the figure, pkA

denotes Alice’s public key, (hA, rA) her revocation public/secret values, and (YA, yA)
her publishing public/secret values (analogously for Bob). The value of∆ upper bounds
the time needed to publish a transaction on a blockchain.

sign a message w.r.t. some statement Y of a hard relation (at a high level, a
statement/witness relation is hard, if given a statement Y is it computationally
hard to find a witness y). Such pre-signature can be adapted into a valid signature
by anyone knowing a witness for the statement Y . Also, it is possible to extract a
witness y for Y by knowing both the pre-signature and the adapted full signature.
In our context, adaptor signatures allow users of a generalized channel to express
the following: “I give you my pre-signature on TXc that you can turn into a full
signature and publish TXc, which will reveal your publishing secret to me.”

To conclude, our solution, depicted in Fig. 3, requires only one commit trans-
action TXc per update. The commit transaction has one output that can be spent
(i) by Alice if she knows Bob’s revocation secret rB and publishing secret yB ;
(ii) by Bob if he knows Alice’s revocation secret rA and publishing secret yA or
(iii) by the split transaction TXs representing the channels state after some time.
In the depicted construction, we assume that statement/witness pairs used for
the adaptor signature scheme are public/secret keys of the blockchain signature
scheme. Hence, testing if a party knows a publishing secret can be done by requir-
ing a valid signature w.r.t. this public key. Let use emphasize that public/secret
keys can also be used for the revocation mechanism instead of the hash/preimage
pairs. This is actually preferable (not only in our construction but also in the
Lightning-style channels) since the punishment output script will only consist
of signature verification, thereby requiring less complex scripting language. As a
result, our solution does not only work over Bitcoin, but over any UTXO based
blockchain that supports transaction authorization (if there exists an adaptor
signature scheme w.r.t. the considered digital signature), relative time-locks and
constant number of ∧ and ∨ in output scripts.

3 Preliminaries

We denote by x ←$ X the uniform sampling of the variable x from the set X .
Throughout this paper, n denotes the security parameter and all our algorithms
run in polynomial time in n. By writing x← A(y) we mean that a probabilistic
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polynomial time algorithm A (or PPT for short) on input y, outputs x. If A is
a deterministic polynomial time algorithm (DPT for short), we use the notation
x := A(y). A function ν : N → R is negligible in n if for every k ∈ N, there
exists n0 ∈ N s.t. for every n ≥ n0 it holds that |ν(n)| ≤ 1/nk. Throughout
this work, we use the following notation for attribute tuples. Let T be a tuple of
values which we call attributes. Each attribute in T is identified using a unique
keyword attr and referred to as T.attr. Let us now briefly recall the cryptographic
primitives used in this paper to establish the used notation.

A signature scheme consists of three algorithms Σ = (Gen,Sign,Vrfy), where:
(i) Gen(1n) gets as input 1n and outputs the secret and public keys (sk , pk);
(ii) Signsk (m) gets as input the secret key sk and a message m ∈ {0, 1}∗ and
outputs the signature σ; and (iii) Vrfypk (m;σ) gets as input the public key pk , a
messagem and a signature σ, and outputs a bit b. A signature scheme must fulfill
correctness, i.e. it must hold that Vrfypk (m;Signsk (m)) = 1 for all messages m
and valid key pairs (sk , pk). In this work, we use signature schemes that satisfy
the notion of strong existential unforgeability under chosen message attack (or
SUF–CMA). At a high level, SUF–CMA guarantees that a PPT adversary on
input the public key pk and with access to a signing oracle, cannot produce a
new valid signature on any message m.

We next recall the definition of a hard relation R with statement/witness
pairs (Y, y). Let LR be the associated language defined as {Y | ∃y s.t. (Y, y) ∈
R}. We say that R is a hard relation if the following holds: (i) There exists a
PPT sampling algorithm GenR that on input 1n outputs a statement/witness
pair (Y, y) ∈ R; (ii) The relation is poly-time decidable; (iii) For all PPT A the
probability of A on input Y outputting a valid witness y is negligible.

Finally, we recall the definition of a non-interactive zero-knowledge proof
of knowledge (NIZK) with online extractors as introduced in [30]. The online
extractability property allows for extraction of a witness y for a statement Y
from a proof π in the random oracle model and is useful for models where the
rewinding proof technique is not allowed, such as UC. We need this property
to prove our ECDSA-based adaptor signature scheme secure. More formally, a
pair (P,V) of PPT algorithms is called a NIZK with an online extractor for a
relation R, random oracle H and security parameter n if the following holds: (i)
Completeness: For any (Y, y) ∈ R, it holds that V(Y,P(Y, y)) = 1 except with
negligible probability; (ii) Zero knowledge: There exists a PPT simulator, which
on input Y can simulate the proof π for any (Y, y) ∈ R. (iii) Online Extractor :
There exist a PPT online extractor K with access to the sequence of queries to
the random oracle and its answers, such that given (Y, π), the algorithm K can
extract the witness y with (Y, y) ∈ R. An instance of such proof system is in [30].

4 Generalized channels

4.1 Notation and security model

To formally model the security of generalized channels, we use the global UC
framework (GUC) [16] which extends the standard UC framework [15] by al-
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lowing for a global setup. Here we discuss our security model (which follows
the previous works on off-chain channels [23, 24, 25]), only briefly and refer the
reader to Appx. A for more details.

We consider a protocol π that runs between parties from a fixed set P =
{P1, . . . , Pn}. A protocol is executed in the presence of an adversary A who can
corrupt any party Pi at the beginning of the protocol execution (so-called static
corruption). Parties and the adversary A receive their inputs from a special en-
tity – called the environment Z – which represents anything “external” to the
current protocol execution. We assume a synchronous communication network
meaning that protocol execution happens in rounds, formalized via a global ideal
functionality Fclock representing “the clock” [36]. Parties in the protocol are con-
nected with authenticated communication channels with guaranteed delivery of
exactly one round, formalized via an ideal functionality FGDC . For simplicity, we
assume that all other communication (e.g., messages sent between the adversary
and the environment) as well as local computation take zero rounds. Monetary
transactions are handled by a global ideal ledger functionality L(∆,Σ,V), where
∆ is an upper bound on the blockchain delay (number of rounds it takes to pub-
lish a transaction), Σ defines the signature scheme and V defines valid output
conditions. Furthermore, the global ledger maintains a PKI.

Generalized channel syntax. A generalized channel γ is an attribute tuple
(γ.id, γ.users, γ.cash, γ.st), where γ.id ∈ {0, 1}∗ is the channel identifier, γ.users ∈
P×P defines the identities of the channel users, γ.cash ∈ R≥0 represents the total
amount of coins locked in γ, and γ.st = (θ1, . . . , θn) is the state of γ composed
of a list of outputs. Each output θi has two attributes: the value θi.cash ∈ R≥0

representing the amount of coins and the function θi.φ : {0, 1}∗ → {0, 1} defining
the spending condition. For convenience, we use γ.otherParty : γ.users→ γ.users
defined as γ.otherParty(P ) := Q for γ.users = {P,Q}.

4.2 Ideal Functionality

We capture the desired functionality of a generalized channel protocol as an ideal
functionality F . As a first step towards defining our functionality, we informally
identify the most important security and efficiency notions of interest that a
generalized channel protocol should provide.
Consensus on creation: A generalized channel γ is successfully created only

if all parties in γ.users agree with the creation. Moreover, parties in γ.users
reach agreement whether the channel is created or not after an a-priori
bounded number of rounds.

Consensus on update: A generalized channel γ is successfully updated only
if both parties in γ.users agree with the update. Moreover, parties in γ.users
reach agreement whether the update is successful or not after an a-priori
bounded number of rounds.

Instant finality with punish: An honest party P ∈ γ.users has the guarantee
that either the current state of the channel can be enforced on the ledger,
or P can enforce a state where she gets all γ.cash coins. A state st is called
enforced on the ledger if a transaction with this state appears on the ledger.
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Optimistic update: If both parties in γ.users are honest, the update procedure
takes a constant number of rounds (independent of the blockchain delay ∆).

Having the guarantees identified above in mind, we now design our ideal func-
tionality F . It interacts with parties from the set P, with the adversary S (called
the simulator) and the ledger L(∆,Σ,V). In a bit more detail, if a party wants
to perform an action (such as open a new channel), it sends a message to F who
executes the action and informs the party about the result. The execution might
leak information to the adversary who may also influence the execution which
is modeled via the interaction with S. Finally, F observes the ledger and can
verify that a certain transaction appeared on-chain or the ownership of coins.

To keep F generic, we parameterized it by two values T and k – both of
which must be independent of the blockchain delay ∆. At a high level, the value
T upper bounds the maximal number of consecutive off-chain communication
rounds between channel users. Since different parts of the protocol might re-
quire different amount of communication rounds, the upper bound T might not
be reached in all steps. For instance, channel creation might require more com-
munication rounds than old state revocation. To this end, we give the power to
the simulator to “speed-up” the process when possible. The parameter k defines
the number of ways the channel state γ.st can be published on the ledger. As
discussed in Sec. 2, in this work we present a protocol realizing the functionality
for k = 1 (see Fig. 3). A generalized channel construction using Lightning style
revocation mechanism (see Fig. 2) would be a candidate protocol for k = 2.

We assume that the functionality maintains a set Γ of created channels
in their latest state and the corresponding funding transaction tx. We present
FL(∆,Σ,V)(T, k) formally in Fig. 4. Here we discuss each part of the functional-
ity at a high level and argue why it captures the aforementioned security and
efficiency properties identified above. We abbreviate F := FL(∆,Σ,V)(T, k).

Create. If F receives a message of the form (CREATE, γ, tidP ) from both
parties in γ.users within T rounds, it expects a channel funding transaction to
appear on the ledger L within ∆ rounds. Such a transaction must spend both
funding sources (defined by transaction identifiers tidP , tidQ) and contain one
output of the value γ.cash. If this is true, F stores this transaction together
with the channel γ in Γ and informs both parties about the successful channel
creation via the message CREATED (how this can be done within the UC model
is discussed in Appx. A). Since a CREATE message is required from both parties
and both parties receive CREATED, “consensus on creation” holds.

Close. Any of the two parties can request closure of the channel via the
message (CLOSE, id), where id identifies the channel to be closed. In case both
parties request closure within T rounds, peaceful closure is expected. This means
that a transaction, spending the channel funding transaction and whose output
corresponds to the latest channel state γ.st, should appear on L within∆ rounds.
If only one of the parties requests closing, F executes the ForceClose subproce-
dure in which case such transaction is supposed to appear on L within 3∆ rounds
modelling possible dispute resolution. In both cases, if the funding transaction
is not spent before a certain round, an ERROR is returned to both users.
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Update. The channel update is initiated by one of the parties P (called the

initiating party) via a message (UPDATE, id , θ⃗, tstp). The parameter id identifies

the channel to be updated, θ⃗ represents the new channel state and tstp denotes
the number of rounds needed by the parties to set up off-chain applications (e.g.,
new channels or fair two-party computation) that are being built on top of the
channel via this update request. The update is structured into two phases: (i)
the prepare phase, and (ii) the revocation phase. Intuitively, the prepare phase
models the fact that both parties first agree on the new channel state and get
time to set up the off-chain applications on top of this new state. The revocation
phase models the fact that an update is only completed once the two parties
invalidate the previous channel state. We detail the two phases in the following.

The prepare phase starts when F receives a vector of transaction identifiers
⃗tid = (tid1, . . . , tidk) from S.7 In the optimistic case, it is completed within
3T + tstp rounds and ends when the initiating party P receives an UPDATE–OK
message from F . The setup phase can be aborted by both the initiating party
P and the other party Q. This is achieved by P not sending the SETUP–OK and
by Q not sending the UPDATE–OK message, respectively. This models two things.
Firstly, the fact that Q might not agree with the proposed update and secondly,
that setting up off-chain objects might fail in which case parties want to abort the
channel update. The abort may also result in a forceful closing of the channel via
the subprocedure ForceClose. It happens when one of the parties has sufficient
information to enforce the new state on-chain, while the other does not.

In order to complete the update, the revocation phase is executed. The func-
tionality expects to receive the REVOKE message from both parties within 2T
rounds, in which case F updates the channel state in Γ accordingly and informs
both parties about the successful update via the message UPDATED. If one of the
messages does not arrive, the subprocedure ForceClose is called.

To conclude, the possibility for forceful closing guarantees the security prop-
erty “consensus on update” as it ensures termination of the update process and
allows both parties see the state in which the channel was closed. Moreover, in
case both parties are honest, the update duration is independent of the ledger
delay ∆, hence the efficiency property “optimistic update” is satisfied.

Punish. In order to guarantee “instant finality with punishments”, parties
continuously monitor the ledger and apply the punishment mechanism if mis-
behavior is detected. This is captured by the functionality in the part “Punish”
which is executed at the end of each round. The functionality checks if a funding
transaction of some channel was spent. If yes, then it expects one of the follow-
ing to happen: (i) a punish transaction appears on L within ∆ rounds, assigning
γ.cash coins to the honest party P ∈ γ.users; or (ii) a transaction whose out-
put corresponds to the latest channel state γ.st appears on L within 2∆ rounds,
meaning that the channel is peacefully or forcefully closed. If none of the above is
true, ERROR is returned. Hence, under the condition that no ERROR was returned,
the security property “instant finality with punish” is satisfied.

7 For technical reasons, ideal functionality cannot sign transactions and thus it can
also not prepare the transaction ids (which is the task of the simulator).
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In summary, our functionality satisfies the identified security and efficiency
properties if no ERROR occurs. Otherwise, all guarantees may be lost. Hence, we
are interested only in those protocols realizing F that never output an ERROR.

Notation used in the formal description in Fig. 4. Messages sent between
parties and F have the following format: (MESSAGE TYPE, parameters). To shorten

the description, we use following arrow notation: by m
t
↪−→ P , we mean “send the

message m to party P in round t.” and by m
t←−↩ P , we mean “receive a message

m from party P in round t”. To indicate that a message should be sent/received
before/after a certain round, we use inequality symbols above the arrows. When
F expects S to set certain values (such as the vector of tid ’s during the update
process or the exact round in which a message should be sent to parties) and
it does not do so, we implicitly assume that ERROR is returned. Since we do not
aim to make any claims about privacy, we implicitly assume that every message
that F receives/sends from/to a party is directly forwarded to S. In the formal
description, we treat the channel set Γ as a function which on input id outputs
(X, tx), whereX is a set of channels s.t. for every γ ∈ X γ.id = id , if such channel
exists and ⊥ otherwise. We denote the script requiring signature of (only) P as
One–SigpkP

. Moreover, we omit several natural checks that one would expect
F to make. For example, messages with missing parameters should be ignored,
channel instruction should be accepted only from channel users, etc. We formally
define all checks as a functionality wrapper in Appx. F. Finally, we omit the read
queries that F sends to L in order to learn its state (c.f. Appx. A).

5 Adaptor Signatures

Our goal is to realize the ideal functionality for generalized channel for k = 1,
meaning that there is only one way to publish the channel state on-chain. As
explained at a high level in Sec. 2.1, we achieve our goal by utilizing an adaptor
signature scheme – a cryptographic primitive that we discuss in this section.

Adaptor signatures have been introduced by the cryptocurrency community
to tie together the authorization of a transaction and the leakage of a secret value.
An adaptor signature scheme is essentially a two-step signing algorithm bound to
a secret: first a partial signature is generated such that it can be completed only
by a party knowing a certain secret, with the complete signature revealing such
a secret. More precisely, we define an adaptor signature scheme with respect to
a digital signature scheme Σ and a hard relation R. For any statement Y ∈ LR,
a signer holding a secret key is able to produce a pre-signature w.r.t. Y on any
message m. Such pre-signature can be adapted into a valid signature on m if
and only if the adaptor knows a witness for Y . Moreover, it must be possible to
extract a witness for Y given the pre-signature and the adapted signature.

Despite the fact that adaptor signatures have been used in previous works
(e.g. [45] [31] [50]), none of these works has given a formal definition of the
adaptor signature primitive and its security. In the following, we fill this gap
and provide the first game-based formalization of adaptor signatures. As already
mentioned, Erwig et al. [28] recently extended our definition to a two-party case.
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Upon (CREATE, γ, tidP )
τ0←−↩ P , distinguish:

Both agreed: If already received (CREATE, γ, tidQ)
τ←−↩ Q, where τ0 − τ ≤ T : If tx

s.t. tx.In = (tidP , tidQ) and tx.Out = (γ.cash, φ), for some φ, appears on L in round

τ1 ≤ τ +∆+ T , set Γ (γ.id) := ({γ}, tx) and (CREATED, γ.id)
τ1
↪−→ γ.users. Else stop.

Wait for Q: Else wait if (CREATE, id)
τ≤τ0+T
←−−−−−↩ Q (in that case “Both agreed” option

is executed). If such message is not received, stop.

Upon (UPDATE, id , θ⃗, tstp)
τ0←−↩ P , parse ({γ}, tx) := Γ (id), set γ′ := γ, γ′.st := θ⃗:

1. In round τ1 ≤ τ0 + T , let S define ⃗tid s.t. | ⃗tid | = k. Then (UPDATE–REQ, id , θ⃗, tstp,
⃗tid)

τ1
↪−→ Q and (SETUP, id , ⃗tid)

τ1
↪−→ P .

2. If (SETUP–OK, id)
τ2≤τ1+tstp
←−−−−−−−↩ P , then (SETUP–OK, id)

τ3≤τ2+T
↪−−−−−−→ Q. Else stop.

3. If (UPDATE–OK, id)
τ3←−↩ Q, then (UPDATE–OK, id)

τ4≤τ3+T
↪−−−−−−→ P . Else distinguish:

– If Q honest or if instructed by S, stop (reject).
– Else set Γ (id) := ({γ, γ′}, tx), run ForceClose(id) and stop.

4. If (REVOKE, id)
τ4←−↩ P , send (REVOKE–REQ, id)

τ5≤τ4+T
↪−−−−−−→ Q.

Else set Γ (id) := ({γ, γ′}, tx), run ForceClose(id) and stop.

5. If (REVOKE, id)
τ5←−↩ Q, Γ (id) := ({γ′}, tx), send (UPDATED, id , θ⃗)

τ6≤τ5+T
↪−−−−−−→ γ.users

and stop (accept). Else set Γ (id) := ({γ, γ′}, tx), run ForceClose(id) and stop.

Upon (CLOSE, id)
τ0←−↩ P , distinguish: Both agreed: If already received (CLOSE, id)

τ←−↩ Q, where τ0− τ ≤ T , run ForceClose(id) unless both parties are honest. In this
case let ({γ}, tx) := Γ (id) and distinguish:

– If tx′, with tx′.In = tx.txid and tx′.Out = γ.st appears on L in round τ1 ≤ τ0+∆,

set Γ (id) := ⊥, send (CLOSED, id)
τ1
↪−→ γ.users and stop.

– Else output (ERROR)
τ0+∆
↪−−−→ γ.users and stop.

Wait for Q: Else wait if (CLOSE, id)
τ≤τ0+T
←−−−−−↩ Q (in that case “Both agreed” option

is executed). If such message is not received, run ForceClose(id) in round τ0 + T .
At the end of every round τ0: For each id ∈ {0, 1}∗ s.t. (X, tx) := Γ (id) ̸= ⊥, check
if L contains tx′ with tx′.In = tx.txid. If yes, then define S := {γ.st | γ ∈ X},
τ := τ0 + 2∆ and distinguish: Close: If tx′′ s.t. tx′′.In = tx′.txid and tx′′.Out ∈ S

appears on L in round τ1 ≤ τ , set Γ (id) := ⊥ and (CLOSED, id)
τ1
↪−→ γ.users if not

sent yet.
Punish: If tx′′ s.t. tx′′.In = tx′.txid and tx′′.Out = (γ.cash, One–SigpkP

) appears on

L in round τ1 ≤ τ , for P honest, set Γ (id) := ⊥, (PUNISHED, id)
τ1
↪−→ P and stop.

Error: Else (ERROR)
τ
↪−→ γ.users.

ForceClose(id): Let τ0 be the current round and (X, tx) := Γ (id). If within ∆

rounds tx is still unspent on L, then (ERROR)
τ0+∆
↪−−−→ γ.users and stop. Note that

otherwise,message m ∈ {CLOSED, PUNISHED, ERROR} is output latest in round τ0+3·∆.

Fig. 4. The ideal functionality FL(∆,Σ,V)(T, k). We abbreviate Q := γ.otherParty(P ).
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Definition 1 (Adaptor signature scheme). An adaptor signature scheme
w.r.t. a hard relation R and a signature scheme Σ = (Gen,Sign,Vrfy) consists
of four algorithms ΞR,Σ = (pSign,Adapt, pVrfy,Ext) with the following syntax:
pSignsk (m,Y ) is a PPT algorithm that on input a secret key sk, message m ∈
{0, 1}∗ and statement Y ∈ LR, outputs a pre-signature σ̃; pVrfypk (m,Y ; σ̃) is a
DPT algorithm that on input a public key pk, message m ∈ {0, 1}∗, statement
Y ∈ LR and pre-signature σ̃, outputs a bit b; Adapt(σ̃, y) is a DPT algorithm that
on input a pre-signature σ̃ and witness y, outputs a signature σ; and Ext(σ, σ̃, Y )
is a DPT algorithm that on input a signature σ, pre-signature σ̃ and statement
Y ∈ LR, outputs a witness y such that (Y, y) ∈ R, or ⊥.

An adaptor signature scheme ΞR,Σ must satisfy pre-signature correctness
stating that for every m ∈ {0, 1}∗ and every (Y, y) ∈ R, the following holds:

Pr

[
pVrfypk (m,Y ; σ̃) = 1,
Vrfypk (m;σ) = 1, (Y, y′) ∈ R

∣∣∣∣ (sk , pk)← Gen(1n),
σ := Adaptpk (σ̃, y),

σ̃ ← pSignsk (m,Y )
y′ := Extpk (σ, σ̃, Y )

]
=1.

The first security property, existential unforgeability under chosen message
attack for adaptor signature (aEUF–CMA security for short), protects the signer.
It is similar to EUF–CMA for digital signatures but additionally requires that
producing a forgery σ for some message m is hard even given a pre-signature on
m w.r.t. a random statement Y ∈ LR. Let us stress that allowing the adversary
to learn a pre-signature on the forgery message m is crucial since, for our appli-
cations, signature unforgeability needs to hold even in case the adversary learns
a pre-signature for m without knowing a witness for Y .

Definition 2 (Existential unforgeability). An adaptor signature scheme
ΞR,Σ is aEUF–CMA secure if for every PPT adversary A = (A1,A2) there exists
a negligible function ν such that: Pr[aSigForgeA,ΞR,Σ

(n) = 1] ≤ ν(n), where the
experiment aSigForgeA,ΞR,Σ

is defined as follows:

aSigForgeA,ΞR,Σ
(n)

1 : Q := ∅, (sk , pk)← Gen(1n)

2 : (Y, y)← GenR(1n)

3 : (m, st)← AOS(·),OpS(·,·)
1 (pk , Y )

4 : σ̃ ← pSignsk (m,Y )

5 : σ ← AOS(·),OpS(·,·)
2 (σ̃, st)

6 : return
(
m ̸∈ Q ∧ Vrfypk (m;σ)

)

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

OpS(m,Y )

1 : σ̃ ← pSignsk (m,Y )

2 : Q := Q∪ {m}
3 : return σ̃

The reason why the game computes σ̃ in step 4 (although A could obtain it
by querying OpS) is that it allows A to learn σ̃ without m being added to Q.

The second property, called pre-signature adaptability, protects the verifier.
It guarantees that any valid pre-signature w.r.t. Y (possibly produced by a
malicious signer) can be completed into a valid signature using a witness y
with (Y, y) ∈ R. Notice that this property is stronger than the pre-signature
correctness property from Def. 1, since we require that even pre-signatures that
were not produced by pSign but are valid, can be completed into valid signatures.
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Definition 3 (Pre-signature adaptability). An adaptor signature scheme
ΞR,Σ satisfies pre-signature adaptability if for any message m ∈ {0, 1}∗, any
statement/witness pair (Y, y) ∈ R, any public key pk and any pre-signature
σ̃ ∈ {0, 1}∗ with pVrfypk (m,Y ; σ̃) = 1, we have Vrfypk (m;Adapt(σ̃, y)) = 1.

The last property that we are interested in is witness extractability which
protects the signer. Informally, it guarantees that a valid signature/pre-signatue
pair (σ, σ̃) for message/statement (m,Y ) can be used to extract a witness y for
Y . Hence a malicious verifier cannot use a pre-signature σ̃ to produce a valid
signature σ without revealing a witness for Y 8.

Definition 4 (Witness extractability). An adaptor signature scheme ΞR,Σ

is witness extractable if for every PPT adversary A = (A1,A2), there exists a
negligible function ν such that the following holds: Pr[aWitExtA,ΞR,Σ

(n) = 1] ≤
ν(n), where the experiment aWitExtA,ΞR,Σ

is defined as follows

aWitExtA,ΞR,Σ
(n)

1 : Q := ∅, (sk , pk)← Gen(1n)

2 : (m,Y, st)← AOS(·),OpS(·,·)
1 (pk)

3 : σ̃ ← pSignsk (m,Y )

4 : σ ← AOS(·),OpS(·,·)
2 (σ̃, st)

5 : return ((Y,Extpk (σ, σ̃, Y )) ̸∈ R ∧m ̸∈ Q ∧ Vrfypk (m;σ))

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

OpS(m,Y )

1 : σ̃ ← pSignsk (m,Y )

2 : Q := Q∪ {m}
3 : return σ̃

Let us stress that while the experiment aWitExt looks fairly similar to the
experiment aSigForge, there is one crucial difference; namely, the adversary is
allowed to choose the forgery statement Y . Hence, we can assume that they
know a witness for Y so they can generate a valid signature on the forgery
message m. However, this is not sufficient to win the experiment. The adversary
wins only if the valid signature does not reveal a witness for Y .

Definition 5. An adaptor signature scheme ΞR,Σ is secure, if it is aEUF–CMA
secure, pre-signature adaptable and witness extractable.

Note that none of the security definitions explicitly states that pre-signatures
are unforgeable. However, it is implied by the definitions as we discuss in Appx. D.

5.1 ECDSA-based Adaptor Signature

We now construct a provably secure adaptor signature scheme based on ECDSA
digital signatures that are commonly used by blockchains. The construction pre-
sented here is similar to the construction put forward by [50], however some

8 We note that in order to prove security for our ECDSA-based adaptors signature
scheme, the game must also check that the statement returned by the adversary is
indeed sampled from the correct space, i.e., Y ∈ LR. However, as this check is only
needed for the ECDSA-based construction we did not add this restriction to the
game.
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modifications are needed for the security proof. In addition to the ECDSA-based
adaptor signature scheme presented here, we show a scheme based on Schnorr
digital signatures, including correctness and security proofs, in Appx. B.

Recall the ECDSA signature scheme ΣECDSA = (Gen,Sign,Vrfy) for a cyclic
group G = ⟨g⟩ of prime order q. The key generation algorithm samples x←$ Zq

and outputs gx ∈ G as the public key and x as the secret key. The signing
algorithm on input a message m ∈ {0, 1}∗, samples k ←$ Zq and computes
r := f(gk) and s := k−1(H(m) + rx), where H : {0, 1}∗ → Zq is a hash function
modeled as a random oracle and f : G → Zq (i.e., f is typically defined as the
projection to the x-coordinate since in ECDSA the group G consists of elliptic
curve points). The verification algorithm on input a message m ∈ {0, 1}∗ and

a signature (r, s) verifies that f(gs
−1H(m)Xs−1r) = r. One of the properties of

the ECDSA scheme is that if (r, s) is a valid signature for m, then so is (r,−s).
Consequently, ΣECDSA does not satisfy SUF–CMA security which we need in
order to prove its security. In order to tackle this problem we build our adaptor
signature from the Positive ECDSA scheme which guarantees that if (r, s) is
a valid signature, then |s| ≤ (q − 1)/2. The positive ECDSA has already been
used in other works such as [6, 43]. This slightly modified ECDSA scheme is
not only assumed to be SUF–CMA but also prevents having two valid signatures
for the same message after the signing process, which is useful in practice, e.g.,
for threshold signature schemes based on ECDSA. As the ECDSA verification
accepts valid positive ECDSA signatures, these signatures can be used by any
blockchain that uses ECDSA, e.g., Bitcoin.

The adaptor signature scheme in [50] is presented w.r.t. a relation Rg ⊆
G× Zq defined as Rg := {(Y, y) | Y = gy}. The main idea of the construction is
that a pre-signature (r, s) for a statement Y is computed by embedding Y into
the r-component while keeping the s-component unchanged. This embedding is
rather involved, since the value s contains a product of k−1, r and the secret
key. More concretely, to compute the pre-signature for Y , the signer samples a
random k and computes K := Y k and K̃ := gk. It then uses the first value to
compute r := f(K) and sets s := k−1(H(m) + rx). To ensure that the signer
uses the same value k in K and K̃, a zero-knowledge proof that (K̃,K) ∈ LY :=
{(K̃,K, ) | ∃k ∈ Zq s.t. gk = K̃ ∧ Y k = K} is attached to the pre-signature. We
denote the prover of the NIZK as PY and the corresponding verifier as VY . The
pre-signature adaptation is done by multiplying the value s with y−1, where y
is the corresponding witness for Y . This adjusts the randomness k used in s to
ky, and hence matches with the r value.

Unfortunately, it is not clear how to prove security for the above scheme.
Ideally, we would like to reduce both the unforgeability and the witness ex-
tractability of the scheme to the strong unforgeability of positive ECDSA. More
concretely, suppose there exists a PPT adversary A that wins the aSigForge
(resp. aWitExt) experiment. Having A, we want to design a PPT adversary (also
called the simulator) S that breaks the SUF–CMA security. The main technical
challenge in both reductions is that S has to answer queries (m,Y ) to the pre-
signing oracle OpS by A. This has to be done with access to the ECDSA signing
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pSignsk (m, IY )

x := sk , (Y, πY ) := IY

k ←$ Zq, K̃ := gk

K := Y k, r := f(K)

s̃ := k−1(H(m) + rx)

π ← PY ((K̃,K), k)

return (r, s̃,K, π)

pVrfypk (m, IY ; σ̃)

X := pk , (Y, πY ) := IY

(r, s̃,K, π) := σ̃

u := H(m) · s̃−1

v := r · s̃−1

K′ := guXv

return ((IY ∈ LR)

∧ (r = f(K)) ∧ VY ((K′,K), π))

Adapt(σ̃, y)

(r, s̃,K, π) := σ̃

s := s̃ · y−1

return (r, s)

Ext(σ, σ̃, IY )

(r, s) := σ

(r̃, s̃, K, π) := σ̃

y′ := s−1 · s̃
if (IY , y′) ∈ R′

g

then return y′

else return ⊥

Fig. 5. ECDSA-based adaptor signature scheme.

oracle, but without knowledge of sk and the witness y. Thus, we need a method
to “transform” full signatures into valid pre-signatures without knowing y, which
seems to go against the aEUF–CMA-security (resp. witness extractability).

Due to this reason, we slightly modify this scheme. In particular, we modify
the hard relation for which the adaptor signature is defined. Let R′

g be a relation
whose statements are pairs (Y, π), where Y ∈ LRg

is as above, and π is a non-
interactive zero-knowledge proof of knowledge that Y ∈ LRg

. Formally, we define
R′

g := {((Y, π), y) | Y = gy ∧ Vg(Y, π) = 1} and denote by Pg the prover and by
Vg the verifier of the proof system for LRg . Clearly, due to the soundness of the
proof system, if Rg is a hard relation, then so is R′

g.
It might seem that we did not make it any easier for the reduction to learn a

witness needed for creating pre-signatures. However, we exploit the fact that we
are in the ROM and the reduction answers adversary’s random oracle queries.
Upon receiving a statement IY := (Y, π) for which it must produce a valid pre-
signature, it uses the random oracle query table to extract a witness from the
proof π. Knowing the witness y and a signature (r, s), the reduction can compute
(r, s · y) and execute the simulator of the NIZKY to produce a consistency proof
π. This concludes the protocol description and the main proof idea. We refer the
reader to Appx. C for the detailed proof of the following theorem.

Theorem 1. If the positive ECDSA signature scheme ΣECDSA is SUF–CMA-
secure and Rg is a hard relation, ΞR′

g,ΣECDSA
from Fig. 5 is a secure adaptor

signature scheme in the ROM.

6 Generalized Channel Construction

We now present a concrete protocol, denoted Π, that requires only one commit
transaction, i.e., implements the punish-then-split mechanism. This is achieved
by utilizing an adaptor signature scheme ΞR,Σ = (pSign,Adapt, pVrfy,Ext) for
signature scheme Σ = (Gen,Sign,Vrfy) used by the underlying ledger and a hard
relation R. Throughout this section, we assume that statement/witness pairs of
R are public/secret key of Σ. More precisely, we assume there exists a function
ToKey that takes as input a statement Y ∈ LR and outputs a public key pk . The
function is s.t. the distribution of (ToKey(Y ), y), for (Y, y) ← GenR, is equal to
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pkA

pkB

1. Create [TXf]
tidA−−−→
tidB←−−−

2. Create [TXc]
RA,YA−−−−−→
RB ,YB←−−−−−

3. Create [TXs]
no communication

6. Sign [TXf]
SignskA

([TXf])

−−−−−−−−→
SignskB

([TXf])

←−−−−−−−−

5. Pre-sign [TXc]
pSignskA

([TXc],YB)

−−−−−−−−−−−→
pSignskB

([TXc],YA)

←−−−−−−−−−−−

4. Sign [TXs]
SignskA

([TXs])

−−−−−−−−→
SignskB

([TXs])

←−−−−−−−−
7. Publish TXf

Fig. 6. Schematic description of the generalized channel creation protocol.

the distribution of (pk , sk)← Gen. We emphasize that both ECDSA and Schnorr
based adaptor signatures satisfy this condition as discussed in Appx. E, where
we also explain how to modify our protocol when this condition does not hold.
Our protocol consists of four subprotocols: Create, Update, Close and Punish.
We discuss each subprotocol separately at a high level here and refer the reader
to Appx. E for the pseudo-code description.

Channel creation. In order to create a channel γ, the users of the channel,
say A and B, have to agree on the body of the funding transaction [TXf], mu-
tually commit to the first channel state defined by γ.st = ((xA, One–SigpkA

),

(xB , One–SigpkB
)), and sign and publish the funding transaction TXf on the

ledger. Recall that One–Sigpk represents the script that verifies that the trans-
action is correctly signed w.r.t. the public key pk . Once TXf is published, the
channel creation is completed. Looking at Fig. 6, one can summarize the creation
process as a step-by-step creation of transaction bodies from left to right, and
then a step-by-step signature exchange on the transaction bodies from right to
left. Let us elaborate on this in more detail.

Step 1: To prepare [TXf], parties need to inform each other about their
funding sources, i.e., exchange the transaction identifiers tidA and tidB . Each
party can then locally create the body of the funding transaction [TXf] with
{tidA, tidB} as input and output requiring the signature of both A and B. Step
2: Parties can now start committing to the initial channel state. To this end, each
party P ∈ {A,B} generates a revocation public/secret pair (RP , rP )← GenR and
publishing public/secret pair (YP , yP )← GenR, and sends the public values RP ,
YP to the other party. Parties can now locally generate [TXc] which spends TXf
and can be spent by a transaction satisfying one of these conditions:

Punish A: It is correctly signed w.r.t. pkB ,ToKey(YA),ToKey(RA);
Punish B: It is correctly signed w.r.t. pkA,ToKey(YB),ToKey(RB);
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Channel state: It is correctly signed w.r.t. pkA and pkB , and at least∆ rounds
have passed since TXc was published.

Steps 3+4: Using the transaction identifier of TXc, parties can generate and
exchange signatures on the body of the split transaction TXs which spends TXc
and whose output is equal to initial state of the channel γ.st. Step 5: Parties
are now prepared to complete the committing phase by pre-signing the commit
transaction to each other. This means that party A executes the pSignskA

on
message [TXc] and statement YB and sends the pre-signature to B (analogously
for B). Step 6: If valid pre-signatures are exchanged (validity is checked using
the pVrfy algorithm), parties exchange signatures on the funding transaction and
post it on the ledger in Step 7. If the funding transaction is accepted by the
ledger, channel creation is successfully completed.

The question is what happens if one of the parties misbehaves during the
creation process by aborting or sending a malformed message (w.l.o.g. let B be
the malicious party). If the misbehavior happens before A sends her signature
on TXf (i.e., before step 6), party A can safely conclude that the creation failed
and does not need to take any action. If the misbehavior happens during step 6,
A is in a hybrid situation. She cannot post TXf on-chain as she does not have B’s
signature needed to spend tidB . However, since she already sent her signature
on TXf to B, she has no guarantee that B will not post TXf later. To resolve this
issue, our protocol instructs A to spend her output tidA. Now within ∆ rounds,
tidA is spent – either by the transaction posted by A (in which case creation
failed) or by TXf posted by B (in which case creation succeeded).

To conclude, channel creation as described above takes 5 off-chain communi-
cation rounds and up to ∆ rounds are needed to publish the funding transaction.
Our formal protocol description contains two optimizations that reduce the num-
ber of off-chain communication rounds to 3. The optimizations are based on the
observations that messages sent during steps 1 and 2 can be grouped into one
as well as the messages sent during steps 4 and 5.

Channel closure. The purpose of the closing procedure is to collaboratively
publish the latest channel state on the blockchain. The naive implementation is
to let parties publish the latest agreed upon commit transaction and thereafter
the corresponding split transaction representing the latest channel state. How-
ever, due to the punishment mechanism built-in the commit transaction, parties
have to wait for ∆ rounds after such a transaction is accepted by the ledger to
publish the split transaction. To realize our ideal functionality, we need to design
a more efficient solution eliminating the redundant waiting for honest parties.

When parties want to close a channel, they first run a “final update”. In short,
the final update preserves the latest channel state, but removes the punishment
layer. More precisely, parties agree on a new split transaction that has exactly the
same outputs as the last split transaction but spends the funding transaction TXf
directly (i.e., Steps 2+5 from Fig. 6 are skipped). Once parties jointly sign the
split transaction, they can publish it on the ledger which completes the channel
closure. If the final update fails, parties close the channel forcefully. Namely, they
first publish the latest commit transaction, wait until the time for punishments
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expires. Then they post the split transaction representing the final channel state.
It takes at most ∆ rounds to publish the commit transaction and at most 2∆
rounds to publish the split transaction once the commit transaction is accepted
which corresponds to the upper bound dictated by our ideal functionality. Since
forceful closing might also be triggered during a channel update (as we discuss
next), we define forceful closure as a separate subprocedure ForceClose.

Channel Update. To update a channel γ to a new state, given by a vector of
output scripts θ⃗, parties have to (i) agree on the new commit and split transaction
capturing the new state and (ii) invalidate the old commit transaction.

Part (i) is very similar to the agreement on the initial commit and split
transaction as described in the creation protocol (Steps 2-5 in Fig. 6). There

is one major difference coming from the fact that the new channel state θ⃗ can
contain outputs that fund other off-chain applications (such as sub-channels).9

In order to set up these applications, the identifier of the new split transaction
is needed. To this end, parties first prepare the commit (Steps 2+3) to learn
the desired identifier and set up all applications off-chain. Once this is done,
which is signaled by “SETUP–OK” and takes at most tstp rounds, parties execute
the second part of the committing phase (Steps 4+5).

To realize part (ii), in which the punishment mechanism of the old commit
transaction is activated, parties simply exchange the revocation secrets corre-
sponding to the previous commit transaction which completes the update. Note
that in this optimistic case when both parties are honest, the update is performed
entirely off-chain and takes at most 5 + tstp rounds.

We now discuss what happens if one party misbehaves during the update. As
long as none of the parties pre-signed the new commit transaction, i.e., before
Step 5, misbehavior simply implies update failure. A more problematic case
is when the misbehavior occurs after at least one of the parties pre-signed the
new commit transaction. This happens, e.g., when one party pre-signs the new
commit but the other does not; or when one party revokes the old commit and the
other does not. In each of these situations, an honest party ends up in a hybrid
state when the update is neither rejected nor accepted. In order to realize our
ideal functionality requiring consensus on update in bounded number of rounds,
our protocol instructs an honest party to ForceClose the channel. This means
that the honest party posts the latest commit transaction that both parties
agreed on to the ledger guaranteeing that TXf is spent within ∆ rounds. If the
transaction spending TXf is the new commit transaction, the channel is closed in
the updated state. Otherwise, the update fails and either the channel is closed in
the state before the update, or the punishment mechanism is activated and the
honest party gets financially compensated (as discussed in the next paragraph).

Punish. Since we are in the UTXOmodel, nothing can stop a corrupted party
from publishing an old commit transaction, thereby closing the channel in an old
state. However, the way we designed the commit transaction enables the honest
party to punish such malicious behavior and get financially compensated. If an

9 This is not the case during channel creation since we assume that the initial channel
state consists of two accounts only.
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honest party A detects that a malicious party B posted an old commit transac-
tion TXc, it can react by publishing a punishment transaction which spends TXc
and assigns all coins to A. In order to make such punishment transaction valid,
A must sign it under: (i) her secret key skA, (ii) B’s publishing secret key ȳB ,
and (iii) B’s revocation secret key r̄B . The knowledge of the revocation secret
r̄B follows from the fact that TXc was old, i.e., parties revealed their revocation
secrets to each other. The knowledge of the publishing secret ȳB follows from
the fact that it was B who published TXc. Let us elaborate on this in more de-
tail. Since TXc was accepted by the ledger, it had to include a signature of A.
The only signature A provided to B on TXc was a pre-signature w.r.t. ȲB . The
unforgeability and witness extractability properties of ΞR,Σ guarantee that the
only way B could produce a valid signature of A on TXc was by adapting the
pre-signature and hence revealing the secret key ȳB to A.

Security analysis. We now formally state our main theorem, which essentially
says that the Π protocol is a secure realization, as defined according to the UC
framework, of the F(3, 1) ideal functionality.

Theorem 2. Let Σ be a SUF–CMA secure signature scheme, R a hard relation
and ΞR,Σ a secure adaptor signature scheme. Let L(∆,Σ,V) be a ledger, where
V allows for transaction authorization w.r.t. Σ, relative time-locks and constant
number of Boolean operations ∧ and ∨. Then the protocol Π UC-realizes the
ideal functionality FL(∆,Σ,V)(3, 1).

The formal UC proof of the Theorem 2 can be found in Appx. H. Let us here
just argue at a high level, why our protocol satisfies the most complex property
defined by the ideal functionality, i.e., instant finality with punishment.

We first argue that instant finality holds after the channel creation, meaning
that each of the two parties (alone) is able to unlock her coins from a created
channel if it was never updated. The pre-signature adaptability property of ΞR,Σ

guarantees that after a successful channel creation, each party P is able to adapt
the pre-signature of the other party Q on [TXc] by using the publishing secret
value yP (corresponding to YP ). Party P can now sign [TXc] herself and post
TXc on the ledger. Since parties never signed any other transaction spending TXf,
the posted TXc will be accepted by the ledger within ∆ rounds. Note that here
we rely on the unforgeability of the signature scheme and the unforgeability of
the adaptor signature scheme. Let us stress that parties have not revealed their
revocation secrets, i.e, the values rP and rQ, to each other yet. Hardness of the
relation R implies that none of the two parties is able to use the punishment
mechanism of the published commit transaction. Thus, after ∆ rounds, P can
post the split transaction TXs on the ledger by which she unlocks her xP coins.

After a successful update, each party P possesses a pre-signature of the other
partyQ on the new commit transaction TXc and the revocation secret of the other
party on the previous commit transaction. The former implies that P is able to
complete Q’s pre-signature, sign [TXc] herself and post TXc on-chain. Assume
first that the funding transaction of the channel TXf is not spent yet, hence TXc
is accepted by the ledger within ∆ rounds. Since party Q does not know the
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revocation secret of party P corresponding to TXc, by hardness of the relation
R, the only way how TXc can be spent is by publishing TXs representing the
latest channel state. Hence, instant finality holds in this case.

Assume now that TXf is already spent and hence TXc is rejected by the ledger.
The only transaction that could have spent TXf is one of the old commit trans-
actions. This is because P never signed or pre-signed any other transaction
spending TXf. Let us denote the transaction spending TXf as TXc. Since TXc is an
old transaction P knows Q’s revocation secret rQ. Moreover, the extractability
property of the adaptor signature scheme implies that P can extract Q’s publish-
ing secret yQ from the pre-signature that she gave to Q on this transaction and
the completed signature contained in TXc. Hence, P can create a valid punish-
ment transaction spending TXc. As our protocol instructs an honest party P to
constantly monitor the blockchain and publish the punishment transaction im-
mediately if TXc appears on-chain, the punishment transaction will be accepted
by the blockchain before the relative time-lock of TXc expires. Hence, P receives
all the coins locked in the channel which is what we needed to show.

7 Applications

Our generalized channels support a variety of applications such as PCNs [53,
46, 45], payment channel hubs [55, 34], multi-path payments in PCNs [26], fi-
nancially fair two-party computation [9], channel splitting [27], virtual payment
channels [3] or watchtowers [49]. Furthermore, generalized channels prove to be
highly versatile in interoperable applications, i.e., applications that run across
multiple blockchains (e.g., for payment channels with watchtower as described
later). As generalized channels rely only on on-chain signature verification, time-
locked transactions and basic Boolean logic, they can be implemented on a multi-
tude of different blockchains, easing thus the design and execution of cross-chain
applications. Here, we first generally discuss which applications can be built on
top of generalized channels and then focus on several concrete examples.

Suitable applications. We are interested in applications that are executed
among two parties (i.e., two-party applications) and whose goal is to redistribute
coins between them. We call the initial transaction outputs holding coins of the
two parties the funding source of the application. If all outputs of the funding
source are contained in already published transactions, we say that the appli-
cation is funded directly by the ledger. If the outputs are part of a generalized
channel state, we say that the application is funded by a generalized channel.

In principle, any two-party application that can be funded directly by the un-
derlying ledger can also be funded by a generalized channel. There are, however,
two subtleties one should keep in mind. Firstly, generalized channels provide
“only” instant finality with punishment. This implies that generalized channels
are suitable for two-party applications in which parties are willing to accept fi-
nancial compensation in exchange for an off-chain state loss. Secondly, it takes
up to 3∆ rounds to publish the funding source of the application. Hence, the
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protocol implementing the application needs to adjust the dispute timings ac-
cordingly (if applicable). We summarize this statement in Remark 4 in Appx. I,
where we also explain how to add applications to a generalized channel. Here we
now discuss several concrete applications that benefit from generalized channels.

Fair two-party computation. One important example of an application that
can be built on top of generalized channels is the claim-or-refund functionality
introduced by Bentov and Kumaresan [9], and used in a series of work to realize
multiple applications over Bitcoin [41]. At a high level, claim-or-refund allows
one party, say A, to lock β coins that can be claimed by party B if she presents
a witness satisfying a condition f . After a predefined number of rounds, say t,
the payment of β coins is refunded back to A if the witness is not revealed.

In their work, Bentov and Kumaresan demonstrated how to utilize this
simple functionality to realize secure two-party protocol with penalties over a
blockchain. Hence, the fact that claim-or-refund can be built on top of general-
ized channels naturally implies that two parties can execute any such protocol
off-chain. Off-chain execution offers several advantages if both parties collab-
orate: (i) they do not have to pay fees or wait for the on-chain delay when
deploying and funding the claim-or-refund as well as when one of the parties
rightfully claims (resp. refunds) coins; (ii) they can run several simultaneous in-
stances of claim-or-refund fully off-chain, thus improving efficiency; and (iii) a
blockchain observer is oblivious to the fact that the claim-or-refund functional-
ity has been executed off-chain. In case of misbehavior during the execution of
a claim-or-refund instance, the channel punishment procedure ensures that the
honest party is financially compensated with all funds locked in the channel.

Channel splitting. A generalized channel can be split into multiple sub-
channels that can be updated independently in parallel. This idea appears al-
ready in [27] where two users A and B want to split a channel γ with coin
distribution (αA, αB) into two sub-channels γ0 and γ1 with the coin distribu-
tions (βA, βB) and (αA − βA, αB − βB) respectively.

Executing multiple applications without prior channel splitting requires all
applications to share a single funding source (i.e., that provided by the chan-
nel) and thus to be adjusted with every single channel update (i.e., even if the
update is required for a single application), which might significantly increase
the off-chain communication complexity. However, first splitting the channel into
sub-channels effectively makes the execution of applications in each sub-channel
independent of each other. For instance, two applications that benefit from chan-
nel splitting are payment channels with watchtower [49] and virtual channels [3]
– both of which rely on generalized channels, and which we discuss next.

Payment channels with watchtower. The security of existing channel con-
structions rely on the parties in a channel monitoring the blockchain to detect
misbehavior. In practice, however, it is difficult to guarantee that a party remains
always online. To tackle this, watchtowers [47, 4] are used as always-online nodes
that offer monitoring services and can act on behalf of offline parties. Recently,
Mirzaei et al. [49] proposed an extension to generalized channels which adds
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watchtower support. Their result utilizes the fact that our generalized channel
construction detaches the punishment procedure from the applications.

Virtual channels. The concept of virtual channels was first introduced in the
work of Dziembowski et al. [25] in which the authors presented a construction
over blockchains such as Ethereum, which can run Turing complete programs.
Let us shortly recall this concept. Assume Alice and Bob both have a channel
with a party Ingrid, but not with each other. A virtual channel allows Alice and
Bob to send off-chain payments to each other without having to communicate
with Ingrid for each transaction. In a recent work [3], Aumayr et al. demonstrated
that virtual payment channels are also possible over Bitcoin. Their virtual chan-
nel construction uses our generalized channels as a building block and heavily
relies on the generality of our formalization. For more details, see [3].

8 Performance Analysis

We implemented a proof of concept for our generalized channels construction,
creating the necessary Bitcoin transactions. We successfully deployed these trans-
actions on the Bitcoin testnet, demonstrating thereby the compatibility with the
current Bitcoin network. The source code is available at https://github.com/
generalized-channels/gc. For the different operations, we measure the (i)
number and (ii) byte size for off- and on-chain transactions required for the pro-
tocol. On-chain, we additionally measure the current estimated fee cost (May
2021). Note that the transaction fee in Bitcoin is dependent on the transaction
size. We compare these numbers to Lightning-based channels.

Evaluation of multiple HTLCs. Users in a PCN typically take part in sev-
eral multi-hop payments at once inside one channel. We evaluate the costs of
performing m parallel payments, over both Lightning channels (LC) and gener-
alized channels (GC). To realize multiple payments in a channel, there needs to
be 2 + m outputs: Two of which account for the balances of each user, and m
representing one payment each in a “Claim-or-Refund” contract (HTLC).

To update to a channel with m parallel payments, parties need to exchange
2+2·m transactions in LC and only 2 transactions in GC. The advantage of GC is
two-fold: The state is not duplicated and the HTLCs do not require an additional
transaction. The difference in off-chain transaction size is 706 + 2 ·m · 410 bytes
for LC compared to 695 +m · 123 bytes for GC.

In case of a dispute, the difference in on-chain cost is even more pronounced.
To punish in LC, the honest party needs to spend m+1 outputs: the one repre-
senting the balance of the malicious party and one per HTLC. This is in contrast

Table 1. Costs of lightning (LC) and generalized channels (GC) funding m HTLCs.

on-chain (dispute) off-chain (update)
# txs size (bytes) cost (USD) # txs size (bytes)

LC 2 +m 513 +m · 410 13.52 +m · 10.80 2 + 2 ·m 706 + 2 ·m · 410
GC 2 663 17.47 2 695 +m · 123
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to GC, where the honest party publishes the punishment transaction only. As a
result, the total size of on-chain transactions in the LC is 513 +m · 410 bytes,
which cost around 13.52+m ·10.80 USD. In GC, the on-chain transaction size is
663 bytes resulting in a cost of 17.47 USD. There have already been disputes for
channels with 50 active HTLCs [44]. To settle such a dispute in LC, transactions
with 21013 bytes or a cost of 553.66 USD have to be deployed. In GC, again we
only need 663 bytes or 17.47 USD. GC thus reduce the on-chain cost from linear
on m to constant in the case of a dispute as shown in Table 1.

Evaluation of channel splitting. The state duplication impacts other applica-
tions as well, e.g., channel splitting (see Sec. 7). For a LC, two commit trans-
actions need to be exchanged per update. Hence, if we split a LC into two
sub-channels, parties need to create these sub-channels for both commit trans-
actions. Moreover, for each sub-channel two commit transactions are required.
This is a total of 4 commit transactions per sub-channel. GC needs only one
commitment and one split transactions per sub-channel.

After a channel split, sub-channels are expected to behave as normal chan-
nels. If we want to split a LC sub-channel further, we would need eight commit
transactions (two for each of the four commitments) per sub-channel. Observe,
that for every recursive split of a channel, the amount of LC commit transactions
for the new subchannel doubles. For the mth split, we need 2m+1 additional com-
mit transactions in the LC setting. In the GC setting, there is no state duplica-
tion, therefore the amount of transactions per sub-channel is always one commit
and one split transaction. We reduce the complexity for additional transactions
on the mth split from exponential to constant.
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A On the Usage of the UC-Framework

To formally model the security of our construction, we use a synchronous ver-
sion of the global UC framework (GUC) [16] which extends the standard UC
framework [15] by allowing for a global setup. Since our model is essentially the
same as in [23, 24], parts of this section are taken verbatim from there.

Protocols and adversarial model. We consider a protocol π that runs between
parties from the set P = {P1, . . . , Pn}. A protocol is executed in the presence of
an adversary A that takes as input a security parameter 1n (with n ∈ N) and an
auxiliary input z ∈ {0, 1}∗, and who can corrupt any party Pi at the beginning
of the protocol execution (so-called static corruption). By corruption we mean
that A takes full control over Pi and learns its internal state. Parties and the
adversary A receive their inputs from a special entity – called the environment
Z – which represents anything “external” to the current protocol execution. The
environment also observes all outputs returned by the parties of the protocol.

Modeling time and communication. We assume a synchronous communica-
tion network, which means that the execution of the protocol happens in rounds.
Let us emphasize that the notion of rounds is just an abstraction which simplifies
our model and allows us to argue about the time complexity of our protocols
in a natural way. We follow [24], which in turn follows [36], and formalize the
notion of rounds via an ideal functionality Fclock representing “the clock”. At a
high level, the ideal functionality requires all honest parties to indicate that they
are prepared to proceed to the next round before the clock is “ticked”. We treat
the clock functionality as a global ideal functionality using the GUC model. This
means that all entities are always aware of the given round.

We assume that parties of a protocol are connected via authenticated com-
munication channels with guaranteed delivery of exactly one round. This means
that if a party P sends a message m to party Q in round t, party Q receives
this message in beginning of round t + 1. In addition, Q is sure that the mes-
sage was sent by party P . The adversary can see the content of the message
and can reorder messages that were sent in the same round. However, it can
not modify, delay or drop messages sent between parties, or insert new mes-
sages. The assumptions on the communication channels are formalized as an
ideal functionality FGDC . We refer the reader to [24] its formal description.

While the communication between two parties of a protocol takes exactly
one round, all other communication – for example, between the adversary A
and the environment Z – takes zero rounds. For simplicity, we assume that any
computation made by any entity takes zero rounds as well.

Finally, we allow our ledger channel ideal functionality to output the same
message to two parties in the same round (c.f. Fig. 4). Technically, this can
be done as follows. The functionality first outputs the message to one of the
parties, thereby loses its execution token. The functionality then waits for the
next activation to send the message to the other party. Only once the message
is sent to both parties, the ideal functionality allows the round to complete by
“ticking the clock”.
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Handling coins. We model the money mechanics offered by UTXO cryp-
tocurrencies, such as Bitcoin, via a global ideal functionality L using the GUC
model. Our functionality is parameterized by a delay parameter ∆ which upper
bounded in the maximal number of rounds it takes to publish a valid transaction,
a digital signature scheme Σ and a set V defining valid output conditions. We
require that V includes signature verification w.r.t. Σ. The functionality accepts
messages from a fixed set of parties P.

The ledger functionality L is initiated by the environment Z via the following
steps: (1) Z instructs the ledger functionality to generate public parameter of
the signature scheme pp; (2) Z instructs every party P ∈ P to generate a key
pair (skP , pkP ) and submit the public key pkP to the ledger via the message
(register, pkP ); (3) sets the initial state of the ledger meaning that it initialize a
set TX defining all published transactions.

Once initialized, the state of L is public and can be accessed by all parties
of the protocol, the adversary A and the environment Z via a read message.
Any party P ∈ P can at any time post a transaction on the ledger via the
message (post, tx). The ledger functionality waits for at most ∆ rounds (the
exact number of rounds is determined by the adversary). Thereafter, the ledger
verifies the validity of the transaction and adds it to the transaction set TX. The
formal description of the ledger functionality is presented in Fig. 7.

Let us emphasize that our ledger functionality is fairly simplified. In reality,
parties can join and leave the blockchain system dynamically. Moreover, we com-
pletely abstract from the fact that transactions are published in blocks which are
proposed by parties and the adversary. These and other features are captured
by prior works, such as [5], that provide a more accurate formalization of the
Bitcoin ledger in the UC framework [15]. However, interaction with such ledger
functionality is fairly complex. To increase the readability of our channel proto-
cols and ideal functionality, which is the main focus on our work, we decided for
this simpler ledger.

The GUC-security definition. Let π be a protocol with access to the global
ledger L(∆,Σ,V) and the global clock Fclock . The output of an environment Z
interacting with a protocol π and an adversary A on input 1n and auxiliary input

z is denoted as EXE
L(∆,Σ,V),Fclock

π,A,Z (n, z). Let ϕF be the ideal protocol for an ideal
functionality F with access to the global ledger L(∆,Σ,V) and the global clock
Fclock . This means that ϕF is a trivial protocol in which the parties simply for-
ward their inputs to the ideal functionality F . The output of an environment Z
interacting with a protocol ϕF and a adversary S (sometimes also call simulator)

on input 1n and auxiliary input z is denoted as EXE
L(∆,Σ,V),Fclock

ϕF ,S,Z (n, z).

We are now ready to state our main security definition which, informally,
says that if a protocol π UC-realizes an ideal functionality F , then any attack
that can be carried out against the real-world protocol π can also be carried out
against the ideal protocol ϕF .

Definition 6. We say that a protocol π UC-realizes an ideal functionality F
with respect to a global ledger L := L(∆,Σ,V) and a global clock Fclock if for
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Ideal Functionality L(∆,Σ,V)

The functionality accepts messages from all parties that are in the set P and maintains
a PKI for those parties. The functionality maintains the set of all accepted transactions
TX and all unspent transaction outputs UTXO.

Initialize public keys: Upon (register, pkP )
τ0←−↩ P and it is the first time P sends a

registration message, add (pkP , P ) to PKI.

Post transaction: Upon (post, tx)
τ0←−↩ P , check that |PKI| = |P|. If not, drop the

message, else wait until round τ1 ≤ τ0 + ∆ (the exact value of τ1 is determined by
the adversary). Then check if:
1. The id is unique, i.e. for all (t, tx′) ∈ TX, tx′.txid ̸= tx.txid.
2. All the inputs are unspent and the witness satisfies all the output conditions, i.e.

for each (tid , i) ∈ tx.In, there exists (t, tid , i, θ) ∈ UTXO and θ.φ(tx, t, τ1) = 1.
3. All outputs are valid, i.e. for each θ ∈ tx.Out it holds that θ.cash > 0 and θ.φ ∈ V.
4. The value of the outputs is not larger than the value of the inputs. More for-

mally, let I := {utxo := (t, tid , i, θ) | utxo ∈ UTXO ∧ (tid , i) ∈ tx.In}, then∑
θ′∈tx.Out θ

′.cash ≤
∑

utxo∈I utxo.θ.cash
5. The absolute time-lock of the transaction has expired, i.e. tx.TimeLock ≤ now.
If all the above checks return true, add (τ1, tx) to TX, remove the spent outputs
from UTXO, i.e., UTXO := UTXO \ I and add the outputs of tx to UTXO, i.e., UTXO :=
UTXO ∪ {(τ1, tx.txid, i, θi)}i∈[n] for (θ1, . . . , θn) := tx.Out. Else, ignore the message.

Read state: Upon (read)
τ0←−↩ X, where X is any entity of the system, check that

|PKI| = |P|. If not, drop the message, else (state, PKI, TX)
τ0
↪−→ X.

Fig. 7. Description of the global ledger functionality.

every adversary A there exists an adversary S such that we have{
EXEL,Fclock

π,A,Z (n, z)
}

n∈N,
z∈{0,1}∗

c
≈
{
EXEL,Fclock

ϕF ,S,Z(n, z)
}

n∈N,
z∈{0,1}∗

(where “
c
≈” denotes computational indistinguishability of distribution ensembles,

see, e.g., [32]).

To simplify exposition, we omit the session identifiers sid and the sub-session
identifiers ssid. Instead, we will use expressions like “message m is a reply to
message m′”. We believe that this approach improves readability.

B Schnorr-based Adaptor Signature

In this section we recall the Schnorr-based adaptor signature construction put
forward by Poelstra [51], and formally prove that it satisfies our security defini-
tions. Let G = ⟨g⟩ be a cyclic group of prime order q and let Rg ⊆ G× Zq be a
relation defined as Rg := {(Y, y) | Y = gy}. The adaptor signature construction
is defined with respect to the Schnorr signature scheme ΣSch for the group G and
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the relation Rg. We implicitly assume that all algorithms of the scheme (and the
adversary) are parameterized by public parameters pp := (g, q) and have access
to a random oracle H : {0, 1}∗ → Zq.

For completeness, let us briefly recall the Schnorr signature scheme ΣSch =
(Gen,Sign,Vrfy). The key generation algorithm samples x ← Zq uniformly at
random and returns X := gx ∈ G as the public key and x as the secret key. The
signing algorithm on input a message m ∈ {0, 1}∗ computes r := H(X∥gk∥m) ∈
Zq and s := k+rx ∈ Zq, for a k ← Zq chosen uniformly at random, and outputs a
signature σ := (r, s). The verification algorithm on input a message m ∈ {0, 1}∗
and signature (r, s) ∈ Zq × Zq, verifies that r = H(X∥gs ·X−r∥m).

To extend Schnorr signatures to an adaptor signature scheme, we need a
method to produce pre-signatures that depend on the statement Y and reveal
the corresponding witness y once the full signature is published. To this end, the
r-component of a pre-signature is computed asH(X∥gkY ∥m), and s is computed
as in standard Schnorr. To adapt a pre-signature into a complete signature, we
need to adjust the randomness in s to make it consistent with the randomness
k+ y used in the r-component. This is done by adding y to s, where y is a value
s.t. gy = Y . Clearly, given s and the fixed s-component, we can then efficiently
compute the witness y. We formally define the Schnorr-based adaptor signature
scheme ΞRg,ΣSch

in Fig. 8.

pSignsk (m,Y )

k ←$ Zq

r := H(X∥gkY ∥m)

s̃ := k + r · sk
return (r, s̃)

pVrfypk (m,Y ; σ̃)

(r, s̃) := σ̃

r′ := H(pk∥gs̃pk−rY ∥m)

return (r = r′)

Ext(σ, σ̃, Y )

(r, s) := σ

(r̃, s̃) := σ̃

y′ := s− s̃

if (Y, y′) ∈ R

then return y′

else return ⊥

Adapt(σ̃, y)

(r, s̃) := σ̃

s := s̃+ y

return (r, s)

Fig. 8. Schnorr-based adaptor signature scheme ΞRg,ΣSch .

Theorem 3. If the Schnorr signature scheme ΣSch is SUF–CMA-secure and Rg

is a hard relation, then ΞRg,ΣSch
from Fig. 8 is a secure adaptor signature scheme

in the ROM.

Remark 1. We note that ΣSch is SUF–CMA-secure under the assumption that the
discrete logarithm problem is hard [38]. However, since we prove the aEUF–CMA-
security of ΞRg,ΣSch

by a reduction to SUF–CMA-security of ΣSch, we state the
SUF–CMA-security of ΣSch in Theorem 3.

In order to prove Theorem 3, we reduce both the unforgeability and the witness
extractability of the adaptor signature scheme to the strong unforgeability of
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the standard Schnorr signature scheme. We first provide a high level overview
of the main technical challenges and thereafter present the full proof.

Suppose there exists a PPT adversary A that wins aSigForge (resp. aWitExt)
experiment, then we design a PPT adversary (also called the simulator) S that
breaks the SUF–CMA security. The main technical challenge in both reductions is
that S has to answer queries (m,Y ) to OpS by A. This has to be done with access
to the Schnorr signing oracle, but without knowledge of sk and the witness y.
Thus, we need a method to “transform” full signatures into valid pre-signatures
without knowing y, which seems to go against the aEUF–CMA-security (resp. wit-
ness extractability).

To address this difficulty, we will use the programmability of the random
oracle. Concretely, upon a pre-sign query by A on some messagem, the simulator
forwards this message to its own signing oracle and sends the resulting full
signature back to A. To “convince” A that the reply looks like a valid pre-
signature, we program the random oracle for RO queries made to verify the
pre-signatures. This is possible since the pre-signature and signature verification
differ only in the inputs to the hash function.

Finally, let us briefly explain why we need that the underlying signature
scheme is strongly unforgeable. In the reduction, S needs to simulate a pre-
signature on the target message m for which a successful A will later produce a
forgery. As described above, this is achieved by querying the underlying Schnorr
signature oracle on message m. When A returns a full signature for m as its
forgery, S can only use this forgery to break the strong unforgeability of Schnorr.

We are now prepared to present the full proof of Thm. 3. As a first step we
prove that our Schnorr adaptor signature scheme satisfies pre-signature adapt-
ability. In fact, we prove a slightly stronger statement; namely, that any valid
pre-signature adapts to a valid signature with probability 1.

Lemma 1 (Pre-signature adaptability). The Schnorr-based adaptor signa-
ture scheme ΞRg,ΣSch

satisfies pre-signature adaptability.

Proof. Let us fix arbitrary y ∈ Zq, m ∈ {0, 1}∗, pk ∈ G and (r, s̃) ∈ Zq×Zq. Let
us define Y := gy and s := s̃ + y. Assuming that pVrfypk (m,Y ; (r, s̃)) = 1, we
have

r = H(pk∥gs̃pk−rY ∥m)

= H(pk∥gs̃+ypk−r∥m)

= H(pk∥gspk−r∥m)

which implies that Vrfypk (m; (r, s)) = 1.

Lemma 2 (Pre-signature correctness). The Schnorr-based adaptor signa-
ture scheme ΞRg,ΣSch

satisfies pre-signature correctness.

Proof. Let us fix arbitrary x, y ∈ Zq and m ∈ {0, 1}∗, and define X := gx and
Y := gy. For σ̃ = (r, s̃) ← pSignx(m,Y ) it holds that r = H(X∥gk · Y ∥m) and
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s̃ = k + rx, for some k ∈ Zq. Since

H(X∥gs̃X−rY ∥m) = H(X∥gk+rxg−xrY ∥m) = r,

we have pVrfyX(m,Y ; σ̃) = 1. By Lemma 1, this implies that VrfyX(m,Y ;σ) = 1
for σ = (r, s) := (r, s̃+ y) = AdaptX(σ̃, y). Finally,

Ext((r, s), (r, s̃), Y ) = s− s̃ = (s̃+ y)− s̃ = y

which completes the proof.

Before we prove that the Schnorr-based adaptor signature scheme satisfies
unforgeability, we make the following simple but useful observation.

Lemma 3. For any σ := (r, s) ∈ Zq × Zq and any y ∈ Zq it holds that

Adapt(Adapt(σ, y),−y) = σ.

Proof. By definition of Adapt, for any r, s, y ∈ Zq we have

Adapt(Adapt((r, s), y),−y) = Adapt((r, s+ y),−y)
= (r, s+ y + (−y)) = (r, s)

This lemma, in particular, implies that knowing a witness y one can not only
adapt a valid pre-signature w.r.t. gy into a valid signature but also the other
way round.

Lemma 4 (aEUF–CMA security). Assuming that the Schnorr digital signa-
ture scheme ΣSch is SUF–CMA-secure and Rg is a hard relation, the adaptor
signature scheme ΞRg,ΣSch

, as defined in Fig. 8, is aEUF–CMA secure.

Before we present the formal proof, let us give some intuition about the
main ideas of the proof. Our goal is to reduce the unforgeability of the adaptor
signature scheme to the strong unforgeability of the standard Schnorr signa-
ture scheme, i.e. we assume that there exists a PPT adversary A winning the
aSigForge experiment and design a PPT adversary (also called the simulator)
S winning the strongSigForge experiment. The main technical challenge in the
reduction is the simulation of pre-sign queries. Since the reduction has access to
the Schnorr signing oracle, it may ask for a full signature on the given message.
However, it is not immediately clear how this helps to produce a pre-signature
w.r.t. a given statement without knowing a witness. In fact, this might seem to
go against the intuition that it is infeasible to transform a valid pre-signature to
a full signature and vice versa without knowing a corresponding witness.

We make use of the fact that the reduction simulates not only the sign and
pre-sign queries but also the queries to the random oracle. The main trick in sim-
ulating pre-sign queries is to simply forward the full signature to the adversary
and “convince” him that it is a valid pre-signature. In more detail, we program
the random oracle such that queries made during pre-signature verification are
answered as if they were queries made during signature verification and vice
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versa. This is possible since the pre-signature and signature verification differ
only in the string being hashed.

Let us emphasize that no oracle programming is needed for the pre-signature
on the forgery message m. This is because the statement/witness pair (Y, y) is
chosen by the reduction simulating the aSigForge experiment. The reduction can
hence ask the Schnorr signing oracle for a signature σ on the message m and
adapt it into a valid pre-signature σ̃ itself by executing Adapt(σ,−y). Now if the
adversary outputs a valid signature σ′, there are two options. Either σ′ ̸= σ,
in which case the reduction learns a valid strongSigForge forgery, or σ′ = σ, in
which case the reductions failed. However, the latter case happens only with
negligible probability since it implies that the adversary, given statement Y ,
found a witness y and hence broke the hardness of the relation Rg.

Proof. We prove the lemma by defining several game hops.
Game G0G0G0: This game, formally defined in Fig. 9, corresponds to the original

aSigForge, where the adversary A has to come up with a valid forgery for a
message m of his choice, while having access to pre-sign oracle OpS and sign
oracle OS. Since we are in the ROM, the adversary (as well as all the algorithms
of the scheme) has additionally access to a random oracle H.

Pr[G0 = 1] = Pr[aWitExtA,ΞRg,ΣSch
(n) = 1]

G0G0G0

1 : Q := ∅
2 : H := [⊥]
3 : (sk , pk)← Gen(1n)

4 : (Y, y)← GenR(1n)

5 : (m, st)← AOS,OpS,H
1 (pk , Y )

6 : σ̃ ← pSignsk (m,Y )

7 : σ ← AOS,OpS,H
2 (σ̃, st)

8 : b := Vrfypk (m;σ)

9 : return (m ̸∈ Q ∧ b)

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]←$ Zq

3 : return H[x]

OpS(m,Y )

1 : σ̃ ← pSignsk (m,Y )

2 : Q := Q∪ {m}
3 : return σ̃

Fig. 9. The formal definition of game G0G0G0.

Game G1G1G1: This game, formally defined in Fig. 10, works exactly as G0G0G0 with
the following exception. When the adversary outputs a forgery σ, the game
checks if completing the pre-signature σ̃ using the secret value y results in σ. If
yes, the game aborts.

Claim. Let Bad1 be the event that G1G1G1 aborts. Then Pr[Bad1] ≤ ν1(n), where ν1
is a negligible function in n.
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G1G1G1

1 : Q := ∅
2 : H := [⊥]
3 : (sk , pk)← Gen(1n)

4 : (Y, y)← GenR(1n)

5 : (m, st)← AOS,OpS,H
1 (pk , Y )

6 : σ̃ ← pSignsk (m,Y )

7 : σ ← AOS,OpS,H
2 (σ̃, st)

8 : if Adapt(σ̃, y) = σ

9 : Abort

10 : b := Vrfypk (m;σ)

11 : return (m ̸∈ Q ∧ b)

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]←$ Zq

3 : return H[x]

OpS(m,Y )

1 : σ̃ ← pSignsk (m,Y )

2 : Q := Q∪ {m}
3 : return σ̃

Fig. 10. The formal definition of G1G1G1.

Proof: We prove this claim using a reduction to the hardness of the relation Rg.
More concretely, we construct a simulator S breaking the hardness the relation
assuming he has access to an adversary A that causes G1G1G1 to abort with non-
negligible probability. The simulator gets a challenge Y ∗, upon which it generates
a key pair (sk , pk)← Gen(1n) in order to simulate A’s queries to the oracles H,
OpS and OS. This simulation of the oracles works as described inG1G1G1. Eventually,
upon receiving the challenge message m from A, S computes a pre-signature
σ̃ ← pSignsk (m,Y ∗) and returns the pair (σ̃, Y ∗) to the adversary who outputs
a forgery σ. Assuming that Bad1 happened (i.e. Adapt(σ̃, y) = σ), we know
that due to the correctness property, the simulator can extract y∗ by executing
Ext(σ, σ̃, Y ∗) to obtain a valid statement/witness pair for the relation Rg, i.e.
(Y ∗, y∗) ∈ Rg.

First, we note that the view of A is indistinguishable to his view in G1G1G1,
since the challenge Y ∗ is an instance of the hard relation Rg and hence equally
distributed to the public output of GenR. Hence the probability of S can breaking
the hardness of the relation is equal to the probability of the Bad1 event. By our
assuption, this is non-negligible with is the contradiction with the hardness of
Rg. ■

Since games G1G1G1 and G0G0G0 are equivalent except if event Bad1 occurs, it holds
that Pr[G0 = 1] ≤ Pr[G1 = 1] + ν1(n).

Game G2G2G2: This game, formally defined in Fig. 11, behaves like the previous
game with the only differences being in the OpS oracle. In this game, the OpS

oracle makes a copy of the list H before executing the algorithm pSignsk . Af-
terwards it extracts the randomness used during the pSignsk algorithm, and
checks if before the execution of the signing algorithm a query of the form
pk∥K∥m or pk∥K · Y ∥m was made to H by checking if H ′[pk∥K∥m] ̸= ⊥ or
H ′[pk∥K · Y ∥m] ̸= ⊥. If so the game aborts.
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G2G2G2

1 : Q := ∅
2 : H := [⊥]
3 : (sk , pk)← Gen(1n)

4 : (Y, y)← GenR(1n)

5 : (m, st)← AOS,OpS,H
1 (pk , Y )

6 : σ̃ ← pSignsk (m,Y )

7 : σ ← AOS,OpS,H
2 (σ̃, st)

8 : if Adapt(σ̃, y) = σ

9 : Abort

10 : b := Vrfypk (m;σ)

11 : return (m ̸∈ Q ∧ b)

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]←$ Zq

3 : return H[x]

OpS(m,Y )

1 : H ′ := H

2 : σ̃ ← pSignsk (m,Y )

3 : (r, s) := σ̃

4 : K := gs · pk−r

5 : if (H ′[pk∥K∥m] ̸= ⊥
6 : ∨H ′[pk∥K · Y ∥m] ̸= ⊥)
7 : Abort

8 : Q := Q∪ {m}
9 : return σ̃

Fig. 11. The formal definition of G2G2G2.

Claim. Let Bad2 be the event that G2G2G2 aborts in OpS. Then Pr[Bad2] ≤ ν2(n),
where ν2 is a negligible function in n.

Proof: We first recall that pSignsk and Signsk compute K = gk by choosing k
uniformly at random from Zq. Since A is PPT , the number of queries it can
make toH, OS and OpS is also polynomially bounded. Let l1, l2, l3 be the number
of queries made to H, OS and OpS respectively, then we have:

Pr[Bad2] = Pr[H ′[pk∥K∥m] ̸= ⊥ ∨H ′[pk∥K · Y ∥m] ̸= ⊥]

≤ 2
l1 + l2 + l3

q
=: ν2(n)

Since l1, l2, l3 are polynomial in n, ν2 is a negligible function. ■
Since games G2G2G2 and G1G1G1 are equivalent except if event Bad2 occurs, it holds

that Pr[G1 = 1] ≤ Pr[G2 = 1] + ν2(n).
Game G3G3G3: In this game, formally defined in Fig. 12, upon an OpS query,

the game produces a valid full signature σ̃ = (r, s) = (H(pk∥K∥m), k + rsk)
and adjusts the global list H as follows: It assigns the value stored at position
pk∥K∥m to H[pk∥K · Y ∥m] and samples a fresh random value for H[pk∥K∥m].
These changes make the full signature σ̃ “look like” a pre-signature to the ad-
versary, since upon querying the random oracle on pk∥K · Y ∥m, A obtains the
value H[pk∥K∥m]. The adversary can only notice the changes in this game,
in case the random oracle has been previously queried on either pk∥K∥m or
pk∥K · Y ∥m. This case has been captured in the previous game and hence it
holds that Pr[G2 = 1] = [G3 = 1].

GameG4G4G4: In this game, formally defined in Fig. 12, the pre-signature gener-
ated upon A outputting the message m is created by modifying a full signature
to a pre-signature. In other words upon receiving the full signature σ = (r, s),
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G3G3G3

1 : Q := ∅
2 : H := [⊥]
3 : (sk , pk)← Gen(1n)

4 : (Y, y)← GenR(1n)

5 : (m, st)← AOS,OpS,H
1 (pk , Y )

6 : σ̃ ← pSignsk (m,Y )

7 : σ ← AOS,OpS,H
2 (σ̃, st)

8 : if Adapt(σ̃, y) = σ

9 : Abort

10 : b := Vrfypk (m;σ)

11 : return (m ̸∈ Q ∧ b)

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]←$ Zq

3 : return H[x]

OpS(m,Y )

1 : H ′ := H

2 : σ̃ ← Signsk (m)

3 : (r, s) := σ̃

4 : K := gs · pk−r

5 : if (H ′[pk∥K∥m] ̸= ⊥
6 : ∨H ′[pk∥K · Y ∥m] ̸= ⊥)
7 : Abort

8 : x := pk∥K∥m
9 : H[pk∥K · Y ∥m] := H[x]

10 : H[x]←$ Zq

11 : Q := Q∪ {m}
12 : return σ̃

Fig. 12. The formal definition of G3G3G3.

where s = k + xr and r = H(gx∥gk∥m) and given the pair (Y, y), the game can
modify the signature to the pre-signature by setting σ̃ = Adapt(σ,−y). One way
to see this transformation is that k is modified to k′ = k − y.

G4G4G4

1 : Q := ∅
2 : H := [⊥]
3 : (sk , pk)← Gen(1n)

4 : (Y, y)← GenR(1n)

5 : (m, st)← AOS,OpS,H
1 (pk , Y )

6 : σ′ ← Signsk (m)

7 : (r, s) := σ′

8 : σ̃ := Adapt(σ,−y)

9 : σ ← AOS,OpS,H
2 (σ̃, st)

10 : if Adapt(σ̃, y) = σ

11 : Abort

12 : b := Vrfypk (m;σ)

13 : return (m ̸∈ Q ∧ b)

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]←$ Zq

3 : return H[x]

OpS(m,Y )

1 : H ′ := H

2 : σ̃ ← Signsk (m)

3 : (r, s) := σ̃

4 : K := gs · pk−r

5 : if (H ′[pk∥K∥m] ̸= ⊥
6 : ∨H ′[pk∥K · Y ∥m] ̸= ⊥)
7 : Abort

8 : x := pk∥K∥m
9 : H[pk∥K · Y ∥m] := H[x]

10 : H[x]←$ Zq

11 : Q := Q∪ {m}
12 : return σ̃

Fig. 13. The formal definition of G4G4G4.
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Since k is chosen uniformly at random and according to Lemma 3, the view
of the adversary is identical in this game and the previous game and hence it
holds that Pr[G3 = 1] = [G4 = 1].

Having shown that the transition from the original aSigForge game (gameG0G0G0)
to game G4G4G4 is indistinguishable, it remains to show that there exists a simulator
that perfectly simulates G4G4G4 and uses A = (A1,A2) to win the strongSigForge
game. In the following we concisely describe how the simulator answers oracle
queries. The formal descirption of the simulator can be found in Fig. 14.

Signing queries: Upon A querying the oracle OS on input m, S forwards m
to its oracle SignSch and forwards its response to A.

Random Oracle queries: Upon A querying the oracleH on input x, ifH[x] =
⊥, then S queries HSch(x), otherwise the simulator returns H[x].

Pre-Signing queries: 1. Upon A querying the oracle OpS on input (m,Y ),

S forwards m to its oracle SignSch and receives the signature σ̃ = (r, s)
where r = HSch(pk∥K∥m).

2. If H has been previously queried on the input (pk∥K∥m) or (pk∥K ·
Y ∥m), S aborts.

3. S programs the random oracle H such that queries of A on the input
pk∥K · Y ∥m are answered with the value of HSch(pk∥K∥m) and queries
on the input pk∥K∥m are answered with the value of HSch(pk∥K ·Y ∥m).

4. The simulator returns σ̃ to A.
Challenge Phase: 1. S chooses values (Y, y) ← GenR(1n) and runs the ad-

versary A1 on pk and Y .
2. Upon A1 outputting the message m as the challenge message, S queries

the SignSch oracle on input m. Let σ′ = (r, s) be the response, then S
runs A2 on σ̃ = (r, s− y).

3. Upon A2 outputting a forgery σ, the simulator outputs (m,σ) as its own
forgery.

We emphasize that the main difference between the simulation and G4G4G4 are
syntactical, namely instead of generating the public and secret keys and calcu-
lating the algorithm Signsk and the random oracle H, the simulator S uses its
oracles SignSch and HSch. Therefore S perfectly simulates G4G4G4.

It remains to show that the forgery output by A can be used by the simulator
to win the strongSigForge game.

Claim. (m,σ) constitutes a valid forgery in game strongSigForge.

Proof: In order to prove this claim, we have to show that the tuple (m,σ) has
not been output by the oracle SignSch before. Note that the adversary A has
not previously made a query on the challenge message m to either OpS or OS.

Hence, SignSch is only queried on m during the challenge phase. As shown in
game G1G1G1 and according to Lemma 3, the adversary outputs a forgery σ which
is equal to the signature σ′ output by SignSch during the challenge phase only
with negligible probability (in this case the simulation aborts). Hence, SignSch
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SSignSch,HSch

(pk)

1 : Q := ∅
2 : H := [⊥]
3 : (Y, y)← GenR(1n)

4 : (m, st)← AOS,OpS,H
1 (pk , Y )

5 : σ′ := SignSch(m)

6 : (r, s) := σ′

7 : σ̃ := Adapt(σ,−y)

8 : σ ← AOS,OpS,H
2 (σ̃, st)

9 : return (m,σ)

OS(m)

1 : σ := SignSch(m)

2 : (r, s) := σ

3 : K := gs · pk−r

4 : x := pk∥K∥m
5 : H[x] := HSch(x)

6 : Q := Q∪ {m}
7 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x] := HSch(x)

3 : return H[x]

OpS(m,Y )

1 : H ′ := H

2 : σ̃ := SignSch(m)

3 : (r, s) := σ̃

4 : K := gs · pk−r

5 : if H ′[pk∥K∥m] ̸= ⊥
6 : or H ′[pk∥K · Y ∥m] ̸= ⊥
7 : Abort

8 : x := pk∥K∥m
9 : H[pk∥K · Y ∥m] := HSch(x)

10 : H[x] := HSch(pk∥K · Y ∥m)

11 : Q := Q∪ {m}
12 : return σ̃

Fig. 14. The formal definition of the simulator.

has never output σ on query m before and consequently (m,σ) constitutes a
valid forgery for game strongSigForge. ■

From the gamesG0G0G0−G4G4G4 we get that Pr[G0G0G0 = 1] ≤ Pr[G4G4G4 = 1]+ν1(n)+ν2(n).
Since S provides a perfect simulation of game G4G4G4, we obtain: AdvAaSigForge ≤
AdvSstrongSigForge + ν1(n) + ν2(n).

Lemma 5 (Witness Extractability). Assuming that Schnorr digital signa-
ture scheme ΣSch is SUF–CMA-secure and Rg is a hard relation, the adaptor
signature scheme ΞRg,ΣSch

as defined in Fig. 8 is witness extractable.

Proof. Before giving the formal proof, we first provide the main intuition. In
general this proof is very similar to the proof of Lemma 4. Our goal is to re-
duce the witness extractability of the adaptor signature scheme to the strong
unforgeability of the standard Schnorr signature scheme. More concretely, under
the assumption that there exists a PPT adversary A = (A1,A2) winning the
aWitExt experiment, we design a PPT adversary S that wins the strongSigForge
experiment.

The simulation of pre-sign queries is done exactly as in the proof of Lemma
4. However, unlike in the aSigForge experiment, in aWitExt A1 outputs the pub-
lic value Y alongside the challenge message m, meaning that the game does
not choose the pair (Y, y). Therefore, S does not learn the witness y and hence
cannot transform a full signature to a pre-signature by executing Adapt(σ,−y).
Fortunately, we can do this transformation without knowledge of y by using the
same random oracle programmability as in the OpS oracle. More concretely, S
can program the random oracle such that queries made during pre-signature
verification are answered as if they were queries made during signature verifica-
tion and vice versa. In other words, the values H(gx∥K∥m) and H(gx∥KY ∥m)
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(where K = gk, gx and Y are known to the simulator) are swapped in the
random oracle.

We note that it is not possible to program the random oracle if at least one
of the values gx∥K∥m or gx∥KY ∥m have already been queried to H. However,
since A is PPT, and k is chosen uniformly at random from Zq (during the signing
and pre-signing processes) where q is exponential in n, the probability that one
of these values have previously been queried to H is negligible in the security
parameter n.

Game G0G0G0: This game, formally defined in Fig. 15, corresponds to the original
aWitExt, where the adversaryA has to come up with a valid forgery for a message
m of his choice such that extracting the secret value given the forgery and the
pre-sinature is not in relation with the corresponding public key. A has access
to oracles H, OpS and OS, and since we are in the random oracle model, we
explicitly write the random oracle code H.

G0G0G0

1 :Q := ∅
2 :H := [⊥]
3 : (sk , pk)← Gen(1n)

4 : (m,Y, st)← AOS,OpS,H
1 (pk)

5 : σ̃ ← pSignsk (m,Y )

6 : σ ← AOS,OpS,H
2 (σ̃, st)

7 : y′ := Extpk (σ, σ̃, Y )

8 : b1 := Vrfypk (m;σ)

9 : b2 := m ̸∈ Q
10 : b3 := (Y, y′) ̸∈ R

11 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Signsk (m)

2 :Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]←$ Zq

3 : return H[x]

OpS(m,Y )

1 : σ̃ ← pSignsk (m,Y )

2 :Q := Q∪ {m}
3 : return σ̃

Fig. 15. The formal definition of G0G0G0.

Game G1G1G1: This game, formally defined in Fig. 16, behaves like G0G0G0 with the
only differences being in the OpS oracle. First a copy of the list H is stored
before executing the algorithm pSignsk in the oracle OpS. Upon computing the
pre-signature, the game extracts the randomness used during the pSignsk algo-
rithm, and checks if before the execution of the signing algorithm a query of
the form pk∥K∥m or pk∥K · Y ∥m was made to H. This is done by checking if
H ′[pk∥K∥m] ̸= ⊥ or H ′[pk∥K · Y ∥m] ̸= ⊥. If so the game aborts.

Claim. Let Bad1 be the event that G1G1G1 aborts in OpS, then Pr[Bad1] ≤ ν(n),
where ν is a negligible function in n.
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G1G1G1

1 :Q := ∅
2 :H := [⊥]
3 : (sk , pk)← Gen(1n)

4 : (m,Y, st)← AOS,OpS,H
1 (pk)

5 : σ̃ ← pSignsk (m,Y )

6 : σ ← AOS,OpS,H
2 (σ̃, st)

7 : y′ := Extpk (σ, σ̃, Y )

8 : b1 := Vrfypk (m;σ)

9 : b2 := m ̸∈ Q
10 : b3 := (Y, y′) ̸∈ R

11 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Signsk (m)

2 :Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]←$ Zq

3 : return H[x]

OpS(m,Y )

1 :H ′ := H

2 : σ̃ ← pSignsk (m,Y )

3 : parse σ̃ as (r, s)

4 :K := gs · pk−r

5 : if H ′[pk∥K∥m] ̸= ⊥
6 : or H ′[pk∥K · Y ∥m] ̸= ⊥
7 : Abort

8 :Q := Q∪ {m}
9 : return σ̃

Fig. 16. The formal definition of game G0G0G0.

Proof: We first recall that pSignsk and Signsk compute K = gk by choosing k
uniformly at random from Zq. Since A is PPT, the number of queries it can make
to H, OS and OpS are also polynomially bounded. Let l1, l2, l3 be the number of
queries made to H, OS and OpS respectively, then we have:

Pr[Bad1] = Pr[H ′(pk∥K∥m) ̸= ⊥
∨H ′(pk∥K · Y ∥m) ̸= ⊥]

≤ 2
l1 + l2 + l3

q
≤ ν(n)

■
Since games G1G1G1 and G0G0G0 are equivalent except if event Bad1 occurs, it holds

that Pr[G0G0G0 = 1] ≤ Pr[G1G1G1 = 1] + ν1(n).
Game G2G2G2: In this game, formally defined in Fig. 17, upon an OpS query, the

game produces a valid full signature such that σ̃ = (r, s) = (H(pk∥K∥m), k+rsk)
and modifies the global list H as follows: It sets the value stored at position
pk∥K∥m to H[pk∥K · Y ∥m] and samples a fresh random value for H[pk∥K∥m].
These changes make the full signature σ̃ look like a pre-signature to the ad-
versary, since upon querying the random oracle on pk∥K · Y ∥m, A obtains the
value H[pk∥K∥m]. The adversary can only notice the changes in this game,
in case the random oracle has been previously queried on either pk∥K∥m or
pk∥K · Y ∥m. This case has been captured in the previous game and hence it
holds that Pr[G1G1G1 = 1] = Pr[G2G2G2 = 1].

Game G3G3G3: In this game, formally defined in Fig. 18, we apply the exact
same changes made in game G1G1G1 in oracle OpS to the challenge phase of the
game. First a copy of the list H is stored before executing the algorithm pSignsk
during the challenge phase of the game. Upon computing the pre-signature, the
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G2G2G2

1 :Q := ∅
2 :H := [⊥]
3 : (sk , pk)← Gen(1n)

4 : (m,Y, st)← AOS,OpS,H
1 (pk)

5 : σ̃ ← pSignsk (m,Y )

6 : σ ← AOS,OpS,H
2 (σ̃, st)

7 : y′ := Extpk (σ, σ̃, Y )

8 : b1 := Vrfypk (m;σ)

9 : b2 := m ̸∈ Q
10 : b3 := (Y, y′) ̸∈ R

11 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Signsk (m)

2 :Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]←$ Zq

3 : return H[x]

OpS(m,Y )

1 :H ′ := H

2 : σ̃ ← Signsk (m)

3 : parse σ̃ as (r, s)

4 :K := gs · pk−r

5 : if H ′[pk∥K∥m] ̸= ⊥
6 : or H ′[pk∥K · Y ∥m] ̸= ⊥
7 : Abort

8 : x := pk∥K∥m
9 :H[pk∥K · Y ∥m] := H[x]

10 :H[x]←$ Zq

11 :Q := Q∪ {m}
12 : return σ̃

Fig. 17. The formal definition of game G2G2G2.

game extracts the randomness used during the pSignsk algorithm, and checks if
before the execution of the pre-signing algorithm a query of the form pk∥K∥m
or pk∥K ·Y ∥m was made to H. This is done by checking if H ′[pk∥K∥m] ̸= ⊥ or
H ′[pk∥K · Y ∥m] ̸= ⊥. If so the game aborts.

Claim. Let Bad2 be the event that G2G2G2 aborts in Game3(n) during the challenge
phase, then Pr[Bad2] ≤ ν(n), where ν is a negligible function in n.

Proof: This proof is analogous to the proof of claim B. ■
Since games G3G3G3 and G2G2G2 are equivalent except if event Bad2 occurs, it holds

that Pr[G2G2G2 = 1] ≤ Pr[G3G3G3 = 1] + ν(n).

GameG4G4G4: In this game, formally defined in Fig. 19, we apply the exact same
changes made in game G2G2G2 in oracle OpS to the challenge phase of the game. As
explained before the adversary receives a full signature but by programming the
random oracle, from A’s point of view the signature looks like a pre-signature.
It holds that Pr[G4G4G4 = 1] = Pr[G3G3G3 = 1].

Having shown that the transition from the original aWitExt game (GameG0G0G0)
to GameG4G4G4 is indistinguishable, it remains to show that there exists a simulator
that perfectly simulates G4G4G4 and uses A to win the strongSigForge game. In the
following we concisely describe how the simulator answers oracle queries. The
formal simulator code can be found in Fig. 20.

Signing queries: Upon A querying the oracle OS on input m, S forwards m
to its oracle SignSch and forwards its response to A.

Random Oracle queries: Upon A querying the oracleH on input x, ifH[x] =
⊥, then S queries HSch(x), otherwise the simulator returns H[x].
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G3G3G3

1 :Q := ∅
2 :H := [⊥]
3 : (sk , pk)← Gen(1n)

4 : (m,Y, st)← AOS,OpS,H
1 (pk)

5 :H ′ := H

6 : σ̃ ← pSignsk (m,Y )

7 : parse σ̃ as (r, s)

8 :K := gs · pk−r

9 : if H ′[pk∥K∥m] ̸= ⊥
10 : or H ′[pk∥K · Y ∥m] ̸= ⊥
11 : Abort

12 : σ ← AOS,OpS,H
2 (σ̃, Y, st)

13 : y′ := Extpk (σ, σ̃, Y )

14 : b1 := Vrfypk (m;σ)

15 : b2 := m ̸∈ Q
16 : b3 := (Y, y′) ̸∈ R

17 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Signsk (m)

2 :Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]←$ Zq

3 : return H[x]

OpS(m,Y )

1 :H ′ := H

2 : σ̃ ← Signsk (m)

3 : parse σ̃ as (r, s)

4 :K := gs · pk−r

5 : if H ′[pk∥K∥m] ̸= ⊥
6 : or H ′[pk∥K · Y ∥m] ̸= ⊥
7 : Abort

8 : x := pk∥K∥m
9 :H[pk∥K · Y ∥m] := H[x]

10 :H[x]←$ Zq

11 :Q := Q∪ {m}
12 : return σ̃

Fig. 18. The formal definition of game G3G3G3.

Pre-Signing queries: 1. Upon A querying the oracle OpS on input (m,Y ),

S forwards m to its oracle SignSch and receives the signature σ̃ = (r, s)
where r = HSch(pk∥K∥m).

2. If H has been previously queried on the input (pk∥K∥m) or (pk∥K ·
Y ∥m), S aborts.

3. S programs the random oracle H such that queries of A on the input
pk∥K · Y ∥m are answered with the value of HSch(pk∥K∥m) and queries
on the input pk∥K∥m are answered with the value of HSch(pk∥K ·Y ∥m).

4. The simulator returns σ̃ to A.
Challenge Phase:

1. Upon A outputting the message and public value (m,Y ) as the challenge
message, S queries the SignSch oracle on input m. Let σ = (r, s) be the
response where r = HSch(pk∥K∥m), then S again programs the random
oracle H such that queries of A on the input pk∥K · Y ∥m are answered
with the value of HSch(pk∥K∥m) and queries on the input pk∥K∥m are
answered with the value of HSch(pk∥K · Y ∥m).

2. Upon A outputting a forgery σ, the simulator outputs (m,σ) as its own
forgery.

We emphasize that the main difference between the simulation and G4G4G4 are
syntactical, namely instead of generating the public and secret keys and calcu-

48



G4G4G4

1 :Q := ∅
2 :H := [⊥]
3 : (sk , pk)← Gen(1n)

4 : (m,Y, st)← AOS,OpS,H
1 (pk)

5 :H ′ := H

6 : σ̃ ← Signsk (m)

7 : parse σ̃ as (r, s)

8 :K := gs · pk−r

9 : if H ′[pk∥K∥m] ̸= ⊥
10 : or H ′[pk∥K · Y ∥m] ̸= ⊥
11 : Abort

12 : x := pk∥K∥m
13 :H[pk∥K · Y ∥m] := H[x]

14 :H[x]←$ Zq

15 : σ ← AOS,OpS,H
2 (σ̃, Y, st)

16 : y′ := Extpk (σ, σ̃, Y )

17 : b1 := Vrfypk (m;σ)

18 : b2 := m ̸∈ Q
19 : b3 := (Y, y′) ̸∈ R

20 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Signsk (m)

2 :Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]←$ Zq

3 : return H[x]

OpS(m,Y )

1 :H ′ := H

2 : σ̃ ← Signsk (m)

3 : parse σ̃ as (r, s)

4 :K := gs · pk−r

5 : if H ′[pk∥K∥m] ̸= ⊥
6 : or H ′[pk∥K · Y ∥m] ̸= ⊥
7 : Abort

8 : x := pk∥K∥m
9 :H[pk∥K · Y ∥m] := H[x]

10 :H[x]←$ Zq

11 :Q := Q∪ {m}
12 : return σ̃

Fig. 19. The formal definition of game G4G4G4.

lating the algorithm Signsk and the random oracle H, S uses its oracles SignSch

and HSch.

It remains to show that the signature output by A can be used by the simu-
lator to win the strongSigForge game.

Claim. (m,σ) constitutes a valid forgery in game strongSigForge.

Proof: In order to prove this claim, we have to show that the tuple (m,σ) has
not been output by the oracle SignSch before. Note that the adversary A has
not previously made a query on the challenge message m to either OpS or OS.

Hence, SignSch is only queried on m during the challenge phase. If the adversary
outputs a forgery σ which is equal to the signature σ̃ output by SignSch the
adversary loses the game because this would not be valid signature given the
programmed random oracle. Hence, A must output a valid signature σ ̸= σ̃ and
SignSch has never output σ on query m before, consequently (m,σ) constitutes
a valid forgery for game strongSigForge. ■
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SSignSch,HSch

(pk)

1 :Q := ∅
2 :H := [⊥]
3 : (sk , pk)← Gen(1n)

4 : (m,Y, st)← AOS,OpS,H
1 (pk)

5 :H ′ := H

6 : σ̃ ← SignSch(m)

7 : parse σ̃ as (r, s)

8 :K := gs · pk−r

9 : if H ′[pk∥K∥m] ̸= ⊥
10 : or H ′[pk∥K · Y ∥m] ̸= ⊥
11 : Abort

12 : x := pk∥K∥m
13 :H[pk∥K · Y ∥m]←$ HSch(x)

14 :H[x]←$ HSch(pk∥K · Y ∥m)

15 : σ ← AOS,OpS,H
2 (σ̃, Y, st)

16 : return (m,σ)

OS(m)

1 : σ ← SignSch(m)

2 : parse σ as (r, s)

3 : K := gs · pk−r

4 : x := pk∥K∥m
5 : H[x]← HSch(x)

6 :Q := Q∪ {m}
7 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]←$ HSch(x)

3 : return H[x]

OpS(m,Y )

1 :H ′ := H

2 : σ ← SignSch(m)

3 : parse σ̃ as (r, s)

4 :K := gs · pk−r

5 : if H ′[pk∥K∥m] ̸= ⊥
6 : or H ′[pk∥K · Y ∥m] ̸= ⊥
7 : Abort

8 : x := pk∥K∥m
9 : y := pk∥K · Y ∥m

10 :H[y]←$ HSch(x)

11 :H[x]←$ HSch(y)

12 :Q := Q∪ {m}
13 : return σ̃

Fig. 20. The formal definition of the simulator.

From the games G0G0G0 − G4G4G4 we get that Pr[G0G0G0 = 1] ≤ Pr[G4G4G4 = 1] + 2ν(n).
Since S provides a perfect simulation of game G4G4G4, we obtain: AdvAaSigForge ≤
AdvSstrongSigForge + 2ν(n).

C Proof of the ECDSA-based Adaptor Signature

In Section IV of the paper, we presented our ECDSA-based adaptor signature
scheme and explained the main ideas of our security proof. We now provide the
formal proof of Theorem 1 which we recall here the following completeness.

Theorem 1 Assuming that the positive ECDSA signature scheme ΣECDSA is
SUF–CMA-secure and R′

g is a hard relation, the ECDSA-based adaptor signature
scheme ΞRg,ΣECDSA

as defined in Fig. 5 is secure in ROM.

As a first step, we prove that our ECDSA-based adaptor signature scheme
satisfies pre-signature adaptability. In fact, we prove a slightly stronger state-
ment; namely, that any valid pre-signature adapts to a valid signature with
probability 1.

Lemma 6 (Pre-signature adaptability). The ECDSA-based adaptor signa-
ture scheme ΞR′

g,ΣECDSA
satisfies pre-signature adaptability.
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Proof. Let us fix arbitrary (IY , y) ∈ R′
g, m ∈ {0, 1}∗, X ∈ G and σ̃ = (r, s̃,K,

π) ∈ Zq × Zq ×G×G× {0, 1}∗. Let

K̃ := gH(m)s̃−1

Xrs̃−1

and r = f(K).

Assuming that pVrfyX(m, IY ; σ̃) = 1, we know that there exists k ∈ Zq s.t.

K̃ = gk and K = Y k for (Y, πY ) := IY . By definition of Adapt, we know that
Adapt(σ̃, y) = (r, s) for s := s̃ · y−1. Hence, we have

f(gH(m)s−1

Xrs−1

) = f((gH(m)s̃−1

Xrs̃−1

)y)

= f(K̃y) = f(K) = r.

Lemma 7 (Pre-signature correctness). The ECDSA-based adaptor signa-
ture scheme ΞRg,ΣECDSA

satisfies pre-signature correctness.

Proof. Let us fix arbitrary x, y ∈ Zq and m ∈ {0, 1}∗, and define X := gx,
Y := gy, πY ← Pg(Y ) and IY := (Y, πY ). For σ̃ = (r, s̃,K, π) ← pSignx(m, IY )

it holds that K̃ = gk, K = Y k, r = f(K) and s̃ = k−1(H(m) + rx). Set

K̃ := gH(m)s̃−1

grs̃
−1x = gk.

By correctness of NIZKY we know that VY ((K̃,K), π) = 1 and hence we have
pVrfyX(m, IY ; σ̃) = 1. By Lemma 6, this implies that VrfyX(m;σ) = 1 for σ =
(r, s) := Adapt(σ̃, y). By definition of Adapt, we know that s = s̃ · y−1 and hence

Ext((r, s), (r, s̃), IY ) = s−1 · s̃ = (s̃−1 · y−1) · s̃ = y.

Lemma 8 (aEUF–CMA security). Assuming that the positive ECDSA signa-
ture scheme ΣECDSA is SUF–CMA-secure and R′

g is a hard relation, the adaptor
signature scheme ΞRg,ΣECDSA

as defined in in Figure 6 of the paper is aEUF–CMA
secure.

Proof. We prove unforgeability for the ECDSA-based adaptor signature scheme
by reduction to strong unforgeability of positive ECDSA signatures. We consider
an adversary A who plays the aSigForge game, then we build a simulator S who
plays the strong unforgeability experiment for the ECDSA signature scheme
and uses A’s forgery in aSigForge to win its own experiment. S has access to
the signing oracle SignECDSA and the random oracle HECDSA, which it uses to
simulate oracle queries for A, namely random (H), signing (OS) and pre-signing
(OpS) queries.

The main challenges in the oracle simulations arise when simulating OpS

queries, since S can only get full signatures from its own signing oracle and
hence needs a way to transform those full signatures into pre-signatures for A.
In order to do so, the simulator faces two challenges, namely 1) S needs to learn
the witness y for statement Y for which the pre-signature is supposed to be
generated and 2) S needs to simulate the zero knowledge proof π which proves
randomness consistency in the pre-signature.
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More concretely, upon receiving a OpS query from A on input a message m
and an instance IY = (Y, πY ), the simulator queries its Sign oracle to obtain a
full signature on m. Further, S needs to learn a witness y, s.t. Y = gy, in order
to transform the full signature into a pre-signature for A. We make use of the
extractability property of the zero knowledge proof πY , in order to extract y and
consequently transform a full signature into a valid pre-signature. Additionally,
since a valid pre-signature contains a zero knowledge proof for Lexp, the simulator
has to simulate this proof without knowledge of the corresponding witness. In
order to do so, we make use of the zero knowledge property, which allows for
simulation of a proof for a statement without knowing the corresponding witness.

Game G0G0G0: This game, formally defined in Fig. 21, corresponds to the original
aSigForge game, where the adversary A has to come up with a valid forgery for
a message m of his choice, while having access to oracles H, OpS and OS. Since
we are in the random oracle model, we explicitly write the random oracle code
H. We have Pr[G0 = 1] = Pr[aWitExtA,ΞRg,ΣSch

(n) = 1].

G0G0G0

1 : Q := ∅
2 : H := [⊥]
3 : (sk , pk)← Gen(1n)

4 : (IY , y)← GenR(1n)

5 : (m, st)← AOS,OpS,H
1 (pk , IY )

6 : σ̃ ← pSignsk (m, IY )

7 : σ ← AOS,OpS,H
2 (σ̃, st)

8 : b := Vrfypk (m;σ∗)

9 : return (m ̸∈ Q ∧ b)

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]←$ Zq

3 : return H[x]

OpS(m, IY )

1 : σ̃ ← pSignsk (m, IY )

2 : Q := Q∪ {m}
3 : return σ̃

Fig. 21. The formal definition of game G0G0G0.

Game G1G1G1: This game, formally defined in Fig. 22, works exactly as G0G0G0 with
the exception that upon the adversary outputting a forgery σ∗, the game checks
if completing the pre-signature σ̃ using the witness y results in σ∗. In that case,
the game aborts.

Claim. Let Bad1 be the event that G1G1G1 aborts, then Pr[Bad1] ≤ ν(n).

Proof: This proof is analogous to the proof of G1G1G1 in Lemma 4. ■

Since games G1G1G1 and G0G0G0 are equivalent except if event Bad1 occurs, it holds
that Pr[G1G1G1 = 1] ≤ Pr[G0G0G0 = 1] + ν1(n), where ν1 is a negligible function in n.

GameG2G2G2: This game, formally defined in Fig. 23, only applies changes to the
OpS oracle as opposed to the previous game. Namely, during theOpS queries, this
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G1G1G1

1 : Q := ∅
2 : H := [⊥]
3 : (sk , pk)← Gen(1n)

4 : (IY , y)← GenR(1n)

5 : (m∗, st)← AOS,OpS,H
1 (pk , IY )

6 : σ̃ ← pSignsk (m
∗, IY )

7 : σ∗ ← AOS,OpS,H
2 (σ̃, st)

8 : if Adapt(σ̃, y) = σ∗

9 : Abort

10 : b := Vrfypk (m
∗;σ∗)

11 : return (m∗ ̸∈ Q ∧ b)

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]←$ Zq

3 : return H[x]

OpS(m, IY )

1 : σ̃ ← pSignsk (m, IY )

2 : Q := Q∪ {m}
3 : return σ̃

Fig. 22. The formal definition of game G1G1G1.

game extracts a witness y by executing the algorithm K on inputs the statement
Y , the proof πY and the list of random oracle queries H. The game aborts, if
for the extracted witness y it does not hold that ((Y, πY ), y) ∈ R′

g.

Claim. Let Bad2 be the event that G2G2G2 aborts during an OpS execution, then it
holds that Pr[Bad2] ≤ ν2(n) where ν2 is a negligible function in n.

Proof: According to the online extractor property of the zero knowledge
proof, for a witness y extracted from a proof πY of statement Y such that
Vrfy(Y, πY ) = 1, it holds that ((Y, πY ), y) ∈ R′

g except with negligible probabil-
ity in the security parameter. ■

Since games G2G2G2 and G1G1G1 are equivalent except if event Bad2 occurs, it holds
that Pr[G2G2G2 = 1] ≤ Pr[G1G1G1 = 1] + ν2(n).

Game G3G3G3: This game, formally defined in Fig. 24, extends the changes of
the previous game to the OpS oracle by first creating a valid full signature σ by
executing the Sign algorithm and then converting σ into a pre-signature using
the extracted witness y. Further, the game calculates the randomness K̃ = gk

and K = K̃y−1

from σ and simulates a zero knowledge proof πS using K̃ and K.
Due to the zero knowledge property of the zero knowledge proof, the simulator

can produce a proof πS which is computationally indistinguishable from a proof
π ← Pdh((K̃,K), k). Hence, this game is indistinguishable from the previous
game and it holds that Pr[G3G3G3 = 1] ≤ Pr[G2G2G2 = 1]+ν3(n), where ν3 is a negligible
function in n.

Game G4G4G4: In this game, which is formally defined in Fig. 25, upon receiving
the challenge message m∗ from A, the game creates a full signature by executing
the Sign algorithm and transforms the resulting signature into a pre-signature
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G2G2G2

1 : Q := ∅
2 : H := [⊥]
3 : (sk , pk)← Gen(1n)

4 : (IY , y)← GenR(1n)

5 : (m∗, st)← AOS,OpS,H
1 (pk , IY )

6 : σ̃ ← pSignsk (m
∗, IY )

7 : σ∗ ← AOS,OpS,H
2 (σ̃, st)

8 : if Adapt(σ̃, y) = σ∗

9 : Abort

10 : b := Vrfypk (m
∗;σ∗)

11 : return (m∗ ̸∈ Q ∧ b)

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]←$ Zq

3 : return H[x]

OpS(m, IY )

1 : parse IY as (Y, πY )

2 : y := K(Y, πY , H)

3 : if ((Y, πY ), y) ̸∈ R′
g

4 : Abort

5 : σ̃ ← pSignsk (m, IY )

6 : Q := Q∪ {m}
7 : return σ̃

Fig. 23. The formal definition of game G2G2G2.

G3G3G3

1 : Q := ∅
2 : H := [⊥]
3 : (sk , pk)← Gen(1n)

4 : (IY , y)← GenR(1n)

5 : (m∗, st)← AOS,OpS,H
1 (pk , IY )

6 : σ̃ ← pSignsk (m
∗, IY )

7 : σ∗ ← AOS,OpS,H
2 (σ̃, st)

8 : if Adapt(σ̃, y) = σ∗

9 : Abort

10 : b := Vrfypk (m
∗;σ∗)

11 : return (m∗ ̸∈ Q ∧ b)

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]←$ Zq

3 : return H[x]

OpS(m, IY )

1 : parse IY as (Y, πY )

2 : y := K(Y, πY , H)

3 : if ((Y, πY ), y) ̸∈ R′
g

4 : Abort

5 : σ ← Signsk (m)

6 : parse σ as (r, s)

7 : s̃ := s · y
8 : u := H(m) · s−1

9 : v := r · s−1

10 : K̃ := guXv

11 : K := K̃y−1

12 : πS ← S((K̃,K), 1)

13 : Q := Q∪ {m}

14 : return (r, s̃, K̃, πS)

Fig. 24. The formal definition of game G3G3G3.

in the same way as in the previous game during the OpS execution. Hence, the
same indistinguishability argument as in the previous game holds in this game as
well and it holds that AdvAG4G4G4

≤ AdvAG3G3G3
+ ν3(n), where ν3 is a negligible function

in n.
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G4G4G4

1 : Q := ∅
2 : H := [⊥]
3 : (sk , pk)← Gen(1n)

4 : (IY , y)← GenR(1n)

5 : (m∗, st)← AOS,OpS,H
1 (pk , IY )

6 : σ ← Signsk (m
∗, IY )

7 : parse σ as (r, s)

8 : s̃ := s · y
9 : u := H(m∗) · s−1

10 : v := r · s−1

11 : K̃ := guXv

12 : K := K̃y−1

13 : πS ← S((K̃,K), 1)

14 : σ̃ := (r, s̃, K̃, πS)

15 : σ∗ ← AOS,OpS,H
2 (σ̃, st)

16 : if Adapt(σ̃, y) = σ∗

17 : Abort

18 : b := Vrfypk (m
∗;σ∗)

19 : return (m∗ ̸∈ Q ∧ b)

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]←$ Zq

3 : return H[x]

OpS(m, IY )

1 : parse IY as (Y, πY )

2 : y := K(Y, πY , H)

3 : if ((Y, πY ), y) ̸∈ R′
g

4 : Abort

5 : σ ← Signsk (m)

6 : parse σ as (r, s)

7 : s̃ := s · y

8 : u := H(m) · s−1

9 : v := r · s−1

10 : K̃ := guXv

11 : K := K̃y−1

12 : πS ← S((K̃,K), 1)

13 : Q := Q∪ {m}

14 : return (r, s̃, K̃, πS)

Fig. 25. The formal definition of game G4G4G4.

Having shown that the transition from the original aSigForge game (Game
G0G0G0) to Game G4G4G4 is indistinguishable, it remains to show that there exists a
simulator that perfectly simulates G4G4G4 and uses A to win the strongSigForge
game. In the following we concisely describe how the simulator answers oracle
queries. The formal description of the simulator can be found in Fig. 26.

Signing queries: Upon A querying the oracle OS on input m, S forwards m
to its oracle SignECDSA and forwards its response to A.

Random Oracle queries: Upon A querying the oracleH on input x, ifH[x] =
⊥, then S queries HECDSA(x), otherwise the simulator returns H[x].

Pre-Signing queries: 1. Upon A querying the oracle OpS on input (m, IY ),
the simulator extracts y using the extractability of NIZK, forwards m to
oracle SignECDSA and parses the signature that is generated as (r, s).

2. S generates a pre-signature from (r, s) by computing s̃ := s · y.
3. Finally, S simulates a zero knowledge proof πS, proving that K and K̃

have the same exponent. The simulator outputs (r, s̃, K̃, πS).
Challenge phase: 1. S generates (IY , y)← GenR(1n) and runs A1 on IY
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2. Upon A1 outputting the message m∗ as the challenge message, S for-
wards m∗ to the oracle SignECDSA and parses the signature that is gen-
erated as (r, s).

3. The simulator generates the required pre-signature σ̃ in the same way
as during OpS queries.

4. The simulator runs A2 on σ̃ and upon getting a forgery σ∗, the simulator
outputs (m∗, σ∗) as its own forgery.

SSignECDSA,HECDSA

(pk)

1 : Q := ∅
2 : H := [⊥]
3 : (IY , y)← GenR(1n)

4 : (m∗, st)← AOS,OpS,H
1 (pk , IY )

5 : σ ← SignECDSA(m∗, IY )

6 : parse σ as (r, s)

7 : s̃ := s · y

8 : u := H(m∗) · s−1

9 : v := r · s−1

10 : K̃ := guXv

11 : K := K̃y−1

12 : πS ← S((K̃,K), 1)

13 : σ̃ := (r, s̃, K̃, πS)

14 : σ∗ ← AOS,OpS,H
2 (σ̃, st)

15 : return (m∗, σ∗)

OS(m)

1 : σ ← SignECDSA(m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]←$ HECDSA(x)

3 : return H[x]

OpS(m, IY )

1 : parse IY as (Y, πY )

2 : y := K(Y, πY , H)

3 : if ((Y, πY ), y) ̸∈ R′
g

4 : Abort

5 : σ ← Signsk (m)

6 : parse σ as (r, s)

7 : s̃ := s · y

8 : u := H(m) · s−1

9 : v := r · s−1

10 : K̃ := guXv

11 : K := K̃y−1

12 : πS ← S((K̃,K), 1)

13 : Q := Q∪ {m}

14 : return (r, s̃, K̃, πS)

Fig. 26. The formal definition of the simulator.

We emphasize that the main difference between the simulation and G4G4G4 are
syntactical, namely instead of generating the public and secret keys and calcu-
lating the algorithm Signsk and the random oracle H, the simulator S uses its
oracles SignECDSA and HECDSA.

It remains to show that the forgery output by A can be used by the simulator
to win the strongSigForge game.

Claim. (m∗, σ∗) constitutes a valid forgery in game strongSigForge.

Proof: In order to prove this claim, we have to show that the tuple (m∗, σ∗)
has not been output by the oracle SignECDSA before. Note that the adversary
A has not previously made a query on the challenge message m∗ to either OpS
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or OS. Hence, SignECDSA is only queried on m∗ during the challenge phase.
As shown in game G1G1G1, the adversary outputs a forgery σ∗ which is equal to
the signature σ output by SignECDSA during the challenge phase only with
negligible probability. Hence, SignECDSA has never output σ∗ on query m∗ before
and consequently (m∗, σ∗) constitutes a valid forgery for game strongSigForge. ■

From the games G0G0G0 −G4G4G4 we get that Pr[G0G0G0 = 1] ≤ Pr[G4G4G4 = 1] + ν1(n) +
ν2(n) + 2ν3(n). Since S provides a perfect simulation of game G4G4G4, we obtain:

AdvAaSigForge = Pr[G0G0G0 = 1]

≤ Pr[G4G4G4] + ν1(n) + ν2(n) + 2ν3(n)

≤ AdvSstrongSigForge + ν1(n) + ν2(n) + 2ν3(n).

Lemma 9 (Witness Extractability). Assuming that the positive ECDSA
scheme ΣpECDSA is SUF–CMA-secure and R′

g is a hard relation, the adaptor
signature scheme ΞR′

g,ΣpECDSA
as defined in in Figure 6 of the paper is witness

extractable.

Proof. Before providing the formal proof of witness extractability, we give the
main intuition behind this proof. In general this proof is very similar to the proof
of lemma 8. Our goal is to reduce the witness extractability of ΞR′

g,ΣpECDSA
to the

strong unforgeability of the positive ECDSA signature scheme. In other words,
assuming that there exists a PPT adversary A who wins the aWitExt experiment,
we design a PPT adversary S that wins the strongSigForge experiment.

During the reduction, the main challenge arises during the simulation of pre-
sign queries. This simulation is done exactly as in the proof of lemma 8. However,
unlike in the aSigForge experiment, in aWitExt, A outputs the statement IY for
relation R′

g alongside the challenge message m∗, meaning that the game does
not choose the pair (IY , y). Therefore, S does not learn the witness y and hence
cannot transform a full signature to a pre-signature by computing s̃ := s · y.
Fortunately, it is possible to extract y from the zero-knowledge proof embedded
in IY . After extracting y, the same approach used in order to simulate the pre-
sign queries can be taken here as well.

Game G0G0G0: This game, formally defined in Fig. 27, corresponds to the origi-
nal aWitExt game, where the adversary A has to come up with a valid signature
σ for a message m of his choice, a given pre-signature σ̃ and a given state-
ment/witness pair ((Y, πY ), y), while having access to oracles H, OpS and OS,
such that ((Y, πY ),Ext(σ, σ̃, (Y, πY ))) ̸∈ R′

g. Since we are in the random oracle
model, we explicitly write the random oracle code H. We have Pr[G0 = 1] =
Pr[aWitExtA,ΞRg,ΣSch

(n) = 1].
GameG1G1G1: This game, formally defined in Fig. 28, only applies changes to the

OpS oracle as opposed to the previous game. Namely, during theOpS queries, this
game extracts a witness y by executing the algorithm K on inputs the statement
Y , the proof πY and the list of random oracle queries H. The game aborts, if
for the extracted witness y it does not hold that ((Y, πY ), y) ∈ R′

g.
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G0G0G0

1 :Q := ∅
2 :H := [⊥]
3 : (sk , pk)← Gen(1n)

4 : (m, IY , st)← AOS,OpS,H
1 (pk)

5 : σ̃ ← pSignsk (m, IY )

6 : σ ← AOS,OpS,H
2 (σ̃, st)

7 : y′ := Ext(σ, σ̃, IY )

8 : b1 := Vrfypk (m;σ)

9 : b2 := m ̸∈ Q
10 : b3 := (IY , y′) ̸∈ R′

g

11 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Signsk (m)

2 :Q := Q∪ {m}
3 : return σ

H(x)

1 : if H(x) = ⊥
2 : H(x)←$ Zq

3 : return H(x)

OpS(m, IY )

1 : σ̃ ← pSignsk (m, IY )

2 :Q := Q∪ {m}
3 : return σ̃

Fig. 27. The formal definition of the game G0G0G0.

Claim. Let Bad1 be the event that G1G1G1 aborts during an OpS execution, then it
holds that Pr[Bad1] ≤ ν1(n), where ν1 is a negligible function in n.

Proof: According to the online extractor property of the zero knowledge
proof, for a witness y extracted from a proof πY for statement Y such that
Vrfy(Y, πY ) = 1, it holds that ((Y, πY Y ), y) ∈ R′

g except with negligible proba-
bility. ■

Since games G1G1G1 and G0G0G0 are equivalent except if event Bad1 occurs, it holds
that Pr[G0G0G0 = 1] ≤ Pr[G1G1G1 = 1] + ν1(n), where ν1 is a negligible function in n.

GameG2G2G2: This game, formally defined in Fig. 29, extends the changes toOpS

from the previous game. In the OpS execution, this game first creates a valid full
signature σ by executing the Sign algorithm and converts σ into a pre-signature
using the extracted witness y. Further, the game calculates the randomness
K̃ = gk and K = K̃y−1

from σ and simulates a zero knowledge proof πS using
K̃ and K. Due to the zero knowledge property of the zero knowledge proof,
the simulator can produce a proof πS which is indistinguishable from a proof
π ← Pdh((K̃,K), k). Hence, this game is indistinguishable from the previous
game. It holds that Pr[G1G1G1 = 1] ≤ Pr[G2G2G2 = 1] + ν2(n), where ν2 is a negligible
function in n.

Game G3G3G3: In this game, formally defined in Fig. 30, we apply the exact
same changes made in game G1G1G1 in oracle OpS to the challenge phase of the
game. During the challenge phase, this game extracts a witness y by executing
the algorithm K on inputs the statement Y , the proof πY and the list of random
oracle queries H. The game aborts, if for the extracted witness y it does not
hold that ((Y, πY ), y) ∈ R′

g.
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G1G1G1

1 :Q := ∅
2 :H := [⊥]
3 : (sk , pk)← Gen(1n)

4 : (m, IY , st)← AOS,OpS,H
1 (pk)

5 : σ̃ ← pSignsk (m, IY )

6 : σ ← AOS,OpS,H
2 (σ̃, st)

7 : y′ := Ext(σ, σ̃, IY )

8 : b1 := Vrfypk (m;σ)

9 : b2 := m ̸∈ Q
10 : b3 := (IY , y′) ̸∈ R′

g

11 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Signsk (m)

2 :Q := Q∪ {m}
3 : return σ

H(x)

1 : if H(x) = ⊥
2 : H(x)←$ Zq

3 : return H(x)

OpS(m, IY )

1 : parse IY as (Y, πY )

2 : y := K(Y, πY , H)

3 : if ((Y, πY ), y) ̸∈ R′
g

4 : Abort

5 : σ̃ ← pSignsk (m, IY )

6 :Q := Q∪ {m}
7 : return σ̃

Fig. 28. The formal definition of the game G1G1G1.

G2G2G2

1 :Q := ∅
2 :H := [⊥]
3 : (sk , pk)← Gen(1n)

4 : (m, IY , st)← AOS,OpS,H
1 (pk)

5 : σ̃ ← pSignsk (m, IY )

6 : σ ← AOS,OpS,H
2 (σ̃, st)

7 : y′ := Ext(σ, σ̃, IY )

8 : b1 := Vrfypk (m;σ)

9 : b2 := m ̸∈ Q
10 : b3 := (IY , y′) ̸∈ R′

g

11 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Signsk (m)

2 :Q := Q∪ {m}
3 : return σ

H(x)

1 : if H(x) = ⊥
2 : H(x)←$ Zq

3 : return H(x)

OpS(m, IY )

1 : parse IY as (Y, πY )

2 : y := K(Y, πY , H)

3 : if ((Y, πY ), y) ̸∈ R′
g

4 : Abort

5 : σ ← Signsk (m)

6 : parse σ as (r, s)

7 : s̃ := s · y
8 : u := H(m) · s−1

9 : v := r · s−1

10 : K̃ := guXv

11 :K := K̃y−1

12 : πS ← S((K̃,K), 1)

13 :Q := Q∪ {m}

14 : return (r, s̃, K̃, πS)

Fig. 29. The formal definition of the game G2G2G2.

Claim. Let Bad2 be the event that G3G3G3 aborts during the challenge phase, then
it holds that Pr[Bad2] ≤ ν1(n), where ν1 is a negligible function in n.

Proof: This proof is analogous to the proof of G1G1G1 in the proof of Lemma 9. ■
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G3G3G3

1 :Q := ∅
2 :H := [⊥]
3 : (sk , pk)← Gen(1n)

4 : (m∗, IY , st)← AOS,OpS,H
1 (pk)

5 : parse IY as (Y, πY )

6 : y := K(Y, πY , H)

7 : if ((Y, πY ), y) ̸∈ R′
g

8 : Abort

9 : σ̃ ← pSignsk (m, IY )

10 : σ ← AOS,OpS,H
2 (σ̃, st)

11 : y′ := Ext(σ∗, σ̃, IY )

12 : b1 := Vrfypk (m
∗;σ∗)

13 : b2 := m∗ ̸∈ Q
14 : b3 := ((Y, πY ), y′) ̸∈ R′

g

15 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Signsk (m)

2 :Q := Q∪ {m}
3 : return σ

H(x)

1 : if H(x) = ⊥
2 : H(x)←$ Zq

3 : return H(x)

OpS(m, IY )

1 : parse IY as (Y, πY )

2 : y := K(Y, πY , H)

3 : if ((Y, πY ), y) ̸∈ R′
g

4 : Abort

5 : σ ← Signsk (m)

6 : parse σ as (r, s)

7 : s̃ := s · y

8 : u := H(m) · s−1

9 : v := r · s−1

10 : K̃ := guXv

11 :K := K̃y−1

12 : πS ← S((K̃,K), 1)

13 :Q := Q∪ {m}

14 : return (r, s̃, K̃, πS)

Fig. 30. The formal definition of the game G3G3G3.

Since games G2G2G2 and G3G3G3 are equivalent except if event Bad2 occurs, it holds
that Pr[G2G2G2 = 1] ≤ Pr[G3G3G3 = 1] + ν1(n), where ν1 is a negligible function in n.

Game G4G4G4: In this game, formally defined in Fig. 31, we apply the exact
same changes made in game G2G2G2 in oracle OpS to the challenge phase of the
game. In the challenge phase, this game first creates a valid full signature σ
by executing the Sign algorithm and converts σ into a pre-signature using the
extracted witness y. Further, the game calculates the randomness K̃ = gk and
K = K̃y−1

from σ and simulates a zero knowledge proof πS using K̃ and K. Due
to the zero knowledge property of the zero knowledge proof, the simulator can
produce a proof πS which is indistinguishable from a proof π ← Pdh((K̃,K), k).
Hence, this game is indistinguishable from the previous game. It holds that
Pr[G3G3G3 = 1] ≤ Pr[G4G4G4 = 1] + ν3(n), where ν3 is a negligible function in n.

Having shown that the transition from the original aWitExt game (GameG0G0G0)
to GameG4G4G4 is indistinguishable, it remains to show that there exists a simulator
that perfectly simulates G4G4G4 and uses A to win the strongSigForge game. In the
following we concisely describe how the simulator answers oracle queries. The
simulator code can be found in Fig. 32.

Signing queries: Upon A querying the oracle OS on input m, S forwards m
to its oracle SignECDSA and forwards its response to A.

Random Oracle queries: Upon A querying the oracleH on input x, ifH[x] =
⊥, then S queries HECDSA(x), otherwise the simulator returns H[x].
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G4G4G4

1 :Q := ∅
2 :H := [⊥]
3 : (sk , pk)← Gen(1n)

4 : (m∗, IY , st)← AOS,OpS,H(pk)

5 : parse IY as (Y, πY )

6 : y := K(Y, πY , H)

7 : if ((Y, πY ), y) ̸∈ R′
g

8 : Abort

9 : σ ← Signsk (m
∗)

10 : parse σ as (r, s)

11 : s̃ := s · y
12 : u := H(m∗) · s−1

13 : v := r · s−1

14 : K̃ := guXv

15 :K := K̃y−1

16 : πS ← S((K̃,K), 1)

17 : σ̃ := (r, s̃, K̃, πS)

18 : σ∗ ← AOS,OpS,H(σ̃, st)

19 : y′ := Ext(σ∗, σ̃, IY )

20 : b1 := Vrfypk (m
∗;σ∗)

21 : b2 := m∗ ̸∈ Q
22 : b3 := ((Y, πY ), y′) ̸∈ R′

g

23 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Signsk (m)

2 :Q := Q∪ {m}
3 : return σ

H(x)

1 : if H(x) = ⊥
2 : H(x)←$ Zq

3 : return H(x)

OpS(m, IY )

1 : parse IY as (Y, πY )

2 : y := K(Y, πY , H)

3 : if ((Y, πY ), y) ̸∈ R′
g

4 : Abort

5 : σ ← Signsk (m)

6 : parse σ as (r, s)

7 : s̃ := s · y

8 : u := H(m) · s−1

9 : v := r · s−1

10 : K̃ := guXv

11 :K := K̃y−1

12 : πS ← S((K̃,K), 1)

13 :Q := Q∪ {m}

14 : return (r, s̃, K̃, πS)

Fig. 31. The formal definition of the game G4G4G4.

Pre-Signing queries: 1. Upon A querying the oracle OpS on input (m, IY ),
the simulator extracts y using the extractability of NIZK, forwards m to
oracle SignECDSA and parses the signature that is generated as (r, s).

2. S generates a pre-signature from (r, s) by computing s̃ := s · y.
3. Finally, S simulates a zero knowledge proof πS, proving that it knows

the exponent of K and K̃. The simulator outputs (r, s̃, K̃, π).

Challenge phase: 1. Upon A outputting the message (m∗, IY ) as the chal-
lenge message, S extracts y using the extractability of NIZK, forwards
m∗ to the oracle SignECDSA and parses the signature that is generated as
(r, s).

2. The simulator generates the required pre-signature σ̃ in the same way
as during OpS queries.

61



3. Upon A outputting a forgery σ, the simulator outputs (m∗, σ∗) as its
own forgery.

We emphasize that the main difference between the simulation and G4G4G4 are
syntactical, namely instead of generating the public and secret keys and calcu-
lating the algorithm Signsk and the random oracle H, the simulator S uses its
oracles SignECDSA and HECDSA.

SSignECDSA,HECDSA

(pk)

1 :Q := ∅
2 :H := [⊥]

3 : (m∗, IY , st)← AOS,OpS,H(pk)

4 : parse IY as (Y, πY )

5 : y := K(Y, πY , H)

6 : if ((Y, πY ), y) ̸∈ R′
g

7 : Abort

8 : σ ← SignECDSA(m∗)

9 : parse σ as (r, s)

10 : s̃ := s · y

11 : u := H(m∗) · s−1

12 : v := r · s−1

13 : K̃ := guXv

14 :K := K̃y−1

15 : πS ← S((K̃,K), 1)

16 : σ̃ := (r, s̃,K, πS)

17 : σ∗ ← AOS,OpS,H(σ̃, st)

18 : return (m∗, σ∗)

OS(m)

1 : σ ← SignECDSA(m)

2 :Q := Q∪ {m}
3 : return σ

H(x)

1 : if H(x) = ⊥
2 : H(x)←$ HECDSA(x)

3 : return H(x)

OpS(m, IY )

1 : parse IY as (Y, πY )

2 : y := K(Y, πY , H)

3 : if ((Y, πY ), y) ̸∈ R′
g

4 : Abort

5 : σ ← SignECDSA(m)

6 : parse σ as (r, s)

7 : s̃ := s · y

8 : u := H(m) · s−1

9 : v := r · s−1

10 : K̃ := guXv

11 :K := K̃y−1

12 : πS ← S((K̃,K), 1)

13 :Q := Q∪ {m}
14 : return (r, s̃,K, πS)

Fig. 32. The formal definition of the game G3G3G3.

It remains to show that the signature output by A can be used by the simu-
lator to win the strongSigForge game.

Claim. (m∗, σ∗) constitutes a valid forgery in game strongSigForge.

Proof: In order to prove this claim, we have to show that the tuple (m∗, σ∗) has
not been output by the oracle SignECDSA before. Note that the adversary A has
not previously made a query on the challenge message m∗ to either OpS or OS.

Hence, SignECDSA is only queried on m∗ during the challenge phase. If the adver-
sary outputs a forgery σ∗ which is equal to the signature σ output by SignECDSA
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during the challenge phase, the extracted y would be in relation with the given
public value IY . Hence, SignECDSA has never output σ∗ on query m∗ before
and consequently (m∗, σ∗) constitutes a valid forgery for game strongSigForge. ■

From the games G0G0G0 −G4G4G4 we get that Pr[G0G0G0 = 1] ≤ Pr[G4G4G4 = 1] + 2ν1(n) +
ν2(n) + ν3(n). Since S provides a perfect simulation of game G4G4G4, we obtain:

AdvaWitExt = Pr[G0G0G0 = 1]

≤ Pr[G4G4G4 = 1] + 2ν1(n) + ν2(n) + ν3(n)

≤ AdvSstrongSigForge + 2ν1(n) + ν2(n) + ν3(n)

which concludes the proof.

D Pre-signature unforgeability

As mentioned in Sec. 5, the definition of aEUF–CMA does not explicitly state
that pre-signatures are unforgeable. In this section, we prove that pre-signature
unforgeability is, however, implied by Def. 2. In order to do so, let us first define
pre-signature unforgeability formally.

Definition 7 (Pre-signature unforgeability). An adaptor signature scheme
ΞR,Σ satisfied pre-signature unforgeability under chosen message attack
(pEUF–CMA for short) if for every PPT adversary A there exists a negligible
function ν such that Pr[pSigForgeA,ΞR,Σ

(n) = 1] ≤ ν(n), where the experiment
pSigForgeA,ΞR,Σ

is defined as follows:

pSigForgeA,ΞR,Σ
(n)

1 : Q := ∅, (sk , pk)← Gen(1n)

2 : (Y, y)← GenR(1n)

3 : (m, σ̃)← AOS(·),OpS(·,·)(pk , Y )

4 : return
(
m ̸∈ Q ∧ pVrfypk (m,Y ; σ̃)

)

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

OpS(m,Y )

1 : σ̃ ← pSignsk (m,Y )

2 : Q := Q∪ {m}
3 : return σ̃

Lemma 10. If an adaptor signature scheme ΞR,Σ satisfies aEUF–CMA and pre-
signature adaptability, then it also satisfies pEUF–CMA.

Proof. Let A be a PPT adversary wining the pSigForge game with non-negligible
probability. We construct an adversary B that uses A to win the aSigForge game
as follows:

Challenge phase:
1. Upon receiving a public key pk and a statement Y ∈ LR from the chal-

lenger, generate a statement/witness pair (Y ′, y′)← GenR(1n).
2. Run the adversary A on pk and Y ′ to obtain (m, σ̃′).
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3. Compute σ′ := Adaptpk (σ̃
′, y′)

4. Output m to the challenger to obtain σ̃.
5. Return (m,σ′) as a valid forgery.

Signing queries: If A makes a signing query, forward to request to OS and
relay the answer.

Pre-Signing queries: If A makes a pre-signing query, forward to request to
OpS and relay the answer.

Random Oracle queries: If A makes a query to the random oracle, forward
to request to H and relay the answer.

It is easy to see that B perfectly simulates the pSigForge game to A and that
B is a PPT algorithm. If (m, σ̃′) is a valid forgery, then pVrfy(m,Y ′; σ̃) = 1 and
A did not query the signing or the pre-signing oracle onm. This implies thatm /∈
Q. Moreover, pre-signature adaptability guarantees that σ′ := Adaptpk (σ̃

′, y′) is
a valid signature on m. Hence (m,σ′) is a successful forgery. To conclude, if A
outputs a valid forgery, then so does B. Hence, the success probability of B is
non-negligible which completes the proof.

E Additional material to generalized channel protocol

We now formally describe the protocol for generalized channels Π described at
high level in Sec. 6 of the paper. The protocol internally uses a secure adap-
tor signature scheme ΞR,Σ = (pSign,Adapt, pVrfy,Ext) for the ledger signature
scheme Σ and a relation R. We assume that statement/witness pairs of R are
public/secret key of Σ. More precisely, we assume there exists a function ToKey
that takes as input a statement Y ∈ LR and outputs a public key pk . The func-
tion is s.t. the distribution of (ToKey(Y ), y), for (Y, y) ← GenR, is equal to the
distributions of (pk , sk) ← Gen. We emphasize that both ECDSA and Schnorr
based adaptor signatures, that we presented in Appx. B and Sec. 5.1, satisfy
this condition (ECDSA, the ToKey simply drops the NIZK, for Schnorr ToKey is
the identity function). We discuss how to modify our protocol if this assumption
does not hold in Remark 2 below the formal protocol description. Before we
present our protocols, we introduce some conventions.

We assume that each party P ∈ P maintains a set ΓP of all open chan-
nels together with auxiliary information about the channel (such as the funding
transaction, latest commit transaction and corresponding revocation secret etc.).
In addition to the channel set, we assume that each party maintains a set ΘP

containing all revoked commit transactions and corresponding revocation se-
cretes. Similarly to the formal description of the ideal functionality, we make use
of a arrow notation for sending and receiving messages which was explained in
Sec. 3. Moreover, our formal description excludes some natural check an honest
party should make. These checks are defined as a protocol wrapper in Appx. G.
In the protocol description, we abbreviate One–Sigpk1

∧ · · · ∧ One–Sigpkn
as

Multi–Sigpk1,...,pkn
. Moreover, we denote the script verifying that at least t

rounds have passed since the transaction was accepted by the blockchains as
CheckRelativet.
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In order to distinguish between the communication between parties and in-
put/outputs from/to the environment, we use lowercase letter for the former
and uppercase typewriter type style for the latter. So for example “CREATE”
denotes a message from the environment while “createInfo” denotes a protocol
message. To avoid code repetition, we define the generation of the the funding,
commit and split transactions as separate subprocedure, presented at the end of
the protocol description. For the same reason, we define the force closure as a
subprocedure as well.

Generalized channel protocol

Below, we abbreviate Q := γ.otherParty(P ) for P ∈ γ.users.

Create

Party P upon (CREATE, γ, tidP )
t0←−↩ Z:

1. Set id := γ.id, generate (RP , rP )← GenR, (YP , yP )← GenR and send (createInfo,

id , tidP ,RP ,YP )
t0
↪−→ Q.

2. If (createInfo, id , tidQ,RQ,YQ)
t0+1
←−−−↩ Q, create:

[TXf] := GenFund((tidP , tidQ), γ)

[TXc] := GenCom([TXf], IP , IQ)

[TXs] := GenSplit([TXc].txid∥1, γ.st)

for IP := (pkP ,RP ,YP ), IQ := (pkQ,RQ,YQ). Else stop.

3. Compute sPc ← pSignskP
([TXc],YQ), s

P
s ← SignskP

([TXs]) and send (createCom,

id , sPc , s
P
s )

t0+1
↪−−−→ Q.

4. If (createCom, id , sQc , s
Q
s )

t0+2
←−−−↩ Q, s.t. pVrfypkQ

([TXc],YP ; s
Q
c ) = 1 and

VrfypkQ
([TXs]; s

Q
s ) = 1, sPf ← SignskP

([TXf]) and send (createFund, id , sPf )
t0+2
↪−−−→ Q. Else stop.

5. If (createFund, id , sQf )
t0+3
←−−−↩ Q, s.t. VrfypkQ

([TXf]; s
Q
f ) = 1, TXf := ([TXf], {sPf , sQf })

and (post, TXf)
t0+3
↪−−−→ L. Else parse (θP , θQ) := γ.st, create tx such that tx.In :=

tidP , tx.Out := θP , tx.w ← SignpkP
([tx]) and (post, tx)

t0+3
↪−−−→ L.

6. If TXf is accepted by L in round t1 ≤ t0 +3+∆, set TXc := ([TXc], {SignskP
([TXc]),

Adapt(sQc , yP )}), TXs := ([TXs], {sPs , sQs }), store ΓP (γ.id) := (γ, TXf, (TXc,

rP ,RQ,YQ, s
P
c ), TXs) and (CREATED, id)

t1
↪−→ Z.

Update

Party P upon (UPDATE, id , θ⃗, tstp)
t0←−↩ Z

1. Generate (RP , rP )← GenR, (YP , yP )← GenR and send (updateReq, id , θ⃗, tstp,RP ,

YP )
t0
↪−→ Q.

Party Q upon (updateReq, id , θ⃗, tstp,RP ,YP )
τ0←−↩ P
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2. Generate (RQ, rQ)← GenR and (YQ, yQ)← GenR.
3. Extract TXf from ΓP (id) and

[TXc] := GenCom([TXf], IP , IQ)

[TXs] := GenSplit([TXc].txid∥1, θ⃗)

where IP := (pkP ,RP ,YP ), IQ := (pkQ,RQ,YQ).

4. Sign sQs ← SignskQ
([TXs]), send (updateInfo, id ,RQ,YQ, s

Q
s )

τ0
↪−→ P , (UPDATE–REQ,

id , θ⃗, tstp, TXs.txid)
τ0+1
↪−−−→ Z.

Party P upon (updateInfo, id , hQ, YQ, s
Q
s )

t0+2
←−−−↩ Q

5. Extract TXf from ΓQ(id) and

[TXc] := GenCom([TXf], IP , IQ)

[TXs] := GenSplit([TXc].txid∥1, θ⃗),

for IP := (pkP ,RP ,YP ) and IQ := (pkQ,RQ,YQ). If VrfypkQ
([TXs]; s

Q
s ) = 1,

(SETUP, id , TXs.txid)
t0+2
↪−−−→ Z. Else stop.

6. If (SETUP–OK, id)
t1≤t0+2+tstp
←−−−−−−−−↩ Z, compute sPc ← pSignskP

([TXc],YQ), s
P
s ←

SignskP
([TXs]) and send (updateComP, id , sPc , s

P
s )

t1
↪−→ Q. Else stop.

Party Q

7. If (updateComP, id , sPc , s
P
s )

τ1≤τ0+2+tstp
←−−−−−−−−−↩ P , s.t. pVrfypkP

([TXc],YQ; s
P
c ) = 1 and

VrfypkP
([TXs]; s

P
s ) = 1, output (SETUP–OK, id)

τ1
↪−→ Z. Else stop.

8. If (UPDATE–OK, id)
τ1←−↩ Z, pre-sign sQc ← pSign([TXc],YP ) and send (updateComQ,

id , sQc )
τ1
↪−→ P . Else send (updateNotOk, id , rQ)

τ1
↪−→ P and stop.

Party P

9. In round t1 + 2 distinguish the following cases:

– If (updateComQ, id , sQc )
t1+2
←−−−↩ Q, s.t. pVrfypkQ

([TXc],YP ; s
Q
c ) = 1, output

(UPDATE–OK, id)
t1+2
↪−−−→ Z.

– If (updateNotOk, id , rQ)
t1+2
←−−−↩ Q, s.t. (RQ, rQ) ∈ R, add ΘP (id) := ΘP (id) ∪

([TXc], rQ,YQ, s
P
c ) and stop.

– Else, execute the procedure ForceCloseP (id) and stop.

10. If (REVOKE, id)
t1+2
←−−−↩ Z, parse ΓP (id) as (γ, TXf, (TXc, r̄P , R̄Q, ȲQ, s̄

P
Com), TXs) and

update the channel space as ΓP (id) := (γ, TXf, (TXc, rP ,RQ,YQ, s
P
c ), TXs), for

TXs := ([TXs], {sPs , sQs }) and TXc := ([TXc], {SignskP
([TXc]),Adapt(s

Q
c , yP )})., and

send (revokeP, id , r̄P )
t1+2
↪−−−→ Q. Else, execute ForceCloseP (id) and stop.

Party Q
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11. Parse ΓQ(id) as (γ, TXf, (TXc, r̄Q, R̄P , ȲP , s̄
Q
Com), TXs). If (revokeP, id , r̄P )

τ1+2
←−−−↩ P ,

s.t. (R̄P , r̄P ) ∈ R, (REVOKE–REQ, id)
τ1+2
↪−−−→ Z. Else execute ForceCloseQ(id) and

stop.

12. If (REVOKE, id)
τ1+2
←−−−↩ Z as a reply, set

ΘQ(id) :=ΘQ(id) ∪ ([TXc], r̄P , ȲP , s̄
Q
Com)

ΓQ(id) :=(γ, TXf, (TXc, rQ,RP ,YP , s
Q
c ), TXs),

for TXs := ([TXs], {sPs , sQs }), TXc := ([TXc], {SignskQ
([TXc]),Adapt(s

P
c , yQ)}), and

send (revokeQ, id , r̄Q)
τ1+2
↪−−−→ P . In the next round (UPDATED, id)

τ1+3
↪−−−→ Z and stop.

Else, in round τ1 + 2, execute ForceCloseQ(id) and stop.

Party P

13. If (revokeQ, id , r̄Q)
t1+4
←−−−↩ Q s.t. (R̄Q, r̄Q) ∈ R, then set ΘP (id) := ΘP (id)∪ ([TXc],

r̄Q, ȲQ, s̄
P
Com) and (UPDATED, id)

t1+4
↪−−−→ Z. Else execute ForceCloseP (id) and stop.

Close

Party P upon (CLOSE, id)
t0←−↩ Z

1. Extract TXf and TXs from ΓP (id) and set:

[TXs] := GenSplit(TXf.txid∥1, TXs.Out)

2. Compute sPs ← SignskP
([TXs]) and send (peaceful–close, id , sPs )

t0
↪−→ Q.

3. If (peaceful–close, id , sQs )
t0+1
←−−−↩ Q s.t. VrfypkQ

([TXs]; s
Q
s ) = 1, set TXs :=

([TXs], {sPs , sQs }) and send (post, TXs)
t0+1
↪−−−→ L. Else, execute ForceCloseP (id) and

stop.
4. Let t2 ≤ t1 + ∆ be the round in which TXs is accepted by L. Set ΓP (id) := ⊥,

ΘP (id) := ⊥ and send (CLOSED, id)
t2
↪−→ Z.

Punish

Party P upon PUNISH
t0←−↩ Z:

For each id ∈ {0, 1}∗ s.t. ΘP (id) ̸= ⊥:

1. Parse ΘP (id) := {([TX(i)c ], r
(i)
Q ,Y

(i)
Q , s(i))}i∈m and extract γ from ΓP (id). If for

some i ∈ [m], there exist a transaction tx on L such that tx.txid = TX
(i)
c .txid, then

parse the witness as (sP , sQ) := tx.Witness), where VrfypkP
([tx]; sP ) = 1, and set

y
(i)
Q := Ext(sP , s

(i),Y
(i)
Q ).
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2. Define the body of the punishment transaction [TXpun] as:

TXpun.In := tx.txid∥1,
TXpun.Out := {(γ.cash, One–SigpkP

)}

3. Sign sy ← Sign
y
(i)
Q

([TXpun]), sr ← Sign
r
(i)
Q

([TXpun]), sP ← SignpkP
([TXpun]), and set

TXpun := ([TXpun], sy , sr , sP ). Then (post, TXpun)
t0
↪−→ L.

4. Let TXpun be accepted by L in round t1 ≤ t0 +∆. Set ΘP (id) := ⊥, ΓP (id) := ⊥
and output (PUNISHED, id)

t1
↪−→ Z.

Subprocedures

GenFund( ⃗tid , γ) :

Return [tx], where tx.In := ⃗tid and tx.Out :=
{(

γ.cash, Multi–Sigγ.users
)}

.

GenCom([TXf], (pkP ,RP ,YP ), (pkQ,RQ,YQ)) :
Let (c, Multi–SigpkP ,pkQ

) := TXf.Out[1] and denote

φ1 := Multi–SigToKey(RQ),ToKey(YQ),pkP
,

φ2 := Multi–SigToKey(RP ),ToKey(YP ),pkQ
,

φ3 := CheckRelative∆ ∧ Multi–SigpkP ,pkQ
.

Return [tx], where tx.In = TXf.txid∥1 and tx.Out := (c, φ1 ∨ φ2 ∨ φ3).

GenSplit(tid , θ⃗):

Return [tx], where tx.In := tid and tx.Out := θ⃗.

ForceCloseP (id):
Let t0 be the current round.

1. Extract TXc and TXs from Γ (id) and send (post, TXc)
t0
↪−→ L.

2. Let t1 ≤ t0 +∆ be the round in which TXc is accepted by the blockchain. Wait for

∆ rounds to (post, TXs)
t1+∆
↪−−−→ L.

3. Once TXs is accepted by L in round t2 ≤ t1+2∆, set ΘP (id) := ⊥ and ΓP (id) := ⊥
and output (CLOSED, id)

t2
↪−→ Z.

Remark 2. In the protocol described in this section, we assume state-
ment/witness pairs of R are valid key pairs. This assumption can be eliminated
by modifying our protocol as follows. When creating a new commit transac-
tion, each party samples the publishing pair (YP , yP ) ← GenR and chooses a
random revocation secret rP . Thereafter, it computes a hash of both secrets as
hP := H(rP ) and HP := H(yP ) and sends YP and the hash values hP , HP

to the other party. In addition, it proves in zero knowledge the consistency of
YP and HP . The punishment mechanism for party P in the commit transaction
then expects (i) a preimage of hP (ii) a preimage of HP and (iii) valid signature
w.r.t. pkQ.
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F Simplifying functionality description

The formal description of the functionality F(T, k) as presented in Fig. 4 is
simplified. Namely, several natural checks that one would expect an ideal func-
tionality to make when receiving a message are excluded from its description. For
example a functionality should ignore a message that is malformed (e.g. missing
or additional parameters), requests an update of a channel that was never cre-
ated, etc. We now define all these check using a wrapper Wchecks(T, k). Before
we present the wrapper formally, let us discuss it at a high level.

Channel creation. Upon receiving a (CREATE, γ, tid) message from a party
P , the wrapper verifies that γ is a valid generalized channel, that its identifier is
unique and that P is indeed a channel users. Moreover, the wrapper checks that
the initial state of the channel has only two outputs – each spendable by one
of the channel users only. Let us stress that while we do not support creation
of a channel that already funds some off-chain applications, the application of
interest can be added immediately after the channel creation is completed via a
channel update. Finally, the wrapper verifies that tid refers to an output that is
spendable by P and contains a sufficient amount of coins.

Channel update. Upon receiving a (UPDATE, id , θ⃗, tstp) message from a party
P , the wrapper verifies that the channel with identifier id exists and that P is
a user of this channel. Moreover, the wrapper verifies the validity of the new
state. This means that the outputs contained in the state are not distributing
more coins than what is locked the channel and conditions of the outputs are
valid scripts of the underlying ledger. Finally, the wrapper verifies that there is
no parallel update of the channel being performed and the channel is not being
closed. Let us stress that this does not imply that applications built on top of
the channel cannot be executed in parallel. This only says that all applications
built on top of the channel must be created and closed at the same time.

Channel closure. We do not allow closing requests during a channel update
or when a closure it already happening. Otherwise, the checks performed upon
receiving a (CLOSE, id) message from a party P are rather straightforward. The
wrapper verifies that the channel with identifier id exists and that P is a user
of that channel.

Functionality wrapper: Wchecks(T, k)

Below, we abbreviate F := F(T, k).
Create: Upon (CREATE, γ, tid)

τ0←−↩ P , where P ∈ γ.users, check if: Γ (γ.id) = ⊥ and
there is no channel γ′ with γ.id = γ′.id being created; γ is valid according to the
definition given in Sec. 4; γ.st = {(cP , One–SigpkP

), (cQ, One–SigpkQ
)} for cP , cQ ∈

R≥0; and there exists (t, id , i, θ) ∈ L.UTXO such that θ = (cP , One–SigP ) for (id , i) :=
tid ;a If one of the above checks fails, drop the message. Else proceed as F .
Update: Upon (UPDATE, id , θ⃗, tstp)

τ0←−↩ P check if: γ := Γ (id) ̸= ⊥; P ∈ γ.users;
there is no other update being preformed and the channel is not being closed; let
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θ⃗ = (θ1, . . . θℓ) = ((c1, φ1), . . . , (cℓ, φℓ)), then
∑

j∈[ℓ] ci = γ.cash and φj ∈ L.V for

each j ∈ [ℓ]. If not, drop the message. Else proceed as F .
Upon (SETUP–OK, id)

τ0←−↩ P check if: the message is a reply to the message (SETUP,

id , ⃗tid) sent to P in round τ ′
0 such that τ0 − τ ′

0 ≤ tstp
b. If not, drop the message. Else

proceed as F .
Upon (UPDATE–OK, id)

τ0←−↩ P , check if the message is a reply to the message (SETUP–OK,
id) sent to P in round τ0. If not, drop the message. Else proceed as F .
Upon (REVOKE, id)

τ0←−↩ P , check if the message is a reply to either the message
(UPDATE–OK, id) sent to P in round τ0 or the message (REVOKE–REQ, id) sent to P
in round τ0. If not, drop the message. Else proceed as F .
Close: Upon (CLOSE, id)

τ0←−↩ P , check if γ := Γ (id) ̸= ⊥ and P ∈ γ.users and γ is
currently not being updated or closed. If not, drop the message. Else proceed as F .
All other messages are dropped.

a In case more channels are being created at the same time, then none of the other
creation requests can use of the tid .

b What we formally mean by “reply” is explained in Appx. A.

G Simplifying the protocol descriptions

Similarly to the descriptions of our ideal functionality, the description of the
protocol Π presented in Appx. E excludes many natural checks that an honest
party should make in order to realize the ideal functionality. We define all these
check as a wrapper WchecksP which we first discuss at high level and only then
present formally.

Channel creation. When an honest party receives the message (CREATE, γ,
tidP ) from the environment, she verifies that she is a user of the channel and
that the channel is correctly formed. Moreover, she verifies that the channel
identifier is unique. Finally, she checks that the transaction identifier tidP refers
to a published output that has the right amount of coins and belongs to her. If
all the checks pass, party P behaves as described in the simplified protocol.

Similarly, when P receives the transaction identifier tidQ from the other
channel users, she first verifies that tidQ refers to an output controlled by Q.
Let us stress that skipping this check would be very dangerous for P . Malicious
party Q could try to trick honest P to fund the channel completely on her own
by proposing tidQ that refers to an output controlled by P . As P sings the initial
commit transaction, she would give her consent to spend both tidP and tidQ.

Channel update. When an honest party receives the message (UPDATE, id , θ⃗,
tstp) from the environment, i.e., P is the initiating party of the update, she
verifies that the channel exists in her channel space, that there is no other update
being performed already and that the channel is not being closed. Moreover, she
verifies that the new state is valid. This means that it is not distributing more
coins than is locked in the channel and all the output conditions are supported
by the underlying blockchain. If all checks pass, party P behaves as described in
the simplified protocol.
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Analogously, if party P receives the message (updateReq, id , θ⃗, tstp,RQ,YQ)
from some party Q, she verifies that id refers to an existing channel between P
and Q that is currently not being updated. Moreover, P verifies that that pro-
posed new state θ⃗ is valid. Thereafter, she proceeds as in the simplified protocol.

Channel closure. Upon receiving the message (CLOSE, id) from the envi-
ronment, party P verifies that there exists a channel with identifier id in her
channel space. Moreover, it checks that there is no update currently being
performed and that the channel is not being closed already.

Protocol wrapper: WchecksP

Party P ∈ P proceeds as follows:

Create: Upon (CREATE, γ, tid)
τ0←−↩ Z check if: P ∈ γ.users; ΓP (γ.id) = ⊥ and there is

no channel γ′ with γ.id = γ′.id being created; γ is valid according to the definition
given in Sec. 4; γ.st = {(cP , One–SigpkP

), (cQ, One–SigpkQ
)} for cP , cQ ∈ R≥0; there

exists (t, id , i, θ) ∈ L.UTXO such that θ = (cP , One–SigP ) for (id , i) := tid . If one of
the above checks fails, drop the message. Else proceed as in Π.

Upon (createInfo, id , tidQ, RQ, YQ)
τ0+1
←−−−↩ Q, check if: you accepted a (CREATE, γ, tid)

message in round τ0 with γ.id = id ; there exists (t, id , i, θ) ∈ L.UTXO such that
θ = (cQ, One–SigpkQ

) for (id , i) := tidQ and (cQ, One–SigpkQ
) ∈ γ.st; there is no

other channel are being created using this tidQ. If one of the above checks fails, drop
the message. Else proceed as Π.

Update: Upon (UPDATE, id , θ⃗, tstp)
τ0←−↩ Z check if: γ := ΓP (id) ̸= ⊥; there is no other

update being preformed and the channel is not being closed; let θ⃗ = (θ1, . . . θℓ) =
((c1, φ1), . . . , (cℓ, φℓ)), then

∑
j∈[ℓ] ci = γ.cash and φj ∈ L.V for each j ∈ [ℓ]. If on of

the checks fails, drop the message. Else proceed as in Π.

Upon (updateReq, id , θ⃗, tstp,RQ,YQ)
τ0←−↩ Q, check if {P,Q} = γ.users; γ := Γ (id) ̸=

⊥; there is no other update being preformed and the channel is not being closed; let
θ⃗ = (θ1, . . . θℓ) = ((c1, φ1), . . . , (cℓ, φℓ)), then

∑
j∈[ℓ] ci = γ.cash and φj ∈ L.V for

each j ∈ [ℓ]. If one of the above checks fails, drop the message. Else proceed as in Π.

Upon (SETUP–OK, id)
τ0←−↩ Z check if: the message is a reply to the message (SETUP,

id , ⃗tid) you sent in round τ ′
0 such that τ0 − τ ′

0 ≤ tstp
a. If not, drop the message. Else

proceed as in Π.

Upon (UPDATE–OK, id)
τ0←−↩ Z, check if the message is a reply to the message (SETUP–OK,

id) you sent in round τ0. If not, drop the message. Else proceed as in Π.

Upon (REVOKE, id)
τ0←−↩ Z, check if the message is a reply to either (UPDATE–OK, id) or

(REVOKE–REQ, id) you sent in round τ0. If not, drop the message. Else proceed as in
Π.
Close: Upon (CLOSE, id)

τ0←−↩ Z, check if γ := ΓP (id) ̸= ⊥ and that the channel is not
being updated or closed. If one of the checks fails, drop the message. Else proceed as
in Π.

Upon (peaceful–close, id , σQ)
τ1←−↩ Q, check if you sent (peaceful–close, id , σP )

τ1−1
↪−−−→

Q. If not, then drop the message. Else proceed as in Π.
All other messages are dropped.

a What we formally mean by “reply” is explained in Appx. A.
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H Security proof

In this section we provide a proof for Theorem 2. In our proof, we provide
the code for a simulator, that simulates the protocol ΠL(∆,Σ)(ΞR,Σ) in the
ideal world having access to the functionalities L and F . The main challenge
in providing a simulation in UC proofs usually arises from the fact that the
simulator is not given the secret inputs of the parties in the protocol, which
makes it difficult to provide a simulated transcript that is indistinguishable to
a transcript of a real protocol execution. However, in our setting, parties do
not obtain any secret inputs, but only receive commands from the environment
Z and hence the only challenge that arises during the simulation is handling
different behavior of malicious parties. For this reason, we omit the simulation
for the case where both parties are honest in the protocol. Furthermore, due to
the same reason, as long as the protocol can be simulated in the ideal world,
the ideal and real world executions are indistinguishable. We emphasize that the
security of the protocol and its realizability rely on the correctness and security
properties of the underlying adaptor signature scheme, namely unforgeability,
witness extractability and adaptability.

Let us now explain the necessity of the adaptor signature properties in more
detail. Clearly, if the environment or malicious parties are able to generate sig-
natures on behalf of honest parties, we create an adversary that can use them in
order to win the unforgeability game of the adaptor signature scheme. Therefore,
only the simulator can generate valid signatures on behalf of the honest parties
(the environment can do so only upon guessing the correct signing keys, which
happens only with negligible probability). Witness Extractability is necessary
in order to punish the dishonest party who has published an old commit trans-
action. Hence, if a malicious party can publish a valid signature for which the
extract algorithm Ext, in step 1 of the simulation for the punish procedure, does
not output a correct witness, we can build an adversary that can win the wit-
ness extractability game of the adaptor signature scheme. Further, adaptability
is required in order to complete the pre-signature of the new commit transac-
tion. Therefore, if a malicious party can generate a pre-signature that cannot be
adapted, in step 8 of the simulation for the update procedure, we can build an
adversary who can break the pre-signature adapatbility property. Last but not
least, the signatures generated upon adapting a pre-signature are valid accord-
ing to correctness and hence the punish transaction generated in step 3 of the
simulation for the punish procedure, is signed correctly and will get accepted by
the blockchain.

Remark 3. In the following proof, we use the witness extracted from an adaptor
signature as a signing secret key. We note that the proof extends naturally to
the case where the witness is used as a hash preimage even though this requires
an additional zero-knowledge proof, which guarantees consistency of the hash
value and the preimage.
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Simulator for creating generalized channels

Let T1 = 3.

Case A is honest and B is corrupted

Upon A sending (CREATE, γ, tidA)
τ0
↪−→ F , if B does not send (CREATE, γ, tidB)

τ
↪−→

F where |τ0 − τ | ≤ T1, then distinguish the following cases:

1. If B sends (createInfo, id , tidB ,RB ,YB)
τ0
↪−→ A, then send (CREATE, γ, tidB)

τ0
↪−→

F on behalf of B.
2. Otherwise stop.

Do the following:

1. Set id := γ.id, generate a revocation public/secret pair (RA, rA) ← GenR(pp),
generate publishing public/secret pair (YA, yA)← GenR(pp) and send (createInfo,

id , tidA,RA,YA)
τ0
↪−→ B.

2. If you receive (createInfo, id , tidB ,RB ,YB)
τ0+1
←−−−↩ B, create the body of the fund-

ing, the first commit and split transactions:

[TXf] := GenFund((tidA, tidB), γ)

[TXc] := GenCom([TXf], IA, IB , 0)

[TXs] := GenSplit([TXc].txid∥1, γ.st)

where IA := (pkA,RA,YA) and IB := (pkB ,RB ,YB). Else stop.
3. Pre-sign [TXc] w.r.t. YB and sign [TXs],

sAc ← pSignskA
([TXc],YB)

sAs ← SignskA
([TXs])

and (createCom, id , sAc , s
A
s )

τ0+1
↪−−−→ B.

4. If you receive (createCom, id , sBc , s
B
s )

τ0+2
←−−−↩ B, s.t.

pVrfypkB
([TXc],YA; s

B
c ) = 1

VrfypkB
([TXs]; s

B
s ) = 1

sign the funding transaction sAf ← SignskA
([TXf]) and (createFund, id , sAf )

τ0+2
↪−−−→

B. Else stop.

5. If you (createFund, id , sBf )
τ0+3
←−−−↩ B s.t. VrfypkB

([TXf]; s
B
f ) = 1, define TXf :=

([TXf], {sAf , sBf }) and (post, TXf)
τ0+3
↪−−−→ L. Else parse (θA, θB) := γ.st, create tx

such that tx.In := tidA, tx.Out := θA, tx.w ← SignpkA
([tx]) and (post, tx)

τ0+3
↪−−−→ L

and stop.
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6. If TXf is accepted by L in round τ1 ≤ τ0 + 3 +∆, add

ΓA(γ.id) := (γ, TXf, (TXc, rA,RB ,YB , s
A
c ), TXs),

where TXs := ([TXs], {sAs , sBs }) and

TXc := ([TXc], {SignskA
([TXc]),Adapt(s

B
c , yA)}).

Simulator for updating generalized channels

Let T1 = 2 and T2 = 1 and let | ⃗tid | = 1.

Case A is honest and B is corrupted

Upon A sending (UPDATE, id , θ⃗, tstp)
τ0
↪−→ F , proceed as follows:

1. Generate new revocation public/secret pair (RP , rP )← GenR and a new publishing

public/secret pair (YP , yP )← GenR and send (updateReq, id , θ⃗, tstp,RA,YA)
τA
0

↪−−→
B.

2. Upon (updateInfo, id , hB , YB , s
B
s )

τA
0 +2
←−−−↩ B, extract TXf from ΓB(id) and

[TXc] := GenCom([TXf], IA, IB)

[TXs] := GenSplit([TXc].txid∥1, θ⃗),

for IA := (pkA,RA,YA) and IB := (pkB ,RB ,YB). If VrfypkB
([TXs]; s

B
s ) = 1, send

(SETUP, id , TXs.txid)
τA
0 +2

↪−−−→ Z. Else stop.

3. If A sends (SETUP–OK, id)
τA
1 ≤τA

0 +2+tstp
↪−−−−−−−−−→ F , compute sAc ← pSignskA

([TXc],YB)

and sAs ← SignskA
([TXs]) , and send (update–commitA, id , sAc , s

A
s )

τA
1

↪−−→ B.

4. In round τA
1 + 2 distinguish the following cases:

– If you receive (update–commitB, id , sBc )
τA
1 +2
←−−−↩ B and if B has not sent

(UPDATE–OK, id)
τA
1 +1

↪−−−→ F , then send (UPDATE–OK, id)
τA
1 +1

↪−−−→ F on behalf of B.
If pVrfypkB

([TXc],YA; s
B
c ) = 0, then stop.

– If you receive (updateNotOk, id , rB)
τP
2 +2
←−−−↩ B, where (RB , rB) ∈ R, add

ΘA(id) := ΘA(id) ∪ ([TXc], rB ,YB , s
A
c ), instruct F to stop and stop.

– Else, execute the simulator code for the procedure ForceCloseA(id) and stop.

5. If A sends (REVOKE, id)
τA
1 +2

↪−−−→ F , then parse ΓA(id) as (γ, TXf, (TXc, r̄A, R̄B , ȲB ,
s̄ACom), TXs) and update the channel space as ΓA(id) := (γ, TXf, (TXc, rA,RB ,YB , s

A
c )

, TXs), for TXs := ([TXs], {sAs , sBs }) and TXc := ([TXc], {SignskA
([TXc]),Adapt(s

B
c ,

yA)}). Then send (revokeP, id , r̄A)
τA
1 +2

↪−−−→ B. Else, execute the simulator code
for the procedure ForceCloseA(id) and stop.

6. If you receive (revokeB, id , r̄B)
τA
1 +4
←−−−↩ B and if B has not sent (REVOKE, id)

τB
1 +2

↪−−−→

F , then send (REVOKE, id)
τB
1 +2

↪−−−→ F on behalf of B. Check if (R̄B , r̄B) ∈ R, then
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set

ΘB(id) :=ΘA(id) ∪ ([TXc], r̄B , ȲB , s̄
A
Com)

Else execute the simulator code for the procedure ForceCloseA(id) and stop.

Case B is honest and A is corrupted

Upon A sending (updateReq, id , θ⃗, tstp, hA)
τ0
↪−→ B, send (UPDATE, id , θ⃗, tstp)

τ0
↪−→ F

on behalf of A, if A has not already sent this message. Proceed as follows:

1. Upon (updateReq, id , θ⃗, tstp,RA,YA)
τB
0←−−↩ A, generate (RB , rB) ← GenR and

(YB , yB)← GenR.
2. Extract TXf from ΓA(id) and

[TXc] := GenCom([TXf], IA, IB)

[TXs] := GenSplit([TXc].txid∥1, θ⃗)

where IA := (pkA,RA,YA), IB := (pkB ,RB ,YB).

3. Compute sBs ← SignskB
([TXs]), send (updateInfo, id ,RB ,YB , s

B
s )

τB
0

↪−−→ A.

4. If you (updateComP, id , sAc , s
A
s )

τB
1 ≤τB

0 +2+tstp
←−−−−−−−−−−↩ A then send (SETUP–OK, id)

τB
1

↪−−→ F
on behalf of A, if A has not sent this message.

5. Check if pVrfypkP
([TXc],YQ; s

P
c ) = 1 and VrfypkP

([TXs]; s
P
s ) = 1.

6. If B sends (UPDATE–OK, id)
τB
1

↪−−→ F , pre-sign sBc ← pSign([TXc],YA) and send

(updateComQ, id , sBc )
τB
1

↪−−→ A. Else send (updateNotOk, id , rB)
τB
1

↪−−→ A and stop.

7. Parse ΓB(id) as (γ, TXf, (TXc, r̄B , R̄A, ȲA, s̄
B
Com), TXs). If you (revokeP, id , r̄A)

τB
1 +2
←−−−↩

A, send (REVOKE, id)
τB
1 +2

↪−−−→ F on behalf of A, if A has not sent this message.

Else if you do not receive (revokeP, id , r̄A)
τB
1 +2
←−−−↩ A or if (R̄A, r̄A) ̸∈ R, execute

the simulator code of the procedure ForceCloseB(id) and stop.

8. If B sends (REVOKE, id)
τB
1 +2

↪−−−→ F , then set

ΘB(id) :=ΘB(id) ∪ ([TXc], r̄A, ȲA, s̄
B
Com)

ΓB(id) :=(γ, TXf, (TXc, rB ,RA,YA, s
B
c ), TXs),

for TXs := ([TXs], {sAs , sBs }) and TXc := ([TXc], {SignskB
([TXc]),Adapt(s

A
c , yB)}).

Then (revokeB, id , r̄B)
τB
1 +2

↪−−−→ A and stop. Else, in round τB
1 + 2, execute the

simulator code of the procedure ForceCloseB(id) and stop.

Simulator for closing generalized channels

Let T1 = 1.

Case A is honest and B is corrupted
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Upon A sending (CLOSE, id)
τ0
↪−→ F , if B does not send (CLOSE, id)

τ
↪−→ F where

|τ0 − τ | ≤ T1, then distinguish the following cases:

1. If B sends sBs
τ0
↪−→ A, then send (CLOSE, id)

τ0
↪−→ F on behalf of B.

2. Otherwise execute the simulator code of the procedure ForceCloseA(id) and
stop.

1. Extract TXf and TXs from ΓA(id). Create the body of the final split transaction
[TXs] as follows

[TXs] := GenSplit(TXf.txid∥1, TXs.Out)

2. Compute the signature sAs ← SignskA
([TXs]) and send sAs

τ0
↪−→ B.

3. If you receive sBs
τ0+1
←−−−↩ B, s.t. VrfypkB

([TXs]; s
B
s ) = 1, set TXs := ([TXs], {sAs , sBs })

and send (post, TXs)
τ0+1
↪−−−→ L. Else, execute the simulator code for the procedure

ForceCloseA(id) and stop.
4. Let τ2 ≤ τ1 + ∆ be the round in which TXs is accepted by the blockchain. Set

ΓA(id) = ⊥, ΘA(id) = ⊥.

Simulator for punishment of generalized channels

Case A is honest and B is corrupted

Upon A sending PUNISH
τ0
↪−→ F , for each id ∈ {0, 1}∗ such that ΘP (id) ̸= ⊥ do

the following:

1. Parse ΘA(id) := {([TX(i)c ], r
(i)
B ,Y

(i)
A , s(i))}i∈m and extract γ from ΓA(id). If for

some i ∈ [m], there exist a transaction tx on L such that tx.txid = TX
(i)
c .txid, then

parse the witness as (sA, sB) := tx.Witness), where VrfypkA
([tx]; sA) = 1, and set

y
(i)
B := Ext(sA, s

(i),Y
(i)
B ).

2. Define the body of the punishment transaction [TXpun] as:

TXpun.In := tx.txid∥1,
TXpun.Out := {(γ.cash, One–SigpkA

)}

3. Compute the signatures sy ← Sign
y
(i)
B

([TXpun]), sr ← Sign
r
(i)
B

([TXpun]), sA ←

SignpkA
([TXpun]), and set TXpun := ([TXpun], sy , sr , sA). Then (post, TXpun)

τ0
↪−→ L.

4. Let TXpun be accepted by L in round τ1 ≤ τ0 +∆. Set ΘA(id) = ⊥, ΓA(id) = ⊥.

Simulator for ForceCloseP (id)

Let τ0 be the current round

1. Extract TXc and TXs from Γ (id).

2. Send (post, TXc)
τ0
↪−→ L.

3. Let τ1 ≤ τ0 +∆ be the round in which TXc is accepted by the blockchain. Wait for

∆ rounds to (post, TXs)
τ2+∆
↪−−−→ L.
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4. Once TXs is accepted by the blockchain in round τ3 ≤ τ2 + 2∆, set ΘP (id) = ⊥
and ΓP (id) = ⊥.

I Applications on top of generalized channels

We summarize the general discussion from Sec. 7 about which applications can
be built on top of generalized channels in Remark 4, where we denote a two-
party application π whose funding source can be published within t rounds as
π(t). Thus, π(0) indicates that π is funded directly by the ledger.

Remark 4 (Lifting on-chain functionality off-chain). Let π(0) be an application
executed between two parties P1 and P2 funded directly by a ledger L(∆,Σ,V),
where V allows at least for transaction authorization w.r.t. Σ, relative time-
locks and constant number of Boolean operations ∧ and ∨. Then π(3∆) can
be funded by a generalized channel between P1 and P2, hence executed fully
off-chain, while guaranteeing instant finality with punish to both parties. This
means that either π(3∆) terminates as π(0) would over L(∆,Σ,V), or the honest
party is financially compensated.

In Sec. 7, we described how to construct two concrete applications on top of
a generalized channels. The process described there can naturally be generalized
to any two-party applications which is what we do in this section.

Assume that two parties already created a generalized channel γ via F and
now want to use it for several applications. For that, parties have to carry out
the following steps.
Initialize: Parties agree on the new state θ⃗ of γ and the upper bound tstp on the
time required to set up applications. That is, for each application parties agree on
(i) the amount of coins they want to invest and the funding condition; technically,
this means that parties define θi = (θi.cash, θi.φ), and (ii) the maximal set up
time ti. The value tstp is defined as maxi ti, thereby upper-bounding the number
of rounds that it takes to set up all the applications in parallel.
Prepare: One party sends the message (UPDATE, id , θ⃗, tstp) to F in order to

prepare the update. Upon receiving such message, F responds with ⃗tid– a vector
of k transaction identifiers referring to transactions that contain the output
vector θ⃗ and hence are candidate funding sources of our applications.
Setup: For every tid j ∈ ⃗tid , parties exchange the application-dependent infor-
mation required to fulfill the conditions {θi.φ}.
Complete: Parties inform F about setup completion by sending SETUP–OK and
UPDATE–OK messages. Thereafter, F requests both parties to revoke the old state
of γ which they do by invoking F on input the message REVOKE. F notifies the
users of the completed update via the message UPDATED.

I.1 Claim-Or-Refund

Initialize: First, parties need to agree on the new state of the channel that would
include the new claim-or-refund applications. To this end, parties exchange the
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function f , decide on the time-out value t, and create three outputs (one for the
conditional payment, one for the remaining balance of A and one for the balance
B): (i) θ0.cash := β, θ0.φ := (Checkf∧One–SigpkB

)∨(CheckTimet∧One–SigpkA
);

(ii) θ1.cash := αA − β, θ1.φ := One–SigpkA
; and (iii) θ2.cash := αB , θ2.φ :=

One–SigpkB
. The new channels state is then θ⃗ = (θ0, θ1, θ2).

Prepare: One party sends the message (UPDATE, γ.id , θ⃗, 0) to F in order to
prepare the update. The last coordinate is set to 0, because no special setup
is needed in the case of the claim-or-refund application. Upon receiving such
message, F responds with ⃗tid– a vector of k transaction identifiers referring to
transactions that contain the output vector θ⃗ and hence are candidate funding
sources of our applications.

Complete: Parties inform F about their intention to complete the update by
sending SETUP–OK and UPDATE–OK messages. Thereafter, F requests both parties
to revoke the old state of γ which they do by invoking F on input the message
REVOKE. F notifies the users of the completed update via the message UPDATED.

A similar process is used when B wants to claim the β coins or A wants to
refund β coins. Namely, if B wants to claim the β coins, this party initiates a new
update of γ0 s.t., αA − β coins are assigned to A and αB + β coins are assigned
to B. The security of the solution follows from the fact that if the update fails,
the channel is closed in the latest agreed state. Hence, the output funding the
claim-or-refund is published in an on-chain transaction allowing B to claim the
β coins over the blockchain. Analogously, for the refund of A.

I.2 Channel-Splitting

Initialize: Parties first agree on the new state of the channel. To this end, they
create one output per sub-channel: (i) θ0.cash := γ0.cash, θ0.φ := One–SigpkA

∧
One–SigpkB

; and (ii) θ1.cash := γ1.cash, θ1.φ := One–SigpkA
∧One–SigpkB

. The

new state is hence θ⃗ = (θ0, θ1).

Prepare:As in the previous example, one party sends the message (UPDATE, γ.id ,

θ⃗, 2) to F in order to prepare the update. This time, the setup time is set to
2 rounds as this is how long it takes to setup a new generalized channel.
Upon receiving such message, F responds with ⃗tid– a vector of k transaction
identifiers referring to transactions that contain the output vector θ⃗ and hence
are candidate funding sources of our applications.

Setup: For each sub-channel, parties generate and sign the commit and split
transactions representing the initial channel state. This procedure, explained
in Sec. 6, takes 2 rounds.

Complete: Parties inform F about the completed setup by sending SETUP–OK
and UPDATE–OK messages. Thereafter, F requests both parties to revoke the old
state of γ which they do by invoking F on input the message REVOKE. F notifies
the users of the completed update via the message UPDATED.
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Remark 5. The setup phase is run for each transaction identifier in ⃗tid which
means that parties have to set up and maintain k copies of all their applications.
Hence, low values of the parameter k are of great importance.
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