
Using z14 Fused-Multiply-Add Instructions to Accelerate Elliptic
Curve Cryptography

James You
youy2@mcmaster .ca
McMaster University

Hamilton, Ontario, Canada

Qi Zhang
q.zhang@ibm.com

IBM Research
Yorktown Heights, New York

Curtis D’Alves
dalvescb@mcmaster .ca
McMaster University

Hamilton, Ontario, Canada

Bill O’Farrell
billo@ca.ibm.com

IBM Canada
Markham, Ontario, Canada

Christopher K. Anand
anandc@mcmaster .ca
McMaster University

Hamilton, Ontario, Canada

ABSTRACT
Due to growing commercial applications like Blockchain, the perfor-
mance of large-integer arithmetic is the focus of both academic and
industrial research. IBM introduced a new integer fused multiply-
add instruction in z14, called VMSL, to accelerate such workloads.1
Unlike their floating- oint counterparts, there are a variety of inte-
ger fused multiply-add instruction designs. VMSL multiplies two
pairs of radix 256 inputs, sums the two results together with an addi-
tional 128-bit input, and stores the resulting 128-bit value in a vector
register. In this paper, we will describe the unique features of VMSL,
the ways in which it is inherently more efficie than alternativ e
specifications in particular by enabling multiple carry strategies.
We will then look at the issues we encountered implementing Mont-
gomery Modular Multiplication for Elliptic Curve Cryptography
on z14, including radix choice, mixed radices, instruction selection
to trade instruction count for latency, and VMSL-specifi optimiza-
tions for Montgomery-friendly moduli. The best choices resulted
in a 20%increase in throughput.

CCS CONCEPTS
•Security andprivacy→ Public key (asymmetric) techniques;
• Computer systems organization → Reduced instruction
set computing; Single instruction, multiple data; • Theory
of computation → Cryptographic protocols.

KEYWORDS
elliptic curve cryptography, computer arithmetic, vector instruc-
tions, softwar e implementation, single instruction multiple data

1Appendix A lists all z/Architecture instructions used in this paper.

ACM Reference Format:
James You, Qi Zhang, Curtis D’Alves, Bill O’Farrell, and Christopher K.
Anand. 2019. Using z14 Fused-Multiply-Add Instructions to Accelerate El-
liptic Curve Cryptography. In CASCON ’19: Conference of the Centre for
Advanced Studies on Collaborative Research, November 4-6, 2019, Toronto,
Canada, 8 pages.

1 INTRODUCTION
Elliptic Curve Cryptogrphy (ECC) is a set of algorithms based on
algebraic curves over finite fields, including Elliptic Curve Diffie-
Hellman (ECDH) for key exchange and Elliptic Curve Digital Sig-
nature Algorithm (ECDSA) for digital signatures. ECC provides an
equivalent level of security to RSA with much smaller key sizes[11].
With the increasing adoption of cryptography, many applications
depend on the efficient implementation of ECC. Blockchain is per-
haps the most important, and best-known example.

Put simply, blockchain is a mechanism for storing immutable
transactions on a shared ledger. ECC is heavily used in blockchains
to sign transactions. One example is Hyperledger Fabric, an open-
source2 permissioned blockchain platform which delivers higher
throughput and better scalability[3, 16] compared to permissionless
blockchains such as Bitcoin [13] and Ethereum [18]. In order to
guarantee that fraudulent transactions are not accepted by other
participants, each Hyperledger Fabric transaction needs to be exe-
cuted and signed by multiple endorsement peers. Before putting
a transaction into a block, the committing peer nodes verify the
authorship of these signed transactions using the corresponding
public keys. ECC has important applications beyond blockchain.
For example, the Transport Security Layer version 1.2 and up spec-
ify elliptic curve cipher suites [2], through which a wide range of
internet applications will benefit from a performant ECC imple-
mentation.

1.1 Elliptic Curve Cryptography
Operations in ECC correspond to geometric operations on curves
in projective spaces over finite fields. The expected security of
the signatures depends on the size of the field. Cryptographers
have identified an increasing series of useful prime numbers and
curves over those prime-modulus fields. This paper reports on
results of optimizing such signing operations for NIST P-256, but
2https://github.com/hyperledger/fabric

284

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).
CASCON 19, November 2019, Toronto, Ontario, Canada
© 2019 Copyright held by the owner/author(s).

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the strategies would be broadly applicable to other primes, types
of cryptography and other applications of big number arithmetic.

Figure 1 shows the call stack for the ECDSA, which mirrors the
mathematical structure. At the top, we are computing the scaling
of a point, P , in the elliptic curve, by a positive integer k . This
involves repeated addition in the group of points on the elliptic
curve, which has equivalent geometric and algebraic descriptions.
So the top row calls the second row repeatedly. Scaling in any
group can be naively optimized by decomposing the scalar k =
kn · · · k1k0 into its binary representation, iterating through the
digits, adding P to an accumulator at step i iff the digit k i = 1,
and then adding the accumulator to itself. The actual algorithm
is more complicated because this naive algorithm is not constant
time, and is also slower than the alternativ es. Finally, the algebraic
descriptions of the addition in the group are in the finit fiel Fp , of
integers modulo a prime number p. Since the p in question has 256
bits, we need 256 bits to represent values in this field which require
two vector registers (or more if not stored in compact form). There

kP

P +Q P + P

x × y x × x

in Elliptic Curve P-256
in Elliptic Curve P-256
in Fp

Figure 1: ECC call stack.

are actually several representations for the points on an Elliptic
Curve, but all of them contain multiple elements of Fp , and the
algebraic representations of the group operations are combinations
of the operations in Fp . So optimizations of those operations will
speed up all other operations. Profilin (see Figure 2) shows that
the hottest function is indeed multiplication in Fp , which consumes
45%of the execution time.

45%

11%

7%
4%

33%

x ×Fp y

memory
×ord(G)

x +P-256y

other

Figure 2: Performance profile of functions by percentage of
total CPU cycles consumed in a Hyperledger Fabric peer on
a IBM z13.

2 Z/ARCHITECTURE
The IBM Z is a modern high-performance 64-bit multi-core com-
puter architecture. It is the successor to the line of mainframes
which began in 1964 with the IBM 360. Still today, the vast majority
of all business transactions are run on Z machines. The currently
available model, the z14, has a superscalar pipelined CPU with both

scalar registers and 32 128-bit vector registers. A z14 mainframe
can be configu ed with up to 240 cores (with a 5.2 GHz clock speed)
and 32 TB of memory. There are two primary operating systems
available on Z: z/OS and Linux (Ubuntu, SUSE Enterprise Server,
and Red Hat Enterprise distributions). The work described in this
paper was conducted on z14s running Linux.

2.1 VMSL: Vector Multiply Sum Logical
VMSL is a fused multiply-add instruction introduced as part of the
IBM z14. Unlike typical integer multiplication instructions (SIMD
or otherwise) which compute the upper and lower words of the
multiplication product in two separate instructions[8], VMSL com-
putes the 112-bit products of two 56-bit multiplications with the
option to left shift either 112-bit intermediary product by 1 bit. The
resulting intermediate products after the optional shift are then
added with a third 128-bit accumulator with all carry outs ignored
and the resulting 128-bit sum stored in the destination register.
Note that although carry outs are ignored, carry outs cannot occur
if less than 213 VMSLs are chained together.

VMSL v1, v2, v3, v4, 3, m6

t1 = v2 [0:56] *v3 [0:56] *(2*m6[0])
t2 = v2 [64:120]* v3 [64:120]*(2* m6[1])
v1 = t1 + t2 + v4

Figure 3: Intrinsic-like description of VMSL. v1 is the destina-
tion register.

As a fused multiply-add which computes two full products in a
single instruction, VMSL is an excellent building block for computing
big integer multiplication[8].

3 MONTGOMERY MODULAR
MULTIPLICATION

Multiplication in Fp which consumes 45% of the execution time
can be accelerate d using Montgomery multiplication[12]. Since p
is an odd prime, 2ℓ and p are relatively prime, and multiplication
by 2ℓ is an isomorphism of the additive group Fp , and a 7→ a × 2ℓ
gives an adapted set of coordinates for multiplication. The same
would be true for any finit field and relatively prime multiplier,
but multiplication by 2ℓ can be implemented as a left shift. It is
computationally convenient to take ℓ to be the number of bits in
the binary representation of p. So for P-256, ℓ = 256. To efficient
compute the inverse transformation, we assume that 2−ℓ the inverse
of 2ℓ in Fp has been precomputed.

Since 2ℓ and p are relatively prime, we can compute (using the
extended Euclidean algorithm), 0 < R′ < p and 0 < N ′ < 2ℓ such
that

2ℓ × R′ − p × N ′ = 1.
The value R′ is the smallest representativ e of the congruence class
2−ℓ . With that in mind, Montgomery multiplication can be effi-
ciently used for modular exponentiation (repeated multiplication[7]),
because changing coordinates is a one-time cost[10].

285

CASCON ’19, November 2019, Markham, Ontario, Canada J. You, Q. Zhang, C. D’Alves, B. O’Farrell, C. Anand

Since the primes we are required to use are larger than machine
integers, we will use a generalization of this algorithm to multi-
precision integers due to Gueron and Krasnov[5].

Algorithm 1 Word-by-Word Montgomery Multiplication for a
Montgomery Friendly modulus p

Input: p < 2256

l = 256, s = 64,k = 4,
0 ≤ a < p, 0 ≤ b < p

Sastifying:
−p−1 mod 2s = 1
s × k = l

Output: a × b × 2−l mod p
1: T = a × b
2: for i = 1 to k do
3: T1 ← T mod 2s
4: T2 ← T1 × p
5: T3 ← (T +T2)
6: T ← T3/2s
7: end for
8: if T ≥ p then
9: X ← T − p

10: else
11: X ← T
12: end if
13: return X

Given the structure of NIST P-256, it is convenient for us to
modify their algorithm to allow for variable-width “digits”.

Algorithm 2 Word-by-Word Montgomery Friendly Multiplication
with Mixed-Radix Reduction
Input: p < 2256

l = 256, s = [96, 96, 64],k = 3
0 ≤ a < p, 0 ≤ b < p

Sastifying:
∀ i | − p−1 mod 2si = 1∑k
i=1 si = l

Output: a × b × 2−l mod p
1: T = a × b
2: for i = 1 to k do
3: T1 ← T mod 2si
4: T2 ← T1 × p
5: T3 ← (T +T2)
6: T ← T3/2si
7: end for
8: if T ≥ p then
9: X ← T − p

10: else
11: X ← T
12: end if
13: return X

Note that the conditionals in the algorithms presented are con-
verted to constant time equivalents (bit selection and masking) in
their implementations.

4 IMPLEMENTATION
Inputs are typically organized in radix 264 for big integer arith-
metic on the z14, therefore the inputs must be converted into radix
256 from radix 264 before they can be used with VMSL. We call the
process of converting a radix 264 representation into a radix 256

representation “limbification . Some authors call algorithms oper-
ating on limbs multi-precision, and others call representation with
“pad” bits redundant representations. The digits or “limbs” of the
new representation of the number can either be stored individually
or in pairs across a double-word boundary (64-bits). The instruc-
tion VPERM provides an efficie method for permuting the bytes
of each 264 digits to the appropriate 254 limb. VPERM concatenates
two vectors registers into an intermediate 256 bit vector. The result
vector is formed by extracting bytes from the intermediate vector
using 16 indices stored in a third vector argument.

4.1 Schoolbook Multiplication
Schoolbook multiplication is the application of the usual pencil-
and-paper algorithm for multiplying decimal numbers to limbed
representations. Multiplicands in Fp are assumed to be represented
by integers in [0..p−1] stored in 56-bit limbs. For P-256,this requires
⌈256/56⌉ = 5 limbs, requiring three vector registers. In Figure 4, we
present the limbs for two 256-bit inputs A and B with limbs a0, ...a5
and b0, ...b5 respectively. We observe that there are 25 = 5×5 56-bit
multiplications. Using VMSL, we can compute two such multiplies at
once. The right-most column in Figure 4 only has one multiplication,
but the next column has two, so both require one VMSL. We use
byte permute instructions, VPERM, to form the arguments from the
appropriate limbs.

In more detail, the second column contains the sum of two prod-
ucts

(a1 × b0) + (a0 × b1)

which can be computed as VMSL can be given as:

VMSL (a1 ; a0), (b0 ; b1), 0, 3, 0

where we use the notation (a1;a0) = 264×a1+a0. The firs argument
is already stored in this order, but the second requires an additional
VPERM.

Squaring. VMSL can be used to optimize products which are squares,
a × a. Consider column 4 from Figure 4, it takes two VMSL instruc-
tions in order to compute the column. To compute the equivalent
column for the corresponding square expression

(a0 × a3) + (a1 × a2) + (a2 × a1) + (a3 × a0)

which is equal to

2(a0 × a3) + 2(a1 × a2)

which requires a single VMSL instruction:

VMSL (a1 ; a0), (a2 ; a3), 0, 3, 0b11

if we use the fina immediate mask, 0b11, to indicate that both
intermediate products should be shifted left by one bit.

Because only the least significan 56 bits are used for operands
in VMSL, the sum of the two products can be at most 112 bits. In
addition, the fina result will be ≤ (2113−1)×a, where a is the third
operand (the accumulator). In this way, we know that at least 8192

286

CASCON ’19, November 2019, Markham, Ontario, Canada
Using z14 Fused-Multiply-Add Instructions to Accelerate Elliptic
Curve Cryptography

a0a1a3

VMSL v1, v2, v3, v4, 3, 0

a2a4

b4 b3 b2 b1 b0

a0 × b0a0 × b4 a0 × b3 a0 × b2 a0 × b1

a1 × b0a1 × b4 a1 × b3 a1 × b2 a1 × b1

a2 × b0a2 × b4 a2 × b3 a2 × b2 a2 × b1

a3 × b0a3 × b4 a3 × b3 a3 × b2 a3 × b1

a4 × b0a4 × b4 a4 × b3 a4 × b2 a4 × b1

×

VMSL v1, v2, v3, 0, 3, 0

t8c t7c t6c t5c t4c t3c t2c t1c t0c

d0d1d2d3

t7c

t8c

t6c

t0c

t2c

t1c

t4c

t3c

t5c

512 bits

normalization + delimbification

Figure 4: Schoolbook multiplication of two 256-bit inputs stored in 56-bit limbs. The first two rows show limbified multipli-
cands with zero padding shown in grey. The next five rows show the logical multiplications, grouped in pairs as they are fed to
the VMSL instructions. Note that for a single VMSL output, the grey section must be zero, but once VMSLs are chained together the
grey area will contain carry bits. In the next row, we show the column sums, t0, ...t8, in which the grey area has been replaced
by a “c” indicating the possibility of non-zero carry bits. In the normalization row, we show the overlap in place value for the
column sums. The normalization step involves copying the lower 56 bits of t0 to the answer, then adding the upper 72 bits to
t1, which we know will not carry out. The lower 56 bits of that result are then the next 56 bits of the answer, and the upper 72
bits are added to t2. The final answer is 512 bits wide, and packed into 4 128-bit registers.

chained VMSLs would be required to cause a carry out of the 128-bit
vector register.

Algorithm 3 Implementation: 264 to 256

Input: x stored in x(1), x(0)
Output: y stored in y(2), y(1), y(0)

y(0) = VPERM 0, x(0), [0, 0, 20..25 , 0, 0, 26..31]
t = VPERM x(1), x(0), [0, 0, 0, 0, 8..19]
y(1) = VPERM 0, t, [0, 0, 20..25 , 0, 0, 26..31]
y(2) = VPERM 0, x(1), [0..5, 16, 17, 0, 0, 18..23]
return y(2), y(1), y(0)

Contrast this with Figure 5 which shows a typical schoolbook
multiplication where the size of each digit is equivalent to the size
of a machine word. Separate instructions are required to compute

low- and high-order words for each multiply, and for carry compu-
tation and addition on each addition. Because we cannot let carries
accumulate in place, we need 22 instructions (one each for the inter-
mediate values shown which includes hi/low products and carries,
plus one for each “+”) to compute a 128-bit result starting from two
64-bit register values, whereas VMSL can compute 112 bits with one
instruction, and it is much easier to chain them together.

4.2 Dependency Minimization
At first it seems appropriate to have the result of the previous
pairwise multiplication be passed as the third argument to next
VMSL as an accumulator. In Figure 4, we indicate VMSLs with no
dependence on a running total with blue dotted boxs, and VMSLs
building on a previous sum with blue solid boxes. This neat picture

287

CASCON ’19, November 2019, Markham, Ontario, Canada J. You, Q. Zhang, C. D’Alves, B. O’Farrell, C. Anand

a1

lo(a0 × b0)

a0

b0b1

hi(a0 × b0)

lo(a0 × b1)hi(a0 × b1)

×

c0c2 c1

lo(a1 × b1)hi(a1 × b1)

lo(a1 × b0)hi(a1 × b0)

c3

+0

+1

+2

+

+3

+4

+

+

+

carry1

carry0

carry2

carry3

carry4

Figure 5: Diagram showing intermediate values involved in
a typical schoolbook multiplication, with one rectangle for
each register value computed. Eachmultiplication produces
a low- and high-order result, and there are a lot of carries.

has a low instruction count, but as we show in Figure 6, this leads
to long latency edges because VMSL performs both multiplication
and addition. Although accumulator is only needed for the addition,
it must be available before the VMSL will dispatch.

In the lower half of Figure 6, we show that the dependent in-
structions can be substituted with a VMSL with no accumulator, and
a VAQ which adds the individual multiply-sums which can now be
dispatched in parallel. Figure 6 shows all of the operations neces-
sary to calculate the column sums in Figure 4, but only the middle
column is coloured, corresponding to the two diffe ent boxings to
the right. Writing the same column algebraically ,

(a4 × b0) + (a3 × b1) + (a2 × b2) + (a1 × b3) + (a0 × b4)

the firs method is implemented by

r0 = VMSL (a4 ; a3), (b0 ; b1), 0, 3, 0 // rank 0
r1 = VMSL (a2 ; a1), (b2 ; b3), r0, 3, 0 // rank 1
r2 = VMSL (0 ; a0), (0 ; b4), r1, 3, 0 // rank 2
return r2

Omitting the use of a second accumulate operation would lead to
the revised implementation, with the VMSLs computable in parallel:

r0 = VMSL (a4 ; a3), (b0 ; b1), 0, 3, 0 // rank 0
r1 = VMSL (a2 ; a1), (b2 ; b3), 0, 3, 0 // rank 1
r2 = VMSL (0 ; a0), (0 ; b4), 0, 3, 0 // rank 2
r3 = VAQ r0, r1
s = VAQ r2, r3
return s

4.3 Delimbification
The product of the vectorized schoolbook multiplication with VMSL
is in non-normalized form. That is to say that the multiplication
produces nine vector registers containing a 112 bit number and up
to 16 bits of carry accumulation (see Figure 4). The non-normalized
form is composed of registers which belong in the normalized
form and registers which contain upper and lower doublewords
which must be added to the appropriate limb. After normalization,
the limbs can be considered to be redundant. Gueron and Krasnov
present an algorithm for converting any number U in redundant
form to a radix 2m such that U < 2m×k where k is the number of
limbs in redundant form[6]. The product in redundant form can
then be permuted and bit shuffled to the appropriate registers to
finall have the result in the original radix 264 representation. This
can be implemented on the z14 with a combination of VAQ, VPERM,
VSLDB and logical instructions.

4.4 Modulo Reduction with a Montgomery
Friendly Modulus

T2 ← T1 × p
It is in the calculation of the product, that we see why some primes
are called “Montgomery friendly”. We will explain the implications
in detail, because it took us a long time to understand them. De-
composing the prime[1]

p = 0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff

= 2256 − 2224 + 2192 + 296 − 1,

we observe that multiplication by T1 can be converted into a series
of left shifts which are added or subtracted from each other. For
this specifi prime, if T1 < 296, some of the shifted versions of
T1 have no non-zero bits in common, so addition is equivalent to
bitwise “or”. And since 96 is a multiple of 8, the shifting and “or-
ing” can be combined into one or more byte permutations with
the VPERM instruction on z14, and similar instructions on other
architectures. Even if s (see algorithm 2) is not a multiple of 8,
many architectures have shift and insert under mask instructions
which similarly reduce the instruction count. Algorithm 4 shows
that the reduction to T2 can be performed with six z14 instructions,
including two 128-bit subtractions, with no additions, carrying or
borrowing, following well-known optimizations[5, 14].

Algorithm 4 Implementation:T2 ← (T1 × p −T1)/296

Input: d
Output: T2 stored in T2(1), T2(0)
Notation:

For value x spanning j registers, x (i) is the ith register s.t
0 ≤ i < j with x (0) as the least significant register.

1: T1Left = VSLDB 4, d, 0 ▷ T1 left aligned (***)

2: T1Right = VSLDB 12, 0, T1Left ▷ T1 makes (**)

3: T1mT1 = VSQ T1Left , T1Right ▷ partial sum in Fig.7

4: T1Left32 = VSLDB 8, 0, T1Left ▷ (*)

5: T2(0) = VSLDB 12, d, T1Left
6: T2(1) = VAQ T1Left32 , T1mT1
7: return T2

If, as in this case, the prime ends with a string of 1s, its decomposi-
tion will end in a −1, and thereforeT2 will end in a non-overlapping
copy of −T1. When this is added to T , it will cancel with the last 96

288

CASCON ’19, November 2019, Markham, Ontario, Canada
Using z14 Fused-Multiply-Add Instructions to Accelerate Elliptic
Curve Cryptography

VMSLVMSLVMSLVMSL VMSL VMSLVMSL VMSL

VMSLVMSLVMSL VMSL VMSL

VMSL

VMSL VMSLVMSLVMSLVMSL VMSL VMSLVMSL VMSL VMSLVMSL VMSL VMSLVMSL VMSL

VMSL

VAQ VAQ VAQ

VAQ

VAQ VAQ

a0 × b4

a1 × b3

a2 × b2

a3 × b1

a4 × b0

a0 × b4

a1 × b3

a2 × b2

a3 × b1

a4 × b0

VAQ v1, v2, v3

VMSL v1, v2, v3, v4, 3, 0

VMSL v1, v2, v3, 0, 3, 0

Figure 6: Dependency diagrams of coupled schoolbook multiplication where VMSL accepts the product of another VMSL vs. the
uncoupled variant with VAQ. Each VMSL also depends on two registers containing permutations of the multiplicand bytes, and
all instructionswithout dependencies are used in the normalization/delimbification step. Although the first version uses fewer
instructions, it has the longer latencies associated with integer multiplication versus the lower latency of addition.

bits of T . So it is unnecessary to calculate the least-significan 96
bits of T2. Rather than calculating

T3 ← T +T2,

we actually calculate

T3/296 ← T /296 +T2/296,

which has zero fractional part. To simplify notation, we will decom-
pose T2 as a concatenation of bit strings T2(1) ;T2(0) ;T1, with the
firs two 128-bit words stored in registers, and the fina 96-bits not
stored.

Working modulo 296,

⌊p/296⌋ = 2160 − 2128 + 296 + 1.

Instruction 1 extracts the 12 bytes of T1 from d , which on the
firs iteration is T (0), the least significan double word of T , and
left justifie them. This is (***)in Figure 7, which is meant to aid in
understanding the alignment of the various bitfield corresponding
to T1.

Instruction 2 extracts the same 12 bytes of d and right justifie
them, which will be used via a subtraction as −T1 marked by (**)in
Figure 7.

Instruction 3 subtracts these two values, which forms the bottom
2/3rds of the firs sum in Figure 7. The sum is completed in instruc-
tion 6, with the addition of the top eight bytes of T1 calculated in
instruction 4. Finally, the low-order register word of T2 is formed
by rotating two copies of T1 so that the bottom four bytes of T1 are
in the left of a register word followed by the full, right-aligne dT1.
No arithmetic is needed to compute this word, because as shown
in Figure 7, there is no overlap in bit values 2223 to 296, which is
the 2nd region of dashed red lines.

Algorithm 4 is used twice in the reduction step, as will be ex-
plained next.

⊂

Y (0, 0)Y (0, 1)+

Y (1, 0)Y (1, 1)

⊂

T1

−T1T1T1

−T1

T1

sum

...

−T1

T1

X (1)X (2) X (0)

sum

X (3)

T2(0)

T1(*) T1

−T1 (**)

T1 (***)

T2(1)

Figure 7: Decomposition of T into four register values, and
how its components align with the value of T1 in the three
iterations of Algorithm 2.

289

CASCON ’19, November 2019, Markham, Ontario, Canada J. You, Q. Zhang, C. D’Alves, B. O’Farrell, C. Anand

y

Updating T
The input and initial value of T is 512 bits wide, so it requires four
registers X (3), X (2), X (1) and X (0). In the previous subsection, we
extracted T1 from X (0), and calculated T2/296, which is at most 256
bits wide. The extra 96 bits are not needed in the computation of
T3. Furthermore, only the portion of T3/296 ← (T +T2)/296 needed
computeT1 for the next iteration is required. After the firs iteration,
we will need 96 bits and after the second 64 bits. Since Algorithm 4 is
applied iteratively in Algorithm 2, we will use the iteration number
as a firs index for Y (i, 0) and Y (i, 1) the low- and high-order words
of the lower bits of T which we carry through the computation.
Since the goal is to eliminate the fina 256 bits, we only need to track
the bits with place values originating in X (1) and X (0). because that
is sufficie to determine T1, not only in the fi st iteration, but in
all three iterations of Algorithm 2. Because the reduction does not
depend on X (3) or X (2), we can begin reduction when the lower
product of schoolbook multiplication becomes available . Finally we
can add the accumulated carries to the upper products when they
become available . To see that consider Figure 7.

Orange long dashes indicate the boundaries of the register val-
ues used to compute T2, which depend on T1, and match the left
boundary of the extracted copy of T1. At this step, the extracted
copy of T1 cancels out, so it is not used for computation in situ, but
four shifted copies are used, as shown, bracketed by a sum. In the
next step, cyan short dashes indicate the boundaries of the register
values used to compute T2, which similarly depend on the value of
T1 in this iteration.

Interleaved with these applications in Algorithm 4 is the addi-
tion of T2 to T . To avoid unnecessary shifts and additions, we add
T2 to shifted versions of X (1), X (0) instead, and add the result to
X (3), X (2) in the fina step. Because we shift the register alignments
with each iteration, the fina accumulated value is be aligned with
X (3), X (2). We give the full implementation in Algorithm 5, which
follows similar patterns to the previous implementations, but we
would like to point out a few important points.

The shifted values representing T in the original algorithm are
labelled T and calculated at statements 4,5,11,12 in the three itera-
tions. The shifts could have been performed by a VPERM instruction,
but a constant register of indices can be saved by using VSLDB which
concatenates the bytes in two registers, shifts the result to the left
and keeps the high-order quadword.

The addition with T2(1),T2(0),the most significan 256 bits of T2
in the original algorithm, are performed by VAQ, a 128-bit add, as
well as variations VACQ which incorporates a carry in, VACCQ which
calculates a carry out, and VACCCQ which both incorporates a carry
in and calculates a carry out. The firs two iterations at instructions
7,8,9 cannot carry out beyond the 256-bit value because the most
significan bytes of T are zero, due to the shifts, the fact X (3), X (2)
are not incorporated, and the corresponding bytes of T2(1) must
contain a zero bit to stop carry propagation, since as we see in
Figure 7, they are the result of a subtraction T1 − T1/232.

In the last iteration, we add to X (3), X (2) and we calculate the
fina carry because it may be 1. If the carry is 1, then the condition
T > p holds and we subtract p from the result. We do this efficient
by subtracting p from the 256 least significan bits of the last itera-
tion result, which we denote Y (3, 1), Y (3, 0), and using the borrow

Algorithm 5 Implementation: Mixed-Radix Reduction
Input:

X = a * b stored in X(3), X(2), X(1), X(0)
Output:

X * 2^(-256) mod p stored in Y(1), Y(0)
1: Y(0,0) = X(0)
2: Y(0,1) = X(1)
3: for i = 0 to 1 do
4: T(0) = VSLDB 4, Y(i,1), Y(i,0) ▷ 96-bit limb reductions

5: T(1) = VSLDB 4, 0, Y(i,1)
6: T2 = reduce_step Y(i,0) ▷ see algorithm 4

7: carry = VACCQ T(0), T2(0)
8: Y(i+1,0) = VAQ T(0), T2(0)
9: Y(i+1,1) = VACQ T(1), T2(1), carry
10: end for
11: T(0) = VSLDB 8, Y(2,1), Y(2,0) ▷ 64-bit limb reduction

12: T(1) = VSLDB 8, 0, Y(2,1)
13: T1Left = VSLDB 8, Y(2,0), 0
14: T2(0) = VSLDB 12, 0, T1Left
15: T2(1) = VSLDB 8, T2(0), T1Left
16: T2(1) = VSQ T2(1), T2(0)
17: carry = VACCQ T(0), T2(0)
18: T3(0) = VAQ T(0), T2(0)
19: T3(1) = VACQ T(1), T2(1), carry
20: carry = VACCQ X(2), T3(0)
21: Y(3,0) = VAQ X(2), T3(0)
22: Y(3,1) = VACCQ X(3), T3(1), carry
23: Y(3,2) = VACCCQ X(3), T3(1), carry
24: Y(3,0)-p(0) = VSQ Y(3,0), p(0)
25: borrow0 = VSCBIQ Y(3,0), p(0)
26: Y(3,1)-p(1) = VSBIQ Y(3,1), p(1), borrow0
27: borrow1 = VSBCBIQ Y(3,1), p(1), borrow0
28: mask = VSBIQ Y(3,2), 0, borrow1 ▷ carry ≤ borrow1

29: Y(4,0) = VSEL Y(3,0), Y(3,0) - p(0), mask
30: Y(4,1) = VSEL Y(3,1), Y(3,1) - p(1), mask
31: return Y(4)

result borrow1 to indicate that it was not greater than p. There are
now three possibilities (cf. [17]) with the fourth being excluded
• borrow1 = 0 ∧ Y (3, 2) = 0 =⇒ Y (3, 2) − borrow1 = 0,

which corresponds to a 256-bit result, larger than p;
• borrow1 = 1 ∧ Y (3, 2) = 0 =⇒ Y (3, 2) − borrow1 = −1,

which corresponds to a 256-bit result, less than p;
• borrow1 = 1∧Y (3, 2) = 1 =⇒ Y (3, 2)−borrow1 = 0, which

corresponds to a 257-bit result, larger than p.
This subtraction Y (3, 2)− borrow1 serves as a mask which can be
used to select the fina answer using VSEL in instructions 29 and 30.

5 RESULTS
The implementation was benchmarked with Go’s scalar multipli-
cation function, ScalarMultP256. Scalar multiplication involves
repeated point addition and point doubling and thus is a good test
for the improvements we made. All benchmark runs were done
on a single core of a z14 configu ed for performance measurement
(i.e. with VM sharing disabled). the new implementation was 1.2×
faster, from which we calculate that ×Fp was 1.25× faster. These
functions were upstreamed in Go version 1.12.

6 DISCUSSION & RELATED WORK
Initially, our implementation of schoolbook multiplication and mod-
ular reduction were interleaved in a scheme similar to the Coarsely
Integrated Operand Scanning method described by Kaya Koc, Acar
and Kaliski in [9]. In order to simplify the implementation, both
the inputs and prime modulus were stored in the same radix. This

290

CASCON ’19, November 2019, Markham, Ontario, Canada
Using z14 Fused-Multiply-Add Instructions to Accelerate Elliptic
Curve Cryptography

creates some difficul in interleaving the optimal schoolbook mul-
tiplication (where limbs are stored in radix 256) and modular reduc-
tion (where limbs are stored in radix 248). We were able to reach a
20% improvement with the non-interleaved code, which is a combi-
nation of the reduced computation, and a reduction in the difficul
of scheduling this case.

While our implementation computes the product of schoolbook
multiplication using full-word sub-products. Gueron and Krasnov
present and implement a schoolbook multiplication strategy for
various input sizes using 512-bit upper and lower integer fused-
multiply-add vector instructions with 52-bit limbs in the Intel IFMA
proposal[6]. Additionally Gueron and Drucker showcase the use of
a shift bit for optimizing modular exponentiation using the same
instructions in [4]. However, at both their times of writing, the
instructions were unimplemented on available microprocessors.

7 CONCLUSION
We have demonstrated significan speedups for elliptic curve op-
erations by tuning known algorithms for the capabilities of z14,
particularly VMSL, but this tuning-up goes beyond the instruction
selection which could be expected from a highly tuned compiler,
since many code optimizations depend on properties of finit field
and their representations. We have taken care to include as many
details of the optimizations which were not obvious to us in the
hope that future implementers of big-integer and cryptographic
functions will benefit

In the future, we hope to parameterize the optimizations we have
made so that they can be applied to larger primes (for greater secu-
rity against quantum computers[15]) and alternativ e algorithms,
such as Karatsuba’s, in the future without requiring a complete
rewrite.

ACKNOWLEDGMENTS
We thank the IBM Centre for Advanced Studies and NSERC for
financia support. We thank Jonathan Bradbury for his role in design
of the VMSL instruction and for his guidance and advice. We also
thank Michael Munday for his detailed code review.

REFERENCES
[1] Daniel J. Bernstein and Tanja Lange. [n.d.]. SafeCurves: choosing safe curves

for elliptic-curve cryptography. https://safe curves.cr.yp.to accesse d 20 January
2019.

[2] Simon Blake-Wilson, Nelson Bolyard, Vipul Gupta, Chris Hawk, and Bodo Moeller.
2006. Elliptic curve cryptography (ECC) cipher suites for transport layer security
(TLS). Technical Report. RFC4492.

[3] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed
Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, et al. 2016.
On scaling decentralized blockchains. In International Conference on Financial
Cryptography and Data Security. Springer, 106–125.

[4] Nir Drucker and Shay Gueron. 2018. Fast modular squaring with AVX512IFMA.
IACR Cryptology ePrint Archive 2018 (2018),335.

[5] Shay Gueron and Vlad Krasnov. 2013. Fast Prime Field Elliptic Curve Cryp-
tography with 256 Bit Primes. Cryptology ePrint Archive, Report 2013/816.
https://eprint.iacr.org/2013/816.

[6] S. Gueron and V. Krasnov. 2016. Accelerating Big Integer Arithmetic Using Intel
IFMA Extensions. In 2016 IEEE 23rd Symposium on Computer Arithmetic (ARITH).
32–38. https://doi.org/10.1109/ARITH.2016.22

[7] Darrel Hankerson, Alfred J Menezes, and Scott Vanstone. 2006. Guide to elliptic
curve cryptography. Springer Science & Business Media.

[8] IBM Corporation. [n.d.]. z/Architecture Principles of Operation. IBM.
[9] C. Kaya Koc, T. Acar, and B. S. Kaliski. 1996. Analyzing and comparing

Montgomery multiplication algorithms. IEEE Micro 16, 3 (June 1996), 26–33.
https://doi.org/10.1109/40.502403

[10] Martin Kochanski. 2003. A new method of serial modular multiplication.
[11] K. Lauter. 2004. The advantages of elliptic curve cryptography for wireless

security. IEEE Wireless Communications 11, 1 (Feb 2004), 62–67. https://doi.org/
10.1109/MWC.2004.1269719

[12] Peter L. Montgomery. 1985. Modular Multiplication without Trial Division. Math.
Comp. 44, 170 (April 1985), 519–521.

[13] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).
[14] Holger Orup. 1995. Simplifying quotient determination in high-radix modular

multiplication. In Proceedings of the 12th Symposium on Computer Arithmetic.
IEEE, 193–199.

[15] Martin Roetteler, Michael Naehrig, Krysta M Svore, and Kristin Lauter. 2017.
Quantum resource estimates for computing elliptic curve discrete logarithms.
In International Conference on the Theory and Application of Cryptology and
Information Security. Springer, 241–270.

[16] Parth Thakkar, Senthil Nathan, and Balaji Vishwanathan. 2018. Performance
Benchmarking and Optimizing Hyperledger Fabric Blockchain Platform. CoRR
abs/1805.11390 (2018). arXiv:1805.11390 http://arxiv.org/abs/1805.11390

[17] Colin D Walter. 1999. Montgomery exponentiation needs no fina subtractions.
Electronics letters 35, 21 (1999),1831–1832.

[18] Gavin Wood. 2014. Ethereum: A secure decentralise d generalise d transaction
ledger. Ethereum project yellow paper 151 (2014),1–32.

A OTHER INSTRUCTIONS USED.
VPERM v1, v2, v3, v4
for j = 0 to 7 do
i = j*8
idx = (v4[i:i+8] & 0x1f)*8
v1[i:i+8] = (v2 ++ v3)[idx:idx +8])
endfor
--
VSLDB v1, v2, v3, i4
* 0 <= i4 <= 15
i = i4*8
v1 = (v2 ++ v3)[i:i+127]
--
VAND v1, v2, v3
v1 = v2 & v3
--
VSEL v1, v2, v3, v4
for i = 0 to 127 do

if v4[i] == 0 then
v1[i] = v3[i]

else
v1[i] = v2[i]

endif
endfor
--
VAQ v1, v2, v3
v1 = v2 + v3 mod 2^128
--
VACQ v1, v2, v3, v4
v1 = v2 + v3 + (v4 & 0x1) mod 2^128
--
VACCQ v1, v2, v3
v1 = v2 + v3 div 2^128
--
VACCCQ v1, v2, v3, v4
v1 = v2 + v3 + (v4 & 0x1) div 2^128
--
VSQ v1, v2, v3
v1 = v2 + ~v3 + 1 mod 2^128
--
VSBIQ v1, v2, v3, v4
v1 = v2 + ~v3 + (v4 & 0x1) mod 2^128
--
VSCBIQ v1, v2, v3
v1 = ~(v2 + ~v3 + 1 div 2^128)
--
VSBCBIQ v1, v2, v3, v4
v1 = ~(v2 + ~v3 + v4 div 2^128)

291

CASCON ’19, November 2019, Markham, Ontario, Canada J. You, Q. Zhang, C. D’Alves, B. O’Farrell, C. Anand

https://safecurves.cr.yp.to
https://eprint.iacr.org/2013/816
https://doi.org/10.1109/ARITH.2016.22
https://doi.org/10.1109/40.502403
https://doi.org/10.1109/MWC.2004.1269719
https://doi.org/10.1109/MWC.2004.1269719
http://arxiv.org/abs/1805.11390
http://arxiv.org/abs/1805.11390

