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Abstract. Motivated by recent results on solving large batches of closest
vector problem (CVP) instances, we study how these techniques can be
combined with lattice enumeration to obtain faster methods for solving
the shortest vector problem (SVP) on high-dimensional lattices.
Theoretically, under common heuristic assumptions we show how to solve
SVP in dimension d with a cost proportional to running a sieve in di-
mension d − Θ(d/ log d), resulting in a 2Θ(d/ log d) speedup and mem-
ory reduction compared to running a full sieve. Combined with tech-
niques from [Ducas, Eurocrypt 2018] we can asymptotically get a total
of [log(13/9) + o(1)] · d/ log d dimensions for free for solving SVP.
Practically, the main obstacles for observing a speedup in moderate di-
mensions appear to be that the leading constant in the Θ(d/ log d) term
is rather small; that the overhead of the (batched) slicer may be large;
and that competitive enumeration algorithms heavily rely on aggres-
sive pruning techniques, which appear to be incompatible with our algo-
rithms. These obstacles prevented this asymptotic speedup (compared to
full sieving) from being observed in our experiments. However, it could
be expected to become visible once optimized CVPP techniques are used
in higher dimensional experiments.

Keywords: lattice sieving · lattice enumeration · randomized slicer ·
shortest vector problem (SVP) · closest vector problem (CVP)

1 Introduction

In recent decades, lattice-based cryptography has emerged as a front-runner for
building secure and efficient cryptographic primitives in the post-quantum age.
For an accurate and reliable deployment of these schemes, it is essential to obtain
a good understanding of the hardness of the underlying lattice problems, such
as the shortest (SVP) and closest vector problems (CVP).

To date, research on lattice algorithms has resulted in two main flavors of
algorithms: enumeration methods, requiring 2O(d log d) time and dO(1) space to
solve hard lattice problems in dimension d [5, 13, 15, 20]; and sieving methods,
running in expected time and space 2O(d) [2, 3, 27, 30]. Just a few years ago,
enumeration clearly dominated benchmarks for testing these algorithms in prac-
tice [1, 9, 14,15], but recent improvements to sieving have allowed it to overtake



enumeration in practice as well [4, 8, 11, 21, 28]. Some attempts have also been
made to combine the best of both worlds, a.o. resulting in the tuple sieving line
of work [7, 18, 19]. A better comprehension of how to exploit the strengths and
weaknesses of each method remains an interesting open problem.

A long-standing open problem from e.g. [10, 15] concerns the possibility of
speeding up lattice enumeration with a batch-CVP solver: if an efficient algo-
rithm exists that can solve a large number of CVP instances on the same lattice
faster than solving each problem separately, then this algorithm can be used to
solve the CVP instances appearing implicitly in the enumeration tree faster. For
a long time no such efficient batch-CVP algorithms were known, until the recent
line of work on approximate Voronoi cells and the randomized slicer [10, 12, 24]
showed that, at least in high dimensions, one can indeed solve large batches
faster in practice than solving each problem separately. This raises the question
whether these new results can be used to instantiate this conjectured hybrid
algorithm and obtain better results, in theory and in practice.

Contributions. In this work we study the feasibility of combining recent batch-
CVP algorithms with lattice enumeration, and show that we heuristically obtain
a 2Θ(d/ log d) speedup and memory reduction for solving SVP compared to the
state-of-the-art lattice sieve. This improvement is proper, in the sense that this
does not hide large order terms: we show that for solving SVP in dimension d, the
costs are proportional to those of running a sieve in dimension d − Θ(d/ log d),
making the leading constant explicit, and showing that the remaining overhead
is negligible. The hybrid constructions we propose are independent of e.g. the
underlying nearest neighbor data structure, and we expect that these and other
heuristic improvements can be applied to the hybrid algorithms as well.

Obtaining Θ(d/ log d) dimensions for free may sound familiar, as Ducas [11]
showed that sieving in dimension d−Θ(d/ log d) implies solving SVP in dimen-
sion d. As the asymptotic improvement of Ducas is greater than ours, to improve
upon his results we need to be able to combine both techniques. The feasibility
of such a combined hybrid algorithm relies on Assumption 4, which Section 5
aims to verify with experiments. Combining both techniques, we asymptotically
obtain 0.5305d/ log2 d dimensions for free, compared to Ducas’ 0.4150d/ log2 d.

Open Problems. Besides performing more extensive experiments, which may
assist in obtaining estimates for the crossover points between these hybrids and
plain lattice sieving, open problems include (i) finding a way to effectively incor-
porate pruning into the enumeration parts of the proposed hybrids; (ii) further
studying the theoretical and practical relevance of the proposed nested hybrid
algorithms, and their relation with progressive sieving ideas [11, 25]; and (iii)
finding improvements for CVPP, potentially using a dual distinguisher. We fur-
ther stress that we introduced a new heuristic, Assumption 4, which may require
additional simulations to see if it is indeed valid (in high dimensions) or not.



Outline. In Section 2 we introduce notation and cover key ingredients of the hy-
brid algorithms. Sections 3–4 describe these new algorithms, and state the main
heuristic results regarding the 2Θ(d/ log d) speedups for solving SVP. Section 5 de-
scribes experimental results, to verify the new heuristic assumption introduced
in Section 3 and to get an idea of the performance in practice. Appendices B, C
contain derivations omitted from Section 2.3 and Section 3 respectively.

2 Preliminaries

2.1 Lattice Problems

Let B = {b1, . . . , bd} ⊂ Rd be a set of linearly independent vectors, which we
may also interpret as a matrix with columns bi. The lattice generated by B
is defined as L = L(B) := {Bλ : λ ∈ Zd}. We write vol(L) := det(BTB)1/2

for the volume of a lattice L. Given a basis B, we write B∗ = {b∗1, . . . , b
∗
d} for

its Gram-Schmidt orthogonalization. We write Dt+L,s for the discrete Gaussian
distribution on t + L with probability mass function proportional to ρs(x) =
exp(−π∥x∥2/s2) [2]. We define λ1(L) := minv∈L\{0} ∥v∥ and for t ∈ Rd we
define d(t,L) := minv∈L ∥t− v∥, where all norms are Euclidean norms.

Definition 1 (Shortest vector problem – SVP(L)). Given a lattice L, find
a non-zero lattice vector s ∈ L satisfying ∥s∥ = λ1(L).
Definition 2 (Closest vector problem – CVP(L, t)). Given a lattice L and
a vector t ∈ Rd, find a lattice vector s ∈ L satisfying ∥t− s∥ = d(t,L).
In the preprocessing variant of CVP (CVPP), one is allowed to preprocess the
lattice L, and use the preprocessed data to solve a CVP instance t. This problem
naturally comes up in contexts where either L is known long before t is known,
or if a large number of CVP instances on the same lattice are to be solved.

2.2 Heuristic Assumptions

For our asymptotic analyses we will rely on a number of common heuristic
assumptions, which have often been used throughout the literature.

Assumption 1 (Gaussian heuristic) Given a full-rank lattice L and a region
A ⊂ Rd, the (expected) number of lattice points in A, denoted |A ∩ L|, satisfies:

|A ∩ L| = vol(A)

vol(L)
. (1)

Using volume arguments, the Gaussian heuristic predicts that λ1(L) = gh(L)
where gh(L) :=

√
d/(2πe) · vol(L)1/d · (1+ o(1)). For random targets t ∈ Rd, we

further expect that d(t,L) = gh(L) · (1 + o(1)) with high probability.

Assumption 2 (Geometric series assumption [32]) After performing lat-
tice basis reduction on a lattice basis B, the Gram-Schmidt basis B∗ satisfies

∥b∗i ∥ = qi−1∥b1∥, q ∈ (0, 1). (2)

The GSA is used in analyzing enumeration and Babai lifting (Sections 2.3, 2.6).



Assumption 3 (Randomized slicer assumption [10]) Let s ≫ 0, and let
X1, X2, · · · ∈ {0, 1} denote the events that running the iterative slicer on ti ∼
Dt+L,s returns the shortest vector t′ ∈ t + L (Xi = 1) or not (Xi = 0). Then
the random variables Xi are identically and independently distributed.

This assumption is related to the randomized slicer, discussed in Section 2.5.

2.3 Lattice Enumeration

For constructing hybrid algorithms for solving SVP, we will combine several
existing techniques, the first of which is lattice enumeration. This method, first
described in the 1980s [13, 20] and later significantly improved in practice [5,
15, 29], can be seen as a brute-force approach to SVP: every lattice vector can
be described as an integer linear combination of the basis vectors, and given
some guarantees on the quality of the input basis, this results in bounds on
the coefficients of the shortest vector in terms of this basis. The algorithm can
be described as a depth-first tree search, requiring dO(1) memory and 2O(d log d)

time. For further details, we refer the reader to e.g. [15, 16,26].
For our purposes, what is important to know is that the complexity of (par-

tial) enumeration is proportional to the number of nodes visited in the tree, and
that the number of nodes at depth k = o(d) for a strongly-reduced d-dimensional
lattice basis is 2O(k log d). More precisely, we will need the following lemma. A
heuristic derivation, based on estimates from [17], is given in Appendix B.

Lemma 1 (Costs of enumeration [17]). Let B be a strongly reduced basis of
a lattice. Then the number of nodes Ek at depth k = o(d), k = d1−o(1), satisfies:

Ek = dk/2+o(k). (3)

Enumerating all these nodes can be done in time Tenum and space Senum, with:

Tenum = Ek · dO(1), Senum = dO(1). (4)

2.4 Lattice Sieving

Another method for solving SVP, and which will be part of our hybrid algo-
rithms, is lattice sieving. This method dates back to the 2000s [3, 28, 30] and
has seen various recent improvements [4, 8, 11, 19, 21] that allowed it to surpass
enumeration in the SVP benchmarks [1]. This method only requires 2O(d) time
to solve SVP in dimension d (compared to 2O(d log d) for enumeration), but this
comes at the cost of a memory requirement of 2O(d). The algorithm starts out
by generating a large number of lattice vectors as simple combinations of the
basis vectors, and then proceeds by combining suitable pairs of vectors to form
shorter lattice vectors. For additional details, see e.g. [8, 16,22,26].

In the context of this paper we will make use of the following result from [8],
which is the current state-of-the-art for (heuristic) lattice sieving in high dimen-
sions d. The statement below is stronger than saying that sieving merely solves
SVP, as lattice sieving commonly returns a list of all short lattice vectors within
radius approximately

√
4/3 · λ1(L). This same assumption was used in [11].



Lemma 2 (Costs of lattice sieving [8]). Given a basis B of a lattice L, the
LDSieve heuristically returns a list L ⊂ L containing the (4/3)d/2+o(d) shortest
lattice vectors, in time Tsieve and space Ssieve with:

Tsieve = (3/2)d/2+o(d), Ssieve = (4/3)d/2+o(d). (5)

With the LDSieve we can therefore solve SVP with the above complexities.

2.5 The Randomized Slicer

The third ingredient for our hybrid algorithms is the randomized slicer for solv-
ing CVP(P). This algorithm, described in [10], is an extension of the iterative
slicer [33], and follows a procedure of reducing targets t with a list L ⊂ L to find
shorter vectors t′ ∈ t+ L. The goal is to find the shortest vector t∗ ∈ t+ L by
repeatedly reducing t with L, since t− t∗ is the solution to CVP(L, t).

We will make use of two separate results from [12]. These results differ in
whether one desires to solve only one or many CVP instances on the same lattice;
as shown in [12], solving many CVP instances simultaneously allows for more
efficient memory management, thus allowing to achieve a better overall time

complexity for a given space bound. Here ζ = − 1
2 log2(1−

2(1−y)

1+
√
1−y

) = 0.2639 . . .

where y = 0.7739 . . . is a root of p(y) = 16y4 − 80y3 + 120y2 − 64y + 9.

Lemma 3 (Costs of the randomized slicer, single target [12]). Given a
list of the (4/3)d/2+o(d) shortest vectors of a lattice L and a target t ∈ Rd, the
randomized slicer solves CVP for t in time Tslice and space Sslice, with:

Tslice = 2ζd+o(d), Sslice = (4/3)d/2+o(d). (6)

Lemma 4 (Costs of the randomized slicer, many targets [12]). Given
a list of the (4/3)d/2+o(d) shortest vectors of a lattice L and a batch of n ≥
(13/12)d/2+o(d) target vectors t1, . . . , tn ∈ Rd, the batched randomized slicer
solves CVP for all targets ti in total time Tslice and space Sslice, with:

Tslice = n · (18/13)d/2+o(d), Sslice = (4/3)d/2+o(d). (7)

The amortized time complexity per instance equals Tslice/n = (18/13)d/2+o(d).

2.6 Babai Lifting

Finally, we will revisit the extension to lattice sieving described in [11], based on
Babai’s nearest plane algorithm [6]. As observed by Ducas, lattice sieving returns
much more information about a lattice than just the shortest vector, and this
additional information can be used to obtain a few dimensions for free – to solve
SVP in dimension d, it suffices to run sieving on a sublattice of dimension d− ℓ
with ℓ = Θ(d/ log d), and use the resulting list of vectors in this sublattice to
find the shortest vector in the full lattice.



Lemma 5 (Costs of Babai lifting [11]). Let γ > 1, let B = {b1, . . . , bd} be
a sufficiently reduced basis of a lattice L, and let L′ ⊂ L be the sublattice of L
generated by B′ = {b1, . . . , bd−ℓ}, where:

ℓ =
2d log2 γ

log2 d
· (1 + o(1)). (8)

Then, given a list L′ of the γd+o(d) shortest vectors of L′, we can find a shortest
vector of L through Babai lifting of L′ in time Tlift and space Slift, with

Tlift = γd+o(d), Slift = γd+o(d). (9)

For γ =
√
4/3 this results in ℓ = d log2(4/3)/ log2 d dimensions for free.

3 Sieve, Enumerate, Slice, and Lift!

Suppose we have a basis B = {b1, . . . , bd} of a lattice L = L(B), and we split it
into two disjoint parts as follows, for some choice 0 ≤ k ≤ d:

B = Bbot ∪Btop, Bbot := {b1, . . . , bd−k}, Btop := {bd−k+1, . . . , bd}. (10)

This defines a partition of the lattice L = Lbot ⊕ Ltop as a direct sum of the
two sublattices Lbot := L(Bbot) and Ltop := L(Btop). Let us further denote
a solution s = SVP(L) as s = sbot + stop with sbot ∈ Lbot and stop ∈ Ltop.
Finding s can commonly be described as solving a CVP instance on Lbot:

stop ̸= 0 =⇒ s = stop − CVP(Lbot, stop). (11)

Note that the case stop = 0 is in a sense “easy”, as then s = SVP(Lbot). The
hardest problem instances occur when stop ̸= 0, and this will be our main focus.

Lattice enumeration can be viewed as a procedure for solving SVP based on
the above observations: first enumerate all target vectors t ∈ Ltop that have the
potential to satisfy t = stop, and then compute CVP(Lbot, t) for each of these
targets through a continued enumeration procedure on the sublattice Lbot, to
see which of them produces the solution to SVP on the full lattice. Observe that
lattice enumeration commonly solves each of these CVP instances separately,
even though each problem instance can be viewed as a CVP instance on the
same lattice Lbot, but with a different target vector t ∈ Ltop.

As previously outlined in e.g. [10,15], a truly efficient CVPP algorithm would
imply a way to speed up processing all these CVP instances in enumeration; one
would first run a one-time preprocessing on the sublattice Lbot, and then solve
all the CVP instances at some level k using the preprocessed data as input for
the CVP(P) oracle. The initial preprocessing step may be expensive, but these
costs can be amortized over the many CVP instances that potentially have to
be solved during the enumeration phase. At the time of [15] no good heuristic
CVPP algorithm was known, but with the results of [10, 12, 24] we may now
finally instantiate the above idea with the ingredients from Sections 2.3–2.5.



3.1 Hybrid 1: Sieve, Enumerate–and–Slice

In the first hybrid, after the preprocessing (sieve) finishes, we compute closest
vectors to targets t ∈ Ltop one vector at a time. This algorithm has two phases,
where the second phase combines enumeration with the randomized slicer.

1. Sieve: First, run a lattice sieve on Lbot to generate a list L ⊂ Lbot.
2. Enumerate–and–slice: Then, run a depth-first enumeration in Ltop, where

for each leaf t ∈ Ltop we run the randomized slicer to find the closest vector
CVP(t) ∈ Lbot. We keep track of the shortest difference vector t− CVP(t),
and ultimately return the shortest one as a candidate solution for SVP(L).1

To optimize the asymptotic time complexity of this algorithm, note that the
cost of enumeration in Ltop is Tenum = 2O(k log d) while the costs of sieving and
slicing in Lbot are Tsieve,Tslice = 2O(d−k). To balance these costs, and minimize
the overall time complexity, we will therefore set k as follows:

k =
α · d
log2 d

, with α > 0 constant. (12)

Using Lemmas 1–3, optimizing α to obtain the best overall asymptotic time
complexity is a straightforward exercise, and we state the result below. A detailed
derivation of the following result is given in Appendix C.

Heuristic result 1 (Sieve, enumerate–and–slice) Let k = αd/ log2 d with

α < log2(
3
2 )− 2ζ = 0.0570 . . . . (ζ as in Lemma 3) (13)

Let T
(d)
1 and S

(d)
1 denote the overall time and space complexities of the sieve,

enumerate–and–slice hybrid algorithm in dimension d. Then:

T
(d)
1 = T

(d−k)
sieve · (1 + o(1)), S

(d)
1 = S

(d−k)
sieve · (1 + o(1)). (14)

Letting α → log2(
3
2 )−2ζ in the above result, we get k ≈ 0.0570d/ log2 d with

an asymptotic speedup of a factor 20.0167d/ log2 d and a memory reduction of a
factor 20.0118d/ log2 d compared to running a sieve directly on L. Note that the
result does not hide subexponential or even polynomial hidden order terms; the
time and space complexities are dominated by the preprocessing costs.

3.2 Hybrid 2: Sieve, Enumerate, Slice

An alternative to the above approach is to separate the enumeration and slicing
procedures into two disjoint parts, and run the hybrid algorithm in three phases.
The benefit of this approach (cf. Section 2.5) is that the batched slicer can then
be used to achieve better amortized complexities for CVPP.

1 The case stop = 0 can be handled by checking if L contains an even shorter vector.



1. Sieve: As before, run a lattice sieve on Lbot, to generate a list L ⊂ Lbot.
2. Enumerate: Then, enumerate all nodes t ∈ Ltop at depth k in the enumer-

ation tree, and store them in a list of targets T ⊂ Ltop.
3. Slice: Finally, use the batched randomized slicer with the list L to solve CVP

on Lbot for all targets t ∈ T , and return the shortest vector t− CVP(t).

Asymptotically, the additional space required for storing the nodes from the
enumeration phase will not play a large role, compared to the memory required
for storing the output from the preprocessing phase. On the other hand, by
using the improved batch-CVPP slicer of Lemma 4 we can use nearest neighbor
searching more efficiently, without increasing the memory, leading to a bigger
improvement over standard sieving than with the first hybrid algorithm.

Heuristic result 2 (Sieve, enumerate, slice) Let k = αd/ log2 d with

α < log2(
13
12 ) = 0.1154 . . . . (15)

Let T
(d)
2 and S

(d)
2 denote the overall time and space complexities of the batched

sieve, enumerate, slice hybrid algorithm in dimension d. Then:

T
(d)
2 = T

(d−k)
sieve · (1 + o(1)), S

(d)
2 = S

(d−k)
sieve · (1 + o(1)). (16)

In the limit of α → log2(
13
12 ) we get k ≈ 0.1154d/ log2 d dimensions for

free, leading to an asymptotic speedup of a factor 20.0338d/ log2 d+o(d/ log d) and a
memory reduction of a factor 20.0240d/ log2 d+o(d/ log d) over direct sieving on L.

3.3 Hybrid 3: Sieve, Enumerate–and–Slice, Lift

For the third and fourth hybrids, we observe that similar to lattice sieving,
the slicer in the previous hybrid algorithms can actually produce much more
information about the lattice than just the shortest lattice vector; for other
targets t ̸= stop, as well as for “failed” outputs of the randomized slicer, the
slicer will also return many short lattice vectors. This suggests that to get even
more dimensions for free, we may be able to combine both hybrids with Babai
lifting as outlined in Lemma 5.

Instead of splitting the lattice into two parts, we now split the input lattice
basis into three parts B = Bbot ∪ Bmid ∪ Btop, where the three bases Bbot :=
{b1, . . . , bℓ}, Bmid := {bℓ+1, . . . , bd−k}, and Btop := {bd−k+1, . . . , bd} generate
lattices Lbot,Lmid,Ltop of dimensions ℓ, d−k− ℓ and k respectively. For Hybrid
3 we essentially run Hybrid 1 on Lmid ⊕Ltop, and use Babai lifting to deal with
the additional ℓ dimensions of Lbot. This leads to the following algorithm:

1. Sieve: Run a lattice sieve on Lmid to generate a list L ⊂ Lmid.
2. Enumerate–and–slice: Enumerate all nodes t ∈ Ltop, and repeatedly slice

each of them with the list L to find close vectors v ∈ Lmid. For each pair
t,v add the vector t− v to an output list S ⊂ Lmid ⊕ Ltop.

3. Lift: Finally, extend each vector s′ ∈ S to a candidate solution s ∈ L by
running Babai’s nearest plane algorithm. Return the shortest lifted vector.



As the slicer processes Ek = dk/2+o(k) = 2αd/2+o(d) target vectors, and re-
quires ρ = (16/13)d/2+o(d) rerandomizations per target for average-case CVP to
succeed (see [10, 12] for details), the slicer outputs 2(α+log2(16/13))·d/2+o(d) lat-
tice vectors, and ideally we might hope this list contains, similar to sieving [11],
(almost) all lattice vectors of norm at most γ = 2(α+log2(16/13))/2+o(1) · gh(L).

Assumption 4 (Hybrid assumption) The list S, output by the slicer, con-
tains the 2(α+log2(16/13))·d/2+o(d) shortest lattice vectors of Lmid ⊕ Ltop.

Assuming that the above heuristic is indeed valid, we derive the following result
regarding the asymptotic time and space complexities of the described hybrid
algorithm. In Section 5 we will revisit this assumption, to study its validity.

Heuristic result 3 (Sieve, enumerate–and–slice, lift) Let k = αd/ log2 d
and ℓ = βd/ log2 d with

α < log2(
3
2 )− 2ζ = 0.0570 . . . , β < log2(

24
13 )− 2ζ = 0.3565 . . . . (17)

Let T
(d)
3 and S

(d)
3 denote the time and space complexities of the sieve, enumerate–

and–slice, lift hybrid algorithm in dimension d. Then, under Assumption 4:

T
(d)
3 = T

(d−k−ℓ)
sieve · (1 + o(1)), S

(d)
3 = S

(d−k−ℓ)
sieve · (1 + o(1)). (18)

Observe that the number of dimensions we save compared to a full sieve here is
k+ℓ ≈ 0.4136d/ log2 d. Compared to the result of Ducas [11] of ℓ ≈ 0.4150d/ log2 d
this new hybrid is asymptotically slightly worse than a sieve–and–lift hybrid.

3.4 Hybrid 4: Sieve, Enumerate, Slice, Lift

Finally, combining the second hybrid with lifting, as in the third hybrid algorithm
above, results in the following optimized hybrid procedure:

1. Sieve: Run a lattice sieve on Lmid to generate a list L ⊂ Lmid.

2. Enumerate: Enumerate all nodes t ∈ T ⊂ Ltop at depth k in L.
3. Slice: Run the slicer, with the list L as input, to find close vectors in Lmid

to the targets t ∈ T . The result is a list S ⊂ Lmid ⊕ Ltop.

4. Lift: Finally, extend each vector s′ ∈ S to a candidate solution s ∈ L by
running Babai’s nearest plane algorithm. Return the shortest lifted vector.

Not only does splitting the enumeration and slicing guarantee that the batched
version of the slicer gets better complexities; the smaller resulting value α also
means that the number of vectors output by the slicer is larger, which leads to
more dimensions for free from the lifting phase. In particular, with the batched
slicer the number of vectors output by the slicer is proportional to (4/3)d/2+o(d),
and we may get as many dimensions for free in the lifting phase as [11].



Table 1: An overview of the techniques used in the hybrids, as well as the asymptotic
number of dimensions for free for each part and in total (last column). In sufficiently
high dimensions, under Assumption 4, Hybrid 4 outperforms all other algorithms, by
saving up to 0.53d/ log2 d dimensions compared to sieving in the full lattice.

Algorithm Sieve Enum./Slice Lift Dimensions for free
(Single) (Batch) ( k

d
log2 d) ( ℓ

d
log2 d) ( k+ℓ

d
log2 d)

Full sieve [8] ✓ - - -
Hybrid 1 ✓ ✓ 0.0570 - 0.0570
Hybrid 2 ✓ ✓ 0.1154 - 0.1154
Hybrid 3 ✓ ✓ ✓ 0.0570 0.3566 0.4136
SubSieve [11] ✓ ✓ - 0.4150 0.4150
Hybrid 4 ✓ ✓ ✓ 0.1155 0.4150 0.5305

Heuristic result 4 (Sieve, enumerate, slice, lift) Let k = αd/ log2 d and
ℓ = βd/ log2 d with

α < log2(
13
12 ) = 0.1154 . . . , β < log2(

4
3 ) = 0.4150 . . . . (19)

Let T
(d)
4 and S

(d)
4 denote the time and space complexities of the sieve, enumerate,

slice, and lift hybrid algorithm in dimension d. Then, under Assumption 4:

T
(d)
4 = T

(d−k−ℓ)
sieve · (1 + o(1)), S

(d)
4 = S

(d−k−ℓ)
sieve · (1 + o(1)). (20)

We again stress that the above result relies on a batched version of the ran-
domized slicer. With this batched hybrid algorithm with lifting, assuming the
hybrid assumption holds, we can potentially get up to k + ℓ ≈ 0.5305d/ log2(d)
dimensions for free, which would improve upon Ducas’ ℓ ≈ 0.4150d/ log2(d) [11].

An overview of the techniques used in the four hybrids, as well as the number
of dimensions for free in each algorithm, is given in Table 1.

4 Sieve, Enumerate, Slice, Repeat!

For the fourth hybrid, under Assumption 4 the enumeration and batched slicer
together take as input a list of all vectors of norm at most

√
4/3 · gh(L′) of

a suitable sublattice L′ ⊂ L, and output (almost) all lattice vectors of norm
at most

√
4/3 · gh(L) of L. This suggests one might replace the initial sieving

step on Lmid by a sieve, enumerate, slice hybrid (Hybrid 2), by splitting Lmid =

L(1)
mid⊕L(2)

mid with rank(L(2)
mid) = Θ(d/ log d); running a sieve on L(1)

mid; enumerating

L(2)
mid; and then using the slicer to find a list of short vectors L ⊂ Lmid. Under

Assumption 4, this substitution of the initial sieve by Hybrid 2 can be repeated
many times to obtain Θ(d/ log d) dimensions for free several times.

As an alternative interpretation, rather than running enumeration on k levels
directly, one additional level of nesting suggests we first run the lower k/2 levels
of enumeration, lift the resulting target vectors to obtain short vectors in a



lattice of rank d− k/2, and then run another k/2 levels of enumeration to find
short vectors in the full lattice. Splitting up the enumeration this way decreases
the overall enumeration costs and the number of targets for the slicing phases
(Ek/2 + Ek/2 ≪ Ek), but at the same time the list output by the first slicing
phase might not be as good for the second slicing phase as what one would get
from running a sieve directly; even if Assumption 4 is true, likely this still comes
at a slight loss in the quality of the list, say in the first order terms.

We finally observe that the same idea of nesting does not seem to work for
the sieve, lift hybrid of [11]. Although one could define a “generalized” Babai
lifting procedure, lifting targets to all nearby vectors in the higher-rank lattice,
from a viewpoint of enumeration we are “missing” some branches in the tree
due to L only containing some nodes in the tree at level d− ℓ. Therefore, if the
shortest vector in the lattice is actually in one of those missing branches, then a
generalized lifting procedure will not succeed in finding this shortest vector.

Although we will briefly revisit the idea of nesting in the experiments in the
next section, we leave a technical study of nesting for future work.

gh(ℒ) 4 /3 ·gh(ℒ)
100

101

102

103

104

105

Euclidean norm

N
u
m
b
er
o
f
ve
ct
o
rs

Fig. 1: The number of vectors found through a sieve (black) and sieve, enumerate,
slice hybrids for k ∈ {1, 2, 3, 4} (orange, green, blue, red) in dimension 60. The
dashed black line, and the purple line intersecting it for large norms, indicate
the true number of lattice vectors below this norm. The dashed colored lines
indicate the lists obtained from running sieving in sublattices of rank d− k.



5 Experimental Results

5.1 Verifying Assumption 4

To attempt to validate (or disprove) the new heuristic assumption, we performed
the following experiment. We used the 60-dimensional SVP challenge lattice
with seed 0 [1], pre-reduced with BKZ-50 [31], for which gh(L) ≈ 2001 and
λ1(L) ≈ 1943. The black dashed line in Figure 1 shows the expected number of
lattice points below a certain norm by the Gaussian heuristic (Assumption 1).
The (barely visible) purple line intersecting this line for high norms shows the
actual number of lattice vectors found by a “relaxed” sieve [23], showing the
accuracy of the Gaussian heuristic for large balls.

To test Assumption 4, we then ran both a standard g6k lattice sieve to
produce a list L0 (black) [4]; and sieve, enumerate, slice hybrids for k ∈ {1, 2, 3, 4}
by (1) running g6k on the (d−k)-dimensional sublattice formed by b1, . . . , bd−k

to produce a list Lk, (2) running enumeration up to depth k in the full lattice
to obtain targets Tk, (3) slicing each target t ∈ Tk up to 20 · (16/13)(d−k)/2

times, to obtain a list Sk, and (4) plotting the sorted norms of both Lk (dashed)
and Sk ∪ Lk (solid) in Figure 1. These results show that (i) as expected, the
preprocessed lists Lk in rank d− k become increasingly poor approximations of
the sieved list L0 as k increases, and (ii) the sliced lists Sk ∪ Lk together form
very good approximations to the sieved list L0. Note that, at norm

√
4/3 ·gh(L),

all these lists are quite far off from the prediction by the Gaussian heuristic.

5.2 Assessing the Sieve, Enumerate–and–Slice Hybrid

To study the practical performance of these hybrid algorithms, we performed
some preliminary experiments in dimensions 60–80, whose results are described
in Table 2. This table is deferred to Appendix A due to the page limit; instead
here we will describe the setup of the experiments, and discuss the results as
well as conclusions that can or cannot be drawn from these results.

BKZ. To start, we used the SVP challenge lattices [1] with seed 0 in dimen-
sions d ∈ {60, 65, 70, 75, 80}. We preprocessed each basis with BKZ with block
size d− 10. In case the shortest vector had a 0-coefficient for bd when expressed
in terms of B, we would rerandomize the basis and run BKZ again, to guarantee
that the preprocessed lists do not already contain the solution.

Sieve. Next, we used the g6k [35] framework to generate sieving lists in
dimensions d − k, for k = 0, 1, 2, 3. We disabled the “dimensions for free” from
g6k, to test the pure hybrids for their performance and limit the impact of other
factors for now. The case k = 0 corresponds to sieving in the full lattice, and the
timings in dimensions d − k clearly decrease with k, as shown in Table 2. The
resulting vectors were stored in an output file, and their sizes are also given in
Table 2.

Enumerate. Then, we ran a full enumeration in the full lattice up to depth k,
to generate the target vectors for the slicer. These were again stored in a separate
file for later usage. Note that pruning would reduce the number of targets further,



but (1) this would decrease the success probability of the overall algorithm,
and (2) rerandomizing the lattice basis to get a high success probability would
(naively) require running the costly sieving preprocessing step several times. We
therefore restricted experiments to enumeration without pruning.

Slice. Finally, with the sieved list L and target vectors T as input, we iden-
tified the target t ∈ T corresponding to the shortest vector in the lattice, and for
this target we ran the randomized slicer with 105 trials to estimate the success
probability piter of the slicer in finding the shortest vector. Table 2 shows the
inverse p−1

iter as well as the average time for each trial, which together with |T |
can then be used to estimate the time for the slicing as Tslice ≈ |T | · p−1

iter ·Titer.
Nested hybrid. We also tested a simple nested hybrid from Section 4, with

two successive (non-batched) enumerate–and–slice routines in dimension k = 1.
In the first slicing phase, we chose the total number of iterations such that the
size of the output list matches the size of a directly sieved list for k = 1. The
rows k = 1 + 1 in Table 2 suggest this approach compares favorably to k = 2.

Conclusions. Although the results in Table 2 mainly suggest that these
hybrid approaches may have a large overhead in practice, we stress that as d
grows, the time complexity grows slower than a full sieve. Furthermore, for the
slicer we did not use nearest neighbor techniques or batching to reduce the
query times. Also, note that as 0.11d/ log2 d < 2 for d < 128 we do not expect
to obtain many (additional) dimensions for free in dimensions 60 ≤ d ≤ 80.
The aforementioned reasons can provide some insight why the speedup was not
observed in practice in our experiments.

Code in fplll. As part of this project, we implemented the iterative slicer
in fplll [34], and we expect this code to be included in the library soon.
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A Figures and Tables

Due to the page limit, we have deferred some tables and figures to the appendix.
Table 2 shows the experimental results for the experiments described in Sec-
tion 5. Figures 2 and 3 present graphical overviews of the hybrid algorithms
described Sections 3 and 4, where the horizontal axis depicts the basis vectors
b1, . . . , bd and the vertical axis corresponds to the time (with algorithms starting
from the top and ending at the bottom).

Table 2: Experimental results and estimates for the costs of the hybrid al-
gorithms, in dimensions d ∈ {60, 65, 70, 75, 80} and for parameter choices
k ∈ {0, 1, 2, 3} as well as the nested hybrid with two iterations of k = 1. Single-
core timings are denoted in milliseconds (ms), seconds (s), minutes (m), hours
(h), and days (d). List sizes |L| and estimates on the required number of reran-
domizations p−1

iter are sometimes given in multiples of one thousand (k). The last
column gives estimates for the total time complexities for these algorithms, by
adding up the costs for BKZ, sieving, enumeration, and slicing. The case k = 0
corresponds to running a sieve on the full lattice directly.

Parameters BKZ — Sieve — — Enum — — Slice — Total

d k T
(d−10)
BKZ |L| T

(d−k)
sieve |T | T(k)

enum T
(d−k)
iter p−1

iter T
(d−k)
slice T

(d)
hyb

60 0 4s 18k 19s - - - - - 23s
1 4s 16k 16s 5 0s 3.2ms 830 13s 33s
2 4s 13k 12s 30 0s 2.7ms 530 43s 59s
3 4s 12k 9s 155 0s 2.4ms 760 280s 293s

1+1 4s
13k 12s 4 0s 3.0ms 500 6s

51s
(16k) (0s) 5 0s 3.2ms 1820 29s

65 0 8s 37k 78s - - - - - 1m
1 8s 32k 57s 5 0s 6.8ms 12.5k 7m 8m
2 8s 28k 44s 37 0s 6.6ms 2.9k 12m 13m
3 8s 24k 36s 215 0s 5.6ms 2.9k 58m 59m

1+1 8s
28k 44s 4 0s 6.6ms 1.1k 0.5m

6m
(32k) (0s) 5 0s 6.8ms 6.7k 4m

70 0 1m 76k 5m - - - - - 6m
1 1m 65k 4m 6 0m 20ms 17k 35m 40m
2 1m 57k 3m 46 0m 16ms 1k 12m 16m
3 1m 49k 2m 293 0m 13ms 6k 381m 384m

1+1 1m
57k 3m 5 0m 15ms 2k 2m

43m
(65k) (0m) 5 0m 18ms 25k 37m

75 0 2m 155k 22m - - - - - 0.4h
1 2m 134k 16m 6 0m 40ms 25k 2h 2h
2 2m 116k 11m 50 0m 48ms 20k 13h 14h
3 2m 101k 8m 366 0m 30ms 12k 37h 37h

1+1 2m
116k 11m 5 0m 35ms 4k 0.2h

>8h
(134k) (0m) 6 0m 41ms >100k >7h

80 0 14m 320k 74m - - - - - 1.5h
1 14m 275k 58m 7 0m 95ms >100k >18h >20h
2 14m 240k 45m 64 0m 74ms >50k >66h >67h
3 14m 205k 36m 506 0m 66ms >50k >19d >19d
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Hybrid 4
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Fig. 2: A high-level description of the hybrid algorithms presented in this paper.
Hybrids 1 and 3 combine enumeration and slicing, performing the randomized
slicing procedure for only one target vector at a time. Hybrids 3 and 4 use
the Babai lifting technique from [11]. The asymptotics of the slicer depend on
whether targets are processed directly (left) or in batches (right). The lifting can
be done directly as well, without affecting the performance of the algorithm.



Nested Hybrid

L

L1 ⊕ L2 ⊕ L3 ⊕ . . . ⊕ Lm

. . .

. . .

L1 ⊂ L1 T2 ⊂ L2

L2 ⊂ L1 ⊕ L2 T3 ⊂ L3

L3 ⊂ L1 ⊕ L2 ⊕ L3

Tm ⊂ LmLm−1 ⊂
m−1⊕
i=1

Li

Lm ⊂
m⊕
i=1

Li = L

s ∈ L

Sieve Enumerate

Slice Enumerate

Slice

Enumerate

Slice

Fig. 3: A high-level description of the potential recursive hybrid algorithm, which
starts on a lattice L1 of dimension d−Θ(d/ log d), and then repeatedly lifts the
lists Li ⊂ L1 ⊕ · · · ⊕ Li to lists Li+1 ⊂ L1 ⊕ · · · ⊕ Li+1 by enumerating targets
Ti+1 ⊂ Li+1 and using the batched slicer with Li as input to create Li+1. Each
lattice Li for i > 1 has dimension Θ(d/ log d).



B The Number of Nodes in the Enumeration Tree

We restate Lemma 1 and give a derivation of this claim based on results from [17]
and a straightforward asymptotic expansion of the resulting formulas.

Lemma 1 (Costs of enumeration). Let B be a strongly reduced basis of a
lattice2 satisfying the GSA. Then the number of nodes Ek in the enumeration
tree at depth k = o(d), with k = d1−o(1), heuristically satisfies:

Ek = dk/2+o(k). (21)

Enumerating all these nodes can be done in time Tenum and space Senum, with:

Tenum = Ek · dO(1), Senum = dO(1). (22)

Proof. As a starting point, we take the formula from [17, Section 6.2], which was
derived using the Gaussian heuristic:

Ek =
πk/2

Γ (k/2 + 1)
· ∥b1∥k∏d

i=d−k+1 ∥b
∗
i ∥

. (23)

For the gamma function, we can use a very rough version of Stirling’s approx-
imation of the form Γ (x) = (x/e)x+o(x), which for the first term above gives
an asymptotic scaling of (2πe/k)k/2+o(k) = k−k/2+o(k). For the terms ∥b1∥ and
∥b∗i ∥, we apply the geometric series assumption, which states that ∥b∗i ∥ = qi−1

for some q ∈ (0, 1). Using that
∑d

i=d−k+1(i− 1) = k(2d− k− 1)/2 = kd− o(kd)
for k = o(d), this reduces the above to:

Ek = k−k/2+o(k) · q−kd+o(kd) . (24)

Next, we note that for a sufficiently well-reduced basis B, we have ∥b1∥ =
O(λ1(L)) = O(

√
d) · vol(L)1/d. From the GSA, we then get:

vol(L) =
d∏

i=1

∥b∗i ∥ = qd(d+1)/2∥b1∥d = qd(d+1)/2d−d/2+o(d) vol(L). (25)

From this we can conclude that q = d−1/d+o(1/d) and q−kd+o(kd) = dk+o(k). From
the assumptions that k = d1−o(1) and k = o(d) we then get:

Ek = d−k/2+o(k) · dk+o(k) = dk/2+o(k). (26)

As for the time and space complexities of enumeration, as has been noted several
times before [5,13,15] the time complexity is directly proportional to the size of
the enumeration tree, while the space complexity is only polynomial in d. ⊓⊔
2 Similar to [11, Section 3.4], concretely we may assume B is quasi-HKZ reduced.



C Asymptotics of the Hybrid Algorithms

Below we restate and give a derivation of Heuristic result 1, by analyzing the
concrete time and space complexities for each phase, and arguing that with a
suitable parameterization indeed the costs of the algorithm are strictly domi-
nated by the costs of the sieve in the preprocessing phase.

Heuristic result 1 (Sieve, enumerate–and–slice) Let k = αd/ log2 d with

α < log2(
3
2 )− 2ζ = 0.0570 . . . . (ζ as in Lemma 3) (27)

Let T
(d)
1 and S

(d)
1 denote the overall time and space complexities of the sieve,

enumerate–and–slice hybrid algorithm in dimension d. Then:

T
(d)
1 = T

(d−k)
sieve · (1 + o(1)), S

(d)
1 = S

(d−k)
sieve · (1 + o(1)). (28)

Proof. For the time complexities, recall that the costs of the individual parts of
the algorithm, by Lemmas 1–3, are given by:

Tsieve = 2
1
2 log2(

3
2 )d+o(d), Tenum = 2

α
2 d+o(d), Tslice = 2(

α
2 +ζ)d+o(d). (29)

Clearly Tenum = o(Tslice) since ζ > 0. Now, due to α < α0 = log2(
3
2 )− 2ζ being

strictly smaller than the point where Tsieve ≈ Tslice, we have Tslice = o(Tsieve)
as well, giving a total time complexity of T = Tsieve · (1+ o(1)). Finally, looking
closely, we note that the cost Tsieve actually corresponds to running a standard

lattice sieve in dimension d− k, which can be done in time T
(d−k)
sieve as claimed.

For the space complexities, we recall them from Lemmas 1–3 as follows:

Ssieve = (4/3)d/2+o(d), Senum = poly(d), Sslice = (4/3)d/2+o(d). (30)

Since α < α0, the time complexity of the enumerate–and–slice procedure is
strictly smaller than the cost of the preprocessing phase, and this will remain
true even if we use a slightly smaller list as output from the preprocessing phase.
So for sufficiently small ε > 0, we may therefore choose to use a list L′ ⊂ L for
the enumerate–and–slice phase of size |L′| = |L|1−ε, while still maintaining a
time complexity Tslice = o(Tsieve). This guarantees that the overhead caused
by the quasilinear-space nearest neighbor data structure, required in the third
phase to achieve sublinear search costs, does not impose any overhead in the
asymptotic space complexity; the memory required in the third phase will then
be of size Sslice = (S1−ε

sieve)
1+o(1) = o(Ssieve). ⊓⊔

For the other heuristic results, analogous derivations can be given to argue
that both the time and space complexities are dominated by the initial sieving
phase, as long as the parameters k (and ℓ) are below the point where the sieving
and slicing (and lifting) become equally expensive. Further note that although
the batched slicer has a cost of (3/2)d/2+o(d)+n·(18/13)d/2+o(d) for n targets due
to the reinitializations of the costly nearest neighbor data structures [12], these
costs can again be made to be (3/2−ε)d/2+o(d)+n1−ε ·(18/13)d/2+o(d) by slightly
reducing the number of targets and the number of hash tables accordingly.
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