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Abstract. Rotational-XOR cryptanalysis is a cryptanalytic method aimed
at finding distinguishable statistical properties in ARX-C ciphers, i.e.,
ciphers that can be described only using modular addition, cyclic rota-
tion, XOR, and the injection of constants. In this paper we extend RX-
cryptanalysis to AND-RX ciphers, a similar design paradigm where the
modular addition is replaced by vectorial bitwise AND; such ciphers in-
clude the block cipher families Simon and Simeck. We analyse the prop-
agation of RX-differences through AND-RX rounds and develop closed
form formula for their expected probability. Finally, we formulate an
SMT model for searching RX-characteristics in Simon and Simeck.

Evaluating our model we find RX-distinguishers of up to 20, 27, and 35
rounds with respective probabilities of 2−26, 2−42, and 2−54 for versions
of Simeck with block sizes of 32, 48, and 64 bits, respectively, for large
classes of weak keys in the related-key model. In most cases, these are the
longest published distinguishers for the respective variants of Simeck.

Interestingly, when we apply the model to the block cipher Simon, the
best distinguisher we are able to find covers 11 rounds of Simon32 with
probability 2−24. To explain the gap between Simon and Simeck in terms
of the number of distinguished rounds we study the impact of the key
schedule and the specific rotation amounts of the round function on the
propagation of RX-characteristics in Simon-like ciphers.

Keywords: RX-cryptanalysis · Simeck· Simon· Key Schedule

1 Introduction

Rotational-XOR (RX) cryptanalysis is a cryptanalytic technique for ARX ci-
phers proposed by Ashur and Liu in [1]. RX-cryptanalysis generalises rotational
cryptanalysis by investigating the influence of round constants on the probabilis-
tic propagation of rotational pairs passing through the ARX operations.

The successful application of RX-cryptanalysis to SPECK [11] reveals that
the round constants sometimes interact in a constructive way between the rounds,
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i.e., that a broken symmetry caused by a round constant in round i may be re-
stored — either fully or partially — by another constant injection in round j > i.
As a result, new designs such as [8] now show resistance to RX-cryptanalysis as
part of their security argument.

AND-RX ciphers, defined as a counterpart of ARX ciphers where the modular
addition is replaced by bitwise AND, are of contemporary interest owing to the
design of the block cipher Simon [2] which was followed by other Simon-like
ciphers such as Simeck [22]. Since the AND-RX operations in Simon-like ciphers
are bitwise, resulting statistical properties of individual bits remain independent
of the bit-position. We say that such properties are rotation-invariant.

To break rotation-invariant properties, round constants are usually injected
into the state. In the case of Simon and Simeck, the constants are injected to
the key schedule and propagate into the round function via the round subkey.

The impact of the key schedule on cryptanalysis is important in particular
for lightweight block ciphers as many of them use a simple one. For instance, a
study by Kranz et al. [9] showed the influence of a linear key schedule on linear
cryptanalysis in Present. Yet, information on how to design a good key schedule
remains scarce. A folk theorem states that a good key schedule should provide
round keys that are independent, which can be interpreted as arguing that a
nonlinear key schedule is better than a linear one in such context. The similarity
between the round functions of Simon and Simeck allows us to compare the
two approaches respective to the different key schedules.

Our contribution. In this paper, we extend the idea of RX-cryptanalysis to
AND-RX ciphers with applications to Simon and Simeck. The propagation of
RX-differences through the AND-RX operations is fully analysed and a closed
algebraic formula is derived for its expected probability. We show that an RX-
difference with translation value α passes through the vectorial AND operation
with the same probability as that of an α XOR-difference. Due to the differ-
ent nature of RX-differences and XOR-differences, characteristics of the former
type would depend more on the key schedule and choice of round of constants
than those of the latter type. Using an automated search model we find RX-
distinguishers for versions of Simeck and Simon; these results are summarised
in Table 1.

The RX-characteristics we found for Simeck variants with block sizes of
32/48/64-bit improve previously longest published results by 5, 8, and 10 rounds,
respectively, albeit sometimes in a weaker attack model. When comparing for
the same number of rounds, our results offer different tradeoffs between the size
of the affected key class and the characteristic’s probability.

For Simon32, we found an RX-characteristics covering only 10–11 rounds.
For the 10-round case, the probability is slightly better than the previously best
one. For 11 rounds, we see that the probability is worse. While the 11-round
distinguisher is inferior to previous work, it highlights the interesting observation
that RX-cryptanalysis works better in the case of Simeck than it does in the
case of Simon. We conjecture that the difference is due to the key schedule. To
test this conjecture, we define three toy ciphers:
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Table 1: Comparison of RX-characteristics for rotation offset γ = 1 with
the longest published (related-key) differentials for Simeck32, Simeck48,
Simeck64, and Simon32, and with integral distinguishers for Simeck32,
Simeck48, Simeck64. The distinguisher types are denoted by DC for a dif-
ferential characteristic, RKDC for a related-key differential characteristics, ID
for integral distinguishers, and RX for RX characteristics. All attacks require
chosen plaintexts.

Cipher Number of data size of weak Type Reference

attacked rounds complexity key class

SIMECK32

13 232 full DC [12]

15

231 full ID [19]

224 254 RKDC [20]

218 244 RX Sect. 5.1

19 224 230 RX Sect. 5.1

20 226 230 RX Sect. 5.1

SIMECK48

16
224 280 RKDC [20]

218 268 RX Sect. 5.1

18
247 full ID [19]

222 266 RX Sect. 5.1

19
248 full DC [12]

224 262 RX Sect. 5.1

27 242 244 RX Sect. 5.1

SIMECK64

21 263 full ID [19]

25
264 full DC [12]

234 280 RX Sect. 5.1

35 254 256 RX Sect. 5.1

SIMON32 10
216 full RKDC [20]

214 full RX Sect. 5.2
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– Sim-1 which uses the round function of Simon and the key schedule of
Simeck,

– Sim-2 which uses the round function of Simeck with the key schedule of
Simon, and

– Sim-3 which uses a Simon-like round function but with yet another set of
rotation amounts and the key schedule of Simon.

We observe that the RX-characteristics found for Sim-1 have a higher proba-
bility compared to those found for Simon. For Sim-2 and Sim-3 we see that the
number of distinguished rounds is comparable to that of Simon. We conclude
that resistance to RX-cryptanalysis in Simon-like ciphers is heavily influenced
by the key schedule.

Organisation. We recall Simon-like ciphers and RX-cryptanalysis in Sec-
tion 2. In Section 3, we generalise RX-cryptanalysis to Simon-like ciphers, and
give a closed form algebraic formula for probabilistic propagation of an RX-
difference. In Section 4 we provide and evaluate an automated search model
for finding good RX-characteristics. In Section 6 we test how the choice of the
key schedule affects the resistance of Simon-like ciphers to RX-cryptanalysis.
Section 7 concludes this paper.

2 Preliminaries

In this section, we give a brief overview of the structure of Simon-like ciphers
and recall the general idea of Rotational-XOR cryptanalysis. Table 2 presents
the notation we use.

Table 2: The notations used throughout the paper

Notation Description

x = (xn−1, . . . , x1, x0) Binary vector of n bits; xi is the bit in position i with x0 the least
significant one

x� y Vectorial bitwise AND between x and y
xi � yi Bitwise AND between xi and yi
x⊕ y Vectorial bitwise XOR between x and y
xi ⊕ yi Bitwise XOR between xi and yi
x‖y Concatenation of x and y
x|y Vectorial bitwise OR between x and y
wt(x) Hamming weight of x
x≪ γ, Sγ(x) Circular left shift of x by γ bits
x≫ γ, S−γ(x) Circular right shift of x by γ bits
(I ⊕ Sγ)(x) x⊕ Sγ(x)
x Bitwise negation
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2.1 SIMON-like Ciphers

Simon is a family of block ciphers following the AND-RX design paradigm, i.e.
members of the family can be described using only the bitwise operations AND
(�), XOR (⊕) and cyclic rotation of γ bits (Sγ). Simon-like ciphers generalize the
structure of Simon’s round function with different parameters than the original
ones.

The round function

Simon is a family of lightweight block ciphers designed by the US NSA in [2].
A member of the family is denoted by Simon2n/mn, to specify a block size of
2n for n ∈ {16, 24, 32, 48, 64}, and key size of mn for m = {2, 3, 4}. The round
function of Simon is defined as

f(x) =
(
S8 (x)� S1 (x)

)
⊕ S2(x) .

Simon-like ciphers are ciphers that share the same round structure as Simon,
but generalise it to arbitrary rotation amounts (a, b, c) such that the round func-
tion becomes

fa,b,c(x) =
(
Sa (x)� Sb (x)

)
⊕ Sc(x) .

Of particular interest in this paper is the Simeck family of lightweight block
ciphers designed by Yang et al. [22], aiming at improving the hardware imple-
mentation cost of Simon. Simeck2n/4n denotes an instance with a 4n-bit key
and a 2n-bit block, where n ∈ {16, 24, 32}. Since the key length of Simeck is al-
ways 4n we use lazy writing in the sequel and simply write Simeck2n throughout
the paper. The rotation amounts for all Simeck versions are (a, b, c) = (5, 0, 1).

The key schedule

The nonlinear key schedule of Simeck reuses the cipher’s round function to gen-
erate the round keys. LetK = (t2, t1, t0, k0) be the master key for Simeck2n/mn,
where ti, k0 ∈ Fn2 . The registers of the key schedule are loaded with

K = k3||k2||k1||k0

for K the master key, and the sequence of round keys (k0, . . . , kT−1) is generated
with

ki+1 = ti

where

ti+3 = ki ⊕ f5,0,1(ti)⊕ c⊕ (zj)i,

and c ⊕ (zj)i ∈ {0xfffc, 0xfffd} a round constant. A single round of Simeck
is depicted in Figure 1a.
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ti ki

S5
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c⊕ (zj)i

ti+1ti+2

(a) One round of Simeck
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(b) One round of Simon with m = 4

Fig. 1: Illustration of the Simeck and Simon ciphers

The linear key schedule of Simon, conversely, uses a linear key schedule to gen-
erate the round keys. Let K = (km−1, . . . , k1, k0) be a master key for Simon2n,
where ki ∈ Fn2 . The sequence of round keys ki is generated by

Ki+m =

 ki ⊕ (I ⊕ S−1)S−3ki+1 ⊕ c⊕ (zj)i, if m = 2
ki ⊕ (I ⊕ S−1)S−3ki+2 ⊕ c⊕ (zj)i, if m = 3

ki ⊕ (I ⊕ S−1)(S−3ki+3 ⊕ ki+1)⊕ c⊕ (zj)i, if m = 4

for 0 ≤ i ≤ (T −1), and c⊕ (zj)i is the round constant. A single round of Simon
with m = 4 is depicted in Figure 1b.

2.2 Previous Work

The security of Simon-like ciphers has been widely explored over the last few
years and a large number of cryptanalytic techniques were applied to it. To
name just a few: linear cryptanalysis [5, 13], differential cryptanalysis [3, 5, 12],
related-key differential cryptanalysis [20], integral cryptanalysis and the division
property [7, 17, 18, 23]. For a comparison of our results with relevant previous
work see Table 1.

Due to the unclear design rationale of Simon, much attention was focused
on understanding the rotation amounts. In [5], Kölbl et al. studied different sets
of rotation amounts for Simon-like ciphers and found parameters, other than the
specified (8, 1, 2), which are optimal with respect to differential and linear crypt-
analysis. Then, in [7] Kondo et al. further evaluated these parameter sets in terms
of resistance to integral distinguishers. As they have shown, the parameter set
(12, 5, 3) is optimal with respect to differential cryptanalysis, linear cryptanaly-
sis, and integral cryptanalysis. Also the Simeck parameter set (5, 0, 1) belongs
to the same optimal class respective to several attack techniques. Simon and
Simeck were also compared by Kölbl et al. in [6] by considering the differential
effect.

2.3 Rotational-XOR Cryptanalysis

As a generalization of rotational cryptanalysis (see [4]), RX-cryptanalysis is
also a related-key chosen plaintext attack targeting ARX ciphers. Introduced
by Ashur and Liu in [1] it uses the fact that rotational pairs, i.e., pairs of the
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form (x, Sγ(x)) propagate through the ARX operations with known probability.
Whereas the original technique was thwarted by the injection of round constants
that are not rotational-invariant, RX-cryptanalysis overcomes this problem by
integrating their effect into the analysis of the propagation probability. Rather
than considering just a rotational pair as in the case of rotational cryptanal-
ysis, RX-cryptanalysis considers an RX-pair of the form (x, Sγ(x) ⊕ α) where
α is called the translation. The technique was successfully applied to ARX-
based primitives, including the block cipher Speck [11] and the hash function
SipHash [21].

3 Rotational-XOR Cryptanalysis of AND-RX
Constructions

AND-RX constructions are dual to ARX constructions where the non-linear op-
eration (i.e., modular addition) is replaced with a vectorial bitwise AND. Since all
operations are now bit oriented, such constructions are always rotation-invariant.
More generally, they are structurally invariant under any affine transformation
of the bit-indices as was shown in [5]. Superficially, it is believed that this in-
variance cannot be preserved over a large number of rounds if non-invariant
constants are injected into the state since they will break the symmetry between
bits in different positions. Despite their close relation to ARX constructions, the
security of Simon-like ciphers against RX cryptanalysis has not received much
attention. We now set to rectify that in this section.

3.1 The Expected Probability of an RX-transition

In [1] an RX-pair was defined to be a rotational pair with rotational offset γ
under translations a1 and a2, i.e., it is the pair (x⊕ a1, (x ≪ γ)⊕ a2). We opt
for a slightly different notation with x and x′ = (x≪ γ)⊕a, or (x, (x≪ γ)⊕a)
as an RX-pair.

Definition 1 ([1] (adapted)). The RX-difference of x and x′ = (x≪ γ)⊕ a
with rotational offset γ, and translation a is denoted by

∆γ(x, x′) = x′ ⊕ (x≪ γ).

The propagation of an RX-difference ∆γ(x, x′) = x′⊕(x≪ γ) through linear
operations of the AND-RX structure is deterministic and follows these rules:

– XOR. For two input RX-pairs (x, (x≪ γ)⊕ a) and (y, (y ≪ γ)⊕ b), their
XOR is the RX-pair (z, z′) = (x⊕ y, ((x⊕ y) ≪ γ)⊕ a⊕ b);

– Cyclic rotation by η bits. The cyclic rotation of each of the values in
(x, (x≪ γ)⊕ a) by η bits is the RX-pair (z, z′) = (x≪ η, (x≪ (γ+ η))⊕
(a≪ η));

– XOR with a constant c. The XOR of a constant c to each of the values in
the RX-pair (x, (x≪ γ)⊕a) is the RX-pair (z, z′) = (x⊕c, (x≪ γ))⊕a⊕c),
the corresponding RX-difference is denoted by ∆γc = c⊕ (c≪ γ)
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all with probability 1.

Intuitively, the bitwise nature of the AND operation restricts the propagation
of an RX-difference compared to modular addition. When two rotational pairs
enter into the vectorial AND operation, the rotational relation is preserved with
probability 1 due to the localized nature of bit-oriented operations. If the inputs
form an RX-pair with translation a 6= 0, as is the case of Simon and Simeck,
the propagation of the RX-difference through the vectorial AND is probabilistic
and its probability is given by the following theorem.

Theorem 1. Let (x, (x≪ γ)⊕ a) and (y, (y ≪ γ)⊕ b) be two rotational pairs
where γ is the rotation offset and (a, b) the translations of the pairs, respectively.
Then, for an output translation ∆ it holds that:

Pr[((x� y) ≪ γ)⊕∆ = ((x≪ γ)⊕ a)� ((y ≪ γ)⊕ b)] = (1)

Pr[(x� y)⊕∆ = (x⊕ a)� (y ⊕ b)] (2)

i.e., the propagation probability of an RX-difference with translations (a, b) through
� is the same as that of a normal XOR-difference through the same operation
when the translations are considered as input XOR-differences.

Proof. To prove the theorem, we rewrite the right hand side of (1) as

((x≪ γ)⊕ a)� ((y ≪ γ)⊕ b) = ((x� y) ≪ γ)⊕ ((x≪ γ)� b)⊕
((y ≪ γ)� a)⊕ (a� b)

Similarly, distributing the right hand side of (2) we get

(x⊕ a)� (y ⊕ b) = (x� y)⊕ (x� b)⊕
(y � a)⊕ (a� b)

Rewriting Theorem 1 as

Pr[((x� y) ≪ γ)⊕∆ = ((x� y) ≪ γ)⊕ ((x≪ γ)� b)⊕
((y ≪ γ)� a)⊕ (a� b)] =

(3)

Pr[(x� y)⊕∆ = (x� y)⊕ (x� b)⊕
(y � a)⊕ (a� b)], (4)

the proof is completed by observing that (x � y) ≪ γ, x ≪ γ, and y ≪ γ
have the same probability distribution as x�y, x, and y, respectively, due to the
rotation-invariance of bit-oriented operations. ut

Kölbl et al. showed in [5] that in the special case of Simon-like ciphers (e.g.,
Simon and Simeck) where y = Sb−a(x), the difference propagation distribution
(and thus, the RX-propagation distribution) is given by the following lemma.
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Lemma 1. For Sa(x) � Sb(x) where gcd(n, a − b) = 1, n is even, a > b and
x = (xn−1, . . . , x1, x0) ∈ Fn2 , the difference propagation distribution table and
RX propagation distribution are given by

P (α→ β) =



2−n+1 if α = 0xf · · · f, wt(β) ≡ 0 mod 2,

2−wt((S
a(α)|Sb(α))⊕(Sa(α)�S2a−b(α)�Sb(α))) if α 6= 0xf · · · f,

β � (Sa(α) | Sb(α)) = 0,

(β ⊕ Sa−b(β))�
(Sa(α)� S2a−b(α)

�Sb(α)) = 0

0 otherwise

Proof. The proof for the difference propagation distribution was given in [5]
and is reproduced for completeness as Lemma 2 in Appendix A. The case for
RX-propagation follows then from Theorem 1.

3.2 Discussion

Based on Theorem 1, it can be seen that the RX-difference passes through the
vectorial AND component of a cipher with the same probability as an XOR-
difference. However, resulting RX-characteristics are in general different from
the corresponding (related-key) differential characteristics, due to the XOR of
constants in the round function which affects the propagation.

It is interesting to see that in ARX ciphers, the probability for the rotational-
transition part of the RX-transition is maximized with 2−1.415 when γ ∈ {1, n−
1} and decreases for other γ. Conversely, the same transition passes with prob-
ability 1 through the vectorial AND in AND-RX ciphers. In other words, a
rotational pair would propagate with probability 1 through all AND-RX op-
erations, but only with some probability p < 1 through the ARX operations.
We conclude that in general, AND-RX constructions are more susceptible to
RX-cryptanalysis than ARX constructions.

4 Automated Search of RX-characteristics in Simon-like
Ciphers

Similar to other statistical attacks, RX-cryptanalysis works in two phases: offline
and online. In the offline phase, the adversary is searching for a distinguishable
property respective to the algorithm’s structure. Having found such a property,
the adversary tries to detect it from data collected in the online phase.

Automated search methods are a common way to assist finding such a prop-
erty (i.e., Phase 1). The idea behind these tools is to model the search problem
as a set of constraints and solve it using one of the available constraint solvers.
For ciphers using Boolean and arithmetic operations, the search problem can be
converted into a Boolean Satisfiability Problem (SAT) or a Satisfiability Module
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∆1a
r ∆1b

r

Sa

Sb

Sc

∆1k
r

∆1a
r+1 ∆1b

r+1

∆1dr

Fig. 2: Notation of the RX-differences in the encryption function.

Problem (SMT). The respective solver then returns an answer on whether all
the constraints can be solved simultaneously, and if the answer is positive it also
returns a satisfying assignment. A number of ARX and AND-RX ciphers were
studied with the automatic search tools, in the context of differential cryptanal-
ysis, linear cryptanalysis, division property, and RX-cryptanalysis [10,11,14–16].

In this section, we give a detailed description of an automatic search model
for RX-characteristics in Simon-like ciphers.

4.1 The Common Round Function

From Theorem 1 we learn that the propagation of RX-differences through the
AND operation follows a probabilistic rule, with a probability distribution as in
Lemma 1. We use ∆1a

r and ∆1b
r to denote the two n-bit vectors representing

RX-differences at the beginning of round r, and ∆1d
r the n-bit vector represent-

ing the RX-difference at the output of the vectorial AND at the same round. A
schematic view of this notation is depicted in Figure 2.

Then, the following two Boolean equations should be satisfied simultaneously
for the propagation of RX-differences through the vectorial AND to be valid

0 = ∆1d
r � (Sa(∆1ar) | Sb(∆1ar)) (5)

0 = (∆1d
r ⊕ Sa−b(∆1d

r))� (Sa(∆1ar)� S2a−b(∆1a
r)� Sb(∆1a

r)) (6)

in simple words, (5) ensures that any active bit in ∆1d
r results from at least one

active bit in the corresponding position of ∆1a
r. If a bit ∆1d

r was activated by
exactly one bit from ∆1a

r, (6) ensures that either a second bit in ∆1d
r is active,

or that another active bit in ∆1a
r had deactivated said bit. This encodes the

implicit expansion function, i.e., the dependency between the bit in position i
and that in position i+ a− b before they enter the vectorial AND.
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If the propagation is valid, the probability in round r is given by 2−w
r
d , where

wrd =wt((Sa(∆1a
r) | Sb(∆1a

r))⊕ (Sa(∆1ar)�
S2a−b(∆1a

r)� Sb(∆1a
r)))

(7)

is called the weight of the non-linear transition in round r.

In addition, the propagation of RX-difference through the linear operations
is described by the following expressions:

∆1b
r+1 = ∆1a

r; (8)

∆1a
r+1 = ∆1d

r ⊕∆1b
r ⊕ Sc(∆1a

r)⊕∆1k
r. (9)

4.2 The Key Schedule of Simeck

The key schedule of Simeck is modeled analogously to the round function.
Let ∆1ka

r, ∆1kb
r, and ∆1kd

r be n-bit variables in round r which denote the
left input RX-difference, the right input RX-difference, and the output RX-
difference of the vectorial AND (see Figure 3). As before, the following two
Boolean equations should be satisfied simultaneously for the propagation of RX-
differences through the non-linear part of Simeck’s key schedule to be valid:

0 =∆1kd
r � Sa(∆1kar) | Sb(∆1kar); (10)

0 =(∆1kd
r ⊕ Sa−b(∆1kd

r))� (Sa(∆1kar)�
S2a−b(∆1ka

r)� Sb(∆1ka
r)),

(11)

with weight wrk set as

wrk =wt((Sa(∆1ka
r) | Sb(∆1ka

r))⊕ (Sa(∆1kar)�
S2a−b(∆1ka

r)� Sb(∆1ka
r)))

(12)

The propagation of RX-difference through the linear operations of the key sched-
ule is modeled by the following constraints:

∆1kb
r+1 = ∆1ka

r; (13)

∆1ka
r+3 = ∆1kd

r ⊕∆1kb
r ⊕ Sc(∆1ka

r)⊕∆1c
r. (14)

Finally, the key schedule and the round function are linked via the following
expression:

∆1k
r = ∆1kb

r. (15)
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r
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∆1kdr

Fig. 3: Notation of the RX-differences with a nonlinear key schedule.

∆1c
r

∆1kar+3 ∆1kar+2 ∆1kar+1 ∆1kar

S−3

S−1

Fig. 4: Notation of the RX-differences with a linear key schedule.

4.3 The Key Schedule of Simon

In the key schedule of Simon 2n/4n, let ∆1ka
r, ∆1ka

r+1, and ∆1ka
r+3 be n-

bit variables denoting the input RX-differences to the key schedule at round
r, and let ∆1ka

r+4 denote the output RX-difference fed back to the leftmost
register in the key schedule and injected into the round (see Figure 4); then, the
propagation of RX-differences is modeled as

∆1ka
r+4 =S−3(∆1ka

r+3)⊕∆1ka
r+1 ⊕ S−1(S−3(∆1ka

r+3)⊕
∆1ka

r+1)⊕∆1ka
r ⊕∆1c

r
(16)

and the injection of the subkey the state in round r through

∆1k
r = ∆1ka

r. (17)

4.4 The Objective Function

To evaluate the model, we define an objective function, i.e., a quantity that the
model is trying to optimize and which can be used to compare the “quality”
of different solutions. The original model in [11], which was the first model to
search for RX-differences in ciphers with a non-linear key schedule, operated
in two steps. First, a good key RX-characteristic was sought. Then, a good
RX-characteristic was sought for the state with respect to the selected RX-
characteristic.
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In this paper we take a different approach. Rather than considering the
two search problems separately, we generate good RX-characteristics “on-the-
fly” without a-priori fixing the key characteristic. We start by searching for an
RX-characteristics minimizing the total weight in both the data and key parts,
namely wd + wk. Then, conditioned on the total weight wd + wk fixed to the
minimum found, we further minimize the weight in the data part wd in order to
improve the data complexity of the attack.

For Simon our strategy would yield the same results as [11] since wrk = 0
for all r due to the linear key schedule. The objective function for the R-round
Simon model is expressed as

min(w) s.t.

max(R) s.t.

(w = (

R∑
r=1

wrd)) ∧ (w ≤ 2n)

(18)

For Simeck we first observe that the key difference injected in round r is
actually generated at round r− 4 where its cost is “paid”. As a result, the total
probability of an R-round characteristic in the key schedule part only needs to
take into account the cost of rounds 1 to R − 4. Hence, we set the objective
function as follows:

min(wd) s.t.

min(w) s.t.

max(R) s.t.

(w = (

R∑
r=1

wrd +

R−4∑
r=1

wrk)) ∧ (w ≤ 4n) ∧ (wd =

R∑
r=1

wrd) ∧ (wd ≤ 2n)

(19)

5 Results

Now that we have a model for finding RX-characteristics in AND-RX construc-
tions, we can use one of the existing solvers to run it. We describe the model
using the SMTLIB language and apply the Boolector solver with several param-
eter settings. Our experiments were carried out on a laptop having an Intel Core
i7-7700HQ CPU running at 2.80GHz and having 8GB of RAM.

5.1 Simeck

Using the above model, we found RX-characteristics which cover up to 20, 27,
and 35 rounds for variants of Simeck with block size of 32, 48, and 64 bits,
respectively. These results are presented in Table 3. We further proved that
there exists no RX-characteristic with wd +wk ≤ 64 for more than 20 rounds of
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Table 3: The weights of the best found RX-characteristic in round-reduced
Simeck32, Simeck48 and Simeck64 with γ = 1. For each of the ciphers we
report the results in three rows: number of distinguished rounds, weight of the
round function part, and weight of the key schedule part. For instance, the best
found RX-characteristic covering 20-round Simeck32 has a data probability of
2−26 for a weak key class of size 264−34 = 230.
SIMECK32

Rounds 10 11 12 13 14 15 16 17 18 19 20

Data -6 -10 -12 -12 -16 -18 -18 -18 -22 -24 -26
Key -8 -12 -12 -18 -18 -20 -28 -32 -30 -34 -34

SIMECK48

Rounds 15 16 17 18 19 20 21 22 23 24 25 26 27

Data -18 -18 -18 -22 -24 -26 -30 -30 -32 -36 -36 -40 -42
Key -20 -28 -32 -30 -34 -34 -36 -40 -44 -46 -48 -48 -52

SIMECK64

Rounds 23 24 25 26 27 28 29 30 31 32 33 34 35

Data -30 -32 -34 -38 -38 -40 -42 -44 -46 -48 -50 -52 -54
Key -44 -46 -48 -50 -54 -58 -60 -62 -64 -66 -68 -70 -72

Simeck32; therefore, our 20-round RX-characteristic gives a tight bound on the
number of rounds that can be distinguished using RX-cryptanalysis.

Recalling the previous results in Table 1 we see that previously published
distinguishers cover up to 15, 19, and 25 rounds of Simeck32, Simeck48, and
Simeck64, respectively, whereas our RX-characteristics improve the number of
distinguished rounds by 5, 8, and 10 rounds, albeit for a smaller key class than
previous results. Benchmarking for the same number of rounds, detecting our
distinguishers requires fewer data.

Experimental verification. To empirically validate our results we implemented
the 15-round RX-characteristic presented in Table 4. We first sample a random
64-bit master key K and obtain its respective matching key K ′ = S1(K) ⊕
(0001||0004||0008||0014). We then check if the resulting sub-keys satisfy the re-
quired RX-difference. If not, a new K is picked and the above process is repeated
until a good pair (K,K ′) is found. This pair of related keys is used to encrypt 232

plaintext pairs. For each encrypted plaintext pair, we check if the intermediate
RX-differences match those of the RX-characteristic.

We sampled about 233.6 = 226.6+7 keys, out of which 27 satisfied the requested
key RX-difference. For these keys, the average probability that a randomly se-
lected plaintext satisfies the RX-characteristic was around 2−18.005. These num-
bers confirm our claims.

5.2 Simon

Interestingly, despite their similar structure, finding good RX-characteristics for
Simon seems to be much harder than for Simeck. For the smallest version Si-
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Table 4: A 15-round RX-characteristics in Simeck 32/64
Round RX-difference in Key RX-difference in Data

0 0014 (0000||0010)

1 0008 (0004||0000)

2 0004 (0000||0004)

3 0001 (0000||0000)

4 0002 (0001||0000)

5 0002 (0001||0001)

6 0000 (0000||0001)

7 0003 (0001||0000)

8 0002 (0000||0001)

9 0007 (0003||0000)

10 0001 (0000||0003)

11 0002 (0002||0000)

12 0008 (0004||0002)

13 0002 (0002||0004)

14 0000 (0000||0002)

15 (0002||0000)

Prob. 2−26 2−18

mon32/64, the solver does not produce solutions (SAT or UNSAT) for more than
11 rounds given reasonable resources and time. We conjecture that the reason for
this is the key schedule which forces all key RX-transitions to be deterministic
in the key part. In the case of Simeck the non-deterministic key RX-transitions
offered more freedom for backtracking steps in search for cancellation effects in
the data part; similar freedom is not afforded for Simon due to the linear key
schedule.

The complexities of our RX-distinguishers against Simon32/64 with 10–11
rounds are presented in Table 1. We do not expect RX-cryptanalysis to be able
to improve the distinguishing cost for more than 11 rounds of Simon compared
to previous results. In Section 6 we discuss the distinctive behaviours of RX-
characteristics in Simon and Simeck.

6 Comparing the Resistance to RX-cryptanalysis of
Simon and Simeck

In Section 5 we saw that Simeck appears to be more vulnerable to RX-cryptanalysis
than its counterpart Simon. The two main differences between these ciphers are
the key schedule (linear in Simon vs. non-linear in Simeck) and the rotation
amounts ((8,1,2) in Simon vs. (5,0,1) in Simeck). To understand how each of
these decisions affects the resistance of the resulting ciphers to RX-cryptanalysis,
we define three additional variants:

– Sim-1 which uses the round function of Simon for and the key schedule of
Simeck,
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Table 5: A comparison of the optimal probability in RX-characteristics found in
Simon-like ciphers: SIM-1, SIM-2, SIM-3, Simeck and Simon.

Rounds Sim-1 Sim-2 Sim-3 Simeck32 Simon32

5 1 1 1 1 1
6 1 1 1 1 1
7 2−2 2−4 2−4 2−2 2−4

8 2−4 2−6 2−4 2−4 2−6

9 2−6 2−10 2−10 2−4 2−10

10 2−8 2−14 2−14 2−6 2−14

11 2−12 2−24 2−24 2−8 2−24

– Sim-2 which uses the round function of Simeck and the key schedule of
Simon (m = 4), and

– Sim-3 which uses a Simon-like round function with rotation amounts (12, 5, 3)
and the key schedule of Simon (m = 4).4

To determine the effect of the key schedule and rotation amounts on the
resistance of a Simon-like cipher to RX-cryptanalysis we take the same approach
as in Section 5, this time searching RX-characteristics for Sim-1, Sim-2, and Sim-
3. We present in Table 5 the RX-distinguishers we found and compare them to
those found for Simon and Simeck.

The results show that, for some optimal parameters of the Simon-like round
function, the rotation amounts have no effect on the probability of the RX-
characteristics. However, the difference between the linear key schedule of Simon
and the non-linear one of Simeck plays a significant role in the resistance to
RX-cryptanalysis. In other words, the key schedule of Simeck makes it more
vulnerable to RX-cryptanalysis.

It would be interesting to consider two more experiments, one where the key
schedule is yet another non-linear function (e.g., the key schedule of Speck) and
one where the rotation amounts are suboptimal. This is left for future work.

7 Conclusion

In this paper, we generalised the idea of Rotational-XOR cryptanalysis to AND-
RX ciphers by showing that an RX-difference has the same propagation probabil-
ity as a corresponding XOR-difference through the same function. We formulated
a SAT/SMT model for RX-cryptanalysis in AND-RX constructions and applied
it to reduced-round versions of Simon and Simeck. We found distinguishers
covering up to 20, 27, and 35 rounds of Simeck32, Simeck48, Simeck64. These
are the longest distinguishers for this cipher.

4 This set of rotation amounts were determined in [7] to be optimal against certain
attacks.
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Moreover, we noticed that finding good RX-characteristics in Simon is more
difficult than in Simeck. By applying our SAT/SMT model to toy examples we
were able to conclude that it is the different key schedule which makes Simeck
more vulnerable to RX-cryptanalysis than Simon. We conjectured that gap be-
tween the two ciphers is due to the (non-)linearity of the key schedule and left
this for future work.

A On the Probability of Difference Propagation in
Simon-like nonlinear function

Lemma 2. [5] Let f(x) = Sa(x)�Sb(x), where gcd(n, a− b) = 1, n even, and
a > b and let α and β be an input and output difference. Then with

varibits = Sa(α) | Sb(α)

doublebits = Sa(α)� S2a−b(α)� Sb(α)

we have that the probability that difference α goes to difference β is

P (α→ β) =


2−n+1 if α = 1 and wt(β) ≡ 0 mod 2

2−wt(varibits⊕doublebits) if α 6= 1 and β � varibits = 0

and (β ⊕ Sa−b(β))� doublebits = 0

0 else.

B Reported RX-Characteristics for SIMECK32/48/64
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Table 6: A 20-round RX-characteristics in SIMECK32/64

Round RX-difference in Key RX-difference in Data

0 0004 (0000||0004)

1 0000 (0000||0000)

2 0001 (0000||0000)

3 0002 (0001||0000)

4 0002 (0000||0001)

5 0005 (0003||0000)

6 0001 (0000||0003)

7 0002 (0002||0000)

8 000a (0004||0002)

9 0002 (0000||0004)

10 0000 (0006||0000)

11 0013 (000a||0006)

12 000a (0001||000a)

13 0004 (0002||0001)

14 0000 (0001||0002)

15 0001 (0000||0001)

16 0000 (0000||0000)

17 0002 (0000||0000)

18 0006 (0002||0000)

19 0007 (0000||0002)

20 (0005||0000)

Prob. 2−34 2−26
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Table 7: A 27-round RX-characteristics in SIMECK48/96

Round RX-difference in Key RX-difference in Data

0 000004 (000001||000006)

1 000000 (000000||000001)

2 000002 (000001||000000)

3 000003 (000001||000001)

4 000002 (000001||000001)

5 000000 (000000||000001)

6 000003 (000001||000000)

7 000003 (000000||000001)

8 000004 (000002||000000)

9 000000 (000000||000002)

10 000002 (000002||000000)

11 00000e (000004||000002)

12 000002 (000000||000004)

13 000000 (000006||000000)

14 000013 (00000c||000006)

15 00000c (000001||00000c)

16 000004 (000002||000001)

17 000000 (000001||000002)

18 000002 (000001||000001)

19 000002 (000001||000001)

20 000001 (000000||000001)

21 000000 (000000||000000)

22 000003 (000000||000000)

23 000004 (000003||000000)

24 000004 (000002||000003)

25 000000 (000001||000002)

26 00000d (000000||000001)

27 (00000c||000000)

Prob. 2−52 2−42
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Table 8: A 35-round RX-characteristics in SIMECK64/128

Round RX-difference in Key RX-difference in Data

0 00000006 (00000001||00000004)

1 00000000 (00000000||00000001)

2 00000003 (00000001||00000000)

3 00000002 (00000001||00000001)

4 00000000 (00000000||00000001)

5 00000002 (00000001||00000000)

6 00000003 (00000000||00000001)

7 00000004 (00000002||00000000)

8 00000000 (00000000||00000002)

9 00000002 (00000002||00000000)

10 0000000a (00000004||00000002)

11 00000001 (00000000||00000004)

12 00000001 (00000005||00000000)

13 00000013 (0000000a||00000005)

14 0000000c (00000002||0000000a)

15 00000005 (00000002||00000002)

16 00000001 (00000001||00000002)

17 00000002 (00000001||00000001)

18 00000002 (00000001||00000001)

19 00000002 (00000001||00000001)

20 00000003 (00000001||00000001)

21 00000002 (00000001||00000001)

22 00000003 (00000001||00000001)

23 00000000 (00000000||00000001)

24 00000002 (00000001||00000000)

25 00000003 (00000000||00000001)

26 00000006 (00000002||00000000)

27 00000000 (00000000||00000002)

28 00000002 (00000002||00000000)

29 0000000a (00000004||00000002)

30 00000000 (00000000||00000004)

31 00000000 (00000004||00000000)

32 00000010 (0000000c||00000004)

33 0000000c (00000000||0000000c)

34 00000005 (00000000||00000000)

35 (00000005||00000000)

Prob. 2−72 2−54
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