
Semi-Adaptively Secure Offline Witness
Encryption from Puncturable Witness PRF

Tapas Pal, Ratna Dutta

Department of Mathematics, Indian Institute of Technology Kharagpur
Kharagpur-721302, India

tapas.pal@iitkgp.ac.in,ratna@maths.iitkgp.ernet.in

Abstract. In this work, we introduce the notion of puncturable witness
pseudorandom function (pWPRF) which is a stronger variant of WPRF
proposed by Zhandry, TCC 2016. The punctured technique is similar to
what we have seen for puncturable PRFs and is capable of extending the
applications of WPRF. Specifically, we construct a semi-adaptively secure
offline witness encryption (OWE) scheme using a pWPRF, an indistin-
guishability obfuscation (iO) and a symmetric-key encryption (SKE),
which enables us to encrypt messages along with NP statements. We
show that replacing iO with extractability obfuscation, the OWE turns
out to be an extractable offline witness encryption scheme. To gain finer
control over data, we further demonstrate how to convert our OWEs into
offline functional witness encryption (OFWE) and extractable OFWE. All
of our OWEs and OFWEs produce an optimal size ciphertext, in partic-
ular, encryption of a message is as small as the size of the message plus
the security parameter multiplied with a constant, which is optimal for
any public-key encryption scheme. On the other hand, in any previous
OWE, the size of a ciphertext increases polynomially with the size of
messages. Finally, we show that the WPRF of Pal et al. (ACISP 2019)
can be extended to a pWPRF and an extractable pWPRF.

Keywords: puncturable witness pseudorandom function, offline witness en-
cryption, offline functional witness encryption, obfuscation.

1 Introduction

Witness Pseudorandom Function. The purpose of a pseudorandom func-
tion is to generate a pseudorandom value for an input x ∈ X using a secret-key.
Zhandry [26] proposed an enhanced primitive called witness pseudorandom func-
tion (WPRF) which enables us to produce pseudorandom values corresponding
to statements of an NP language L with a relation R : X ×W → {0, 1}. If x ∈ L
then there exists a witness w ∈ W such that R(x,w) = 1, otherwise R maps to 0.
In the setup of WPRF, we generate two keys: a secret function key fk and a pub-
lic evaluation key ek. To compute a pseudorandom value y ∈ Y corresponding to
a statement x ∈ X , we use the secret function key fk. The same pseudorandom
value y can only be recovered using the public evaluation key ek if we have a

witness w such that R(x,w) = 1. The security of pseudorandomness is ensured
by the fact that y is completely uniform over Y if x 6∈ L. In extractable WPRF,
we relax the requirement by allowing x to be in L. However, in such a scenario, if
an adversary can distinguish the honestly computed y from a uniformly chosen
element of Y then we can extract a valid witness of x using an efficient extractor.

A list of cryptographic primitives have been realized from WPRF in [26] such
as multiparty non-interactive key exchange without trusted setup, poly-many
hardcore bits for one-way functions and secret sharing for monotone NP lan-
guages. More interestingly, WPRF directly implies a modern primitive called
witness encryption (WE) [18] which encrypts messages with respect to a NP
statement and a valid witness for the statement is capable of decrypting the
ciphertext to the original message. Furthermore, one can construct a more re-
fined variant of WE, termed as reusable WE [26], using WPRF. The main goal
of reusable WE was to make the encryption algorithm relatively efficient and
ciphertext size optimal, besides it provides security in chosen ciphertext attack
model. On the other hand, extractable WPRF was used to build a fully dis-
tributed broadcast encryption [26] where the size of secret-keys, public-keys and
ciphertexts are all poly-logarithmic in the number of users.

Our Contribution. Inspired by the applications of WPRF in [26], we are keen
to build more advanced primitives from WPRF. It is desirable to begin with a rel-
atively closer primitive such as offline witness encryption (OWE) [1] maintaining
the same encryption efficiency of the reusable WE. An OWE is more preferable
over the normal WE because the computationally hard work is shifted from the
encryption algorithm by introducing an additional setup phase. Unfortunately,
WPRF does not immediately achieve OWE or offline functional WE [8]. Existing
OWEs [1,24,12] do not have optimal ciphertext size as in reusable WE of [26].

In this work, we extend the applications of WPRF by introducing a punctur-
ing technique akin to puncturable pseudorandom function (pPRF) [25]. In the
security model of normal WPRF, an adversary A is given access to an oracle F(fk,
·) which on input x ∈ X of A’s choice outputs a pseudorandom value correspond-
ing to x. Naturally, A is restricted to query on the challenge statement x∗ which
is not in L. In our setting, instead of giving access to F(fk, ·), A is provided with
a punctured key fkx∗ which enables A to learn the pseudorandom value corre-
sponding to any x except x∗. The WPRF is secure if A is unable to distinguish
F(fk, x∗) from a random element. We call this variant of WPRF a puncturable
WPRF (pWPRF). In extractable pWPRF, we allow x∗ to be in L. In that case,
there exists an extractor E which outputs a witness of x∗ with high probability
and the run time of E depends on the distinguishing advantage of A between
F(fk, x∗) and a random element. A pWPRF having this extractability property
is called puncturable witness-extractable pseudorandom function (pWEPRF).

Both WE and WPRF have been realized using various assumptions on mul-
tilinear maps [18,26], but recent attacks on multilinear maps [11,13] introduce
threats on the security of those schemes. We bring the punctured program tech-
nique of PRF [25] in case of WPRF. The main idea is to build two equivalent
programs P and P′ where P uses the secret-key oblivious to the adversary and

2

P′ uses a punctured key available to the adversary. An important tool in this
setup is indistinguishability obfuscation (iO) [16]. We build following primitives
using the additional punctured technique of WPRF:

– We build a semi-adaptively secure OWE scheme (Sec. 3) using a pWPRF, an
iO, a pseudorandom generator (PRG) and a symmetric key encryption (SKE)
scheme. Our OWE is the first to achieve optimal ciphertext-size, namely
|m|+poly(λ) where |m| is the size of message and λ is the security parameter.

– Replacing iO with extractability obfuscation (eO) [8], we convert the OWE
into an extractable OWE (EOWE) in Sec. 3. The ciphertext-size remains the
same which is optimal for any public-key encryption scheme.

– In a plain OWE, a user having a valid witness can learn the whole message.
This all-or-nothing type encryption may not be sufficient for applications
where we need fine-grained access control over the data. In such a scenario,
offline functional WE (OFWE), introduced by Boyle et al. [8], can be utilized
as the user having a valid witness can now learn a function of the message
and witness. In this work, we show that our techniques of achieving OWE can
be extended to realize semi-adaptively secure OFWE and selectively secure
extractable OFWE schemes (Sec. 4).

Finally, we show that the WPRF of [24] satisfies our definition of pWPRF (Sec. 5).
In particular, we can construct pWPRF using a pPRF and an iO. Furthermore,
a pWEPRF can be achieved by replacing the iO with an eO. We emphasize the
implausibility results of [17,9] on eO or extractable WE do not have any impact
on our eO-based constructions as the results can only be applied for circuits
with specific auxiliary inputs.

Feasibility of iO. A natural question is why we build cryptographic primitives
based on iO which is not yet realized from standard assumptions. Recent attacks
on multilinear maps bring cryptographers attention to find new techniques to
build iO. Bitansky and Vaikunthanathan [7] and Ananth and Jain [3] developed
a transformation that achieves iO assuming just functional encryption. Achiev-
ing such functional encryptions from smaller constant degree multilinear maps
and special pseudorandom generators with certain locality properties has been
discussed in [5,22,23]. New ideas were formalized in [2,4] to construct iO from
bilinear maps and specific pseudorandom tools that are conjectured to be secure.

Recently, a very interesting and simple approach is developed by Brakerski et
al. [10] that utilizes fully-homomorphic encryption (FHE) schemes [19,20] to get
full fledge iO. In particular, they proposed a new primitive called split FHE and
showed that split FHE is sufficient for constructing iO. The transformation is
provably secure and relies on (heuristic but) appropriately defined oracle model.
Note that, split FHE can be realized from existing FHEs (based on learning with
errors problem [19,20]) and linearly homomorphic encryption schemes (such as
Damg̊ard-Jurik encryption scheme based on decisional composite residues prob-
lem [14]). In the view of recent developments, it is believed that the community
will arrive at a practical construction of iO in the near future. On the other
hand, we note that all existing constructions of WPRF and OWE are either built
from multilinear maps vulnerable to practical attacks or depend on iO.

3

Related Works. Zhandry [26] constructed WPRF from subset-sum Diffie-
Hellman assumption related to multilinear maps. Getting a pseudorandom value
using an evaluation key is computationally expensive as one need to apply a mul-
tilinear map with linearity much larger than the size of the NP relation. On the
other hand, we extend the iO-based WPRF of [24] into a puncturable WPRF
to enhance the field of application. We note that, although obfuscation itself is
a powerful assumption, a wide range of functionalities, including the function
classes required in this work, can be efficiently realized using Trusted Execution
Environments (TEEs), Intel’s Software Guard Extensions (SGXs) [6,15].

Abusalah et al. [1] introduced OWE with the purpose of making encryption
much more efficient than the existing WEs. However, the OWE of [1] is selectively
secure and the size of ciphertexts are not promising as it contains a simulation
sound non-interactive zero-knowledge proof along with two (public-key) encryp-
tions of the same message. OWE with semi-adaptive security is built in [12]
relying on iO, but the size of ciphertext is not as compact as one would have
wanted for lightweight devices. Our OWEs deliver semi-adaptive security with
an optimal size ciphertext similar to the reusable WE of [26].

2 Preliminaries

Notations. We denote λ ∈ N by a security parameter. If x ∈ {0, 1}∗, then we
denote |x| by size of the string x. For any set S, the notation x ← S denotes
the process of sampling x uniformly at random from the set S. Let Algo be a
probabilistic polynomial time (PPT) algorithm, then y ← Algo(x) denotes the
execution of Algo with an input x using a fresh randomness and assign the
output to y. If the randomness, say r, is provided externally then we denote
this execution by y ← Algo(x; r). We call {Cλ} as a family of polynomial sized
circuits if there exists a fixed polynomial p such that |C| < p(λ) for any C ∈ Cλ.
We say negl: N→ R be a negligible function of λ if for every positive polynomial
p, there exists an integer np ∈ N such that negl(λ) < 1/p(λ) for all n > np.

2.1 Pseudorandom Generator

Definition 1 A pseudorandom generator (PRG) is a deterministic polynomial
time algorithm PRG that on input a seed s ∈ {0, 1}λ outputs a string of length
`(λ) such that the following holds:
– expansion: For every λ it holds that `(λ) > λ.
– pseudorandomness: For all PPT adversary A and s← {0, 1}λ, r ← {0, 1}`(λ)

there exists a negligible function negl such that

AdvPRGA (λ) = |Pr[A(1λ,PRG(s)) = 1] − Pr[A(1λ, r) = 1] | < negl(λ).

2.2 Puncturable Pseudorandom Function

Definition 2 A puncturable pseudorandom function (pPRF) is a tuple of PPT
algorithms (Gen, PuncKey, Eval, PuncEval) defined as follows:

4

• K← Gen(1λ) : on input a security parameter λ, returns a secret-key K.
• Kx ← PuncKey(K, x) : returns Kx, a punctured key for an element x ∈ X .
• y ← Eval(K, x) : returns a pseudorandom value y ∈ Y for x ∈ X .
• PuncEval(Kx, x

′) ∈ Y ∪ {⊥} : on input a punctured key Kx and an element
x′ ∈ X , returns a pseudorandom value y ∈ Y if x 6= x′, otherwise returns ⊥.

We note that, each of the above algorithms except Gen is a deterministic algo-
rithm. The pPRF is said to be correct if the following holds:
– correctness: For all distinct pair of elements x, x′ ∈ X 2, K ← Gen(1λ), we

require that Pr[Eval(K, x′) = PuncEval(PuncKey(K, x), x′)] = 1.

Definition 3 A puncturable pseudorandom function (pPRF) is said to be secure
(or preserves pseudorandomness at punctured point) if, for all PPT adversary
A and any x ∈ X , K ← Gen(1λ), Kx ← PuncKey(K, x) there exists a negligible
function negl such that

AdvpPRFA (λ) = |Pr[A(1λ,Kx,Eval(K, x)) = 1] −
Pr[A(1λ,Kx, y ← Y) = 1] | < negl(λ).

2.3 Symmetric Key Encryption

Definition 4 A symmetric key encryption (SKE) scheme is a tuple of PPT
algorithms (Gen, Enc, Dec) defined as follows:
• K← Gen(1λ) : on input a security parameter λ, returns a key K.
• c← Enc(K,m) : a deterministic algorithm that returns c, an encryption of

the message m ∈M.
• Dec(K, c) ∈M∪ {⊥} : a deterministic algorithm that decrypts the cipher-

text c and returns a message m ∈M, or ⊥ if it fails.

The SKE is said to be correct if the following holds:
– correctness: For all m ∈M and K← Gen(1λ), we require that

Pr[Dec(K,Enc(K,m)) = m] = 1

Definition 5 A symmetric key encryption SKE is said to satisfy ciphertext in-
distinguishability (CIND) security if, for all PPT adversary A and any pair of
equal length messages (m0,m1) there exists a negligible function negl such that

AdvSKEA (λ) = |Pr[A(1λ,Enc(K,m0)) = 1] −
Pr[A(1λ,Enc(K,m1)) = 1] | < negl(λ)

2.4 Puncturable Witness Pseudorandom Function

Definition 6 A puncturable witness pseudorandom function (pWPRF) for an
NP language L with a relation R is a tuple of PPT algorithms (Gen, F, PuncKey,
PuncF, Eval) defined as follows:
• (fk, ek) ← Gen(1λ, R) : on input a security parameter λ and a relation

circuit R : X × W → {0, 1}, returns a secret function key fk and a public
evaluation key ek.

5

1. x∗ ← A(1λ)

2. (fk, ek)← Gen(1λ, R)
3. fkx∗ ← PuncKey(fk, x∗)
4. y0 ← F(fk, x∗), y1 ← Y
5. b← {0, 1}
6. b′ ← A(ek, fkx∗ , yb)
7. return 1 if (b′ = b) ∧ (x∗ 6∈ L)

Fig. 1: ExptpWPRF,R
A (1λ)

1. x∗ ← A(1λ)

2. (ppe, ppd)← Setup(1λ, R)
3. (m0,m1)← A(ppe, ppd)
4. b← {0, 1}
5. c← Enc(ppe, x

∗,mb)
6. b′ ← A(c)
7. return 1 if (b′ = b)∧(x∗ 6∈ L)∧(|m0| = |m1|)

Fig. 2: ExptOWE,R
A (1λ)

• y ← F(fk, x) : returns a pseudorandom value y ∈ Y for x ∈ X .
• fkx ← PuncKey(fk, x) : returns fkx, a punctured key for an element x ∈ X .
• PuncF(fkx, x

′) ∈ Y ∪ {⊥} : on input a punctured key fkx and an element
x′ ∈ X , returns a pseudorandom value y ∈ Y if x 6= x′, otherwise returns ⊥.

• Eval(ek, x, w) ∈ Y ∪{⊥} : on input an evaluation key ek, an element x ∈ X
and a witness w ∈ W, returns an element y ∈ Y, or ⊥ if it fails.

We note that, each of the above algorithms except Gen is a deterministic algo-
rithm. The pWPRF is said to be correct if the following properties hold:
– correctness of Eval: For all x ∈ X , w ∈ W and (fk, ek) ← Gen(1λ, R), we

require that

Eval(ek, x, w) =

{
F(fk, x) if R(x,w) = 1
⊥ if R(x,w) = 0

– correctness of PuncF: For all distinct pair of elements x, x′ ∈ X 2 and (fk, ek)←
Gen(1λ, R), we require that

Pr[F(fk, x′) = PuncF(PuncKey(fk, x), x′)] = 1.

Note that, our definition of pWPRF is crafted in a similar fashion like Sahai and
Waters [25] formalized pPRF from PRF. Instead of providing an oracle to learn
F(fk, x′) as in the case of normal WPRF given by Zhandry [26], the adversary
A can use a punctured key fkx to compute the pseudorandom value F(fk, x′)

by itself if x 6= x′. The security experiment ExptpWPRF,R
A (1λ) of our pWPRF is

defined in Fig. 1. We consider the selective model for our applications. At the
last step of the experiment, the challenger verifies that x∗ 6∈ L which means
our challenger is not efficient. In this context, we note that WEs, OWEs and
WPRFs are defined in the same way and the definition has been proven useful
in developing many interesting cryptographic primitives [18,21,1,26].

Definition 7 A puncturable witness pseudorandom function pWPRF for an NP
language L with a relation R is said to be selectively secure if, for all PPT
adversary A, there exists a negligible function negl such that

AdvpWPRF,R
A (λ) = |Pr[ExptpWPRF,R

A (1λ) = 1] − 1
2 | < negl(λ)

6

In extractable pWPRF, we allow the challenge statement x∗ to be in L. Ac-
cordingly, we modify the security experiment defined in Fig. 1 (in particular,

line 7) and rename it as ExptpWEPRF,R
A (1λ).

Definition 8 A puncturable witness pseudorandom function is said to be ex-
tractable or puncturable witness-extractable pseudorandom function (pWEPRF)
for an NP language L with a relation R, if for any PPT adversary A and any
polynomial pA(λ) there exists a PPT extractor E and a polynomial pE such that

AdvpWEPRF,R
A (λ) = |Pr[ExptpWEPRF,R

A (1λ) = 1]− 1

2
| ≥ 1

pA(λ)

⇒Pr[w∗ ← E(1λ, x∗) : R(x∗, w∗) = 1] ≥ 1

pE(λ)

The extractability says that when the adversary can distinguish the honestly
computed y = F(fk, x∗) from a uniformly chosen element, then it must know a
witness w∗ satisfying R(x∗, w∗) = 1.

2.5 Offline Witness Encryption

Definition 9 An offline witness encryption (OWE) scheme for an NP language
L with a relation R is a tuple of PPT algorithms (Setup, Enc, Dec) defined as
follows:
• (ppe, ppd)← Setup(1λ, R) : on input a security parameter λ and a relation
R : X ×W → {0, 1}, returns two public parameters ppe for encryption and
ppd for decryption.
• c ← Enc(ppe, x,m) : returns c, an encryption of the message m ∈ M with

respect to the statement x ∈ X .
• Dec(ppd, c, w) ∈ M ∪ {⊥} : a deterministic algorithm that decrypts the

ciphertext c using a witness w ∈ W and returns a message m ∈M, or ⊥.

The OWE scheme is said to be correct if the following holds:
– correctness: For all x ∈ X , w ∈ W, m ∈ M and (ppe, ppd) ← Setup(1λ, R),

we require that

Pr[Dec(ppd,Enc(ppe, x,m), w) = m : R(x,w) = 1] = 1

The semi-adaptive security experiment ExptOWE,R
A (1λ) is defined in Fig. 2.

Definition 10 An offline witness encryption OWE for an NP language L with a
relation R is said to be semi-adaptively secure if, for all PPT adversary A, there
exists a negligible function negl such that

AdvOWE,R
A (λ) = |Pr[ExptOWE,R

A (1λ) = 1] − 1
2 | < negl(λ)

For extractable offline witness encryption we modify the experiment defined
in Fig. 2 so that x∗ may belong to L and rename it as ExptEOWE,R

A (1λ).

7

Definition 11 An offline witness encryption OWE is said to be semi-adaptively
secure extractable offline witness encryption (EOWE) for an NP language L with
a relation R, if for any PPT adversary A and any polynomial pA(λ) there exists
a PPT extractor E and a polynomial pE such that

AdvEOWE,R
A (λ) = |Pr[ExptEOWE,R

A (1λ) = 1]− 1

2
| ≥ 1

pA(λ)

⇒Pr[w∗ ← E(1λ, x∗) : R(x∗, w∗) = 1] ≥ 1

pE(λ)

2.6 Obfuscation

Definition 12 A PPT algorithm iO is said to be an indistinguishability obfus-
cator for a class of circuits {Cλ}, if it satisfies the following properties:
– Functionality : For all security parameter λ ∈ N, for all C ∈ Cλ, for all inputs
x, we require that

Pr[C̃(x) = C(x) : C̃ ← iO(1λ, C)] = 1

– Indistinguishability : For any PPT distinguisher D, there exists a negligible
function negl such that for all pair of circuits C0, C1 ∈ Cλ that compute the
same function and are of same size, we require that

AdviOD (λ) = |Pr[b← {0, 1}, C̃ ← iO(1λ, Cb) : D(C̃, C0, C1) = b] − 1
2 | < negl(λ)

Definition 13 A PPT algorithm eO is said to be an extractability obfuscator
for a class of circuits {Cλ}, if it satisfies the following properties:
– Functionality : For all security parameter λ ∈ N, for all C ∈ Cλ, for all inputs
x, we require that

Pr[C̃(x) = C(x) : C̃ ← eO(1λ, C)] = 1

– Extractability : For any PPT distinguisher D and polynomial pD(λ), there
exists an extractor E and a polynomial pE such that for all pair of circuits
C0, C1 ∈ Cλ that are of same size, for all auxiliary input z ∈ {0, 1}∗, we
require that

AdveOD (λ) =
∣∣Pr
[
b← {0, 1}, C̃ ← eO(1λ, Cb) : D(C̃, C0, C1, z) = b

]
− 1

2

∣∣ ≥ 1
pD(λ)

⇒ Pr[x← E(1λ, C0, C1, z) : C0(x) 6= C1(x)] ≥ 1
pE(λ)

3 Construction: (Extractable) Offline Witness Encryption

In this section, we describe our construction of OWE = (Setup, Enc, Dec) for an
NP language L and a relation R : X ×W → {0, 1}. We consider the statement
space X to be {0, 1}λ (containing L) and W = {0, 1}n where n is a polyno-
mial in the security parameter λ. The following primitives are utilized in our
construction:

8

Setup(1λ, R):

1. (fk, ek) ← pWPRF.Gen(1λ, R′)

2. C̃ ← O(1λ, C[fk])

3. set ppe = ek, ppd = C̃
4. return (ppe, ppd)

Enc(ppe, x,m):
1. parse ppe = ek
2. u← {0, 1}λ, v ← PRG(x⊕ u)
3. y ← pWPRF.Eval(ek, (x, v), u)
4. K← SKE.Gen(1λ; y)
5. cs ← SKE.Enc(K,m)
6. return c = (cs, x, v)

C[fk](c, w)

1. parse c = (cs, x, v)
2. if R(x,w) = 1
3. y ← pWPRF.F(fk, (x, v))
4. K← SKE.Gen(1λ; y)
5. return SKE.Dec(K, cs)
6. else
7. return ⊥

Dec(ppd, c, w):

1. parse ppd = C̃
2. return C̃(c, w)

Fig. 3: Construction of OWEs with optimal ciphertexts where O is either iO for
normal OWE or eO for extractable OWE (EOWE)

– A pseudorandom generator PRG : {0, 1}λ → {0, 1}2λ.
– A CIND secure symmetric key encryption SKE = (Gen, Enc, Dec).
– A pWPRF = (Gen, F, PuncKey, PuncF, Eval) for the NP language L′ =
{(x, v) : ∃u ∈ {0, 1}λ such that PRG(x ⊕ u) = v} with a relation R′ : X ′ ×
W ′ → {0, 1}. So, R′((x, v), u) = 1 if PRG(x⊕ u) = v, 0 otherwise.

– An obfuscator O for the class of circuits Cλ required in the constructions.
The only difference between the constructions of OWE and extractable OWE
(EOWE) is that:O is an indistinguishability obfuscator (iO) for OWE whereas
O is an extractability obfuscator (eO) for EOWE.

Our OWE construction is shown in Fig. 3 where we assume that the circuit
C[fk] ∈ Cλ and O is an iO. For correctness, we need to verify that the same key
K← SKE.Gen(1λ; y) is generated during encryption and decryption of OWE. In
particular, the same randomness y should be utilized in Enc as well as in Dec.
Note that, we compute y using the pWPRF.Eval(ek, (x, v), ·) with a witness u
corresponding to the relation R′. While decrypting, by the correctness of Eval,
we generate the same y inside the circuit C̃ using pWPRF.F(fk, (x, v)) extracted
from the ciphertext. Therefore, SKE.Dec(K, cs) returns the same message that
was encrypted in Enc if R(x,w) = 1. Finally, we conclude the correctness by ob-

serving that C[fk] and C̃ compute the same function because of the functionality
of iO. We skip the correctness of EOWE as it can be argued similarly.
Comparison: The ciphertext size of our OWEs is as compact as one can desire:
excluding the instance, it is only |cs| + |v| = |m| + 2λ which is optimal for any
public-key encryption. More precisely, the bit size of a ciphertext encrypting a
λ-bit message is 3λ. Let us compare our ciphertext size with all existing OWEs
when encrypting a λ-bit message. The iO and SSS-NIZK based construction of
Abusalah et al. [1] delivers a ciphertext size of at least 64λ-bit (assuming a group
element is of size 2λ-bit [1]). Both the OWE constructions of Pal et al. [24] and
Chvojka et al. [12] achieve a ciphertext of size at least 10λ-bit. The encryption

9

process of [12] uses a puncturable public-key encryption scheme to produce a
ciphertext corresponding to the pair (x,m). We shift the computation power in
the setup phase as much as possible to accomplish a more compact ciphertext
size for our OWE than any other OWEs. This reduces the communication cost
in practical applications. All existing OWEs utilize iO during the setup phase.
This implies either ppe or ppd (or both) contains an obfuscated circuit the size
of which depends on the simplicity of the circuit. The size of the public param-
eter for encryption ek (or ppe) is proportional to the size of the relation R′. We
observe that the relation R′ is as simple as checking a PRG computation, which
means the evaluation key ek is independent of the relation R, and hence our
OWE encryptions are more efficient than the reusable WE of Zhandry [26]. Fur-
thermore, the notion of functional WE cannot be directly achieved from reusable
WE whereas we extend our OWE to OFWE.

Theorem 1 The OWE = (Setup, Enc, Dec) described in Figure 3 with O = iO
is a semi-adaptively secure offline witness encryption if PRG is a secure pseudo-
random generator, pWPRF is a selectively secure puncturable witness pseudoran-
dom function, iO is an indistinguishability obfuscator for the circuit class Cλ and
SKE is a CIND secure symmetric key encryption. More specifically, for any PPT
adversary A, there exist PPT adversaries B1, B2, B3 and a PPT distinguisher
D such that:

AdvOWE,R
A (λ) ≤ AdvPRGB1

(λ) + AdvpWPRF,R′

B2
(λ) + AdvSKEB3

(λ) + AdviOD (λ)

Proof. We prove the theorem using the following sequence of games. We start
with Game 0 which is the standard security experiment ExptOWE,R

A (1λ) as defined
in Fig. 2. For Game i, we denote by Gi the event b = b′. In each game, we assume
that A submits two messages of equal length and that x∗ 6∈ L as otherwise the
challenger always returns 0. The circuits used in the proof are assumed to be
padded to a maximum size.
Game 0 ⇒ Game 1: In Game 0, we compute the encryption key as K← SKE.Gen
(1λ; y) where y ← pWPRF.Eval(ek, (x∗, v), u). But, Game 1 (Fig. 4) sets y ←
pWPRF.F(fk, (x∗, v)) without using the witness u. By the correctness Eval:

pWPRF.Eval(ek, (x∗, v), u) = pWPRF.F(fk, (x∗, v)) as R′((x∗, v), u) = 1.

Therefore, the distribution of ciphertexts in both the games are identical and
hence they are indistinguishable from A’s view. We have Pr[G0] = Pr[G1].

Game 1 ⇒ Game 2: In Game 2, described in Fig. 5, we pick v uniformly at random
from {0, 1}2λ instead of setting it as v ← PRG(x∗ ⊕ u). Note that, given x∗, the
distribution of x∗ ⊕ u is uniform over {0, 1}λ for u← {0, 1}λ. Let, B1 is a PRG-
adversary. Then, by the security of PRG (Def. 1), the distinguishing advantage of
A between Game 1 and Game 2 can be written as |Pr[G1] − Pr[G2]| = AdvPRGB1

(λ).
Game 2 ⇒ Game 3: In Game 3, described in Fig. 6, we replace the circuit C[fk]
by a new circuit C[fkz∗ , x

∗] and set the public parameter for decryption ppd ←
iO(1λ, C[fkz∗ , x

∗]). The new circuit C[fkz∗ , x
∗] is defined as follows:

10

1. x∗ ← A(1λ)

2. (fk, ek) ← pWPRF.Gen(1λ, R′)

3. C̃ ← iO(1λ, C[fk])

4. set ppe = ek, ppd = C̃
5. (m0,m1)← A(ppe, ppd)

6. u← {0, 1}λ, v ← PRG(x∗ ⊕ u)

7. y ← pWPRF.F(fk, (x∗, v))

8. K← SKE.Gen(1λ; y)
9. b← {0, 1}

10. cs ← SKE.Enc(K,mb)
11. set c = (cs, x

∗, v)
12. b′ ← A(c)
13. return 1 if (b = b′)

Fig. 4: Game 1

1. x∗ ← A(1λ)

2. (fk, ek) ← pWPRF.Gen(1λ, R′)

3. C̃ ← iO(1λ, C[fk])

4. set ppe = ek, ppd = C̃
5. (m0,m1)← A(ppe, ppd)

6. v ← {0, 1}2λ

7. y ← pWPRF.F(fk, (x∗, v))

8. K← SKE.Gen(1λ; y)
9. b← {0, 1}

10. cs ← SKE.Enc(K,mb)
11. set c = (cs, x

∗, v)
12. b′ ← A(c)
13. return 1 if (b = b′)

Fig. 5: Game 2

C[fkz∗ , x
∗](c, w)

1. parse c = (cs, x, v)
2. if x = x∗

3. return ⊥
4. else if R(x,w) = 1
5. y ← pWPRF.PuncF(fkz∗ , (x, v))
6. K← SKE.Gen(1λ; y)
7. return SKE.Dec(K, cs)
8. else
9. return ⊥

Note that, the two circuits C[fk] and C[fkz∗ , x
∗] are functionally equivalent. Let

(c̄, w̄) be any arbitrary input where c̄ = (c̄s, x̄, v̄). If x̄ = x∗, then C[fk](c̄, w̄)
outputs ⊥ since x∗ 6∈ L implies that R(x∗, w̄) = 0 for any w̄ ∈ W, and
C[fkz∗ , x

∗](c̄, w̄) outputs ⊥ because of the check in line 2 of the circuit. If x̄ 6= x∗,
then z∗ 6= (x̄, v̄) and by the correctness of PuncF we have

pWPRF.F(fk, (x̄, v̄)) = pWPRF.PuncF(fkz∗ , (x̄, v̄))

and hence C[fk](c̄, w̄) = C[fkz∗ , x
∗](c̄, w̄). Considering D as a PPT distinguisher

for iO, the indistinguishability property of iO (Def. 12) implies that

|Pr[G2] − Pr[G3]| = AdviOD (λ)

Game 3 ⇒ Game 4: In Game 4, described in Fig. 7, we pick y uniformly at ran-
dom from Y which is the co-domain of pWPRF.F(fk, ·). We show that if A can
distinguish between these two games, then there is an adversary B2 which will
break the selective security of pWPRF (defined in Fig. 1). Let z∗ = (x∗, v) be
the challenge statement of B2 for a random v ← {0, 1}2λ.
B2(1λ, z∗):
1. send z∗ to its challenger
2. The pWPRF-challenger does the following:

(a) generate (fk, ek) ← pWPRF.Gen(1λ, R′)

11

1. x∗ ← A(1λ)

2. (fk, ek) ← pWPRF.Gen(1λ, R′)

3. v ← {0, 1}2λ, set z∗ = (x∗, v)
4. fkz∗ ← pWPRF.PuncKey(fk, z∗)

5. C̃ ← iO(1
λ
, C[fkz∗ , x

∗
])

6. set ppe = ek, ppd = C̃
7. (m0,m1)← A(ppe, ppd)
8. y ← pWPRF.F(fk, (x∗, v))

9. K← SKE.Gen(1λ; y)
10. b← {0, 1}
11. cs ← SKE.Enc(K,mb)
12. set c = (cs, x

∗, v)
13. b′ ← A(c)
14. return 1 if (b = b′)

Fig. 6: Game 3

1. x∗ ← A(1λ)

2. (fk, ek) ← pWPRF.Gen(1λ, R′)

3. v ← {0, 1}2λ, set z∗ = (x∗, v)
4. fkz∗ ← pWPRF.PuncKey(fk, z∗)

5. C̃ ← iO(1λ, C[fkz∗ , x
∗])

6. set ppe = ek, ppd = C̃
7. (m0,m1)← A(ppe, ppd)

8. y ← Y

9. K← SKE.Gen(1λ; y)
10. b← {0, 1}
11. cs ← SKE.Enc(K,mb)
12. set c = (cs, x

∗, v)
13. b′ ← A(c)
14. return 1 if (b = b′)

Fig. 7: Game 4

(b) compute a punctured key fkz∗ ← pWPRF.PuncKey(fk, z∗)
(c) set y0 ← pWPRF.F(fk, z∗) and y1 ← Y
(d) pick b̃← {0, 1}
(e) return (ek, fkz∗ , yb̃) to B2

3. compute C̃ ← iO(1λ, C[fkz∗ , x
∗]) and set ppe = ek, ppd = C̃

4. receive (m0,m1)← A(ppe, ppd)
5. compute the encryption key as K← SKE.Gen(1λ; yb̃)
6. pick b← {0, 1}
7. compute the ciphertext as cs ← SKE.Enc(K,mb)
8. set c = (cs, x

∗, v)
9. get b′ ← A(c)

10. return 1 if (b = b′)

First, we note that z∗ = (x∗, v) 6∈ L′ with overwhelming probability. Since
v ← {0, 1}2λ, the probability that PRG(x∗ ⊕ u) = v for some u ∈ {0, 1}λ is at
most 2−λ which is negligible in λ. So, B2 is a legitimate pWPRF-adversary. If
the pWPRF-challenger picks b̃ = 0 then B2 simulates Game 3, and if it chooses
b̃ = 1 then B2 simulates Game 4. Therefore, the advantage of A in distinguishing
between Game 3 and Game 4 is the same as the advantage of B2 in breaking the
selective security of pWPRF. Hence the following holds:

|Pr[G3] − Pr[G4]| = AdvpWPRF,R′

B2
(λ)

Next, we note that in Game 4, the encryption key is computed as K← SKE.Gen
(1λ; y) with a fresh randomness y which is independent of the challenge statement
x∗. Therefore, by the CIND security of SKE (Def. 5) we have

|Pr[G4] − 1
2 | = AdvSKEB3

(λ)

where B3 is an adversary of CIND security game. Finally, we conclude the proof
by combining all the probabilities.

12

In the next theorem, we proof the security of EOWE (Fig. 3 with O = eO)
utilizing the extractor of eO.

Theorem 2 The EOWE = (Setup, Enc, Dec) described in Figure 3 with O =
eO is a semi-adaptively secure extractable offline witness encryption if PRG is
a secure pseudorandom generator, pWPRF is a selectively secure puncturable
witness pseudorandom function, eO is an extractability obfuscator for the circuit
class Cλ and SKE is a CIND secure symmetric key encryption.

Proof. We start with the standard EOWE experiment ExptEOWE,R
A (1λ) (Def. 11).

We call it as EGame 0. Here, we denote the security games by EGame i and
for each EGame i, let EGi be the event b = b′. We assume that A submits two
messages of equal length in each game and all the circuits used in the proof are
padded to a maximum size.
EGame 0 ⇒ EGame 1: EGame 1 is exactly the same as EGame 0 except we replace
the circuit C[fk] with a new circuit C[fk, x∗] defined in Fig. 8. Suppose, the
adversary A can distinguish between EGame 0 and EGame 1 with an advantage

AdvEGame 0-1
A (λ) = | Pr[EG0] − Pr[EG1]| ≥ 1

pA(λ)

for some polynomial pA(λ). Then, we show that there is a PPT extractor E and a
polynomial pE such that E(1λ, x∗) outputs a witness w∗ satisfying R(x∗, w∗) = 1
with probability at least 1

pE(λ)
.

We note that two games differ only in the obfuscated circuits. So, we con-
sider a PPT distinguisher D of eO as defined in Def. 13. In particular, D collects
two circuits from a circuit sampler S(1λ, ·) and an obfuscated circuit (from it’s
challenger), then it simulates the security game for A as follows:

D(1λ, C̃, C[fk], C[fk, x∗], aux):

1. parse aux = (ek, x∗)

2. set ppe = ek, ppd = C̃
3. (m0,m1)← A(ppe, ppd)
4. follow steps 6-10 as in EGame 1
5. set c = (cs, x

∗, v)
6. b′ ← A(c)
7. return 1 if b = b′

S(1λ, x∗)

1. (fk, ek) ← pWPRF.Gen(1λ, R′)
2. construct C[fk], C[fk, x∗]
3. set aux = (ek, x∗)
4. return (C[fk], C[fk, x∗], aux)

If C̃ ← eO(1λ, C[fk]) then D simulates EGame 0 and if C̃ ← eO(1λ, C[fk, x∗])
then D simulates EGame 1. Therefore, D can distinguish between the obfuscated
circuits with the same advantage of A in distinguishing EGame 0 and EGame
1. By the extractability property of eO (Def. 13), there exists a PPT extractor
E ′ and a polynomial pE′ such that E ′(1λ, C[fk], C[fk, x∗], aux) outputs (c̄, w̄) at
which the two circuits differ with probability at least 1

pE′ (λ)
. Note that, the two

circuits differ only when c̄ = (c̄s, x
∗, v̄) is well formed and R(x∗, w̄) = 1.

Now, the extractor E(1λ, x∗) of EOWE simply runs S(1λ, x∗) to obtain (C[fk],
C[fk, x∗], aux) and then executes E ′(1λ, C[fk], C[fk, x∗], aux) to get a witness w∗

satisfying R(x∗, w∗) = 1 with probability ≥ 1
pE′ (λ)

. Thus we can set pE = pE′ and

13

1. x∗ ← A(1λ)

2. (fk, ek) ← pWPRF.Gen(1λ, R′)

3. C̃ ← eO(1
λ
, C[fk, x∗])

4. set ppe = ek, ppd = C̃
5. (m0,m1)← A(ppe, ppd)

6. u← {0, 1}λ, v ← PRG(x∗ ⊕ u)
7. y ← pWPRF.Eval(ek, (x∗, v), u)

8. K← SKE.Gen(1λ; y)
9. b← {0, 1}

10. cs ← SKE.Enc(K,mb)
11. set c = (cs, x

∗, v)
12. b′ ← A(c)
13. return 1 if b = b′

C[fk, x∗](c, w)

1. parse c = (cs, x, v)
2. if R(x,w) = 1
3. if x = x∗

4. return ⊥
5. else
6. y ← pWPRF.F(fk, (x, v))

7. K← SKE.Gen(1λ; y)
8. return SKE.Dec(K, cs)
9. else

10. return ⊥

Fig. 8: EGame 1

more importantly we note that E is a PPT extractor since S(·) runs in poly(λ)
time and E ′ is a PPT extractor.

EGame 1 ⇒ EGame 2: EGame 2 is exactly the same as EGame 1 except in line 7
of Fig. 8 where we compute y ← pWPRF.F(fk, (x∗, v)). By the correctness Eval
(using the same argument as in the transition from Game 0 to Game 1 of Th. 1),
we have Pr[EG1] = Pr[EG2].

EGame 2 ⇒ EGame 3: In EGame 3, we choose v ← {0, 1}2λ instead of computing
v ← PRG(x∗ ⊕ u) as in EGame 2. By the security of PRG (Def. 1), we have

|Pr[EG2] − Pr[EG3]| = AdvPRGB1
(λ)

where B1 is a PRG-adversary.

EGame 3 ⇒ EGame 4: In EGame 4, we set ppd ← eO(1λ, C[fkz∗ , x
∗]) where

fkz∗ ← pWPRF.PuncKey(fk, z∗) and z∗ = (x∗, v) for some v ← {0, 1}2λ. The
circuit C[fkz∗ , x

∗] is the same circuit defined in Fig. 8 except we replace fk by
fkz∗ and use pWPRF.PuncF(fkz∗ , (x, v)) to compute y in line 6. It is easy to
follow that the circuits C[fk, x∗], C[fkz∗ , x

∗] compute the same function by the
correctness of PuncF. Suppose, (c̄ = (c̄s, x̄, v̄), w̄) is any arbitrary input to the
circuits. If x̄ 6= x∗, then z∗ 6= (x̄, v̄) and hence pWPRF.F(fk, (x̄, v̄)) = pW-
PRF.PuncF(fkz∗ , (x̄, v̄)). If x̄ = x∗, then both the circuits return ⊥ because of
the check in line 2 or 3. By the extractability property of eO (Def. 13), we have

|Pr[EG3] − Pr[EG4]| = AdveOD (λ) = µ(λ)

where µ is a negligible function of λ. If the advantage is not bounded by a
negligible function of λ, then there exists an extractor E ′ which would produce
an input where the two circuits differ, leading towards a contradiction as the
circuits are equivalent.

EGame 4 ⇒ EGame 5: EGame 5 samples y uniformly at random from Y instead
of computing y ← pWPRF.F(fk, (x∗, v)) as in EGame 4, where Y is the co-domain
of pWPRF.F(fk, ·). Note that the probability of z∗ = (x∗, v) ∈ L′ for a random
v ← {0, 1}2λ is negligible in λ. By the selective security of pWPRF, we have

14

|Pr[EG4] − Pr[EG5]| = AdvpWPRF,R′

B2
(λ)

where B2 is a pWPRF-adversary. We skip the reduction as it is similar to the
reduction described in the transition from Game 3 to Game 4 of Th. 1.

Finally, the encryption key in EGame 5 is computed as K← SKE.Gen(1λ; y)
where y is a fresh randomness which is independent of the challenge statement
x∗. The CIND security of SKE (Def. 5) guarantees that

|Pr[EG5] − 1
2 | = AdvSKEB3

(λ).

where B3 is an adversary of CIND game. Finally, we have

AdvEOWE,R
A (λ) = |Pr[EG0]− 1

2
| ≤

4∑
i=0

|Pr[EGi]− Pr[EGi+1]|+ |Pr[EG5]− 1

2
|

= AdvEGame 0-1
A (λ) + AdvPRGB1

(λ) + µ(λ) + AdvpWPRF,R′

B2
(λ) + AdvSKEB3

(λ)

< AdvEGame 0-1
A (λ) + negl(λ) (by the assumptions in the theorem)

Thus, |AdvEOWE,R
A (λ) − AdvEGame 0-1

A (λ)| < negl(λ) implies AdvEGame 0-1
A (λ) =

AdvEOWE,R
A (λ) excluding the negligible term. Hence, by the similar arguments as

in the transition from EGame 0 to EGame 1, we conclude that if AdvEOWE,R
A (λ) ≥

1
pA(λ)

for some polynomial pA(λ), then there is a PPT extractor E and a poly-

nomial pE such that Pr[w∗ ← E(1λ, x∗) : R(x∗, w∗) = 1] ≥ 1
pE(λ)

.

4 Informal Description: (Extractable) Offline Functional
Witness Encryption

Apart from an NP language L with a witness relation R, Offline functional wit-
ness encryption (OFWE) is associated with a function class {Fλ}. It encrypts a
pair of function and message (f,m) ∈ Fλ ×M with respect to a statement x.
Instead of getting the whole message, a valid witness w for the statement x can
only get a user to learn f(m,w). The OWE described in Fig. 3 can be modified
to achieve OFWE. While encryption, we use the key K (computed utilizing pW-
PRF.Eval for the statement (x, v)) to encrypt (f,m) via SKE encryption. The
ciphertext becomes c = (cs, x, v) with |cs| = |f |+ |m| where |f |, |m| denote the
sizes of f , m respectively. In Setup, we modify C[fk] in line 5 so that the circuit
computes (f,m) ← SKE.Dec(K, cs) and then returns f(m,w) if R(x,w) = 1
holds. The rest of the construction remains the same. Note that the size of ci-
phertext is optimal and the encryption maintains similar efficiency akin to our
OWE. For security, we consider semi-adaptive model where the adversary A
commits on the challenge statement x∗ before the setup and adaptively selects
two pairs (f0,m0), (f1,m1) such that f0(m0, w) = f1(m1, w) for all w satisfying
R(x∗, w) = 1. Detail construction with security (Th. 5) is described in App. C.

Replacing iO with an eO leads us to an extractable OFWE which is selectively
secure means that A submits a challenge tuple (x∗, f,m0,m1) before setup.
Depending on the wining advantage of A in guessing the bit b hidden inside

15

Gen(1λ, R):

1. K ← pPRF.Gen(1λ)

2. C̃ ← O(1λ, C[K])

3. set fk = K, ek = C̃
4. return (fk, ek)

pWPRF.F(fk, x):
1. parse fk = K
2. set y ← pPRF.Eval(K, x)
3. return y

pWPRF.PuncKey(fk, x):
1. parse fk = K
2. set fkx ← pPRF.PuncKey(K, x)
3. return fkx

C[K](x,w)

1. if R(x,w) = 1
2. set y ← pPRF.Eval(K, x)
3. return y
4. else
5. return ⊥

pWPRF.PuncF(fkx, x
′)

1. return pPRF.PuncEval(fkx, x
′)

pWPRF.Eval(ek, x, w):

1. parse ek = C̃
2. return C̃(x,w)

Fig. 9: Construction of pWPRFs where O is either iO for normal pWPRF or eO
for extractable pWPRF (pWEPRF)

a ciphertext corresponding to (x∗, f,mb), there exists an extractor E which on
input the challenge tuple outputs a witness w satisfying f(m0, w) 6= f(m1, w)
and R(x∗, w) = 1 with high probability. We prove the security in Th. 6, App. C.

5 Construction: Puncturable Witness(-Extractable)
Pseudorandom Function

In this section, we show that WPRF construction of [24] satisfies our definition
of pWPRF. In addition, we observe that if the indistinguishability obfuscator is
replaced with an extractability obfuscator then the pWPRF becomes extractable.
We now describe the pWPRF = (Gen, F, PuncKey, PuncF, Eval) for any NP
language L with a relation R : X × W → {0, 1}. The following primitives are
required for the construction.
– A pPRF = (Gen, PuncKey, Eval, PuncEval) with domain X and co-domain Y.
– An obfuscator O for the class of circuits Cλ required in the constructions.

The only difference between the constructions of pWPRF and pWEPRF is
that: O is an indistinguishability obfuscator (iO) for pWPRF whereas O is
an extractability obfuscator (eO) for pWEPRF.

The constructions of pWPRFs are shown in Fig. 9. The correctness directly
follows from the correctness of the underlying pPRF and functionality of O.

Theorem 3 The pWEPRF = (Gen, F, PuncKey, PuncF, Eval) described in Fig-
ure 5 with O = iO is a selectively secure puncturable witness pseudorandom
function if pPRF is a secure puncturable pseudorandom function and iO is an
indistinguishability obfuscator for the circuit class Cλ. More specifically, for any
PPT adversary A, there exist a PPT adversary B and a PPT distinguisher D
such that:

16

AdvpWPRF,R
A (λ) ≤ AdvpPRFB (λ) + AdviOD (λ)

Proof sketch. As usual, we start with game 0 which is the standard security
experiment ExptpWPRF,R

A (1λ) as defined in Fig. 1. Next, in game 1, we replace the
circuit C[K] with a new circuit C[fkx∗ , x

∗] where fkx∗ ← pPRF.PuncKey(K, x∗).
For any arbitrary input (x,w), the new circuit returns the pseudorandom value
as pPRF.PuncEval(fkx∗ , x) if x 6= x∗ and R(x,w) = 1 hold, otherwise it returns ⊥.
It is easy to verify that the two circuits are functionally equivalent and hence by
the security of iO, game 0 and game 1 are indistinguishable. Now, the adversary
knowing fkx∗ cannot distinguish pWPRF.F(fk, x∗) from a random element due
to the security of underlying pPRF (Def. 3). A formal proof is given in App. A.

We discuss the security of pWEPRF in App. B where the extractibility prop-
erty of obfuscation (Def. 13) is utilized.

6 Conclusion

In this paper, we initiate the study of puncturable WPRF(pWPRF). We demon-
strate that this puncturing technique enhances the applicability of WPRF. We
construct semi-adaptively secure OWE that produces optimal size ciphertexts, in
particular a ciphertext c for a message m has the size of only |m|+2λ bits where
|m| denotes the bit-length of m. Note that, existing OWEs do not satisfy such
optimality. We further show that our OWE can be extended to offline functional
WE (OFWE) providing more control over data. Moreover, using eO we construct
extractable OWE and extractable OFWE with similar efficiency of encryption.

In future, we expect more cryptographic primitives realized from pWPRF. In
terms of security, it is desirable to construct WPRF in adaptive model without
multilinear maps [26]. This may lead us to OWE with full adaptive security.
Finally, we note that a significant open problem in this area is to construct WPRF
or OWE based on standard assumptions related to bilinear maps or lattices.

References

1. H. Abusalah, G. Fuchsbauer, and K. Pietrzak. Offline witness encryption. In
International Conference on Applied Cryptography and Network Security, pages
285–303. Springer, 2016.

2. S. Agrawal. Indistinguishability obfuscation without multilinear maps: new meth-
ods for bootstrapping and instantiation. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 191–225. Springer,
2019.

3. P. Ananth and A. Jain. Indistinguishability obfuscation from compact functional
encryption. In Annual Cryptology Conference, pages 308–326. Springer, 2015.

4. P. Ananth, A. Jain, H. Lin, C. Matt, and A. Sahai. Indistinguishability obfuscation
without multilinear maps: New paradigms via low degree weak pseudorandomness
and security amplification. In Annual International Cryptology Conference, pages
284–332. Springer, 2019.

17

5. P. Ananth and A. Sahai. Projective arithmetic functional encryption and indistin-
guishability obfuscation from degree-5 multilinear maps. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages
152–181. Springer, 2017.

6. M. Barbosa, B. Portela, G. Scerri, and B. Warinschi. Foundations of hardware-
based attested computation and application to sgx. In 2016 IEEE European Sym-
posium on Security and Privacy (EuroS&P), pages 245–260. IEEE, 2016.

7. N. Bitansky and V. Vaikuntanathan. Indistinguishability obfuscation from func-
tional encryption. Journal of the ACM (JACM), 65(6):1–37, 2018.

8. E. Boyle, K.-M. Chung, and R. Pass. On extractability (aka differing-inputs)
obfuscation. TCC, 2014.

9. E. Boyle and R. Pass. Limits of extractability assumptions with distributional
auxiliary input. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 236–261. Springer, 2015.

10. Z. Brakerski, N. Döttling, S. Garg, and G. Malavolta. Candidate io from homo-
morphic encryption schemes. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 79–109. Springer, 2020.

11. J. H. Cheon, W. Cho, M. Hhan, J. Kim, and C. Lee. Statistical zeroizing attack:
Cryptanalysis of candidates of bp obfuscation over ggh15 multilinear map. Cryp-
tology ePrint Archive, Report 2018/1081, 2018. https://eprint.iacr.org/2018/
1081.

12. P. Chvojka, T. Jager, and S. A. Kakvi. Offline witness encryption with semi-
adaptive security. Cryptology ePrint Archive, Report 2019/1337, 2019. https:

//eprint.iacr.org/2019/1337.

13. J.-S. Coron and L. Notarnicola. Cryptanalysis of clt13 multilinear maps with
independent slots. IACR Cryptology ePrint Archive, 2019:309, 2019.

14. I. Damgard and M. Jurik. A generalisation, a simplification and some applications
of pailliers probabilistic public-key system. pages 13–15, 2001.

15. B. Fisch, D. Vinayagamurthy, D. Boneh, and S. Gorbunov. Iron: functional en-
cryption using intel sgx. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 765–782. ACM, 2017.

16. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM
Journal on Computing, 45(3):882–929, 2016.

17. S. Garg, C. Gentry, S. Halevi, and D. Wichs. On the implausibility of differing-
inputs obfuscation and extractable witness encryption with auxiliary input. Algo-
rithmica, 79(4):1353–1373, 2017.

18. S. Garg, C. Gentry, A. Sahai, and B. Waters. Witness encryption and its appli-
cations. In Proceedings of the forty-fifth annual ACM symposium on Theory of
computing, pages 467–476. ACM, 2013.

19. C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of
the forty-first annual ACM symposium on Theory of computing, pages 169–178,
2009.

20. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Annual
Cryptology Conference, pages 75–92. Springer, 2013.

21. S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich. How
to run turing machines on encrypted data. In Advances in Cryptology–CRYPTO
2013, pages 536–553. Springer, 2013.

18

https://eprint.iacr.org/2018/1081
https://eprint.iacr.org/2018/1081
https://eprint.iacr.org/2019/1337
https://eprint.iacr.org/2019/1337

22. H. Lin. Indistinguishability obfuscation from sxdh on 5-linear maps and locality-5
prgs. In Annual International Cryptology Conference, pages 599–629. Springer,
2017.

23. H. Lin and S. Tessaro. Indistinguishability obfuscation from trilinear maps and
block-wise local prgs. In Annual International Cryptology Conference, pages 630–
660. Springer, 2017.

24. T. Pal and R. Dutta. Offline witness encryption from witness prf and randomized
encoding in crs model. In Australasian Conference on Information Security and
Privacy, pages 78–96. Springer, 2019.

25. A. Sahai and B. Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In Proceedings of the forty-sixth annual ACM symposium
on Theory of computing, pages 475–484. ACM, 2014.

26. M. Zhandry. How to avoid obfuscation using witness prfs. In Theory of Cryptog-
raphy Conference, pages 421–448. Springer, 2016.

19

A A Formal Proof of Theorem 3

Proof. We prove the security using two games. We start with Game 0 which is
the standard selective security experiment as in Def. 6. Let Gi be the event b = b′

in each Game i.
Game 0 ⇒ Game 1: Game 1 is exactly same as the Game 0 except we replace
the circuit C[K] with a new circuit C[fkx∗ , x

∗] defined in Fig. 10, where fkx∗ ←
pPRF.PuncKey(K, x∗). We show that the two circuits C[K] and C[fkx∗ , x

∗] are
functionally equivalent. For any arbitrary input (x̄, w̄) to the circuits, we see that
if x̄ 6= x∗, then both the circuits return the same value as pPRF.Eval(K, x̄) =
pPRF.PuncEval(fkx∗ , x̄). Otherwise, if x̄ = x∗ then the circuit C[K] returns ⊥,
because x∗ 6∈ L implies thatR(x̄, w̄) = 0 for all w̄ ∈ W, and the circuit C[fkx∗ , x

∗]
returns ⊥ because of the check in line 2 (Fig. 10). Thus, the indistinguishability
property of iO (Def. 12) guarantees that

|Pr[G0] − Pr[G1]| = AdviOD (λ)

where D is a PPT distinguisher for iO.

1. x∗ ← A(1λ)

2. K ← pPRF.Gen(1λ)

3. C̃ ← iO(1
λ
, C[fkx∗ , x

∗
])

4. set ek = C̃
5. fkx∗ ← pPRF.PuncKey(K, x∗)
6. y0 ← pPRF.Eval(K, x∗), y1 ← Y
7. b← {0, 1}
8. b′ ← A(ek, fkx∗ , yb)
9. return 1 if b = b′

C[fkx∗ , x
∗](x,w)

1. if R(x,w) = 1
2. if x = x∗

3. return ⊥
4. else
5. y ← pPRF.PuncEval(fkx∗ , x)
6. return y
7. else
8. return ⊥

Fig. 10: Game 1

Suppose, the advantage of A in Game 1 is non-negligible. Then we construct
an adversary B against the security of pPRF (Def. 2) with the same advantage
as follow.
B(1λ, x∗):
1. send x∗ to its challenger
2. The pPRF-challenger does the following:

(a) generate K ← pPRF.Gen(1λ)
(b) compute fkx∗ ← pPRF.PuncKey(K, x∗)
(c) set y0 ← pPRF.Eval(K, x∗) and y1 ← Y
(d) pick b← {0, 1}
(e) return (fkx∗ , yb) to B

3. compute C̃ ← iO(1λ, C[fkx∗ , x
∗]) and set ek = C̃

4. get b′ ← A(ek, fkx∗ , yb)
5. return 1 if b = b′

20

Note that B perfectly simulates Game 1 for A. If A can guess the bit b in Game
1 with a non-negligible advantage, then B breaks the security of pPRF with the
same advantage. From the security of pPRF, we have

|Pr[G1] − 1
2 | = AdvpPRFB (λ)

Finally, combining all the probabilities we conclude the proof.

B Security of pWEPRF

Theorem 4 The pWEPRF = (Gen, F, PuncKey, PuncF, Eval) described in Figure
5 with O = eO is a selectively secure puncturable witness-extractable pseudoran-
dom function if pPRF is a secure puncturable pseudorandom function and eO is
an extractability obfuscator for the circuit class Cλ.

Proof. We prove the security by showing indistinguishability of the following
games. We start with Game 0 which is the standard selective security experiment
as in Def. 8. Let Gi be the event b = b′ in each Game i.
Game 0 ⇒ Game 1: Game 1 is exactly same as the Game 0 except we replace
the circuit C[K] with a new circuit C[K, x∗] defined in Fig. 11. Suppose, the
adversary A can distinguish between Game 0 and Game 1 with non-negligible
advantage then

AdvGame 0-1
A (λ) = | Pr[G0] − Pr[G1]| ≥ 1

pA(λ)

1. x∗ ← A(1λ)

2. K ← pPRF.Gen(1λ)

3. C̃ ← eO(1
λ
, C[K, x∗])

4. set ek = C̃
5. fkx∗ ← pPRF.PuncKey(K, x∗)
6. y0 ← pPRF.Eval(K, x∗), y1 ← Y
7. b← {0, 1}
8. b′ ← A(ek, fkx∗ , yb)
9. return 1 if b = b′

C[K, x∗](x,w)

1. if R(x,w) = 1
2. if x = x∗

3. return ⊥
4. else
5. y ← pPRF.Eval(K, x)
6. return y
7. else
8. return ⊥

Fig. 11: Game 1

for some polynomial pA(λ). We show that there exists a PPT extractor E and a
polynomial pE such that E(1λ, x∗) outputs a witness w∗ satisfying R(x∗, w∗) = 1
with probability at least 1

pE(λ)
.

The two games differ only in the obfuscated circuits. So, we consider a PPT
distinguisher D of eO as defined in Def. 13. Specifically, D collects two circuits
from a circuit sampler S(1λ, ·) and an obfuscated circuit (from it’s challenger),
then it simulates the security game for A as follows:

21

D(1λ, C̃, C[K], C[K, x∗], aux):

1. parse aux = (fkx∗ , y
∗)

2. set ek = C̃, y0 = y∗

3. y1 ← Y
4. b← {0, 1}
5. b′ ← A(ek, fkx∗ , yb)
6. return 1 if b = b′

S(1λ, x∗)

1. K ← pPRF.Gen(1λ)
2. construct C[K], C[K, x∗]
3. y∗ ← pPRF.Eval(K, x∗)
4. fkx∗ ← pPRF.PuncKey(K, x∗)
5. set aux = (fkx∗ , y

∗)
6. return (C[K], C[K, x∗], aux)

If C̃ ← eO(1λ, C[K]), then D simulates Game 0 and if C̃ ← eO(1λ, C[K, x∗]), then
D simulates Game 1. Therefore, D can distinguish between the obfuscated cir-
cuits with the same advantage AdvGame 0-1

A (λ) of A. By the extractability prop-
erty of eO, there exists a PPT extractor E ′ and a polynomial pE′ such that
E ′(1λ, C[K], C[K, x∗], aux) outputs an input (x̄, w̄) at which the two circuits dif-
fer with probability at least 1

pE′ (λ)
. Note that, the two circuits differ only when

x̄ = x∗ and R(x∗, w̄) = 1.
Thus, the extractor E(1λ, x∗) of pWEPRF simply runs S(1λ, x∗) to obtain

(C[K], C[K, x∗], aux) and then executes E ′(1λ, C[K], C[K, x∗], aux) to get a wit-
ness w∗ such that R(x∗, w∗) = 1 holds with probability at least 1

pE′ (λ)
. Hence,

we can set pE = pE′ and we note that E is a PPT extractor since S(·) runs in
poly(λ) time and E ′ is a PPT extractor.

Game 1 ⇒ Game 2: In Game 2, we set ek ← eO(1λ, C[fkx∗ , x
∗]). The circuit

C[fkx∗ , x
∗] is the same as the circuit C[K, x∗] defined in Fig. 11 except that we

compute y ← pPRF.PuncEval(fkx∗ , x) in line 5. We see that the two circuits
are functionally equivalent. Suppose, (x̄, w̄) be any arbitrary input to the cir-
cuits. If x̄ 6= x∗, then the circuits return the same value as pPRF.Eval(K, x̄) =
pPRF.PuncEval(fkx∗ , x̄). If x̄ = x∗ then the circuits return ⊥ because of the check
in line 1 or 2. Therefore, by the extractability property of eO (Def. 13), we have

|Pr[G1] − Pr[G2]| = AdveOD (λ) = µ(λ)

where µ is a negligible function of λ. If the advantage is not bounded by a
negligible function of λ, then there exists an extractor E ′ which would produce
an input where the two circuits differ, leading towards a contradiction as the
circuits are equivalent.

Suppose, the advantage of A in Game 2 is non-negligible. Then we construct
an adversary B which will break the security of pPRF with the same advantage.
B(1λ, x∗):
1. send x∗ to its challenger
2. The pPRF-challenger does the following:

(a) generate K ← pPRF.Gen(1λ)
(b) compute fkx∗ ← pPRF.PuncKey(K, x∗)
(c) set y0 ← pPRF.Eval(K, x∗) and y1 ← Y
(d) pick b← {0, 1}
(e) return (fkx∗ , yb) to B

3. compute C̃ ← eO(1λ, C[fkx∗ , x
∗]) and set ek = C̃

22

4. get b′ ← A(ek, fkx∗ , yb)
5. return 1 if b = b′

Note that B perfectly simulates Game 2 for A. If A can guess the bit b in Game
2 with a non-negligible advantage, then B breaks the security of pPRF with the
same advantage. Therefore, the security of pPRF guarantees that

|Pr[G2] − 1
2 | = AdvpPRFB (λ)

Combining all the advantages we have

AdvpWEPRF,R
A (λ) = |Pr[G0]− 1

2
| ≤

1∑
i=0

|Pr[Gi]− Pr[Gi+1]|+ |Pr[G2]− 1

2
|

= AdvGame 0-1
A (λ) + µ(λ) + AdvpPRFB (λ)

< AdvGame 0-1
A (λ) + negl(λ) (by the assumptions in the theorem)

Thus, |AdvpWEPRF,R
A (λ) − AdvGame 0-1

A (λ)| < negl(λ) implies AdvGame 0-1
A (λ) =

AdvpWEPRF,R
A (λ) excluding the negligible term. Hence, by the similar arguments

as in the transition from Game 0 to Game 1, we conclude that if AdvpWEPRF,R
A (λ) ≥

1
pA(λ)

for some polynomial pA(λ), then there exists an extractor E and a poly-

nomial pE such that Pr[w∗ ← E(1λ, x∗) : R(x∗, w∗) = 1] ≥ 1
pE(λ)

.

C Offline Functional Witness Encryption

Definition 14 An offline functional witness encryption (OFWE) scheme for an
NP language L with a relation R and a class of functions {Fλ} is a tuple of PPT
algorithms (Setup, Enc, Dec) defined as follows:

• (ppe, ppd)← Setup(1λ, R) : on input a security parameter λ and a relation
R : X ×W → {0, 1}, returns two public parameters ppe for encryption and
ppd for decryption.

• c ← Enc(ppe, x, f,m) : returns c, an encryption of the message m ∈ M
under a function f :M×W →M′ with respect to the statement x ∈ X .

• Dec(ppd, c, w) ∈ M′ ∪ {⊥} : a deterministic algorithm that decrypts the
ciphertext c using a witness w ∈ W and returns a value m′ ∈M′, or ⊥ if it
fails.

The OFWE scheme is said to be correct if the following holds:

– correctness: For all λ ∈ N, x ∈ X , w ∈ W, m ∈M, f ∈ Fλ and (ppe, ppd)←
Setup(1λ, R), we require that

Pr[Dec(ppd,Enc(ppe, x, f,m), w) = f(m,w) : R(x,w) = 1] = 1

We consider semi-adaptive security model for OFWE described in the experiment
ExptOFWE,R

A (1λ) (Fig. 12).

23

1. x∗ ← A(1λ)

2. (ppe, ppd)← Setup(1λ, R)
3. ((f0,m0), (f1,m1))← A(ppe, ppd)
4. b← {0, 1}
5. c← Enc(ppe, x

∗, fb,mb)
6. b′ ← A(c)
7. return 1 if (b′ = b) ∧ (|f0| + |m0| =
|f1|+ |m1|)∧(f0(m0, w) = f1(m1, w)∀w ∈
W s.t. R(x∗, w) = 1)

Fig. 12: ExptOFWE,R
A (1λ, b)

1. (x∗, f,m0,m1)← A(1λ)

2. (ppe, ppd)← Setup(1λ, R)
3. b← {0, 1}
4. c← Enc(ppe, x

∗, f,mb)
5. b′ ← A(ppe, ppd, c)
6. return 1 if (b′ = b) ∧ (|m0| = |m1|)

Fig. 13: ExptEOFWE,R
A (1λ, b)

Definition 15 An offline functional witness encryption OFWE for an NP lan-
guage L with a relation R and a class of functions {Fλ} is said to be semi-
adaptively secure if, for all PPT adversary A, there exists a negligible function
negl such that

AdvOFWE,R
A (λ) = |Pr[ExptOFWE,R

A (1λ) = 1] − 1
2 | < negl(λ)

For extractable offline functional witness encryption we consider security in
selective model where A has to submit a challenge tuple (x∗, f,m0,m1) before

the setup. We call this experiment as ExptEOFWE,R
A (1λ) defined in Fig. 13.

Definition 16 An offline functional witness encryption OFWE is said to be
selectively secure extractable offline functional witness encryption (EOFWE) for
an NP language L with a relation R and a class of functions {Fλ}, if for any
PPT adversary A and for any polynomial pA(λ) there exist a PPT extractor E
and a polynomial pE such that

AdvEOFWE,R
A (λ) = |Pr[ExptEOFWE,R

A (1λ) = 1]− 1

2
| ≥ 1

pA(λ)

⇒Pr

[
w∗ ← E(1λ, (x∗, f,m0,m1)) :

R(x∗, w∗) = 1 ∧
f(m0, w

∗) 6= f(m1, w
∗)

]
≥ 1

pE(λ)

C.1 Construction: (Extractable) Offline Functional Witness
Encryption

Here, we present our construction of OFWE = (Setup, Enc, Dec) for an NP
language L with a relation R : X ×W → {0, 1} and a class of functions {Fλ}.
We consider the statement space X to be {0, 1}λ and W = {0, 1}n where n is a
polynomial in the security parameter λ. We utilize the following set of primitives
for our construction:
– A pseudorandom generator PRG : {0, 1}λ → {0, 1}2λ.
– A CIND secure symmetric key encryption SKE = (Gen, Enc, Dec).
– A pWPRF = (Gen, F, PuncKey, PuncF, Eval) for the NP language L′ =
{(x, v) : ∃u ∈ {0, 1}λ such that PRG(x ⊕ u) = v} with a relation R′ : X ′ ×
W ′ → {0, 1}. So, R′((x, v), u) = 1 if PRG(x⊕ u) = v, 0 otherwise.

24

Setup(1λ, R):

1. (fk, ek) ← pWPRF.Gen(1λ, R′)

2. C̃ ← O(1λ, C[fk])

3. set ppe = ek, ppd = C̃
4. return (ppe, ppd)

Enc(ppe, x, f,m):
1. parse ppe = ek
2. u← {0, 1}λ, v ← PRG(x⊕ u)
3. y ← pWPRF.Eval(ek, (x, v), u)
4. K← SKE.Gen(1λ; y)
5. cs ← SKE.Enc(K, (f,m))
6. return c = (cs, x, v)

C[fk](c, w)

1. parse c = (cs, x, v)
2. if R(x,w) = 1
3. y ← pWPRF.F(fk, (x, v))
4. K← SKE.Gen(1λ; y)
5. (f,m)← SKE.Dec(K, cs)
6. return f(m,w)
7. else
8. return ⊥

Dec(ppd, c, w):

1. parse ppd = C̃
2. return C̃(c, w)

Fig. 14: Construction of OFWEs with optimal ciphertexts where O is either iO
for normal OFWE or eO for extractable OFWE (EOFWE)

– An obfuscator O for the class of circuits Cλ required in the constructions. The
only difference between the constructions of OFWE and extractable OFWE
(EOFWE) is that: O is an indistinguishability obfuscator (iO) for OFWE
whereas O is an extractability obfuscator (eO) for EOFWE.

Our OFWE construction is described in Fig. 3. We assume that the circuit C[fk] ∈
Cλ and O is an iO. For correctness, we need to ensure that the same key K ←
SKE.Gen(1λ; y) is generated during encryption and decryption of OFWE. Note
that, we evaluate y using the pWPRF.Eval(ek, ·, ·) with a statement (x, v) and
a witness u such that R′((x, v), u) = 1. In decryption, we generate y inside the

circuit C̃ using pWPRF.F(fk, ·) with the statement (x, v) extracted from the
ciphertext. By the correctness of Eval, we ensure that the same randomness
y is used while decryption and hence SKE.Dec(K, cs) returns (f,m) that was
encrypted in Enc if R(x,w) = 1. Finally, the functionality of iO guarantees that

C̃ returns f(m,w) as required.
Efficiency : The ciphertext size of our OFWEs is also compact. Excluding the size
of the instance, the ciphertext size can be written as |cs|+ |v| = |m|+ |f |+ 2λ
where |m|, |f | denote the size of message and function respectively. Note that,
in SKE the size of ciphertexts are usually equal to the size of plaintexts. Hence,
the ciphertext size of OFWE is optimal. To encrypt a larger message with an
arbitrary function, one can split the plaintext into blocks of equal length (as
supported by the SKE) and then use a suitable modes of operation to encrypt
it with the same key K. We use the same key K to decrypt the ciphertext of
SKE and get back the original message. The size of the public parameter for
encryption ek (or ppe) is independent of the prime relation R. It depends on
the fixed relation R′ which verifies only a PRG computation. Hence, our OFWE
encryption is the most efficient among the existing constructions.

25

1. x∗ ← A(1λ)

2. (fk, ek) ← pWPRF.Gen(1λ, R′)

3. C̃ ← iO(1λ, C[fk])

4. set ppe = ek, ppd = C̃
5. ((f0,m0), (f1,m1))← A(ppe, ppd)

6. u← {0, 1}λ, v ← PRG(x∗ ⊕ u)

7. y
∗ ← pWPRF.F(fk, (x∗, v))

8. K∗ ← SKE.Gen(1λ; y∗)
9. b← {0, 1}

10. cs ← SKE.Enc(K∗, (fb,mb))
11. set c = (cs, x

∗, v)
12. b′ ← A(c)
13. return 1 if (b = b′)

Fig. 15: Game 1

1. x∗ ← A(1λ)

2. (fk, ek) ← pWPRF.Gen(1λ, R′)

3. C̃ ← iO(1λ, C[fk])

4. set ppe = ek, ppd = C̃
5. ((f0,m0), (f1,m1))← A(ppe, ppd)

6. v ← {0, 1}2λ

7. y∗ ← pWPRF.F(fk, (x∗, v))

8. K∗ ← SKE.Gen(1λ; y∗)
9. b← {0, 1}

10. cs ← SKE.Enc(K∗, (fb,mb))
11. set c = (cs, x

∗, v)
12. b′ ← A(c)
13. return 1 if (b = b′)

Fig. 16: Game 2

Theorem 5 The OFWE = (Setup, Enc, Dec) described in Figure 14 with O =
iO is a semi-adaptively secure offline functional witness encryption if PRG is
a secure pseudorandom generator, pWPRF is a selectively secure puncturable
witness pseudorandom function, iO is an indistinguishability obfuscator for the
circuit class Cλ and SKE is a CIND secure symmetric key encryption. More
specifically, for any PPT adversary A, there exist PPT adversaries B1, B2, B3
and a PPT distinguisher D such that:

AdvOFWE,R
A (λ) ≤ AdvPRGB1

(λ) + AdvpWPRF,R′

B2
(λ) + AdvSKEB3

(λ) + AdviOD (λ)

Proof. The proof is partly similar to the proof of Th. 1. In contrast to a normal
OWE, here we are allowing decryption for the challenge statement x∗ whenever
f0(m0, w) = f1(m1, w) holds for a witness w satisfying R(x∗, w) = 1.

We start with Game 0 which is the standard security experiment ExptOFWE,R
A (1λ)

as defined in Fig. 12. For Game i, we denote by Gi the event b = b′. In each
game, we assume A submits (f0,m0), (f1,m1) ∈ Fλ×M such that |f0|+ |m0| =
|f1|+ |m1| and for all w ∈ W satisfying R(x∗, w) = 1 it holds that f0(m0, w) =
f1(m1, w). The circuits used in the security proof are assumed to be padded to
a fixed maximum size.
Game 0 ⇒ Game 1: In Game 0, we generate the encryption key as K← SKE.Gen
(1λ; y) where y∗ ← pWPRF.Eval(ek, (x∗, v), u). But, Game 1 (Fig. 15) directly
sets y∗ ← pWPRF.F(fk, (x∗, v)) without using the witness u. By the correctness
of Eval:

pWPRF.Eval(ek, (x∗, v), u) = pWPRF.F(fk, (x∗, v)) as R′((x∗, v), u) = 1.

It is clear that the distribution of ciphertexts in both the games are identical
and hence we have Pr[G0] = Pr[G1].
Game 1 ⇒ Game 2: In Game 2, described in Fig. 16, we pick v uniformly at
random from {0, 1}2λ instead of computing v ← PRG(x∗ ⊕ u). Note that, given
x∗, the distribution of x∗ ⊕ u is uniform over {0, 1}λ for u ← {0, 1}λ. By the
security of PRG (Def. 1), the distinguishing advantage of A between Game 1 and
Game 2 is written as

26

1. x∗ ← A(1λ)

2. (fk, ek) ← pWPRF.Gen(1λ, R′)

3. v ← {0, 1}2λ, set z∗ = (x∗, v)
4. fkz∗ ← pWPRF.PuncKey(fk, z∗)
5. y∗ ← pWPRF.F(fk, (x∗, v))

6. K∗ ← SKE.Gen(1λ; y∗)

7. C̃ ← iO(1
λ
, C[fkz∗ ,K

∗
, z
∗
])

8. set ppe = ek, ppd = C̃
9. ((f0,m0), (f1,m1))← A(ppe, ppd)

10. b← {0, 1}
11. cs ← SKE.Enc(K∗, (fb,mb))
12. set c = (cs, x

∗, v)
13. b′ ← A(c)
14. return 1 if (b = b′)

Fig. 17: Game 3

1. x∗ ← A(1λ)

2. (fk, ek) ← pWPRF.Gen(1λ, R′)

3. v ← {0, 1}2λ, set z∗ = (x∗, v)
4. fkz∗ ← pWPRF.PuncKey(fk, z∗)

5. y
∗ ← Y

6. K∗ ← SKE.Gen(1λ; y∗)

7. C̃ ← iO(1λ, C[fkz∗ ,K
∗, z∗])

8. set ppe = ek, ppd = C̃
9. ((f0,m0), (f1,m1))← A(ppe, ppd)

10. b← {0, 1}
11. cs ← SKE.Enc(K∗, (fb,mb))
12. set c = (cs, x

∗, v)
13. b′ ← A(c)
14. return 1 if (b = b′)

Fig. 18: Game 4

|Pr[G1] − Pr[G2]| = AdvPRGB1
(λ)

where B1 is a PRG-adversary.
Game 2 ⇒ Game 3: We describe Game 3 in Fig. 17 where we replace the circuit
C[fk] by the circuit C[fkz∗ ,K

∗, z∗] and set the public parameter for decryption
as ppd ← iO(1λ, C[fkz∗ ,K

∗, z∗]). The new circuit C[fkz∗ ,K
∗, z∗] works as follows:

C[fkz∗ ,K
∗, z∗](c, w)

1. parse c = (cs, x, v)
2. if R(x,w) = 1
3. if (x, v) = z∗

4. (f,m)← SKE.Dec(K∗, cs)
5. return f(m,w)
6. else y ← pWPRF.PuncF(fkz∗ , (x, v))
7. K← SKE.Gen(1λ; y)
8. (f,m)← SKE.Dec(K∗, cs)
9. return f(m,w)

10. else
11. return ⊥
Note that, the two circuits C[fk] and C[fkz∗ ,K

∗, z∗] are functionally equivalent.
Let (c̄, w̄) be any arbitrary input where c̄ = (c̄s, x̄, v̄). If (x̄, v̄) = z∗, then both
the circuits use K∗ to decrypt c̄s whenever R(x∗, w̄) = 1 holds; otherwise output
⊥. If (x̄, v̄) 6= z∗, then by the correctness of PuncF we have

pWPRF.F(fk, (x̄, v̄)) = pWPRF.PuncF(fkz∗ , (x̄, v̄))

and hence C[fk](c̄, w̄) = C[fkz∗ ,K
∗, z∗](c̄, w̄). Therefore, by the indistinguisha-

bility property of iO, we have

|Pr[G2] − Pr[G3]| = AdviOD (λ)

where D is a PPT distinguisher for iO.

27

Game 3 ⇒ Game 4: In Game 4, described in Fig. 18, we sample y uniformly at
random from Y which is the co-domain of pWPRF.F(fk, ·). We need to show that
if A is able to distinguish between these two games, then there is an adversary
B2 which will break the selective security of pWPRF (defined in Fig. 1) with the
same advantage. Let z∗ = (x∗, v) be the challenge statement of B2 for a random
v ← {0, 1}2λ.
B2(1λ, z∗):
1. send z∗ to its challenger
2. The pWPRF-challenger does the following:

(a) generate (fk, ek) ← pWPRF.Gen(1λ, R′)
(b) compute a punctured key fkz∗ ← pWPRF.PuncKey(fk, z∗)
(c) set y0 ← pWPRF.F(fk, z∗) and y1 ← Y
(d) pick b̃← {0, 1}
(e) return (ek, fkz∗ , yb̃) to B2

3. compute the encryption key as K∗ ← SKE.Gen(1λ; yb̃)

4. compute C̃ ← iO(1λ, C[fkz∗ ,K
∗, z∗]) and set ppe = ek, ppd = C̃

5. receive ((f0,m0), (f1,m1))← A(ppe, ppd)
6. pick b← {0, 1}
7. compute the ciphertext as cs ← SKE.Enc(K∗, (fb,mb))
8. set c = (cs, x

∗, v)
9. get b′ ← A(c)

10. return 1 if (b = b′)

It is important to observe that z∗ = (x∗, v) 6∈ L′ with overwhelming probability.
Since v ← {0, 1}2λ, the probability that PRG(x∗ ⊕ u) = v for some u drawn
uniformly at random from {0, 1}λ is at most 2−λ which is negligible in λ. So, B2
is an honest pWPRF-adversary.

If the pWPRF-challenger picks b̃ = 0 then B2 simulates Game 3, and if it
chooses b̃ = 1 then B2 simulates Game 4. Therefore, the advantage of A in
distinguishing between Game 3 and Game 4 is the same as the advantage of B2
in breaking the selective security of pWPRF. We get the following:

|Pr[G3] − Pr[G4]| = AdvpWPRF,R′

B2
(λ)

Finally, we note that in Game 4, the encryption key is computed as K∗ ←
SKE.Gen(1λ; y∗) where y∗ is sampled uniformly and independently from Y. There-
fore, by the CIND security of SKE (Def. 5) we have

|Pr[G4] − 1
2 | = AdvSKEB3

(λ)

where B3 is an adversary of CIND security game. We conclude the proof by
combining all the adversarial advantages.

Next, we discuss the security of extractable OFWE in the following theorem.

Theorem 6 The EOFWE = (Setup, Enc, Dec) described in Figure 14 with O =
eO is a selectively secure extractable offline functional witness encryption if PRG
is a secure pseudorandom generator, pWPRF is a selectively secure puncturable
witness pseudorandom function, eO is an extractability obfuscator for the circuit
class Cλ and SKE is a CIND secure symmetric key encryption.

28

1. (x∗, f,m0,m1)← A(1λ)

2. (fk, ek) ← pWPRF.Gen(1λ, R′)
3. set X∗ = (x∗, f,m0,m1)

4. C̃ ← eO(1
λ
, C[fk, X∗])

5. set ppe = ek, ppd = C̃
6. u← {0, 1}λ, v ← PRG(x∗ ⊕ u)
7. y∗ ← pWPRF.Eval(ek, (x∗, v), u)

8. K∗ ← SKE.Gen(1λ; y∗)
9. b← {0, 1}

10. cs ← SKE.Enc(K∗, (f,mb))
11. set c = (cs, x

∗, v)
12. b′ ← A(ppe, ppd, c)
13. return 1 if b = b′

C[fk, X∗](c, w)

1. parse c = (cs, x, v)
2. if R(x,w) = 1
3. y ← pWPRF.F(fk, (x, v))

4. K← SKE.Gen(1λ; y)

5. (f̂ , m̂)← SKE.Dec(K, cs)

6. if (x = x∗) ∧ (f = f̂) ∧ (f(m0, w) 6= f(m1, w))
7. return ⊥
8. else
9. return f̂(m̂, w)

10. else
11. return ⊥

Fig. 19: EGame 1

Proof. We begin the proof with the standard EOFWE experiment ExptEOFWE,R
A (1λ)

which is described in Def. 16. Here, we name it as EGame 0 and denote the secu-
rity games by EGame i. In each EGame i, we consider EGi as the event b = b′. We
assume that A submits a challenge tuple (x∗, f,m0,m1) such that |m0| = |m1|
and the circuits used in the proof are padded to a maximum size.
EGame 0 ⇒ EGame 1: EGame 1 is exactly the same as EGame 0 except we re-
place the circuit C[fk] with a new circuit C[fk, X∗] defined in Fig. 19 where
X∗ = (x∗, f,m0,m1). Suppose, the adversary A can distinguish between EGame
0 and EGame 1 with an advantage

AdvEGame 0-1
A (λ) = | Pr[EG0] − Pr[EG1]| ≥ 1

pA(λ)

for some polynomial pA(λ). Then, we build a PPT extractor E and a polynomial
pE(λ) such that E(1λ, X∗) outputs a witness w∗ satisfying R(x∗, w∗) = 1 and
f(m0, w

∗) 6= f(m1, w
∗) with probability at least 1

pE(λ)
.

We note that two games differ only in the obfuscated circuits. Thus, we con-
sider a PPT distinguisher D of eO as defined in Def. 13. In particular, D collects
two circuits from a circuit sampler S(1λ, ·) and an obfuscated circuit (from it’s
challenger), then it simulates the security game for A as follows:

D(1λ, C̃, C[fk], C[fk, X∗], aux):

1. parse aux = (ek, X∗)
2. parse X∗ = (x∗, f,m0,m1)

3. set ppe = ek, ppd = C̃
4. follow steps 6-10 as in EGame 1
5. set c = (cs, x

∗, v)
6. b′ ← A(ppe, ppd, c)
7. return 1 if b = b′

S(1λ, X∗)

1. (fk, ek) ← pWPRF.Gen(1λ, R′)
2. construct C[fk], C[fk, X∗]
3. set aux = (ek, X∗)
4. return (C[fk], C[fk, X∗], aux)

If C̃ ← eO(1λ, C[fk]) then D simulates EGame 0 and if C̃ ← eO(1λ, C[fk, X∗])
then D simulates EGame 1. Therefore, D can distinguish between the obfuscated
circuits with the same advantage of A in distinguishing EGame 0 and EGame 1.

29

By the extractability property of eO (Def. 13), there exists an extractor E ′ and a
polynomial pE′(λ) such that E ′(1λ, C[fk], C[fk, X∗], aux) outputs an input (c̄, w̄)
at which the two circuits differ with probability at least 1

pE′ (λ)
. Note that, the

two circuits differ only when c̄ = (c̄s, x
∗, v̄) is well formed and c̄s is an encryption

of (f,m) such that f(m0, w̄) 6= f(m1, w̄) with R(x∗, w̄) = 1.
Now, the extractor E(1λ, X∗) of EOFWE simply runs S(1λ, X∗) to obtain

(C[fk], C[fk, X∗], aux) and then executes E ′(1λ, C[fk], C[fk, X∗], aux) to get a wit-
ness w∗ satisfying R(x∗, w∗) = 1 and f(m0, w

∗) 6= f(m1, w
∗) with probability

at least 1
pE′ (λ)

. Therefore, we take pE = pE′ and note that E is a PPT extractor

since S(·) runs in poly(λ) time and E ′ is a PPT extractor.

EGame 1 ⇒ EGame 2: EGame 2 is exactly the same as EGame 1 except in line
7 of Fig. 19 where we compute y ← pWPRF.F(fk, (x∗, v)). By the correctness of
Eval (using the same argument as in the transition from Game 0 to Game 1 of
Th. 5), we have Pr[EG1] = Pr[EG2].

EGame 2 ⇒ EGame 3: In EGame 3, we choose v ← {0, 1}2λ instead of computing
v ← PRG(x∗ ⊕ u) as in EGame 2. The distribution of x∗ ⊕ u is uniform over
{0, 1}λ as u is sampled uniformly at random from {0, 1}λ . Hence, the security
of PRG (Def. 1) implies that

|Pr[EG2] − Pr[EG3]| = AdvPRGB1
(λ)

where B1 is a PRG-adversary.

EGame 3 ⇒ EGame 4: In EGame 4, we set ppd ← eO(1λ, C[fkz∗ ,K
∗, X∗]) where

fkz∗ ← pWPRF.PuncKey(fk, z∗), z∗ = (x∗, v) for some v ← {0, 1}2λ and K∗ ←
SKE.Gen(1λ; y∗) such that y∗ = pWPRF.F(fk, z∗). The circuit C[fkz∗ ,K

∗, X∗] is
described as follows:

C[fkz∗ ,K
∗, X∗](c, w)

1. parse c = (cs, x, v) and X∗ = (x∗, f,m0,m1)
2. if R(x,w) = 1
3. if (x, v) = (x∗, v)

4. (f̂ , m̂)← SKE.Dec(K∗, cs)

5. if (f = f̂) ∧ (f(m0, w) 6= f(m1, w))
6. return ⊥
7. else return f̂(m̂, w)
8. else y ← pWPRF.PuncF(fkz∗ , (x, v))
9. K← SKE.Gen(1λ; y)

10. (f̂ , m̂)← SKE.Dec(K, cs)

11. if (x = x∗) ∧ (f = f̂) ∧ (f(m0, w) 6= f(m1, w))
12. return ⊥
13. else return f̂(m̂, w)
14. else
15. return ⊥
It is easy to follow that the circuits C[fk, X∗], C[fkz∗ ,K

∗, X∗] compute the same
function. Suppose, (c̄ = (c̄s, x̄, v̄), w̄) is any arbitrary input to the circuits. If
z∗ = (x∗, v) 6= (x̄, v̄) then by the correctness of PuncF we have pWPRF.F(fk,

30

(x̄, v̄)) = pWPRF.PuncF(fkz∗ , (x̄, v̄)) and hence the circuits compute the same
function. On the other hand, if z∗ = (x̄, v̄), then both circuits use K∗ as the SKE
decryption key. By the extractability property of eO (Def. 13), we have

|Pr[EG3] − Pr[EG4]| = AdveOD (λ) = µ(λ)

where µ is a negligible function of λ. If the advantage is not bounded by a
negligible function of λ, then there exists an extractor E ′ which would produce
an input where the two circuits differ, leading towards a contradiction as the
circuits are equivalent.

EGame 4 ⇒ EGame 5: EGame 5 samples y∗ uniformly at random from Y instead
of computing y∗ ← pWPRF.F(fk, (x∗, v)) as in EGame 4, where Y is the co-
domain of pWPRF.F(fk, ·). Note that the probability of z∗ = (x∗, v) ∈ L′ for a
random v ← {0, 1}2λ is negligible in λ. This means z∗ is an eligible candidate
to become a challenge query for a pWPRF-adversary. By the selective security
of pWPRF, we have

|Pr[EG4] − Pr[EG5]| = AdvpWPRF,R′

B2
(λ)

where B2 is a pWPRF-adversary. We skip the reduction as it is similar to the
reduction described in the transition from Game 3 to Game 4 of Th. 5.

Finally, the encryption key in EGame 5 is computed as K← SKE.Gen(1λ; y∗)
where y∗ is a fresh randomness which is independent of the challenge statement
x∗. Thus,the CIND security of SKE (Def. 5) guarantees that

|Pr[EG5] − 1
2 | = AdvSKEB3

(λ).

where B3 is an adversary of CIND security game. Combining all the probabilities,
we get

AdvEOFWE,R
A (λ) = |Pr[EG0]− 1

2
| ≤

4∑
i=0

|Pr[EGi]− Pr[EGi+1]|+ |Pr[EG5]− 1

2
|

= AdvEGame 0-1
A (λ) + AdvPRGB1

(λ) + µ(λ) + AdvpWPRF,R′

B2
(λ) + AdvSKEB3

(λ)

< AdvEGame 0-1
A (λ) + negl(λ) (by the assumptions in the theorem)

Thus, |AdvEOFWE,R
A (λ) − AdvEGame 0-1

A (λ)| < negl(λ) implies AdvEGame 0-1
A (λ) =

AdvEOFWE,R
A (λ) excluding the negligible term. Hence, by the similar arguments as

in the transition from EGame 0 to EGame 1, we conclude that if AdvEOFWE,R
A (λ) ≥

1
pA(λ)

for some polynomial pA(λ), then there is an extractor E and a polynomial

pE such that

Pr

[
w∗ ← E(1λ, (x∗, f,m0,m1)) :

R(x∗, w∗) = 1 ∧
f(m0, w

∗) 6= f(m1, w
∗)

]
≥ 1

pE(λ)
.

31

	Semi-Adaptively Secure Offline Witness Encryption from Puncturable Witness PRF
	Introduction
	Preliminaries
	Pseudorandom Generator
	Puncturable Pseudorandom Function
	Symmetric Key Encryption
	Puncturable Witness Pseudorandom Function
	Offline Witness Encryption
	Obfuscation

	Construction: (Extractable) Offline Witness Encryption
	Informal Description: (Extractable) Offline Functional Witness Encryption
	Construction: Puncturable Witness(-Extractable) Pseudorandom Function
	Conclusion
	A Formal Proof of Theorem 3
	Security of pWEPRF
	Offline Functional Witness Encryption
	Construction: (Extractable) Offline Functional Witness Encryption

