
1

Near-optimal Polynomial for Modulus Reduction
Using L2-norm for Approximate Homomorphic

Encryption
Yongwoo Lee, Joonwoo Lee, Young-Sik Kim, and Jong-Seon No, Fellow, IEEE

Abstract—Since Cheon et al. introduced an approximate
homomorphic encryption scheme for complex numbers called
Cheon-Kim-Kim-Song (CKKS) scheme, it has been widely used
and applied in real-life situations, such as privacy-preserving
machine learning. The polynomial approximation of a modulus
reduction is the most difficult part of the bootstrapping for the
CKKS scheme. In this paper, we cast the problem of finding
an approximate polynomial for a modulus reduction into an L2-
norm minimization problem. As a result, we find an approximate
polynomial for the modulus reduction without using the sine
function, which is the upper bound for the approximation of
the modulus reduction. With the proposed method, we can
reduce the degree of the polynomial required for an approximate
modulus reduction, while also reducing the error compared
with the most recent result reported by Han et al. (CT-RSA’
20). Consequently, we can achieve a low-error approximation,
such that the maximum error is less than 2−40 for the size of
the message m/q ≈ 2−10. By using the proposed method, the
constraint of q = O(m3/2) is relaxed as O(m), and thus the level
loss in bootstrapping can be reduced. The solution of the cast
problem is determined in an efficient manner without iteration.

Index Terms—Approximate arithmetic, bootstrapping, Cheon-
Kim-Kim-Song (CKKS) scheme, fully homomorphic encryption
(FHE), privacy preserving.

I. INTRODUCTION

HOMOMORPHIC encryption (HE) is a specific class
of encryption schemes that allows computation on en-

crypted data without decryption. After Gentry’s blueprint [7],
it has been widely studied and several HE schemes have been
proposed [1], [8], [9], [10], [11], [12], [13], [14], [15]. As HE
can handle encrypted data without decryption, it is suitable for
data-rich applications that require privacy. Particularly, since
Cheon et al. proposed a HE scheme for complex numbers [1],
called Cheon-Kim-Kim-Song (CKKS) scheme, the utilization
of HE in deep leaning methods has become easier for privacy-
preserving applications [16], [17], [18], [19], [20].

Another important observation by Gentry is that encryption
contains noise and the noise level grows as operations are
performed on the ciphertext. It is necessary to deal with
noise to avoid overwhelming the data, and there are two
types of HE schemes for this purpose. The first is somewhat

This work is supported by the Samsung Electronics Co., Ltd., in Korea
Y. Lee, J. Lee, and J.-S. No are with the Department of Electrical and

Computer Engineering, INMC, Seoul National University, Seoul, 08826,
Korea.

Y.-S. Kim is with the Department of Information and Communication
Engineering, Chosun University, Gwangju, 61452, Korea. Y.-S. Kim is the
corresponding author. Email: iamyskim@chosun.ac.kr.

homomorphic encryption (SHE), in which the ciphertext size
and computation overhead increase at least linearly with
the depth of the circuit. SHE is an appropriate choice for
low-depth circuits; however, it has a scaling problem. The
other method is fully homomorphic encryption (FHE). Gentry
proposed the bootstrapping technique to refresh the noise, and
thus the parameter size and computation overhead could be
fixed regardless of circuit depth. However, in general, the
bootstrapping of FHE schemes requires considerable amount
of computation.

Bootstrapping for CKKS scheme was first proposed by
Cheon et al. [2]. Subsequently, several studies have been
conducted to improve bootstrapping for CKKS schemes [4],
[3], [6] and they commonly perform modulus reduction ho-
momorphically by approximating it to a scaled sine function.
The CKKS scheme is promising and used widely; however, as
most deep learning methods require operations of significant
depth, the improvement of bootstrapping is crucial.

Homomorphic evaluation of the modulus reduction is the
key part of the bootstrapping of the CKKS scheme. As only
arithmetic operations can be evaluated homomorphically and
modulus reduction is not an arithmetic operation, a polynomial
approximation for modulus reduction is required.

In most bootstrapping methods studied so far, the scaled sine
function (or shifted to the cosine function) is deemed to be an
approximation of the modulus reduction [2], [3], [4]. Thus, a
polynomial approximation for the scaled sine function is used
to evaluate the modulus reduction homomorphically. In [2],
the sine function was approximated by Taylor expansion of an
exponential function using eiθ = cos θ+ i sin θ and the double
angle formula ei2θ = (eiθ)2. The Chebyshev interpolation
method improves the polynomial approximation of the sine
function [3]. Based on the fact that the size of message is
significantly less than the ciphertext modulus, better nodes for
Chebyshev interpolation was selected and the approximation
was refined [4].

In this paper, instead of approximating the sine function,
we propose to cast the problem of finding approximate poly-
nomials for a modulus reduction into the L2-norm minimiza-
tion problem for which an optimal solution can be directly
computed. An approximation by the minimax polynomial for
the modulus reduction is desirable; however, the shape of
the modulus reduction function makes it difficult to find the
minimax polynomial. Thus, instead, we propose a discretized
optimization method that can be solved efficiently with a
unique solution. Through the solution of the modified dis-

2

cretized problem, we can reduce the degree of the approximate
polynomial for the modulus reduction while achieving a low
margin of error. Consequently, operations required for the
homomorphic modulus reduction are reduced compared with
the best-known method [4] where the double angle formula is
excluded.

When conventional methods are used, the sine function
dominates the approximation error; in other words, the approx-
imation error cannot be less than the difference between the
sine function and modulus reduction. Therefore, the message
size is limited to m < q2/3, and thus plaintext precision
is also limited, where q denotes a value of the ciphertext
modulus. However, the proposed method does not use the
sine function, and thus we can obtain a precise approximate
polynomial or utilize a message that is larger in size. For
example, when m/q < 2−10, the proposed method finds an
approximate polynomial with a maximum error of less than
2−40 with only a circuit depth of 7, whereas the best-known
modified Chebyshev interpolation method cannot because the
error saturates to 2−27. Therefore, the proposed method is
essential for applications that require precise calculations.
Moreover, accurate approximate polynomials for modulus
reductions of larger messages can be found. For example,
we achieve 2−20 error for m/q ≈ 2−6 with only a depth
of 7, whereas conventional methods cannot be used with the
message m/q ≈ 2−6 because the error saturates to 2−15.

This means that a user can handle a large, accurate number
and the selection of parameters for CKKS scheme can be
expanded using the proposed method. Thus, the proposed
method using the L2-norm minimization makes it possible to
take a trade-off between the computational complexity (the
degree of approximate polynomial) and the approximation
error for the CKKS scheme. By using the proposed method,
the constraint of q = O(m3/2) is relaxed as O(m), and thus
the level loss in bootstrapping can be reduced.

The remainder of the paper is organized as follows. In
Section II, we summarize the Chebyshev interpolation, the
CKKS scheme, and its bootstrapping. The proposed method
of finding approximate polynomials for the modulus reduction
and its performance are given in Section III. We provide
a comparison of the proposed method and the best-known
method along with implementation in Section IV. How the
proposed method provides less level loss during bootstrapping
is given in Section V. Finally, we conclude in Section VI with
remarks and possible future research directions.

II. PRELIMINARY

A. Basic Notation

Vectors are denoted in boldface, such as x, and every vector
will be a column vector. Matrices are denoted by a boldfaced
capital letter, for example, A. We denote the inner product
of two vectors by 〈·, ·〉 or simply ·. Matrix multiplication is
denoted by · or can be omitted when it is unnecessary. Lp-
norm of a vector is denoted by ‖x‖p = (

∑
i x[i]p)

−p, where
x[i] denotes the i-th element of vector x. Similarly, A[i, j] is
the element of matrix A in the i-th row and the j-th column.
x← D denotes the sampling x according to a distribution D.

When a set is used instead of a distribution, it means that x is
sampled uniformly at random from among the set elements.

B. Chebyshev Interpolation

The Chebyshev interpolation is a well-known polynomial
interpolation method that uses the Chebyshev polynomials as
a basis of the interpolation polynomial. The Chebyshev poly-
nomial of the first kind, in short, the Chebyshev polynomial
is defined by the recursive relation [22]

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x).

The Chebyshev polynomial of degree n has n distinct roots in
the interval [−1, 1] and all its extrema are also in [−1, 1].
Moreover, 1

2n−1Tn(x) is the polynomial, whose maximal
absolute value is minimal among monic polynomials of degree
n and the absolute value is 1

2n−1 . In addition to the above, the
Chebyshev polynomial has good properties for the basis of an
interpolation polynomial.

In Chebyshev interpolation, the n-th degree polynomial
pn(x) is represented as a sum of the Chebyshev polynomials
in the form

pn(x) =

n∑
i=0

ciTi(x).

pn(x) is an approximate polynomial for f(x) by interpolating
n+ 1 points {x0, x1, . . . , xn} , where

ci =
2

n+ 1

n∑
k=0

f(xk)Ti(xk).

Selecting points {x0, x1, . . . , xn} is key for a good approxi-
mation.

C. CKKS Scheme

This section briefly introduces the CKKS scheme [1]. For
a positive integer M , let ΦM (X) be the M -th cyclotomic
polynomial of degree N , where M is a power of two, M =
2N , ΦM (X) = XN +1. Let R = Z/ 〈ΦM (X)〉 be the ring of
integers of a number field Q/ 〈ΦM (X)〉 and we write Rq =
R/qR.

The CKKS scheme [1] and its residual number system
(RNS) variants [5], [4] provide homomorphic operations on
real number data with an error. This is done by canonical
embedding and its inverse. Recall that canonical embedding σ
of a ∈ Q/ 〈ΦM (X)〉 into CN is the vector of the evaluation
values a at the roots of ΦM (X). Let π denote a natural
projection from H = {(zj)j∈Z∗M : zj = z−j} to CN/2, where
Z∗M is the multiplicative group of integer modulo M . The
encoding (CN/2 → R) and decoding are given as below.
• Ecd(z; ∆). For an (N/2)-dimensional vector z, the

encoding procedure returns

m(X) = σ−1
(⌊

∆ · π−1(z)
⌉
σ(R)

)
∈ R,

where ∆ is the scaling factor and
⌊
π−1(z)

⌉
σ(R)

denotes
the discretization of π−1(z) into an element of σ(R).

3

• Dcd(m; ∆). For an input polynomial m(X) ∈ R, output
a vector π(z) such that its entry of index j is given as
zj =

⌊
∆−1 ·m(ζjM)

⌉
for j ∈ T , where ζM is the M -th

root of unity and T is a multiplicative subgroup of Z∗M
satisfying Z∗M/T = {±1}.

The L-infinity norm of σ(a) for a ∈ R is called the canonical
embedding norm of a, denoted by ‖a‖can∞ = ‖σ(a)‖∞. Refer
[1] for the property of the canonical embedding norm.

Adopting notations in [7], [1], we define three distributions
as follows. For real γ > 0, DG(γ2) denotes the distribution of
vectors in ZN , whose entries are sampled independently from
the discrete Gaussian distribution of variance γ2. HWT (h) is
the set of signed binary vectors in {0,±1}N with Hamming
weight h and ZO(ρ) denote the distribution of vectors from
{0,±1}N with probability ρ/2 for each of ±1 and a prob-
ability of being zero 1 − ρ. Suppose we have ciphertexts of
level l for 0 < l ≤ L, where level l means the maximum
number of possible multiplications before bootstrapping. For
convenience, we fix a base p > 0 and a modulus q and let
ql = pl · q. The base integer p is a base for scaling, ∆.

The CKKS scheme is defined with the following key genera-
tion, encryption, decryption, and corresponding homomorphic
operations.
• KeyGen(1λ).

– Given the security parameter λ, we choose M as a
power of two, an integer h, an integer P , a real value
γ, and a maximum ciphertext modulus Q, such that
Q ≥ qL.

– Sample following:

s← HWT (h), a← RqL , e← DG(γ2).

Set the secret key and the public key as

sk := (1, s), pk := (b, a) ∈ R2
qL ,

respectively, where

b = −as+ e (mod qL) .

• KSGensk(s′).
Sample a′ ← RPqL and e′ ← DG(γ2). Output the
switching key

swk := (b′, a′) ∈ R2
PqL ,

where b′ = −a′s+ e′ + Ps′ (mod PqL).
– Set the evaluation key as evk := KSGensk(s2).

• Encpk(m).
Sample v ← ZO(0.5) and e0, e1 ← DG(γ2).
Output c = v · pk + (m+ e0, e1) (mod qL).

• Decsk(c).
Output m̄ = 〈c, sk〉.

• Add(c1, c2).
For c1, c2 ∈ R2

ql
, output

cadd = c1 + c2 (mod ql) .

• Multevk(c1, c2).
For c1 = (b1, a1), c2 = (b2, a2) ∈ R2

ql
, let

(d0, d1, d2) := (b1b2, a1b2 + a2b1, a1a2) (mod ql) .

Output

cmult = (d0, d1) +
⌊
P−1 · d2 · evk

⌉
(mod ql) .

• RSl→l′(c).
For c ∈ R2

ql
, output

c′ =

⌊
ql′

ql
c

⌉
(mod ql′) .

• KSswk(c).
For c = (c0, c1) ∈ R2

ql
, output

c′ = (c0, 0) +
⌊
P−1 · c1 · swk

⌋
(mod ql) .

In addition to the operations above, key switching techniques
are used to provide various operations, such as a complex
conjugate and rotations.

There are computationally more efficient variants of the
CKKS scheme, namely the full-RNS variant of CKKS [5], [4]
and the basic operations supported therein are similar. Hence,
it is worth noting that the following methods in this paper aim
for the CKKS scheme and all its variants.

D. Bootstrapping for CKKS Scheme
There are several studies for bootstrapping for CKKS

scheme [2], [3], [4]. The bootstrapping consists of four steps:
MODRAISE, COEFFTOSLOT, EVALMOD, and SLOTTOCO-
EFF.

1) Modulus Raising: MODRAISE is the procedure to
change the modulus of a ciphertext to a greater value. Let
ct be the ciphertext satisfying m(X) = [〈ct, sk〉]q . It can
be seen that t(X) = 〈ct, sk〉

(
mod XN + 1

)
is of the form

t(X) = qI(X) + m(X) for I(X) ∈ R with a bound
‖I(X)‖∞ < K, where K is bounded by O(

√
h). The

following procedure aims to compute the remainder of the
coefficient of t(X), say t, divided by q, [t]q , homomorphically.
As the modulus reduction is not an arithmetic operation, the
crucial point is to find a polynomial approximating it. We can
control the size of the message, and thus we ensure m < ε · q
for small ε.

2) Putting Polynomial Coefficients in Plaintext Slots: Ap-
proximate homomorphic operations are performed in plaintext
slots. Thus, in order to deal with t(X), we have to put
polynomial coefficients in plaintext slots. In COEFFTOSLOT
step, the Ecd is performed homomorphically using matrix
multiplication [2] or, FFT-like operations using relationships
of roots of unity or a hybrid method of both [3]. Then, we
have two ciphertexts encrypting z′0 = (t0, . . . , tN

2 −1) and
z′1 = (tN

2
, . . . , tN−1) (or combined using imaginary e.g.,

(t0 + i · tN
2
, . . . , tN

2 −1 + i · tN)).
3) Evaluation of the Approximated Modulus Reduction: At

this stage, the elements of each slot are considered from the
viewpoint of single instruction multiple data, in other words,
t = qI + m refers to an element in a slot. In the EVALMOD
step, an approximated evaluation of [t]q is performed. At first,
Cheon et al. approximated [t]q ≈ q

2π sin
(

2πt
q

)
in [2]. The

error bound for the approximation of the sine function is given
as ∣∣∣∣m− q

2π
sin(2π

m

q
)

∣∣∣∣ ≤ q

2π
· 1

3!

(
2π|m|
q

)3

,

4

where t = qI + m. Then, a Taylor series expansion of the
exponent and the double angle formula were adopted as the
approximate polynomial of the sine function.

After that, the method of improving polynomial approxima-
tion using Chebyshev interpolation proposed in [3] was used.
By selecting optimized nodes for a Chebyshev interpolation,
Han et al. significantly improved the performance of the
approximation in [4]. However, in both approaches, the sine
function is used, and thus there is still an upper bound for the
approximation error.

4) Switching Back to the Coefficient Representation: SLOT-
TOCOEFF is the inverse operation of COEFFTOSLOT.

III. NEAR-OPTIMAL POLYNOMIAL FOR MODULUS
REDUCTION

As mentioned in Section II-D, the key part of bootstrapping
of CKKS scheme is the homomorphic evaluation of the
modulus reduction. In [2], the modulus reduction is approx-
imated by the sine function and the approximate polynomial
for the sine function is homomorphically evaluated using a
Taylor approximation and the double angle formula. Moreover,
with optimized nodes for the Chebyshev interpolation, the
polynomial approximation is significantly improved [4].

By scaling the modulus reduction function by 1
q , we define

[t]q as t− k for t ∈ Ik, where Ik = [k − ε, k + ε] and k is an
integer |k| < K. Here, ε denotes the rate of the maximum
coefficient of the message polynomial and the ciphertext
modulus, that is, |m|q < ε. The domain of [t]q is given by⋃K−1
k=−K+1 Ik. In other words, q ·

[
t
q

]
q
≈ m for t = q · I +m.

A. Approximate Polynomial using L2-norm optimization

Here, we propose how to find an approximate polynomial
po(t) of [t]q without using an intermediate approximation,
such as a sine or cosine function. The proposed method
uses the well-known least-squares estimation or L2-norm
optimization. The objective is to find a set of coefficients
c = (c0, c1, . . . , cn) to minimize ‖[t]q − p(t)‖∞, where a
polynomial of degree n is defined by p(t) =

∑n
i=0 ci · ti.

Such a polynomial is referred to as the minimax polynomial.
It is worth noting that p(t) is equivalent to the inner product
of c and T = (1, t1, . . . , tn).

Here, ti’s are sampled uniformly at intervals of δ � ε in
each Ik, namely, k−ε, k−ε+δ, . . . , k+ε−δ, k+ε. There are
2ε
δ +1 samples in Ik, and thus we have Ntot = (2K−1)(2ε

δ +1)
samples. With Ntot samples of ti, one can build a vector of the
powers of ti, that is, Ti = (1, ti, t

2
i , . . . , t

n
i) for 1 ≤ i ≤ Ntot.

The object function to be minimized is given as

max
i
|[ti]q − p(ti)|

= ‖ ([t0]q − p(t0), · · · , [tNtot
]q − p(tNtot

)) ‖∞
= ‖y −T · c‖∞,

where T is an Ntot × (n + 1) matrix such that T[i, j] = tji
and y is a vector such that y[i] = [ti]q . Instead of the L-
infinity norm, we replace the above objective function by a
loss function using the L2-norm. Then, the optimal solution

for L2-norm minimization can be efficiently computed. Let Lc

denote the L2-norm with the coefficient c. Then, we can find
c that minimizes the following

Lc = ‖y −T · c‖2
= (y −T · c)

T
(y −T · c) .

Unfortunately, the entries of T become considerably big or
small values close to zero, as the degree of the polynomial,
n, is high.

Thus, we utilize the Chebyshev polynomials as the ba-
sis of the polynomial instead of the power basis. In other
words, we redefine the Ntot × (n+ 1) matrix T with entries
T[i, j] = Tj

(
ti
K

)
. As ti ∈

⋃K−1
k=−K+1 Ik, we have | tiK | < 1.

Hence, the entries of T are well-distributed in [−1, 1] rather
than considerably big values or small values around 0.

Then, the optimal coefficient vector c∗ is given as

c∗ = arg mincLc.

As the loss is a convex function, the optimum solution c∗ lies
at the gradient zero. The gradient of the loss function Lc is
given by

∇Lc = −2yTT + 2cTTTT.

Setting the gradient to zero produces the optimum coefficient,
as follows:

∇Lc∗ = 0

=⇒ c∗ =
(
TTT

)−1
TTy.

To sum up, the modulus reduction function can be approx-
imated by

[t]q ≈ po(t) =

n∑
i=0

c∗[i] · Ti
(
t

K

)
,

where t ∈
⋃K−1
k=−K+1 Ik.

1) Maximum Error of Samples and the Approximation
Error:

Theorem 1. The approximation error is bounded by the
multiplication of the maximum error of the sampled points
and O(1 + n

Ntot
).

Proof. For t ∈ Ik, let us define the approximation error as the
absolute value of following

E(t) = (t− k)− po(t).

Note that E(t) is a polynomial for the domain t ∈ Ik. Denote
E(t) =

∑
j ĉjx

j . We have optimized |E(ti)| for discrete
points ti’s.

5

Consider |E(t)| for t in small intervals of [ti, ti+ δ). Then,
we have |E(t)| ≤ |E(ti)|+ |E(t)−E(ti)| and |E(t)−E(ti)|
is bounded as follows

|E(t)− E(ti)| = |
∑
j

ĉj

(
(ti + ∆t)j − tji

)
|

≈ |
∑
j

ĉjt
j
i

(
j

∆t

ti

)
|

≤
∣∣∣∣n δti

∣∣∣∣ · |∑
j

ĉjt
j
i |

= O(n
1

Ntot
)|E(ti)|,

where ∆t = t − ti for t ∈ [ti, ti + δ). As ∆t < δ << ti,
the linear approximation (1 + ∆t

ti
)j ≈ (1 + j∆t

ti
) is applied.

Moreover, we have ∆t
ti
≤ δ

ε = O(1
Ntot

), where ti > ε.
Otherwise, at least we can always make δ

ti
< 1.

Hence, we conclude that

max
t∈

⋃K−1
k=−K+1 Ik

|[t]q − po(t)|

= max
i

([ti]q − po(ti)) · O(1 +
n

Ntot
).

In summary, with fine sampling, the maximum error of the
sampled points is close to the global maximum of approxi-
mation error. Moreover, as the domain of the object function
is in the real numbers with errors in the CKKS scheme, it is
reasonable to handle the sampled values.

2) L2-norm Instead of L-infinity Norm: Clearly, we can
bound the L-infinity norm by the L2-norm:

1√
Ntot
‖x‖2 ≤ ‖x‖∞ ≤ ‖x‖2.

Thus, minimizing the L2-norm reduces the L-infinity norm. As
it is not a tight bound, we have room for optimization using
a higher norm. However, the solution of L2-norm is clear and
can be computed effortlessly. It is difficult to find the mini-
max polynomial of the modulus reduction function; however,
through the L2-norm optimization problem, it is possible to
find a near-optimal solution of the minimax polynomial in
a considerably efficient manner without iteration. The next
section shows that it is possible to find polynomials with less
errors than with the currently best-known methods.

3) Time Complexity for Finding c∗: Considering Ntot > n,
the matrix inversion

(
TTT

)−1
is the dominant computation.

Hence, the time complexity is O(N2.37
tot) when the Copper-

smith–Winograd algorithm is used. This is acceptable because
c∗ is pre-computed and stored as coefficients for the baby-step
giant-step algorithm to be explained later or also, the Paterson-
Stockmeyer algorithm in [3].

B. Efficient Homomorphic Evaluation of the Approximate
Polynomial

The difference between the proposed and conventional
methods in [4] are the coefficients of the approximate polyno-
mial, which is more optimized with the same polynomial basis,

Algorithm 1 Baby-step Giant-step Algorithm [4]
Instance: A ciphertext for t, a polynomial of degree n, p(t) =∑n
i=0 ciTi(t).

Output: A ciphertext encrypting p(t).
1: Let m be the smallest integer satisfying 2m > n and
l ≈ m/2.

2: Evaluate T2(t), T3(t), . . . , T2l(t) inductively.
3: Evaluate T2l+1(t), T2l+2(t), . . . , T2m−1(t) inductively.
4: Find polynomials of degree ≤ 2m−1 which satisfy p = r+
qT2m−1 in forms of linear combinations of the Chebyshev
basis.

5: Evaluate q(t) and r(t) recursively.
6: Evaluate p(t) using T2m−1(t), q(t), and r(t).

the Chebyshev polynomial. Hence, the baby-step giant-step
algorithm [4] and modified Paterson-Stockmeyer algorithm [3]
can be applied for an efficient homomorphic evaluation of
the proposed polynomial. Using Algorithm 1, we can evaluate
po(t) homomorphically with at most 2l + 2m−l + m − l − 3
nonscalar multiplication while consuming m depth, where 2m

is greater than the degree n.
We revisit Algorithm 1, and the number of operations per

step is given in Table I. When the Chebyshev polynomials are
evaluated, T2n = 2T 2

n − T0 and T2n+1 = 2TnTn+1 − T1 are
used and the multiplication of 2 can be replaced by an addition.
Hence, one nonscalar multiplication and two additions are
required.

In the baby-step, polynomials of degree 2l−1 are evaluated
and there are at most 2m/2l such polynomials. However, when
2m > n+ 1, there are polynomials with all-zero coefficients.
By ignoring them, there are

⌈
(n+ 1)/2l

⌉
polynomials with

degree at most 2l − 1 in the baby-step. In other words, as
2m and n + 1 differ, there are 2m−l −

⌈
(n+ 1)/2l

⌉
zero

polynomials, that is, 0 ·T0(t) + 0 ·T1(t) + · · ·+ 0 ·T2l−1(t), in
Algorithm 1. Hence, we could ignore these zero polynomials
and in the recursive structure, exactly 2m−l −

⌈
(n+ 1)/2l

⌉
nonscalar multiplications are ignored in the giant-step. Hence,
taking 2m

′
> n ≥ 2m

′−1, we have

N(n) = N(n− 2m
′−1) +N(2m

′−1 − 1) + 1,

which yields

N(n) =
⌈
(n+ 1)/2l

⌉
− 1,

where N(k), k ≥ 2l, is the number of nonscalar multiplica-
tions in the giant-step and N(k) = 0 for k < 2l. Thus, the
number of nonscalar multiplications is given as⌈

(n+ 1)/2l
⌉
− 1 + 2l − 1 +m− l − 1.

As shown in Table I, the number of scalar multiplications
is (n + 1) −

⌈
(n+ 1)/2l

⌉
and the number of addition is

n + 2(2l + m − l − 2). Note that the depth and number of
nonscalar multiplications can be minimized when m is the
smallest integer satisfying 2m > n and l ≈ m/2.

IV. COMPARISON AND IMPLEMENTATION

We conduct an experiment to compare the proposed method
with previous work in [4], which, to our knowledge, is the best

6

TABLE I
NUMBER OF OPERATIONS FOR EACH STEP OF THE BABY-STEP GIANT-STEP ALGORITHM IN ALGORITHM 1

Nonscalar
multiplication

Scalar
multiplication Addition

T2, . . . , T2l 2l − 1 0 2 · (2l − 1)

T2l+1 , . . . , T2m−1 m− l − 1 0 2 · (m− l − 1)

Baby-step 0 (n+ 1)−
⌈
(n+1)

2l

⌉
(n+ 1)−

⌈
n+1
2l

⌉
Giant-step

⌈
n+1
2l

⌉
− 1 0

⌈
n+1
2l

⌉
− 1

Total 2l +
⌈
n+1
2l

⌉
+m− l − 3 (n+ 1)−

⌈
n+1
2l

⌉
n+ 2(2l +m− l − 2)

current method. Maximum errors between [t]q and the approx-
imate polynomials are numerically computed and compared.
Note that we can analytically obtain the maximum error once
the polynomial is known and that the approximate error is
an absolute value of a polynomial. However, the numerically
computed maximum error is sufficient as it is approximately
equal to the real value and we are dealing with approximate
arithmetic here. For example, we can see that the numerically
computed maximum error for the polynomial is almost the
same as the error bound presented in [4].

In Fig. 1, we plot the maximum error in log scale,
log2(|[t]p − po(t)|), while fixing n and varying ε or fixing
ε = 2−7, 2−10 and varying n. It is noteworthy that the
proposed method gives an approximation (error below 2−21)
for a large ε (= 2−7) with depth of 7, whereas the previous
method cannot achieve this even when using polynomials of
a higher degree. This is because the sine function is not
a suitable approximation for the modulus reduction when ε
is large. As the proposed method does not depend on the
sine function, even large-sized messages that could not be
handled by the previous method can be handled by low-degree
polynomials in the proposed method.

A staircase shape is shown in Fig. 1(b), in other words,
the maximum approximation errors are similar when the
degrees are 2n − 1 and 2n. This is because the target of the
approximation, the modulus reduction function [t]q , is an odd
function. The following proposition shows that the minimax
polynomial for an odd function is an odd function.

Proposition 1. If f(t) is an odd function, the best approxi-
mation among the polynomials of degree n is also odd.

Proof. Let Pm denote the subspace of the polynomial function
of a degree of at most m and fm(t) denote the unique element
of Pm that is closest to f(t) in the supreme norm. We define
p(t) ∈ Pm by p(t) = 1

2 (fm(t) − fm(−t)). Then, for all u in
the domain of f(t), we have

|f(u)− p(u)| =
∣∣∣∣f(u)− 1

2
(fm(u)− fm(−u))

∣∣∣∣
≤ 1

2
|f(u)− fm(u)|+ 1

2
|f(u) + fm(−u))|

=
1

2
|f(u)− fm(u)|+ 1

2
|f(−u)− fm(−u))|

≤ sup
t
|f(t)− fm(t)|.

If p(t) 6= fm(t), it contradicts that fm(t) is the closest to f(t).
Hence, fm(t) = p(t) = 1

2 (fm(t)−fm(−t)) and this is an odd
function.

From the polynomial coefficients of the proposed method, it
can be observed that the coefficient of an even-order term has a
significantly small value close to zero in po(t). This is evidence
for the fact that the proposed method finds a polynomial
near the minimax polynomial because the modulus reduction
function is an odd function. It can be seen that the even-
order terms are rather a handicap for finding an approximate
polynomial. Therefore, approximating using only odd-order
Chebyshev polynomials yields a more accurate approximate
polynomial.

It is one of the advantages of the proposed method that
the nature of the odd function can be utilized. In contrast,
the previous method [4] cannot make use of odd function
because their cosine function in the constrained domain is
not an odd function nor even function. Using the fact that
the odd functions are symmetric with respect to the origin,
we can solve the L2-norm minimization only with samples
whose value is greater than zero. Thus, the number of rows
and columns of the matrix T is reduced by half each. As a
result, the time complexity of matrix inversion is reduced to
about 1/8. Also, some operations on even-order terms may be
ignored during evaluation.

In Table II, we compare previous results from [3], [4] and
the results of the proposed method for ε = 2−10. The criterion
is the maximum value of the approximation error. As shown
in Table II, we reduce the approximation error from 2−26.42

to 2−27.18, while also reducing the degree from 74 to 73. Note
that due to the method of selecting nodes, the method of [4]
is restricted in the degree of polynomial. It is evident that
the difference is greater when a more precise approximation
is needed; moreover, in some cases, the number of nonscalar
multiplications, scalar multiplications, and additions are re-
duced by reducing the degree of approximate polynomial.
Moreover, notice that the maximum error of the proposed
method is always smaller than the previous the state-of-the-art
results even with the same degree polynomial.

It can be seen that the proposed method provides a trade-off
between approximation error and degree of polynomial. When
a polynomial of degree 127 is used, the proposed method
provides an approximation error below 2−40. However, when
the previous method is used, the error cannot be reduced below
2−27.28 as it is bounded by the error between sine function and
[t]q as in Table II and Fig. 1(b). Table II and Fig. 1(b) show

7

TABLE II
COMPARISON OF APPROXIMATE POLYNOMIAL PERFORMANCE OF VARIOUS METHODS (K = 12 AND ε = 2−10)

Methods Degree Max err (log2)
Nonscalar

multiplication
Scalar

multiplication Addition Depth

Proposed polynomial
(L2-norm min.)

73 −27.18 17 (PS alg.*) 68 109 7
75 −27.78 17 (PS alg.) 68 109 7
119 −35.91 20 (PS alg.) 113 160 7
127 −40.10 24 (BSGS**) 120 161 7

[4]
(Modified Chebyshev)

74 −26.42 17 (PS alg.) 68 109 7
119 −27.28 20 (PS alg.) 113 160 7
127 −27.28 24 (BSGS) 120 161 7

[3]
(Chebyshev interpolation) 119 - 20 (PS alg.) 113 160 7

*PS alg.: Paterson-Stockmeyer algorithm.
**BSGS: Baby-step giant-step algorithm.

that the that increasing the degree of the polynomial does not
lower the approximation error to some extent when using the
previous methods.

A comparison of the minimum degrees necessary to achieve
the desired error bounds is given in Table III. For ε = 2−6, it
is shown that the proposed method achieves an approximation
error of less than 2−20 with only a depth of 7. When a
polynomial pcos(t) approximates a sine or cosine function as
in [2], [3], [4], the approximate error is bounded by the sine
function. In other words, it is bounded by

max
t
|[t]q − pcos(t)| ≥ max

m∈[−εq,εq]

∣∣∣∣m− 1

2π
sin(2π

m

q
)

∣∣∣∣
≈ 1

2π
· 1

3!

(
2π|m|
q

)3

, (1)

which is small when |m|q is small. However, as |m|q increases,
the bound increases in the third order. For ε = 2−10, 2−9, 2−8,
and 2−7, the bounds are given as 2−27, 2−24, 2−21, and 2−18.
Table III shows that the approximation error of a polynomial
found by the method in [4] is above those bounds. Therefore,
for applications that require a more accurate approximation
than this range, the proposed method should be used.

The proposed method is implemented in SageMath 9.0.
It requires 1.01 s in average on Intel Core i7-6700k
(4.0 GHz) to find the optimal coefficients with 32 samples for
each Ik, the degree n = 73, and ε = 2−10. Note that most of
the results in Table II, III, and Fig. 1 are driven by 32 samples
for each Ik. This implies that massive samples are not required
for good approximations. Instead, with only ∼ 300 samples
(depends on the degree of polynomial), the proposed method
surpasses the best-known method [4].

V. REDUCTION OF LEVEL LOSS IN BOOTSTRAPPING

By using the proposed method, better parameters which
reduces the level loss during the bootstrapping can be selected.
As discussed in the previous section, the proposed method
finds more accurate approximate polynomial for relatively
large ε than the previous best method. This section explains
how such property leads to better parameters.

We will make use of the following lemmas from [1], [2]
for noise estimation.

Lemma 2 ([1], Lemma 2). Let c′ ← RSl→l′(c) for a
ciphertext c ∈ R2

ql
. Then 〈c′, sk〉 = ql′

ql
〈c, sk〉 + e (mod ql′)

6 8 10 12 14
−log2ε

-40

-35

-30

-25

-20

-15

lo
g

2
(|[
t]
p
−
p
o
(t

)|)

Previous work [4], n= 74
Proposed, n= 73

(a) Approximation error for various message width ε

70 80 90 100 110 120 130 140
n

-35

-30

-25

-20

lo
g

2
(|[
t]
p
−
p
o
(t

)|)

Previous work [4], ε= 7
Proposed, ε= 7
Previous work [4], ε= 10
Proposed, ε= 10

(b) Approximation error for various degree n

Fig. 1. Maximum value of the error log2(|[t]p − po(t)|) for the proposed
method and previous method (K = 12).

for some e ∈ R satisfying ‖e‖can∞ ≤ Brs for Brs =√
N/3 · (3 + 8

√
h).

Lemma 3 ([2], Lemma 4). Let c ∈ R2
q be a ciphertext

with respect to a secret key sk′ = (1, s′) and let swk ←
KSGensk(s′). Then c′ ← KSswk(c) satisfies 〈c′, sk〉 =
〈c, sk′〉 + eks (mod q) for some eks ∈ R with ‖eks‖can∞ ≤
P−1 · q ·Bks +Brs for Bks = 8σN/

√
3.

8

TABLE III
COMPARISON OF MINIMUM DEGREE OF APPROXIMATE POLYNOMIALS TO ACHIEVE DESIRED ERROR BOUND

‖[t]q − p(t)‖ < 2−25 ‖[t]q − p(t)‖ < 2−21

Proposed Method in [4] Proposed Method in [4]
ε Deg Deg Deg Deg

2−11 69 70 63 63
2−10 73 74 65 65
2−9 75 converge to 2−24 71 72
2−8 119 converge to 2−21 73 76
2−7 127 converge to 2−18 121 converge to 2−18

2−6 137 converge to 2−15 127 converge to2−15

A sufficiently large scaling factor ∆bs = O(q) is multiplied
during the COEFFTOSLOT step in order to keep the precision
of values in slots. Note that ∆bs differs from the scaling factor
of the message ∆. From Lemma 3, the total error in the
COEFFTOSLOT step is O(Brs) when a sufficiently large P
is chosen [1].

In the EVALMOD step, each component of the correspond-
ing plaintext slot contains tj + ej for some small error ej
such that |ej | ≤ O(Brs). An approximate polynomial po(tj)
is evaluated with scaling factor ∆bs, and thus the approximate
error is given as

∆bs

∣∣∣∣∣
[
tj
q

]
q

− po
(
tj + ej
q

)∣∣∣∣∣
≤ ∆bs

∣∣∣∣∣
[
tj
q

]
q

−
[
tj + ej
q

]
q

∣∣∣∣∣
+ ∆bs

∣∣∣∣∣
[
tj + ej
q

]
q

− po
(
tj + ej
q

)∣∣∣∣∣
≤ ∆bs ·

|ej |
q

+ ∆bs max
t

∣∣∣[t]q − po(t)∣∣∣ .
In order to bound the error in the EVALMOD step to O(Brs),
it should be guaranteed that

max
t
|[t]q − po(t)| <

|ej |
q
. (2)

When the error in the EVALMOD step is bounded to O(Brs),
we have the error bound after the SLOTTOCOEFF step as
O(
√
N ·Brs) [2].

Note that from Lemma 2, the error in bootstrapping is in-
dependent from the scaling factor of message ∆ and bounded
to O(N

√
h). Thus, the plaintext precision is proportional to

log ∆, where ∆ determines |m|. Combining (1) and (2), q
is restricted to be greater than O(m3/2) in all the methods
proposed so far [2], [3], [4]. Considering that a scaling factor
∆bs = O(q) is used in the bootstrapping, the level consump-
tion is given as O(m3/2). Thus, the previous methods do not
scale well for applications that require accurate computations.

However, by using the proposed method, the upper bound
from (1) does not exist. Hence, the level loss in bootstrapping
is roughly proportional to O(m) rather than O(m3/2). This
is one of the advantages of the proposed method and it
overcomes the limitations of the existing methods. The more
precise calculations are required, the greater the gain we have.

Various factors such as the number of slots affect plaintext
precision. Hence, the plaintext precision is obtained using

the numerical methods, and it can be used to determine the
parameters as in [2], [3]. Using the proposed method, relatively
small q can be used, and thus in some cases, it may leave more
levels after bootstrapping.

VI. CONCLUDING REMARKS

In this work, we determined the near-optimal approximate
polynomial of a modulus reduction function for bootstrapping
of the CKKS scheme. We cast the problem of finding approx-
imate polynomials for a modulus reduction into an L2-norm
minimization problem for which the solution can be directly
found without intermediates, such as a sine function. As the
approximation error in the proposed method is not subject
to the sine function, it approximates the modulus reduction
better than the best-known method [4]. Using the Chebyshev
polynomials as a basis, we achieved a lower approximation
error even with a lower degree compared with the best-known
method. Moreover, the proposed polynomial can utilize the
baby-step giant-step algorithm [4] and Paterson-Stockmeyer
algorithm [3]. We re-investigated the number of nonscalar
multiplications, scalar multiplications, and additions needed
for the baby-step giant-step algorithm, and showed that the
proposed polynomial reduces the required number of opera-
tions for the homomorphic approximate modulus reduction.

By casting the problem into a simple L2-norm optimization
problem, we free the approximation problem from the sine
function. The proposed method can offer a bootstrapping
with fewer errors, particularly when a large scaling factor
is selected. Thus, one can say that the choice of parameters
has been expanded. Most importantly, the proposed method is
essential for applications that require accurate approximation
because the approximation error cannot be lowered when
previous methods are used. In contrast, as the proposed method
does not have such lower bound, a better parameter can be
selected. Consequently, the bootstrapping consumes less levels
when the proposed method is used.

We proposed loose upper and lower bounds, which were far
from the numerical result. The challenge of a tighter bound
or a better method for finding the minimax polynomial can
be addressed in future work. In [4], the number of operations
is reduced by using the double angle formula of the cosine
function, but it is challenging to apply to the proposed method.
A double angle formula-like approach for the proposed method
also requires further study.

9

REFERENCES

[1] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Proc. Intl. Conf. on the Theory
and Appl. of Cryptol. and Inf. Secur. (ASIACRYPT), Springer, 2017, pp.
409–437.

[2] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “Bootstrapping for
approximate homomorphic encryption,” in Proc. Annu. Intl. Conf. on the
Theory and Appl. of Cryptograph. Techn. (EUROCRYPT), Springer, 2018,
pp. 360–384.

[3] H. Chen, I. Chillotti, and Y. Song, “Improved bootstrapping for approx-
imate homomorphic encryption,” in Proc. Annu. Intl. Conf. on the Theory
and Appl. of Cryptograph. Techn. (EUROCRYPT), Springer, 2019, pp.
34–54.

[4] K. Han and D. Ki, “Better bootstrapping for approximate homomorphic
encryption,” in Proc. Cryptographers’ Track at the RSA Conf., Springer,
2020, pp. 364–390.

[5] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A full RNS variant
of approximate homomorphic encryption,” in Proc. Intl. Conf. on Sel. Areas
in Cryptogr., Springer, 2018, pp. 347–368.

[6] K. Han, M. Hhan, and J. H. Cheon, “Improved homomorphic discrete
Fourier transforms and FHE bootstrapping,” IEEE Access, vol. 7, pp. 57
361–57 370, 2019.

[7] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic evaluation of the
AES circuit,” in Proc. Annu. Cryptol. Conf. (CRYPTO), Springer, 2012,
pp. 850–867.

[8] I. Chillotti, N. Gama, M. Georgieva, and M. Izabach‘ene, “TFHE: fast
fully homomorphic encryption over the torus,” J. of Cryptol., vol. 33, no.
1, pp. 34–91, 2020.

[9] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachene, “Faster packed
homomorphic operations and efficient circuit bootstrapping for TFHE,” in
Proc. Intl. Conf. on the Theory and Application of Cryptol. and Inf. Secur.
(ASIACRYPT), Springer, 2017, pp. 377–408.

[10] Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption
from ring-LWE and security for key dependent messages,” in Proc. Annu.
Cryptol. Conf. (CRYPTO), Springer, 2011, pp. 505–524.

[11] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic
encryption from (standard) LWE,” SIAM J. on Comput., vol. 43, no. 2,
pp. 831–871, 2014.

[12] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully homo-
morphic encryption without bootstrapping,” ACM Trans. on Computation
Theory (TOCT), vol. 6, no. 3, pp. 1–36, 2014.

[13] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov,
S. Halevi, J. Hoffstein, K. Laine, K. Lauter, S. Lokam, D. Micciancio,
D. Moody, T. Morrison, A. Sahai, and V. Vaikuntanathan, “Homomor-
phic encryption security standard,” HomomorphicEncryption.org, Toronto,
Canada, Tech. Rep., November 2018.

[14] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” IACR Cryptology ePrint Arch., vol. 2012, p. 144, 2012.

[15] L. Ducas and D. Micciancio, “FHEW: bootstrapping homomorphic
encryption in less than a second,” in Proc. Annu. Intl. Conf. on the Theory
and Appl. of Cryptograph. Techn. (EUROCRYPT), Springer, 2015, pp.
617–640.

[16] J. H. Cheon, D. Kim, Y. Kim, and Y. Song, “Ensemble method for
privacy-preserving logistic regression based on homomorphic encryption,”
IEEE Access, vol. 6, pp. 46 938–46 948, 2018.

[17] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J.
Wernsing, “Cryptonets: Applying neural networks to encrypted data with
high throughput and accuracy,” in Proc. Intl. Conf. on Machine Learning,
2016, pp. 201–210.

[18] E. Chou, J. Beal, D. Levy, S. Yeung, A. Haque, and L. Fei-Fei, “Faster
cryptonets: Leveraging sparsity for real-world encrypted inference,” arXiv
preprint arXiv:1811.09953, 2018.

[19] H. Chabanne, A. de Wargny, J. Milgram, C. Morel, and E. Prouff,
“Privacy-preserving classification on deep neural network,” IACR Cryp-
tology ePrint Arch., vol. 2017.35, 2017.

[20] E. Hesamifard, H. Takabi, and M. Ghasemi, “Cryptodl: Deep neural
networks over encrypted data,” arXiv preprint arXiv:1711.05189, 2017.

[21] D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic
progressions,” in Proc. Annu. ACM Symp. on Theory of Comput., 1987,
pp. 1-6.

[22] J. C. Mason and D. C. Handscomb, “Chebyshev interpolation,” in
Chebyshev polynomials, Boca Raton, FL, USA: CRC Press, 2002, pp. 154-
172.

[23] M. Fasi, “Optimality of the Paterson–Stockmeyer method for evaluating
matrix polynomials and rational matrix functions,” Linear Algebra and its
Appl., vol. 574, pp. 182–200, 2019.

[24] M. S. Paterson and L. J. Stockmeyer, “On the number of nonscalar
multiplications necessary to evaluate polynomials,” SIAM J. on Comput.,
vol. 2, no. 1, pp. 60–66, 1973.

