
Collusion-Preserving Computation without a Mediator

Michele Ciampi∗1, Yun Lu†1 and Vassilis Zikas‡2

1The University of Edinburgh
2The University of Edinburgh and IOHK

Abstract

Collusion-free (CF) and collusion-preserving (CP) protocols offer alternatives to standard
multi-party computation (MPC) in settings where subliminal communication is undesirable,
e.g., in decentralizing mediators in mediated games. However, all existing solutions make too
strong and uninstantiable assumptions on the setups, such as physical presence of the parties,
access to physical envelopes and opaque ballot boxes, or extreme isolation, where the only
means of communication is a star-topology network among the parties with a special resource,
the mediator, at its center—and the mediator needs to be aware of the function to be computed.
The above state of affairs remained a limitation of such protocols, which was even reinforced by
impossibility results. Thus, for years, it has been unclear if and how the above setup assumptions
could be relaxed towards more realistic application scenarios.

In this work we provide the first solution to collusion preserving computation which uses
weaker and more common assumptions than the above, i.e., an authenticated broadcast func-
tionality and access to honestly generated trusted hardware tokens. We prove that our protocol
is collusion-preserving secure (in short, CP secure) as long as no parties abort. In the case of an
aborting adversary our protocol loses CP security, but still achieves standard security—against
monolithic adversaries—and additionally identifies a corrupted party.

Leveraging the above identifiability property, we augment our protocol with a collateral and
compensation mechanism which ensures that it is not profitable to abort, thereby obtaining
CP security against incentive driven adversaries. To define (and prove) this latter result, we
combine the Rational Protocol Design (RPD) methodology by Garay et al. [FOCS 2013] with
the CP framework of Alwen et al. [CRYPTO 2012] to derive a definition of security in the
presence of incentive-driven local adversaries which can be of independent interest.

Similar to existing protocols in the CP/CF literature, our protocols preserve, as a fallback,
the traditional security properties—i.e., security against monolithic adversaries—even when the
setup (i.e., the hardware tokens) is compromised or corrupted.

∗mciampi@ed.ac.uk
†Y.Lu-59@sms.ed.ac.uk
‡vassilis.zikas@ed.ac.uk

1

Contents

1 Introduction 4
1.1 Overview of our contributions . 6
1.2 Overview of our techniques . 7

2 Organization of the paper 11

3 Related literature 11

4 Preliminaries 12
4.1 Hardware tokens and setup assumptions. 12
4.2 Secure function evaluation. 13
4.3 Security with identifiable (unanimous) abort. 13
4.4 Collusion-preserving computation. 13
4.5 Rational protocol design. 14

5 Collusion-preservation with non-aborting adversaries 15

6 Collusion-preservation with fallback security 19
6.1 Security of ΠHT-FBS. 19

7 Our new model: RPD-CP 20
7.1 Utility of the attacker A. 22
7.2 Utility of the protocol designer D . 23
7.3 Security definitions . 24

8 Our CPAP protocol 24

9 How to disincentivize aborting strategy concretely. 25
9.1 Penalization functionality . 26
9.2 Protocol with compensation/penalization. 27

10 Acknowledgments 28

A Security proofs 32
A.1 Proof of Theorem 1 . 32
A.2 Proof of Lemmata 1 and 2 . 33

A.2.1 Proof of Lemma 1. 33
A.2.2 Proof of Lemma 2. 34

A.3 Proof of Theorem 4 . 35

B Impossibility results in the mediated model 35

C Motivation for using compensation paradigm for disincentivizing aborts 36

D Hardware token 37

2

E Mediated model vs hardware token 37

F A note on games with short strategy description 38

G A note on correlated equilibria 38

H Formal definitions 38

I UC security with global setup (GUC) 40
I.1 The basic signature functionality . 41

J Modeling synchrony 41

K Secure function evaluation and broadcast functionalities 41

3

1 Introduction

Subliminal communication channels in protocols allow parties to embed extra information into
protocol messages, without being detected. The existence of subliminal channels is problematic
in several applications of secure computation. In large-scale distributed systems, for instance,
subliminal channels could allow two parties to coordinate their actions (i.e., collude) even if they
may not have been aware of each other in advance. Such collusions have severe consequences in
game theoretic applications, where stability, e.g., Nash equilibrium, is defined in terms of isolated
strategies. For example, in the prototypical application of distributed cryptography, namely, playing
poker in a distributed manner [GM82], one cannot use standard game-theoretic reasoning together
with MPC, since the the latter introduces collusions, thereby potentially changing the rules of the
game—think of playing poker against colluding opponents.

In the quest to combine mechanism design and cryptography—in particular, to cryptographi-
cally emulate mediators in mediated games—a number of works [LMPs04, LMs05, LMs05, AKL+09,
AsV08] put forth the notion of collusion-freeness. Intuitively, a multi-party protocol is collusion
free, if any profile of non-colluding strategies for the parties (i.e., any vector of strategies) can be
emulated by corresponding non-colluding ideal adversaries. However, collusion freeness is arguably
impossible when parties are connected by pairwise communication channels—this is straighforward
to see since such channels can directly be used for coordination. This led to the proposal of other
communication models that enable collusion-freeness. The two most typical models are assuming
players have access to a semi-trusted “ballot box” and can communicate publicly via (physical)
envelopes [LMPs04, LMs05, LMs05], or assuming that parties are connected to a semi-trusted cen-
tral node (via standard communication channels) called the mediator [AKL+09, AsV08] in a star
network topology.

To motivate the assumption that parties do not have a direct line of communication with each
other, we can consider games where parties may not know each other. An example of such a scenario
is online poker, where competitors are complete strangers. Another scenario is when players are
seated in the same room (e.g., in a poker competition), and private communication is disallowed.

Despite providing novel constructions of collusion-free protocols in their respective models, the
above security definitions are unsuitable for standard network settings such as the internet, where
parties might communicate via external channels—which are not necessarily used in the proto-
col. In fact, as argued by Alwen et al. [AKMZ12], unlike what one might expect, a collusion-free
protocol (secure according to the standard, standalone definition of [AKL+09, AsV08]) does not
necessarily preserve the amount of a priori and/or external correlation between corrupt parties.
That is, there are collusion-free protocols which allow correlations (e.g., introduced by limited
external communication) between parties that increases substantially by simply executing the pro-
tocol (cf. [AKMZ12]). Hence, one cannot hope to use any such protocol to replace, for example the
poker dealer in a poker game by a decentralized protocol among the parties.

Motivated by the above, the work of [AKMZ12] made a step forward in modeling security in
such a setting by introducing the notion of collusion-preserving computation (CP). Intuitively, this
notion can be seen as a universally composable extension of collusion freeness, designed to explicitly
address the above issue. In a nutshell, this notion requires that the protocol does not allow for
additional subliminal communication than what parties can communicate (a bounded amount of
information) via means external to the protocol (e.g., from the output of another protocol that is
running concurrently or via an external channel). Importantly, CP supports composition and it is
modeled with respect to arbitrary communication resources.

4

On the downside, Alwen et al. [AKMZ12] proved that CP is impossible when parties can com-
municate over a broadcast channel. Instead, following the approach of [AKL+09] and [AsV08],
[AKMZ12] assumed a mediator and proved that the following fallback guarantee is feasible: As-
suming a global ACRS functionality [CDPW07], when parties are arranged in a star topology with
the mediator in the center, there exists a protocol which (1) CP emulates any given functionality if
the mediator is honest, and (2) remains GUC secure [CDPW07]—i.e., secure with abort according
to the monolithic-adversary definition—even if the mediator gets corrupted. We note in passing
that [AKMZ12] proves it is necessary for the mediator to be aware of the function to be computed.

An additional limitation of the results from [AKMZ12] is that they only compute the target
functionality with abort, even if there is a majority of honest parties. In fact, it is straightforward
to prove that this limitation is inherent to the mediated model when the mediator might get
corrupted (cf. Appendix B). We note that the protocol (compiler) from [AKMZ12] takes explicit
steps to ensure that an abort does not allow parties to correlate their strategies in the honest
mediated setting, by making sure that abort is observable only in a fixed final round which is
deterministically defined at the beginning of the protocol. However, this means that (1) their
solution cannot be used to compute reactive functionalities, since a party can signal by means of
aborting in an intermediate output (we refer to Appendix C for a discussion of a concrete collusion
strategy which this allows), and (2) having a deterministic upper bound on the number of rounds
means that if the goal is to get unanimous decision on whether or not an abort occurred even in the
fallback setting where the mediator is compromised, the protocol needs a linear number of rounds;
this is true because a generic compiler for such a functionality would imply deterministic broadcast
which needs linearly many rounds [DS83]. In fact, in [AKMZ12], each round is emulated by a
round-robin sequential interaction of each party with the mediator, yielding an additional linear
multiplicative blowup in the round complexity.

In this work we circumvent several of the limitations of [AKMZ12] and extend its applicability
towards a framework which allows for collusion-preserving protocols over public networks. To
our knowledge, this is the first work proposing a solution that breaks the deadlock of collusion-
free/preserving computation, which was believed to only apply to the mediated model or models
requiring physical presence of parties in the same room.

Concretely, we show that one can replace the mediator by the arguably weaker (cf. Appendix E)
assumption of an authenticated broadcast channel and honestly generated hardware tokens. As
discussed below, even capturing such hardware tokens in a collusion preserving framework is a
non-trivial goal, which can be of independent interest and a more realistic underlying framework
for the design of CP protocols. Moreover, we combine ideas from the blockchain literature to
disincentivize aborts, thereby allowing the CP emulation of reactive functionalities: We present a
penalization scheme against deviating behavior, which requires no additional properties from the
blockchain, other than the usual security. Our work combines and extends the CP framework with
the Rational Protocol Design (RPD) methodology proposed by Garay et al. [GKM+13] to capture
incentive-driven attackers in a composable manner. We believe that the resulting model, which we
term RPD-CP, can also be of independent interest.

As fallback in case the hardware tokens are corrupted, our proposed protocol protects the
inputs of honest parties and allows identifiable (unanimous) abort while guaranteeing termination
(cf. [KMTZ13]). This is the analogue—in the token-hybrid setting with a broadcast channel—of
the fallback property of [AKMZ12, AsV08, AKL+09] which preserves privacy against a corrupted
mediator at the center of a a star-network. In fact, our fallback is stronger than what the mediated-

5

model permits [AKMZ12]; indeed, as we show, the star-network topology makes it impossible to
obtain identifiable (unanimous) abort against a corrupted mediator (cf. Appendix B).

1.1 Overview of our contributions

The goals of our work are to (1) replace the mediator-centered star-topology network as an as-
sumption/resource for collusion-preserving computation, by weaker resources which are closer to
modern communication networks, (2) get stronger fallback security properties and (3) use the
penalization paradigm in combination with realistic resources—such as hardware tokens and ac-
cess to a blockchain—to ensure that aborts do not occur and thereby ensure CP computation of
even reactive functionalities. These goals bring the theory of CP closer to capturing an execu-
tion of a decentralized-dealer poker game. For reference, a comparison of our results to [LMs05]
and [AKL+09, AKMZ12] can be found in Table 1.

As a first step towards our goals, we show how to construct a collusion-preserving protocol ΠHT

allowing n parties to CP emulate any given CP-well formed functionality—intuitively these are
CP versions of well-formed functionalities [CLOS02] which, when everyone gets corrupted, give up
on collusion preservation and allow arbitrary communication of the corresponding adversaries (see
Definition 10). Our protocol uses as resources (1) honestly generated stateful trusted hardware
tokens (HTs) and (2) an authenticated broadcast channel. Our protocol, which can CP-emulate
any functionality as long as no abort occurs, improves upon the protocol of [LMs05], which is
collusion-free but not preserving and does not emulate games with private actions (i.e. actions that
are not publicly observable). We note that our protocol, analogous to that of [LMs05], remains
(G)UC secure (but not collusion preserving) in case of abort. Intuitively, the reason is that as the
protocol is over broadcast, failure of our non-abort assumption triggers a global abort. We remark
that our protocol only requires two (broadcast) communication rounds. Furthermore, unlike the
mediator from [AKMZ12], tokens do not need to know in advance the computation they will be
used for, and only need to be initialized with correlated randomness independent of the protocol,
discussed in the overview of our techniques.

The protocol ΠHT offers no guarantees when the tokens are compromised. This is arguably a
strong assumption since in reality these tokens are locally held by the parties, and the adversary
may attempt to break their security. For this reason we present a protocol compiler ΠHT-FBS which
on input a (standard (G)UC secure) protocol with unanimous or identifiable abort, outputs a
protocol with the same CP and fallback security guarantees as ΠHT, and, additionally, preserves
(G)UC security properties (i.e., security with unanimous or identifiable abort, respectively) of the
compiled protocol, even when the hardware tokens are compromised/corrupted.1 This improves
upon the fallback security of [AKMZ12] where, due to model idiosyncrasies, these properties are
impossible to achieve when the mediator is corrupted, even with honest majority (cf. Appendix B).
We note that ΠHT-FBS, even with the extra fallback guarantee, has round complexity that is still
lower than the mediated-model solution of [AKMZ12].

As an additional contribution, we combine the RPD framework with CP and define a new
CP-security notion we term collusion preserving attack payoff (in short, CPAP), which intuitively
corresponds to security against any combination of incentive-driven local adversaries. Within our
new model, termed RPD-CP, we identify a natural class of utilities under which non-aborting

1Recall that security with unanimous abort guarantees that either all or none of the honest parties receive the
output while identifiable abort ensures any party causing an abort can be identified (and excluded from future
executions).

6

Channel,
assumption

Id-abort
(fallback)

U-abort
(fallback)

Private
actions

Abort

Lepinski et al., STOC 2005
Broadcast,

physical envelopes
3 3 7 poly(λ) bits

Alwen et al., Crypto 2009
Alwen et al., Crypto 2012

Star topology,
honest mediator

7 7 3
Ω(log λ) bits for

reactive functionalities

This work
Broadcast,

hardware tokens
3 3 3 Disincentivized

Table 1: Comparison with existent approaches. Id-abort: identifiable abort, U-abort: unanimous
abort. Our protocol emulates CP functionalities, including those with private actions, when no
abort occurs. We disincentivize aborts via concrete penalization schemes. In addition, we achieve
fallback security maintaining identifiable abort (and unanimous abort). That is, even when the
hardware token are compromised and the parties are allowed to abort we still get standard GUC
security.

strategies are strictly dominant in ΠHT and ΠHT-FBS. That is, these protocols are collusion-preserving
according to CPAP against adversaries bounded by this utility. We believe that RPD-CP can be
used to derive formal composable versions of security statements with fair-compensation [BK14,
ADMM14, KB16, KB14, KZZ16] which we think is an interesting future direction.

Finally we show a penalization scheme which uses the blockchain to induce a utility in the above
class. Combining this with our previous result, we can ensure that any adversary who maximizes
its revenue (or at least avoids losing coins) will not abort, making our protocol CP secure against
such adversaries.

1.2 Overview of our techniques

Collusion preserving protocol via HT and non-aborting adversary. Let P be a set of
parties who wish to compute a function f in a collusion-preserving way. We assume that each
party pi ∈ P has access to a hardware token (HT) HTi. All HT’s contain as secret information PRF
keys k0, k1 and master secret key msk (a secret key for a strong signature scheme). The public
interface of the hardware tokens is represented by the master public key mpk for msk. We refer to
the party pn ∈ P as the leader. Moreover, each execution of the protocol is uniquely identified by
a session id sid ∈ N. Roughly, our protocol works as follows: Each party pi ∈ P −{pn} provides his
input xi to HTi. HTi uses R0 ← PRF(k0, sid) as randomness to generate an encryption key sk. In
addition, HTi uses R1 ← PRF(k, sid||i)2 to generate a pair of session signing-verification (sigki, vki)
keys for a strong signature scheme and certifies them by signing vki||sid||i with the master secret
key msk thus obtaining certi.

3 We refer to the encryption key sk as the session encryption key and
to (sigki, vki) as the session signing-verification keys4. Note that the session encryption key sk is
common to all the hardware tokens (since the all the tokens share the same PRF keys).5

2As an abuse of notation we refer to the identity of a party pi with i.
3We use || as the concatenation operator.
4Unless otherwise specified, a signing-verification key always refers to a session signing-verification key.
5The intuitive reason behind the use of session-keys are related to the fact that this keys will be leaked the ideal

world adversary to help him in the simulation (leaking the master secret key would completely compromise the token).
We provide a more detailed discussion on this later in this section.

7

After the session keys have been generated, the hardware token HTi encrypts his input xi, signs
this encrypted value together with f using sigki, and sends the encryption, the signature, and the
certificate certi over the broadcast channel.

The leader pn collects all the encrypted values and signatures, and gives them to his hardware
token HTn along with his input xn, the function f , and sid. His hardware token HTn first checks if
all the certificates are valid with respect to the session id sid (i.e., the verification keys are signed
together with sid using the master secret key msk). Then it checks if all the values that he has
received are property signed and whether the inputs are consistent with the function f .

If all the checks are successful, then HTn generates, as described earlier, the session encryption
key sk and decrypts all ciphertexts using sk (we recall that the PRF key k0 is shared among all the
hardware tokens). Then HTn uses these decrypted values to evaluate f together with xn . That
is, HTn computes y1, . . . , yn = f(x1, . . . , xn) and for i = 1, . . . , n− 1 encrypts yi using sk and signs
the (concatenation of the) encrypted values together with f using sigkn.The encryptions and the
signature uses randomness from evaluating PRF(k1, sid||n).

Finally, the leader pn propagates the output of HTn on the broadcast channel. Each party pi,
upon receiving a message, forwards it to HTi, which verifies the certificate, the signature, and the
consistency between f and sid. If the checks are successful then HTi uses sk to decrypt and output
yi.

Using hardware tokens allows us to achieve the following: 1) generate fresh randomness and
session keys for each new session id sid, that are hidden from the parties themselves, and 2) certify
that each sid is used only once. In particular, to restrict any sid to one-time use, a hardware token
stops replying when an id is used more than once. To prevent an adversary from rewinding the
hardware token, we require the hardware token to be stateful. This is necessary since an adversary
using the same sid (thus the same randomness) to evaluate a function in different executions can
inspect the resulting encrypted/signed messages from different inputs. Then, he can send a sublim-
inal message by picking an input where, for example, the resulting encrypted message has its first
two bits equal to the first two bits of his input—breaking collusion-preservation. This adversarial
strategy was indeed observed in [LMs05], limiting the games they consider to those with publicly
observable actions. We prove that ΠHT is collusion-preserving for non-aborting adversaries, which
intuitively comes from the fact that ΠHT is deterministic given the tokens (and thus fixing the PRF
and msk keys) and the sid we use. We note that though this may appear contradictory (i.e., to
obtain a secure protocol you need entropy [GM84]), our protocol achieves security and collusion-
preservation as the tokens generate fresh (pseudo)randomness for each sid (which is used only once).
ΠHT also enjoys identifiable abort, an unachievable property in the mediated model. More inter-
estingly, any external party observing the execution of the protocol without participating it can
identify malicious behavior, by verifying signatures of messages on the channel. Following [KZZ16]
we refer to this property as publicly identifiable abort.

Tokens in collusion-preserving computation. One may wonder why, the hardware tokens
cannot directly use the master secret key to authenticate protocol messages. The reason lies in
the locality restrictions that the CP model places on the ideal world adversary (the simulator).
Specifically, CP requires the existence of a local simulator Si for each adversarial party pi, and
mandates that simulators cannot communicate with each other except if the environment explicitly
allows them to. Thus, setups (in our case, tokens) which naturally introduce correlations between
parties are tricky to define and use, especially when the protocol is executed over a broadcast

8

channel.
To understand the issue, one needs to observe that in a protocol over a broadcast channel all

parties expect to see exactly the same messages from this channel. Indeed, one of the novelties of our
work is to show how in the real-world, i.e., in the protocol execution, the correlations embedded in
the tokens can be leveraged to ensure that every (honest-protocol) broadcast message is predictable
by any token. However, this correlation in the views inherently requires the simulators’ views to
be correlated in some way, in order to generate the same exact protocol messages. For instance, if
S1 (the ideal world adversary with 1 as their id) reports to the environment that he broadcasted
message m in round ρ, then each Sj should also report to the environment that they heard this
message. However, for this we need to allow the simulators to correlate their response.

A naive first approach would be to allow them to interact over some underlying communication
network. However, this defeats the purpose of collusion preservation, as it explicitly introduces a
venue of arbitrary correlations/collusion. A second approach would be to also offer the simulators
access to correlated tokens. But this leads to a new technical issue: In order to simulate the token-
hybrid protocol, our simulator needs to have extra control of the hardware tokens (e.g., be able to
program it). In fact, such asymmetry between the capabilities of the adversary and the simulator
is proven necessary in various related settings (e.g., programmable random oracle).

We tackle the above issue by considering the hardware token as a (global) setup functionality
and embedding a trapdoor inside. To ensure that only the simulators in the ideal world can use
the trapdoor, we employ a technical trick inspired by [CJS14] for the global random oracle. At a
very high level, the trapdoor allows the simulators to produce the same signed messages, making
their views on protocol messages consistent. Specifically, it gives access to a seed that can be used
to generate correlated randomness for the simulators and it gives access to n signing-verification
session keys with respective certificates that can be used only in a specific session id.

In more detail, we introduce a token global-functionality that allows functionalities registered
to it to send a special command (Trapdoor, sid). The registered functionalities can then relay the
trapdoor information it receives to its simulators, allowing them to complete their simulations. This
information remains useless for other protocols, preserving composability with other CP protocols.

More concretely, consider an extension F? of F , which behaves exactly as F but accepts an ad-
ditional command GetTrapdoor from the ideal world adversary. In the simulation each simulator can
send to F? the command (GetTrapdoor, sid). Upon receiving this command, F? sends (Trapdoor, sid)
to the token functionality if and only if sid is equal its session id. The token functionality, upon
receiving the command (Trapdoor, sid) from F?, sends to F? the trapdoor information (i.e., the
seed, signing-verification session keys and their certificates). When F? receives a reply from the
token functionality, it is forwarded to the simulator. Using this mechanism, all simulators obtain
the same signing-verification session keys and PRG seed required for local simulation. Note that we
do not leak the master secret key to the simulators as this would compromise all the sessions that
are using the tokens as a global functionality and affect composability. In fact, this is the reason
why, as discussed previously, for each session we create new session (e.g., signature) keys that are
valid only within that specific session.

Collusion preservation with fallback security. Despite being simple and optimal in terms
of round complexity, the protocol above suffers from a big limitation. That is, if the hardware
tokens are corrupted (e.g., the secret keys are leaked by the token manufacturer) then not only the
CP-property is lost, but we cannot even guarantee to protect the honest parties’ inputs.

9

To rectify this issue we propose a protocol ΠHT-FBS that protects the input of the honest parties
(in a standard GUC-security sense) even in the case where: 1) the adversary knows all the secret
keys of the hardware tokens (including those held by honest parties) and 2) the malicious parties can
arbitrarily modify or replace their own hardware tokens. This protocol achieves a similar fallback
security as the original collusion preserving protocol in the mediated model: When the hardware
tokens are not compromised—and aborts are either excluded or deterred by means of incentives
(see below)—then the protocol is collusion-preserving; and in any case (i.e., even when tokens are
compromised) the protocol remains (G)UC secure—i.e., any profile of adversaries can be simulated
by a monolithic simulator. We refer to a protocol that has such security guarantees as a fallback
secure protocol. Our fallback protocol guarantees also identifiable abort and unanimous abort for
functionalities that guarantee termination. Interestingly, these properties are impossible to achieve
in the mediated model (see App. B for the formal proof).

To obtain such a protocol we use as a main building block an MPC protocol that is secure
against a malicious adversary and which enables identifiable (unanimous) abort. Each hardware
token computes protocol messages on behalf of its owner. In addition, the randomness used is
jointly decided by the owner of the token and by the token itself. More precisely, the randomness
used to run the MPC is the XOR of the randomness produced by the hardware token, and a random
string given at run-time by the token’s owner. Intuitively, this means even if an honest party’s token
leaks its secret keys, it will still use an honestly-generated random string in the protocol. Thus,
the party’s input is protected by the security of the underlying MPC protocol. If all hardware
tokens are secure then the randomness of any party in the MPC protocol becomes unknown and
untamperable to everyone. Thus, only messages produced by the tokens are considered valid, and
no malicious party can send subliminal messages without being detected. We provide more details
in the technical part of the paper.

How to deal with aborting adversaries. We note that the above CP-protocols do not prevent
an adversary from sending invalid messages over the broadcast channel. Clearly, over broadcast, an
adversary can always send, for example, messages encrypted using some secret key that is known
only to the corrupted parties. Such attacks seem unavoidable if no assumptions are made on the
topology of the network (like it is done in the mediated model [AsV08, AKL+09, AKMZ12]) and on
the honesty of the nodes of this network. In this work we circumvent the above issue by considering
an incentive-driven (rational) adversary. That is, we define a security notion called CPAP that
captures the fact that some adversarial actions—in our case aborts—are not “for free” and instead
incurs a negative payoff. As it has been done in the RPD framework proposed in [GKM+13], CPAP
considers an ideal functionality F that a set of parties want to compute, and a relaxed functionality
〈F〉 that allows the adversary to break some security properties of F (e.g., correctness). In our
case we consider a CP-well-formed functionality F that can be computed in a collusion-preserving
manner. That is, informally, the adversarial parties are isolated and can communicate only via F .
The relaxed version 〈F〉 allows an adversarial party to collude with other adversarial parties or to
abort. Then we define a function v mapping the joint view of the relaxed functionality 〈F〉 and
the environment Z to a real-valued payoff. For our CP protocols, we show that for an appropriate
choice of payoffs—that is, sufficient penalization for aborting—the adversary will never trigger the
event that allows him to subliminally communicate with other adversarial parties, as this will also
trigger the event of abort.

10

From “ideal” to “real” payoffs. Finally, we propose two penalization mechanisms that make
the payoffs concrete, by financially penalizing (e.g., using a blockchain) parties that have been
caught misbehaving. Our first mechanism requires all parties to deposit a collateral before beginning
a protocol, and if even one party aborts, all parties lose their collateral. This scheme has the
advantage of being simple, fast and requiring minimal interaction with the blockchain; however, it
is not incentive compatible, as honest parties must suffer the same penalties as adversarial parties.
The second mechanism trades simplicity with the ability to penalize only cheating parties, and
requires protocol messages to be posted to and stored by a functionality that can be implemented
by, for example, a smart-contract. In a nutshell, this protocol works as follows. Let Π be a
CP-protocol secure against non-aborting adversaries with publicly identifiable abort.

1. In the setup phase the parties create a smart contract on the blockchain corresponding to Π
and deposit a fixed amount of coins.

2. The parties run Π by posting their messages on the blockchain. We assume that the blockchain
can be used only to run the protocol Π. Roughly, we replace the broadcast channel with a
blockchain that is dedicated to only to check the messages Π.

3. If all messages are correct (and the protocol ends successfully), everyone reclaims their deposit.
Conversely, if a party pi misbehaves, he loses his deposits, which are split among other parties.

2 Organization of the paper

In Section 3 we propose a more extensive literature review. Section 4: Preliminaries. Section 5: Our
protocol ΠHT for CP functionalities assuming honest tokens and non-aborting parties. Section 6:
Our protocol ΠHT-FBS with fallback GUC security against compromised tokens. Section 7: Our
new framework RPD-CP for defining CPAP—security of CP protocols against rational attackers.
Section 8: Prove that our protocols ΠHT and ΠHT-FBS are CPAP secure. Section 9: Penalization
schemes to make concrete the utilities defined in Section 7. In the Appendix full proofs (App. A),
and further discussions. In Appendix B we prove the impossibility results in the mediated model
which motivated our study.

3 Related literature

In this section we extend the comparison of our work with existing results. The work of Lepinski
et al. [LMs05] achieves collusion-freeness for parties that communicate with a broadcast channel,
assuming access to a physical primitive called “envelopes”. They motivate the use of envelopes
by proving that with only broadcast channels, collusion-freeness is not possible. The idea is that
corrupted parties can share the same random tape before the start of protocol execution. Since
all messages are sent through broadcast, all corrupted parties will have the same view and thus
emulate a monolithic adversary. In our work, parties also communicate via a broadcast channel,
but we circumvent this impossibility since the random tape of a corrupted party is not decided
by the party himself, but by a hardware token (whereas Lepinski et al. generate randomness
through coin-tossing and hide the result in envelopes). Using stateful hardware tokens, we can also
circumvent another impossibility result of Lepinski et al., that collusion-free protocols with private
actions/inputs are not possible even with envelopes. The impossibility comes from the corrupted
parties being able to see (different) protocol messages that different private actions generate, and
choosing his private action such that the resulting messages convey subliminal information about

11

the private action itself. However, stateful hardware tokens can be programmed to prevent users
from changing his input. That is, it is not possible for a party to see messages generated by different
inputs. Thus, our protocol remains collusion-preserving even with private actions. As described
earlier, in the mediated model [AsV08, AKL+09] achieve collusion-freeness and [AKMZ12] achieves
collusion-preservation.

The question of playing poker over the Internet has recently attracted considerable attention,
fuelled by the new capabilities introduced by smart-contract-enabled (cryptocurrency) blockchains,
such as Ethereum. In a nutshell, this technology made it possible to ensure that parties cannot
avoid paying their bid amount when they lose without the need of a trusted escrow—by having
them commit their bids on the blockchain, in a smart contract that releases them to anyone that
presents evidence of winning. Furthermore, the same technology enables a mechanism that pun-
ishes cheating—or early aborting—by making parties commit collaterals that they can only claim if
evidence is presented that they completed their protocol [BK14, ADMM14, KB16, KB14, KZZ16].
This gave rise to a number of proposals for decentralized poker protocols [KMB15, BKM17]. How-
ever, all these works use standard multi-party computation, thus even players who do not know
each other can collude via protocol messages.

4 Preliminaries

We denote the security parameter by λ and use “||” as concatenation operator (i.e., if a and b are

two strings then by a||b we denote the concatenation of a and b). For a finite set Q, x
$←− Q denotes

a sampling of x from Q with uniform distribution. We use the abbreviation ppt that stands for
probabilistic polynomial time. We use poly(·) to indicate a generic polynomial function. When it
is necessary to refer to the randomness r used by and algorithm A we use the following notation:
A(·; r). We assume familiarity with the notions of strong signature, secret key encryption and
pseudorandom function and refer to App. H for the formal description of these notions. We say a
function ν is negligible if for every positive integer c there is an integer Nc such that for all x > Nc,

|ν(x)| < 1/xc. We say a
negl
≤ b for real values a, b to mean that a ≤ b+ ν(λ) for negligible function

ν. We denote with [n] the set {1, . . . , n}, with F an arbitrary (but fixed) finite field and with N the
set of non-negative integers.

4.1 Hardware tokens and setup assumptions.

Our protocols assume that each party has access to a stateful hardware token which might perform
fresh encryptions and signatures with respect to some hidden keys. We model a hardware token
as an ideal GUC functionality. In this paper we also consider the case where hardware tokens
are corrupted. That is, the adversary can reprogram all malicious parties’ tokens, and can learn
the secret information of every (both malicious and honest) party’s token. This corruption model
captures the real world scenario where an adversarial party can break the security of his own token,
but could only obtain the secret key of tokens that he has no physical access to. For more details
on hardware tokens (HT) we refer to App. D.

12

4.2 Secure function evaluation.

We consider a protocol ΠMPC that securely (GUC-)realises any efficient functionality F . We addi-
tionally assume that ΠMPC can be run over a broadcast channel.

Following [BL18] we consider MPC protocols where at each round `, each party Pi broadcasts
a message msg`i to all the other parties simultaneously.

Definition 1 (MPC protocol). Let n be a positive integer, m a polynomial in the security parameter,
and F an n party-functionality. An m-round MPC protocol ΠMPC for F can be described as a tuple
of deterministic polynomial-time algorithms ΠMPC = (Next1, . . . ,Nextn).

Next message: msg`i ← Nexti(1
λ, xi, ρ

`
i , msg

<`) is the message broadcasted by party pi ∈ P in

round ` ∈ [m], on input xi ∈ {0, 1}λ, on random tape ρ`i
$←− {0, 1}λ, after receiving the messages

msg<` = {msg`′j }j∈[n],`′<`, where msg`
′
j is the message broadcasted by party pj on round `′ ∈ [`− 1].

When msg<m+1 = {msg`′j }j∈[n],`′<m+1 then yi ← Nexti(1
λ, xi, ρ

m+1
i , msg<m+1) where yi denotes the

output of the party pi.

In this paper we make use of a protocol ΠMPC that GUC-realizes a functionality F where
the resource R is a broadcast channel. More formally, we require that ∀A ∃Sim ∀Z such that

execḠ,R
ΠMPC,A,Z ≈ execḠ,FSim,Z . We refer the reader to App. I for the formal definition of GUC security.

4.3 Security with identifiable (unanimous) abort.

In this work we consider the notion of secure multi-party computation with identifiable abort, also
referred to as Identifiable MPC (ID-MPC). ID-MPC allows the computation to fail (abort), but
ensures that when this happens every party is informed about it, and they also agree on the index
i of some corrupted party pi ∈ P [IOZ14].

More concretely, for an arbitrary functionality F , we define F ID to be the corresponding func-
tionality with identifiable abort, which behaves as F with the following modification: upon receiving
from a simulator a special command (ABORT, pi) F ID sets the output of all (honest) parties to (⊥, pi).

Definition 2. Let F be a functionality and F ID be the corresponding functionality with identifiable
abort. We say that a protocol Π securely realizes F with identifiable abort if Π securely GUC-realizes
the functionality F ID.

The notion of unanimous abort instead guarantees that either all or none of the honest parties
abort. We denote a functionality F that can be GUC-realized with unanimous abort by FUNA.
We refer to App. K for a formal description of the functionality. We say that an adversary is
non-aborting if he never causes an honest parties to output (⊥, p) (i.e., to abort) [IKLP06].

4.4 Collusion-preserving computation.

In this section we recall the notion of collusion-preserving computation proposed in [AKMZ12]. We
refer the reader to [AKMZ12] for a more thorough discussion on CP.

For n the number of parties and I ⊆ [n], denote by AI the set of adversaries, i.e. ITMs {Ai}i∈I ,
where Ai denotes the adversary corresponding to party pi. In collusion-preserving computation,
instead of one monolithic adversary/simulator, we consider a set of (independent) ppt adversaries
and simulators. In more detail, we require the following:

13

Split adversaries/simulators: Instead of a monolithic adversary/simulator we consider a set of n
(independent) ppt adversaries A[n] = {Ai, i ∈ [n]}, where Ai corresponds to the adversary
associated with the player i (and can corrupt at most this party). We also ask that for each
Ai ∈ A[n] there exists an (independent) simulator Simi.

Corrupted-Set Independence: We also require that the simulators do not depend on each other.
In other words the code of simulator Simi is the same for any set of adversaries A[n] and B[n]

as long as Ai = Bi.
Moreover, similar to the GUC framework (but in contrast to plain UC) we distinguish between

two types of functionalities: resources which we denote with capital calligraphic font as in R and
shared functionalities which we denote with an additional over-line as in Ḡ. Formally a resource
R maintains state only with respect to a single instance of a protocol, while a shared functionality
Ḡ can maintain state across protocol instances. For example concurrent executions can maintain
shared state via say a global CRS or via a global PKI as long as these are modeled as shared
functionalities. However, although concurrent instances of a protocol π may use the same resource
R, the behavior of R in one execution of π must be independent of all other executions of π (and
more generally of all other concurrent protocols instantiated by the environment). For clarity, in the
remainder of this work we will usually refer to shared functionalities simply as setup and protocols
which only share state across executions through some setup Ḡ as Ḡ-subroutine respecting.

We denote by cp-execRΠ,A,Z the output of the environment Z in the execution of Π with
adversaries A := A[n] in the R-hybrid model. We say that a protocol Π is R-exclusive if it makes
use of no resources or shared functionality other than R. Unlike (G)UC, CP limits parties to
communicate with at most one single instance of the resource. Intuitively, if F is a one-bit channel,
then the simulator only using one instance of F has a completely different meaning in terms of
collusion-preservation to the simulator using unlimited calls to F .

Definition 3 (Collusion Preservation [AKMZ12]). Let Ḡ be a setup, R and F be n-party resources,
Π be a {Ḡ,R}-exclusive protocol and φ be a {Ḡ,F}-exclusive protocol (both with n parties). Then
we say that Π collusion-preservingly (CP) emulates φ in the {Ḡ,F}-hybrid world, if there exists
a collection of efficiently computable transformations Sim = {Sim1, . . . ,Simn} mapping ITMs to
ITMs such that for every set of adversaries A = {A1, . . . ,An}, and every ppt environment Z the

following holds: cp-execḠ,RΠ,A,Z ≈ cp-execḠ,Fφ,Sim(A),Z

4.5 Rational protocol design.

The goal of the rational protocol design framework (RPD) [GKM+13, BGM+18] is to model
incentive-driven adversaries, and design protocols which optimally reduce the attacker’s utility.
In RPD, a protocol designer D engages in an attack game with an attacker A. The designer first
chooses a n-party protocol Π ∈ ITMn. Then, the attacker decides on an adversarial strategy A to
attack the protocol. Each choice of (Π,A) induces a utility for the designer and the attacker.

Consistent with [GKM+13], we consider an attack game GM, where M is the attack model
M = (F , 〈F〉, vA), a vector of parameters of the game. F is the functionality which the designer
would like to achieve, and 〈F〉 is a relaxed version of F in the sense that it allows the simulator
extra commands to break certain security properties of F . The value function vA allows us to define
utilities of the attacker, by assigning payoffs when certain events occur in the ideal world, such as
when the simulator makes queries to 〈F〉. Roughly speaking, then, the goal of the attacker is to
generate an adversarial strategy A that will “force” the simulator to cause certain security breaches

14

in the ideal world in order to complete a successful simulation. A protocol Π is attack-payoff secure
if, informally, an attacker can gain no more utility from attacking Π than attacking the “dummy”
protocol that uses the functionality F as a resource. Intuitively, it means that Π is “as secure as”
the dummy protocol in this model.

5 Collusion-preservation with non-aborting adversaries

In this section we present our protocol ΠHT for any CP-well-formed functionality (Definition 10)
under the following assumptions: 1) each party has access to a hardware token (which we describe
as one global ideal functionality) 2) all communication is done over broadcast, and 3) adversarial
parties do not make the protocol abort. For simplicity we restrict ourselves to non-reactive func-
tionalities, also known as secure function evaluation. (The general case can be reduced to this case
using a suitable form of secret sharing to maintain the secret state of the reactive functionality.)
Moreover, we describe all our protocols in a round based, synchronous manner, where messages
sent in some round are delivered by the beginning of the next round. We first introduce some
additional notation:
- sid ∈ N is an id that uniquely identifies an execution of ΠHT.
- P = {p1, . . . , pn} is the set of parties that are interested in running an execution of ΠHT in order

to compute the function f .
- We call leader the party that is in charge to run a special code and we assume w.l.o.g. that the

leader is pn ∈ P.
- T HT denotes the global token functionality.

For our construction we use the following tools.
- The pseudo-random functions

PRF0 : {0, 1}λ × {0, 1}λ → {0, 1}λ
PRF1 : {0, 1}λ × {0, 1}2λ → {0, 1}λ,
PRF2 : {0, 1}λ × {0, 1}2λ → {0, 1}(n+2)λ,
PRF3 : {0, 1}λ × {0, 1}λ → {0, 1}(2n+1)λ.

- A strong unforgeable signature scheme Σ = (Kgen,Sign,Ver).
- A secret-key encryption scheme ΠSK = (Gen,Enc,Dec).

The global setup Ḡ is represented by the token functionality T HT.
We note that we use one functionality to emulate the behavior of the hardware tokens held

by the parties that run the protocol. This token functionality replies to each party pi ∈ P using
the appropriate code and keys depending to the identity of the calling party (i.e. the functionality
discriminates between leader and non-leader parties). To not overburden the notation, in the formal
construction we denote the identity of a party pi ∈ P with i.

Moreover, the token functionality exports as public information the master public key mpk,
and keep as part of its private state the master secret key msk together with with the PRF keys
K0,K1,K2,K3.

The parties are allowed to communicate only via a broadcast channel denoted by B and formally
described in Fig 12, App. K. We provide a formal description of T HT in Fig. 1. The complete formal
description of the the protocol ΠHT for the non-leader party is proposed in Fig. 2, and the protocol
run by the leader parties is provided in Fig. 3.

We assume that the ideal functionality F that we wish to realize is registered to the token
functionality. In addition, upon receiving the command (GetTrapdoor, sid), F sends (Trapdoor, sid)

15

to the token functionality if sid is equal its session id, and forwards the answer to the ideal adversary.
We recall that this trapdoor allows us to capture the broadcast channel, on which all parties see
the exact same signed messages. Equipping the ideal functionality with the trapdoor command
translates this real-world leakage in the ideal world. We also recall that the functionality leaks
to the simulators only signing keys valid within one specific session without harming the token
functionality globally.

We now prove that ΠHT is collusion-preserving against non-aborting adversaries for well-formed
functionalities. Formally, we prove the following:

Theorem 1. Let Ḡ = T HT be the setup as defined above, R = B (broadcast) and F be n-party
resources where F is a CP-well-formed functionality, ΠHT be the {Ḡ,R}-exclusive protocol (described
by Fig. 2 and 3) and φ be a {Ḡ,F}-exclusive protocol (both with n parties). Then ΠHT collusion-
preservingly emulates φ in the {Ḡ,F}-hybrid world assuming a non-aborting adversary.

Proof sketch. To prove CP, we must show n independent simulators S1, . . . ,Sn. At a very high
level for all i ∈ {1, . . . , n}, Si can query F with the command (GetTrapdoor, sid). F checks that sid
is equal to its session id, and if so, it sends (Trapdoor, sid) to T HT. T HT then generates the string K̃,
n pairs of signing-verification keys, and authenticates the verification keys using the master secret
key msk. T HT then sends this information to F which forwards them to the simulator Si. Note that
if all the simulators query F with (GetTrapdoor, sid) they will all get the same pair of authenticated
signing-verification key and the string K̃. Given the above information, a simulator Si can use K̃ as
input of a PRG to generate the randomness sufficient to: 1) to create a key Kencsid for a secret-key
encryption scheme 2) compute n + 1 encryptions of 0λ and 3) authenticate the encrypted value
using the appropriate signature session keys.

These authenticated messages are now used to interact with p?i (who is not supposed to dis-
tinguish between the encryptions of 0λ and the encryptions that contain the actual inputs of the
parties). Moreover, whenever Si receives the input form p?i he forwards it to the F which returns
the output yi. The crucial observation is that the messages seen by all the corrupted parties are the
same since the simulators use exactly the same strategy and randomness, and since the adversary
cannot forge a signature for the strong signature scheme we are using6. We refer to App. A for the
formal proof.

(Publicly) Identifiable aborts. Another interesting property enjoyed by ΠHT is identifiable
abort. A protocol run by a set of parties P is said to be secure with identifiable abort if it either
computes according to its specification, or it aborts with the index of some corrupted party pi ∈ P
—i.e., every honest party learns pi (see Def 2 for the formal definition). In ΠHT the adversary can
only deviate from the protocol specification by 1) sending a message authenticated with respect to
a sid′ or f ′ not equal to the correct sid or f the honest parties use 2) sending a message with an
invalid signature or certificate, or 3) fail to send a message. Each event is verifiable by the honest
parties and any third party not involved in the protocol. Indeed, with the master public key mpk,
sid and function f , it is possible to claim who did abort in a run of ΠHT by just inspecting its
transcript.

6We note that it is crucial to use a strong signature scheme to avoid the creation of a different valid signature for
a message m from valid signatures for the same message.

16

The token functionality is parameterized by a set of parties P and by a list F of ideal functionality
programs. The functionality manages the keys (mpk,msk) for the signature scheme Σ and the
PRF keys K0,K1,K2,K3.
Input phase for non-leader parties

- If I = (Input, sid, x, f) is received from a non-leader party pj then do the following.
- If ctrsidj is not defined then define it and set ctrsidj ← 1 otherwise output ⊥ and stop.

- Compute R0 ← PRF0(K0, sid) and Kencsid ← Gen(1λ;R0)
- Compute R1 ← PRF1(K1, sid||j) and parse R1 as 4 strings of λ bits each rs1||rs2||r1||r2.
- (sigkj , vkj)← Kgen(1λ; rs1)
- certj ← Sign(msk, vkj ||sid||j; rs2)

- Compute x← Enc(Kencsid, x; r1), σ ← Sign(sigkj , x||f ; r2) and output (x, f, vkj , σ, certj).
Input/output phase for the leader party

- If I = (Input, sid, xn, f, sid, (x1, vk1, σ1, cert1), . . . , (xn−1, vkn−1, σn−1.certn−1)) is received
from the leader party pn then check if for all j ∈ [n − 1] Ver(vkj , xj ||f, σj) = 1 and
Ver(mpk, vkj ||sid||j, certj) = 1. If it is not, then output ⊥ and stop, otherwise act as fol-
lows.
- If ctrsidn is not defined then define it and set ctrsidn ← 1 else output ⊥ and stop.
- R2 ← PRF2(K2, sid||n) and parse R2 as n + 2 strings of λ bits each

rs1||rs2||r1||r2|| . . . ||rn−1||r?.
- (sigkn, vkn)← Kgen(1λ; rs1)
- certn ← Sign(msk, vkn||sid||n; rs2)
- Compute R0 ← PRF0(K0, sid) and Kencsid ← Gen(1λ;R0).
- For j = 1, . . . , n− 1 compute xj ← Dec(Kencsid, xj).
- Compute y1, . . . , yn ← f(x1, . . . , xn).
- For j = 1, . . . , n− 1 compute yj ← Enc(Kencsid, yj ; rj).
- σ ← Sign(sigkn, y1|| . . . ||yn−1||f ; r?);
- Output (y1, . . . , yn−1, f, vkn, σ, certn), yn

Output phase for non-leader parties
- If I = (Output, sid, z) is received parse z as (y1, . . . , yn−1, f, vkn, σ, certn) and do the following.

- if Ver(vkn, y1|| . . . ||yn−1||f, σ) = 1 and Ver(mpk, vkj ||sid||j, certj) = 1 then compute and

output Dec(Kencsid, yj), output ⊥ otherwise.
Trapdoor

- If I = (Trapdoor, sid) is received from an instance of an ideal functionality in the list F then
do the following.
- Pick K̃||rs11||rs21|| . . . ||rs1n||rs2n ← PRF3(K3, sid).
- For all i ∈ [n] (sigki, vki)← Kgen(1λ; rs1i), certi ← Sign(msk, vki||sid||i; rs2i).

- Return to the calling instance ((sigk1, vk1, cert1), . . . , (sigkn, vkn, certn), K̃).

Figure 1: The HT functionality T HT

17

We assume that the party pj is registered to the token functionality T HT. Each party is
aware of the function that will be computed f , of the identifier of each execution sid, and
of the parties involved in each of those executions P.
Input.

- The party pj on input (Compute, sid, x) sends (Input, sid, x, f) to T HT.
- Upon receiving the answer X from T HT, if X = ⊥ then pj outputs ⊥ and stops.

Otherwise, pj sends X to pn.
Output. The party pj , upon receiving z = (y1, . . . , yn−1, f, vkn, σ, certn) from pn sends
(Output, sid, z) to T HT.
Upon receiving y from T HT, pj outputs y.
Check-channel. The party pj inspects all messages that are sent on the chan-
nel. If a message (m, f ′, vk, σ, cert) is received from a party pi check if f = f ′ and
Ver(vki,m||f, σ) = 1 and Ver(mpk, vk||sid||i, cert) = 1. If it is not, then output (⊥, pi)
and stop.

Figure 2: The party pj

We assume that the party pn is registered to the token functionality T HT. Each party
is aware of the function that will be computed f , of the identifier of each execution sid,
and of the parties involved in each of those executions P.
Input/output

- The party pn on input (Compute, sid, xn) collects messages from pj∈[n−1] and sends
I = (Input, xn, f, sid, (x1, vk1, σ1, cert1), . . . , (xn−1, vkn−1, σn−1, certn−1)) to T HT.

- Upon receiving the answer Y from T HT, if Y = ⊥ then outputs ⊥ and stops. Otherwise
parses Y as ((m, f, vkn, σ, certn), y), sends (m, f, vkn, σ, certn) to all the parties in
P and outputs y.

Check-channel. The party pj inspects all messages that are sent on the chan-
nel. If a message (m, f ′, vk, σ, cert) is received from a party pi check if f = f ′ and
Ver(vkj ,m||f, σ) = 1 and Ver(mpk, vk||sid||j, cert) = 1. If it is not, then output (⊥, pi)
and stop.

Figure 3: The leader party pn

More formally, the protocol ΠHT securely realizes the function F IDA, where F IDA involves n
parties. We now modify ΠHT to support an additional party pn+1 which takes no input, does not
send any message and outputs a default value (e.g., 0). Since pn+1 knows the master public key
mpk, she can check the validity of the signature and the certificate. Hence, she is able to identify
an invalid message (in the case pn+1 is honest). Roughly, our protocol allows an observer of the
protocol execution to identify a misbehaving party. Following [KZZ16] we refer to this property
as publicly identifiable abort. In the same spirit of [KZZ16], we refer to pn+1 as a judge. The code
of the judge can be used by anyone who has the public setup and wants to follow the protocol
execution and decide whether it should abort or not given the parties’ messages. Looking ahead,
the judge’s code in the protocol can be used by a blockchain ledger to decide whether or not a

18

transaction contains a valid protocol message of ΠHT.

6 Collusion-preservation with fallback security

Despite being simple and optimal in terms of round complexity, the protocol described in Sec. 5
suffers from a major limitation. That is, in the case that the hardware tokens are corrupted (e.g.,
the secret keys are leaked by the token manufacturer) then not only the CP-property is lost, but we
cannot even guarantee any protection with regard to the inputs of the honest parties. In this section
we proposed a protocol that protects the inputs of the honest parties (in a standard GUC-security
sense) even in the case where: 1) the adversary knows all the secret keys of the hardware tokens
(also the secret keys of the hardware tokens held by the honest parties) and 2) the hardware tokens
of the malicious parties can be completely reprogrammed by the adversary.

Let F be the function that the parties want to compute. For our construction we use the
following tools.
- Pseudo-random functions PRF0 : {0, 1}λ×{0, 1}2λ → {0, 1}(2m+4)λ and PRF1 : {0, 1}λ×{0, 1}λ →

{0, 1}(2n+1)λ

- A strong unforgeable signature scheme Σ = (Kgen,Sign,Ver).
- A secure MPC protocol ΠMPC = (Next1, . . . ,Nextn) that GUC-realizes the function F .

The global setup Ḡ is represented by the token functionality T HT-FBS. As for the token func-
tionality of the previous section, T HT-FBS has a master public key mpk and a secret state made by
the corresponding master secret key msk and the PRF keys K0,K1. We assume without loss of
generality that the setup required to run ΠMPC is part of T HT-FBS.

We denote our protocol with ΠHT-FBS and provide a formal description of T HT-FBS in Fig. 4. The
complete formal description of the the protocol is proposed in Fig. 5.

6.1 Security of ΠHT-FBS.

We summarize the properties of the protocol ΠHT-FBS.
1. If the hardware tokens are honestly generated and secure, and no party aborts, then ΠHT-FBS

is collusion-preserving.
2. If the hardware tokens are compromised and ΠMPC GUC realizes FAB with AB ∈ {IDA,UNA},

then ΠHT-FBS GUC realizes FAB.
3. If the hardware tokens are honestly generated and secure (but the malicious parties may

abort), then ΠHT-FBS GUC realizes the functionality F with publicly identifiable abort.
The properties 1 and 2 enables the fallback security of ΠHT-FBS. In addition, the second prop-

erty states that in the case of corrupted tokens, ΠHT-FBS inherits all the properties of ΠMPC (e.g.,
identifiable abort). We note passing that by assuming honest majority and a protocol ΠMPC′ that
guarantees fairness (or even output delivery) this property would be held by ΠHT-FBS as well. The
third property states that if an adversarial party aborts then the CP property might be lost, but
the input of the honest parties are protected. We capture the case where the hardware tokens
are compromised by considering the token functionality T

HT-FBS
instead of T HT-FBS. T

HT-FBS
extends

T HT-FBS with the additional command Tamper. If the adversary queries the token functionality with
Tamper then T

HT-FBS
leaks to the adversary its secret state (i.e., the master secret key msk and the

PRF keys). Given the master secret key, the adversary can authenticate any message he wants and
therefore acts on the behalf of the hardware token.

19

We now provide the formal theorems.

Theorem 2. ΠHT-FBS is fallback secure.

To prove this theorem we prove the following two lemmata.

Lemma 1. Let Ḡ = T HT-FBS be the setup, R = B (broadcast), F be n-party resources where F is a
CP-well-formed functionality, ΠHT-FBS be the {Ḡ,R}-exclusive protocol (described by Fig. 5) and φ
be a {Ḡ,F}-exclusive protocol (both with n parties). Then ΠHT-FBS collusion-preservingly emulates
φ in the {Ḡ,F}-hybrid world assuming that no parties abort.

Lemma 2. Let ΠMPC be a protocol that GUC-realizes the n-party functionality FAB with AB ∈
{IDA,UNA} that exclusively uses B as a resource. Let Ḡ = T

HT-FBS
and R = B then ∀A ∃Sim ∀Z

execḠ,RΠHT-FBS,A,Z ≈ execḠ,F
AB

Sim,Z

To prove the security of Lemma 1 we rely on the fact that any execution of ΠHT-FBS can be seen
as an execution of ΠMPC among honest parties. Indeed, in the case the hardware tokens are not
corrupted the adversary has no control on the messages of ΠMPC, and he can only act as a proxy
between the hardware tokens and the broadcast channel (since we assume that the adversary is
non-aborting). This allows the CP simulators S1, . . . ,Sn to internally run the simulator Sim of
ΠMPC (that exists by definition) for the case where no parties are corrupted. Hence, S1, . . . ,Sn
can just run Sim using the same correlated randomness obtained from the trapdoor information
K̃, following the approach proposed in Sec 5. To prove the security of Lemma 2 we can reduce
the security of the entire protocol to the GUC security of ΠMPC. We note that in Lemma 2 the
global setup is represented by T

HT-FBS
, which captures the scenario where the hardware tokens are

compromised. We refer to App. A.2 form more detail on the proofs of the lemmata.

Theorem 3. Let Ḡ = T HT-FBS be the setup, R = B, F be n-party resources where F is a CP-well-
formed functionality, ΠHT-FBS be the {Ḡ,R}-exclusive protocol (described by Fig. 5) then ΠHT-FBS

GUC realizes F IDA.

Proof sketch. The only way that an adversary has to misbehave is by sending an invalid signature
over the channel. This behavior can be detected by any party that has the verification keys of the
token functionalities. Moreover, the first party that sends a unsigned message is identified as
corrupted.

7 Our new model: RPD-CP

In this section, we use the RPD framework to study the feasibility of secure function evaluation
(SFE) in a collusion preserving way. We consider the ideal functionality Ff for SFE parameterized
by the function f : Fn → F (this form is without loss of generality—see, e.g., [LP09]). We refer the
reader to Sec. K Fig. 11 for a formal definition of Ff . Our goal is to realize SFE with collusion
preservation, for incentive-driven adversaries.

20

The functionality is parameterized by a list F of ideal functionality programs. The token func-
tionality is parameterized by an m-round MPC protocol ΠMPC = (Next1, . . . ,Nextn), and a set of
n parties P. It manages a round number `, initialized as 1. The functionality manages the keys
(mpk,msk) for the signature scheme Σ. The functionality manages also the PRF keys K0,K1.
Input phase

- If I = (Input, sid, xj , Rj) is received from some party pj , then do the following,
- If ctrsidj is not defined, then define it and ctrsidj ← 1, otherwise output ⊥ and stop.
- Compute R0 ← PRF0(K0, sid||j) ⊕ Rj and parse R0 as (2m + 4) strings of λ bits

rs1j ||rs2j ||ρ1j || . . . ||ρ
m+1
j ||r1j || . . . ||r

m+1
j .a

- (sigkj , vkj)← Kgen(1λ; rs1j)

- certj ← Sign(msk, vkj ||sid||j; rs2j)

- Output the first message (msg1j , sid,ΠMPC, σ, vkj , certj), where msg1j = Nextj(1
λ, xj , ρ

1
j ,⊥)

and σ ← Sign(sigkj , msg
1
j ||ΠMPC||`; r1j)

Next message function
- If I = (NextMsg, sid, {msg`i , σ`i , vki, certi}i∈[n]) is received from pj then do the following.

- If ` > m then output ⊥ and stop, else continue with the following steps.
- Store msg` = {msg`i}i∈[n].
- For all i ∈ [n] check if Ver(vki, msg

`
i ||ΠMPC||`, σ`i) = 1 and Ver(mpk, vki||sid||i, certi) = 1.

If it is not then output (pi,⊥) and stop. Otherwise continue with the following steps.
- Set ` ← ` + 1, compute msg`j = Nextj(1

λ, xj , ρ
`
j , msg

<`) with msg<` = {msg`′i }i∈[n],`′<`
where msg`

′

i is the message from pi at round `′.
- If ` = m+ 1 then output yj ← msg`j

else, output (msg`j , sid,ΠMPC, σ`j , vkj , certj), where σ`j ← Sign(sigkj , msg
`
j ||ΠMPC||`; r`j).

Trapdoor
- If I = (Trapdoor, sid) is received from an instance of an ideal functionality in the list F then

do the following.
- Pick K̃||rs11||rs21|| . . . ||rs1n||rs2n ← PRF1(K1, sid).
- For all i ∈ [n] (sigki, vki)← Kgen(1λ; rs1i), certi ← Sign(msk, vki||sid||i; rs2i).

- Return to the calling instance ((sigk1, vk1, cert1), . . . , (sigkn, vkn, certn), K̃).

ars1j and rs2j are the randomnesses used to generate the session signing-verification keys and to au-
thenticate them using the msk; ρ`j is the randomness used to compute the `-th round message for pj ; r

`
j

is used to sign the message for pj at round ` using the session signing key.

Figure 4: The HT functionality with fallback security T HT-FBS

21

We assume that the party pj is registered to the global token functionality T HT-FBS. Each party
is aware of the m-round protocol that will be computed ΠMPC = (Next1, . . . ,Nextn) and of the
parties involved in protocol execution P.
Input and next message generation.

- The party pj on input (Compute, sid, x) samples uniform random Rj ∈ {0, 1}(2m+4)λ and
sends I = (Input, sid, xj , Rj ,Π

MPC) to T HT-FBS
j .

- For each ` ∈ {1, . . . ,m}:
- Upon receiving message X from T HT-FBS

j check if X = (⊥, pi′). If it is then output
(⊥, pi′) and stop, otherwise send X over broadcast.

- Collect message (msg`i , sid,ΠMPC, σ`i , vki, certi) for round ` from each party pi ∈
[n]\{j} and send (NextMsg, sid, {msg`i , σ`i , vki, certi}i∈[n]) to T HT-FBS

j .
Output phase.

- Collect the message (msg`i , sid,ΠMPC, σ`i , vki, certi) for round ` from each party pi ∈ [n]\{j}
and send (NextMsg, sid, {msg`i , σ`i , vki, certi}i∈[n]) to T HT-FBS

j .
- Upon receiving yj from T HT-FBS

j output it.
Check-channel. The party pj inspects all messages that are sent on the channel. If a message
(m, sid,ΠMPC, σ, vk, cert) is received from a party pi check if Ver(vki,m||ΠMPC||`, σ) = 1 and
Ver(mpk, vk||sid||i, cert) = 1 for some ` ∈ [m]. If it is not, then output (⊥, pi) and stop.

Figure 5: The party pj for fallback security

The Attack Model Following the RPD framework [GKM+13], we capture incentive-driven at-
tackers against collusion-preservation, by considering attacks as part of an attack game GM between
a protocol designer D and attacker A. Here, D comes up with a protocol Π, and the attacker A ∈ ITM

generates a set of adversaries A(Π) = A = {Ai}i∈I , I ⊆ [n] to attack it. The utility of the attacker
uA is then defined as a function of the choice of protocol Π and adversarial strategies A. The
attack model M = (Ff , 〈Ff 〉, vA) encompasses the parameters in this game. Our protocols aim at
realizing SFE in which the parties always obtain their outputs in a collusion preserving manner.
〈Ff 〉 is the weaker version Ff , which explicitly allows 1) CP to be broken by sending a colluding
message to other adversarial parties and 2) the adversarial parties to abort and being identified by
all the other parties (adversarial and not) that are running the protocol. We note that in contrast
to monolithic adversaries and simulators, in CP the ideal adversarial parties do not automatically
share their views and must use 〈Ff 〉 to communicate. We provide the formal description of 〈Ff 〉
in Fig. 6. The value function vA defines the utility of the attacker. This function maps the joint
views of the simulators (interacting with the relaxed functionality 〈Ff 〉) and the environment Z,
to a real-valued payoff.

7.1 Utility of the attacker A.

The utility of the attacker uA is a function mapping protocols and sets of adversaries, i.e. (Π,A),
to a real number. Intuitively, utility depends on how often must a set of simulators S break CP
via the functionality 〈Ff 〉 in order to emulate A, given Π.

As the first step of defining uA, we define the payoff of a particular set of simulators, using the
value function vA defined in the attack model. Then, we define the real payoff of a particular set of
adversaries, based on the payoffs of simulators that can emulate them. Finally, we define uA(Π,A)
as the real payoff the set of adversaries A, maximized over all possible environments Z.

22

Ideal payoff of a set of simulators. We define the real-valued random variable ensemble

{v〈F
f 〉,S,Z

A (k, z)}k∈N,z∈{0,1}∗ (v
〈Ff 〉,S,Z
A for short) as the random variable ensemble resulting from

applying value function vA to the view of the environment Z and a set of simulators S = {Si}i∈I
in the ideal execution. The ideal expected payoff of a particular set of simulators S with respect

to Z is defined as the expected value: U
〈Ff 〉
IA (S,Z) = E(v

〈Ff 〉,S,Z
A)

Real payoff of a set of adversaries. Recall that given a setup Ḡ and resource R, a {Ḡ,R}-
exclusive (that is, the protocol only uses Ḡ,R) protocol Π realizes a CP-functionality 〈Ff 〉 if, for
all I ⊆ [n], and independent (rather than monolithic) adversaries A = {Ai}i∈I , there exists a
collection of efficiently computable transformations from ITMs to ITMs Sim = {Simi}i∈I such that
the simulator Si = Simi(Ai) emulates Ai. That is, the environment Z cannot distinguish between
the real world with A and resource R, and ideal world with S = {Simi(Ai)}i∈I and 〈Ff 〉. Let 〈Ff 〉
be a CP functionality and Π be a protocol. Denote CA as the class of simulators S = {Si}i∈I that
can emulate the adversarial parties A = {Ai}i∈I for I ⊆ [n]. That is, for setup Ḡ and resource R,

CA =
{

Sim(A) = {Simi(Ai)}i∈I | ∀i ∈ I : Simi is an efficiently computable

mapping from ITM to ITM, ∀Z : cp-execḠ,RΠ,A,Z ≈ cp-exec
Ḡ,〈Ff 〉
Π,Sim(A),Z

}
The expected payoff of a set

of adversaries and environment (A,Z) is then defined as U
Π,〈Ff 〉
A (A,Z) = infS∈CA{U

〈Ff 〉
IA (S,Z)}

The attacker’s utility is then uA(Π,A) := Û
Π,〈Ff 〉
A (A) = supZ∈ITM{U

Π,〈Ff 〉
A (A,Z)}

The functionality interacts with a set of parties P = {p1, . . . , pn}.
It maintains a set of honest parties H ⊆ P, and a set of malicious parties I ⊆ P with
H ∪ I = P and H ∩ I = ∅.

1. Upon receiving (COLLUDE, sid,m) from party pi ∈ I, send message (SUB MSG, sid, pi,m)
to pj , for all pj ∈ P-{pi}.

2. Upon receiving (ABORT, sid) from a party pi, send (ABORT, pi) to pj , for all pj ∈ P-{pi}
and stop.

3. Upon receiving a message that is consistent with the interface of Ff act as Ff would
do acting as a proxy between Ff and the parties in P.

Figure 6: 〈Ff 〉

7.2 Utility of the protocol designer D

In [GKM+13], the attack game is assumed to be zero-sum. In order to remove this assumption,
the methodology of a more recent work [BGM+18] can be used to define the utility of the protocol
designer. In more detail, for each (Π,A), we must assign utility for the designer using the same sim-
ulators and environments as those used for the attacker. Let SA denote the class of simulators that
were used to obtain the utility of the adversary, and ZA denote the class of environments maximiz-

ing the utility for simulators in SA. That is, SA =
{
S ∈ CA : supZ∈ITM{U

〈Ff 〉
IA (S,Z)} = uA(Π,A)

}
and ZA =

{
Z ∈ ITM : for some S ∈ SA , U 〈F

f 〉
IA (S,Z) = uA(Π,A)

}
23

Let v
〈Ff 〉,S,Z
D and U

〈Ff 〉
ID (S,Z) be defined similar to the payoffs v

〈Ff 〉,S,Z
A and U

〈Ff 〉
IA (S,Z) re-

spectively. Then, the real payoff of the designer is U
Π,〈Ff 〉
D (A,Z) = supS∈SA{U

〈Ff 〉
ID (S,Z)}. The

utility of the designer is then uD(Π,A) := Û
Π,〈Ff 〉
D (A) = infZ∈ZA{U

Π,〈Ff 〉
D (A,Z)}. We also extend

the attack model with the utility of the designer vD: M = (Ff , 〈Ff 〉, vA, vD).

7.3 Security definitions

Similar to the definition of attack-payoff secure in [GKM+13, BGM+18], we define collusion pre-
serving attack payoff (CPAP). Intuitively, a protocol is CPAP with respect to an attack model
M = (Ff , 〈Ff 〉, vA) if it enjoys security and collusion-preservation under this model. That is, no
adversary can gain more utility from running our protocol, than running the dummy protocol that
uses a functionality Ff (without the relaxations offered by 〈Ff 〉) as a resource.

Definition 4 (CPAP). LetM = (Ff , 〈Ff 〉, vA) be an attack model and Π a {Ḡ,R}-exclusive proto-

col that realizes 〈Ff 〉. We say that Π is CPAP in M if supA∈ITM uA(Π,A)
negl
≤ supA∈ITM uA(ΦF

f
,A)

where ΦF
f

is the dummy {Ḡ,Ff}-hybrid protocol which forwards all inputs to and outputs from
functionality Ff .

To complete our framework, we also define ε-subgame-perfect equilibrium from [GKM+13], and
define CPIC similar to the definition of incentive compatible (IC) in [BGM+18]. Informally, a
strategy profile is an ε-subgame-perfect equilibrium if no deviation by the attacker nor designer can
improve their utility by more than ε. Informally, a protocol Π is incentive compatible if both the
designer and attacker are willing to stick with it. That is, there is an attacker A such that (Π, A) is
in equilibrium.

Definition 5 (ε-subgame-perfect equilibrium [GKM+13]). Let GM be an attack game. A strategy
profile (Π, A) is an ε-subgame perfect equilibrium in GM if the following conditions hold: (1) for any
Π′ ∈ ITMn, uD(Π

′, A(Π′)) ≤ uD(Π, A(Π))+ε, and (2) for any A′ ∈ ITM, uA(Π, A
′(Π)) ≤ uA(Π, A(Π))+ε.

Definition 6 (CPIC). Let Π be a {Ḡ,R}-exclusive protocol and Π be a set of polynomial-time
{Ḡ,R}-exclusive protocols. We say that Π is Π-CPIC in the attack model M iff for some A ∈ ITM,
(Π, A) is a ν(λ)-subgame perfect equilibrium on the restricted attack game where the set of deviations
of the designer is Π.

8 Our CPAP protocol

In this section we show that the protocol ΠHT presented in the previous section is CPAP for a
natural class of value functions vA.

Concrete utility function. Let Ff be a CP-well-formed functionality. Consider the following
events the value function vA is concerned with. These are events defined on the views of the envi-
ronment, the (relaxed) CP-functionality 〈Ff 〉, and the simulators S = {Si}i∈I , given adversaries
A = {Ai}i∈I :

1. Define the event Ecollude as follows: For some i ∈ I and message m, the i-th simulator Si
sends the message (COLLUDE, sid,m) to 〈Ff 〉.

24

2. Define the event Eabort as follows: For some i ∈ I, party pi aborts and is identified by all the
parties as having aborted.

Now, we define the payoffs assigned by vA to the events above. Denote by γcollude the utility
for the attacker obtained by sending a colluding message. Denote by γabort the penalty incurred
as result of a malicious party being identified by the honest parties as an aborting party. Then,
uA(Π,A) = supZ

{
infS∈CA

{
γcollude Pr[Ecollude]− γabort Pr[Eabort]

}}
We can now prove that our protocol satisfies CPAP security under the condition that the

penalty of being identified as having aborted is greater than the gain from sending a colluding
message. These assumptions are natural in a game-playing setting, such as poker. If all parties are
corrupted by the attacker, then the winner would always be a corrupt party, regardless whether
colluding message was sent. Moreover, if a party is identified as aborting (i.e. cheating), they could
be banned from playing, or even receive a severe financial penalty. In Section 9, we will discuss
penalization schemes that make these penalties concrete.

Theorem 4. Let Ff be an ideal CP-well-formed functionality, and 〈Ff 〉 be as defined in Figure 6.
Let vA be as defined above, for any γcollude and γabort such that γabort > γcollude. Then the protocol
ΠHT described in Sec. 5 (and the protocol ΠHT-FBS described in Sec. 6) is CPAP secure in the attack
model M = (Ff , 〈Ff 〉, vA).

To prove this theorem we rely on the observation that ΠHT (ΠHT-FBS) is collusion-preserving for
Ff as long as nobody aborts. That is, the only way to do subliminal communication in ΠHT (and in
ΠHT-FBS) is by sending a message which is incompatible with the protocol description thus causing
the honest parties to abort. Given the way we have set the payoffs, it is always inconvenient for
the adversary to trigger the event Ecollude (which allows subliminal communication). We refer the
reader to App. A.3 for the formal proof. We observe that in the case where we also consider the
utility of the designer we can prove that our protocol is CPIC (according to Def. 6) in the case
there the utilities of the designer are symmetric to the utility of the adversary.

9 How to disincentivize aborting strategy concretely.

The goal of this section is to translate the utilities defined in Section 7 to concrete, monetary values.
Recall that in Section 5 and Section 6 we obtained a protocols ΠHT and ΠHT-FBS respectively, which
achieve CP under the assumptions of honest tokens and that adversarial parties do not make the
protocol abort. We proved that these protocols achieve CPAP—informally, CP against rational
attackers—assuming the penalties to the attacker when adversarial parties are caught aborting,
outweigh the benefits of collusion. In this section, we present penalization schemes against aborting
parties, taking the (theoretical) penalties to a real, financial punishment. The first solution makes
no assumption on the protocol being run, whereas the second requires publicly identifiable abort,
i.e., that the correctness of protocol messages are verifiable by an external entity.

Our first simple solution Πsimple
penalize assumes the existence of a functionality (Figure 7) which

requires all players to deposit collateral, for example on the blockchain to a smart contract, prior
to the start of the game. We remark that this blockchain need not be collusion-preserving, but
we require that parties do not access it during protocol execution. During the offline protocol
execution, the parties engage in ΠHT or ΠHT-FBS, and are instructed to query the functionality again
to reclaim the collateral only if the protocol ends without abort. Parties can only receive the
deposits back if every party in the protocol sends RECLAIM to the functionality. Intuitively, this

25

solution disincentivizes misbehavior assuming one honest party. Adversarial parties know that if
they abort, then the honest party will never reclaim, causing everyone to lose their collateral. Thus,
a rational attacker would not misbehave and honest parties would not need to lose their collateral,
making this protocol CPAP.

Below, we state formally the concrete utilities implemented by the simple penalization scheme.

Theorem 5. The n-party protocol Πsimple
penalize with deposit amount d gives concrete negative payoff

of γabort = −td to the attacker and negative payoff −(n− t)d to the protocol designer in the event
Eabort.

By Theorem 4, we obtain CPAP by setting the deposit amount d such that td > γcollude (where
γcollude is the payoff to the attacker in the event he is able to collude). However, this solution is
not incentive compatible (i.e., CPIC (Definition 6)) when the designer also cares about the honest
parties’ deposits. He has incentive to deviate from the protocol, as he loses utility in the event Eabort

since all parties, including honest ones, are punished for one party’s misbehavior. He improves his
utility by deviating from the penalization scheme and allowing everyone to reclaim their collateral,
even when honest parties detect collusion.

The functionality interacts with a set of parties P = {p1, . . . , pn′}. It maintains a dictio-
nary PSet of tuples (pid,Π,Activepid) (initialized as ∅), indexed by pid. Activepid is the
subset of P who have deposited money to run protocol instance pid. We denote PSet.pid
as the tuple (Π,Activepid) corresponding to pid, or equal to ∅ if pid is not found in PSet.
The functionality is parameterized by a deposit amount d, a tuple of initial balances of
each party, Balance = (b1, . . . , bn′) For each honest party pi we assume that their initial
balance is greater than the deposit(s) they will make.

- Upon receiving (INITIALIZE, sid, pid,Π,Active) from party pi: If PSet.pid = ∅, Π is a
n-party protocol, and for each pi ∈ Active, bi ≥ d:

1. Wait: If all pi ∈ Active have sent (INITIALIZE, sid, pid,Π,Active), continue.
2. Deposit collateral for each party: for each party pi ∈ Active: bi ← bi − d
3. PSet← PSet ∪ (pid,Π,Activepid = Active)
4. Send the message (INITIALIZE, sid, pid,Π,Activepid) to each party pi ∈ Active.

- Upon receiving (RECLAIM, sid, pid) from party pi ∈ Activepid:
1. Wait to receive the same message (RECLAIM, sid, pid) from each pi ∈ Activepid.

If received this message from all pi ∈ Activepid, continue to return deposits to
all parties.

2. For each pi ∈ Activepid, return the deposit to pi: bi ← bi + d.
3. Activepid ← Activepid\{pi}, PSet← PSet\{(pid,PSet.pid)}

Figure 7: F simple
penalize

9.1 Penalization functionality

The solution above, while simple, is not incentive compatible (CPIC), as it requires the honest
party to complain about misbehavior even at the cost of his own collateral being lost. We describe
below a penalization functionality Fpenalize that only punishes misbehaving parties.

26

Informally, our penalization functionality disincentivizes misbehavior by allowing parties to
run a protocol only if all parties have deposited a collateral. Throughout the protocol, it keeps
track of signed protocol messages. A party can reclaim their collateral if they have behaved cor-
rectly throughout protocol execution; otherwise, their collateral is split among the other parties.
Specifically, the penalization functionality Fpenalize (Fig. 8) allows parties to run multiple protocol
instances (simultaneously) and penalize aborting behavior while compensating honest parties. In
an ideal execution, before the protocol begins, parties register the protocol to be run and deposit
collateral via INITIALIZE. Once all parties have deposited collateral for an initialized protocol
instance, the parties can begin the protocol. The functionality keeps track of all messages sent
during the execution of each protocol instance (via the parties submitting PROTOCOL messages to
the functionality). A party can reclaim their collateral by sending message RECLAIM, if the protocol
instance has ended and the party has behaved correctly—which can be verified for protocols whose
messages that are secure with publicly identifiable abort (e.g. ΠHT and ΠHT-FBS).

We remark that Fpenalize can be implemented using a blockchain, for example following the
approach of [KZZ16]. There, parties make deposits on the blockchain before running an MPC
protocol, and can only reclaim their deposits if they submit correct messages to the blockchain
at each round. In particular, if the MPC protocol has constant number of rounds, [KZZ16] only
requires a constant number of ledger rounds. We note that in such a case, parties currently engaged
in the protocol (e.g. a poker game) should not be able to use the blockchain for any other purpose.
That is, at each round, a party can only decide whether to send a message for a specific protocol, or
not send any messages at all. Under this assumption, no party can misbehave in any way (including
sending subliminal messages) without being penalized. This restriction can be achieved even when
the blockchain is not collusion-preserving, assuming parties in the MPC protocol only have black
box access to the blockchain (for example, the parties involved in the MPC are different from nodes
in the blockchain network), and the blockchain is only used for protocol penalization.

9.2 Protocol with compensation/penalization.

We describe Πpenalize (Fig. 8), which uses Fpenalize as penalization functionality. We denote by Π
the n-party CP-protocol with publicly identifiable abort and pid the protocol instance’s ID.

Initialize protocol and deposit collateral. Each party pi takes as input a protocol Π, time the
protocol starts τ , time for each round r, instance ID pid (which pi wishes to run), and the set of
parties running the protocol instance Activepid.

1. Each party pi ∈ Activepid submits the message (INITIALIZE, sid, pid,Π,Active, τ, r).
2. If pi receives (INITIALIZE, sid, pid,Π,Activepid, τ, r) from the functionality, continue. Other-

wise, stop execution.
Protocol execution. Let pid be the ID of a protocol instance that is currently being executed. For
each round where pi should send a message m in the protocol, submit (PROTOCOL, sid, pid, pi,m) to
Fpenalize.
Reclaim collateral. Let pid be the ID of a terminated protocol instance. pi submits message
(RECLAIM, sid, pid) to Fpenalize.

The above protocol, in contrast to Πsimple
penalize, results in positive payoff to the protocol designer

when honest parties punish misbehavior (Eabort). That is, Πpenalize is compatible with the designer’s
incentives.

27

The functionality interacts with a clock functionality Gclock, and with a set of parties P =
{p1, . . . , pn′}. It maintains a dictionary PSet of tuples (pid,Π,Activepid,PStatepid, τ, r)
(initialized as ∅), indexed by pid. Activepid is the subset of P who have deposited money
to run protocol instance pid, PStatepid is the protocol state (initialized as ∅) which keeps
track of all protocol messages (PROTOCOL, · · ·) sent by parties in Activepid, τ is the time
which the protocol instance begins, and r is the time for each round in the protocol
instance. We denote PSet.pid as the tuple (Π,Activepid,PStatepid) corresponding to pid,
or equal to ∅ if pid is not found in PSet.
The functionality is parameterized by a deposit amount d, and a tuple of initial balances
of each party, Balance = (b1, . . . , bn′). For each honest party pi we assume that their
initial balance is greater than the deposit(s) they will make. We assume that each
protocol Π accepted by INITIALIZE has the property that the correctness of the protocol
messages is publicly verifiable

- Upon receiving (INITIALIZE, sid, pid,Π,Active, τ, r) from party pi: If PSet.pid = ∅, Π
is a n-party protocol, and for each pi ∈ Active, bi ≥ d:

1. Wait: If all parties pi ∈ Active send (INITIALIZE, sid, pid,Π,Active, τ, r) by
time τ , continue.

2. Deposit collateral for each party: for each party pi ∈ Active: bi ← bi − d
3. Send message (CLOCK-READ, sid) to Gclock and receive (CLOCK-READ, sid, τ).
4. PSet← PSet ∪ (pid,Π,Activepid = Active,PStatepid = ∅, τ, r)
5. Send (INITIALIZE, sid, pid,Π,Activepid, τ, r) to each party pi ∈ Active.

- Upon receiving (PROTOCOL, sid, pid, pi,m) from party pi ∈ Activepid:
1. Send (CLOCK-READ, sid) to the clock Gclock, and receive (CLOCK-READ, sid, τ).
2. PStatepid ← PStatepid || (PROTOCOL, sid, pid, pi,m, τ)

- Upon receiving (RECLAIM, sid, pid) from party p ∈ Activepid, check PState to see if the
protocol has terminated. If so, for each pi ∈ Activepid, check if pi behaved correctly
during the protocola:

1. If pi behaved correctly, return the deposit to pi: bi ← bi + d.
2. Otherwise, pi’s collateral is split as compensation for other parties. For each

pj ∈ Activepid, pj 6= pi: bj ← bj +
⌊

d
n−1

⌋
3. Activepid ← Activepid\{pi}
4. PSet← PSet\{(pid,PSet.pid)}

aThis can be checked as Π’s messages are publicly verifiable and time-stamped so that we can check
whether they are sent at the correct round using τ and r

Figure 8: Fpenalize

Theorem 6. The n-party protocol Πpenalize with deposit amount d gives concrete negative payoff of
γabort = −d to the attacker and positive payoff d

n−1 to the protocol designer in the event Eabort.

10 Acknowledgments

Michele Ciampi is supported by H2020 project PRIVILEDGE #780477.

28

References

[ADMM14] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek.
Secure multiparty computations on bitcoin. In 2014 IEEE Symposium on Security
and Privacy, pages 443–458, Berkeley, CA, USA, May 18–21, 2014. IEEE Computer
Society Press.

[AKL+09] Joël Alwen, Jonathan Katz, Yehuda Lindell, Giuseppe Persiano, abhi shelat, and Ivan
Visconti. Collusion-free multiparty computation in the mediated model. In Shai Halevi,
editor, Advances in Cryptology – CRYPTO 2009, volume 5677 of Lecture Notes in
Computer Science, pages 524–540, Santa Barbara, CA, USA, August 16–20, 2009.
Springer, Heidelberg, Germany.

[AKMZ12] Joël Alwen, Jonathan Katz, Ueli Maurer, and Vassilis Zikas. Collusion-preserving com-
putation. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology
– CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 124–143,
Santa Barbara, CA, USA, August 19–23, 2012. Springer, Heidelberg, Germany.

[AOZZ15] Joël Alwen, Rafail Ostrovsky, Hong-Sheng Zhou, and Vassilis Zikas. Incoercible multi-
party computation and universally composable receipt-free voting. In Rosario Gen-
naro and Matthew J. B. Robshaw, editors, Advances in Cryptology – CRYPTO 2015,
Part II, volume 9216 of Lecture Notes in Computer Science, pages 763–780, Santa
Barbara, CA, USA, August 16–20, 2015. Springer, Heidelberg, Germany.

[AsV08] Joël Alwen, abhi shelat, and Ivan Visconti. Collusion-free protocols in the mediated
model. In David Wagner, editor, Advances in Cryptology – CRYPTO 2008, volume
5157 of Lecture Notes in Computer Science, pages 497–514, Santa Barbara, CA, USA,
August 17–21, 2008. Springer, Heidelberg, Germany.

[BGM+18] Christian Badertscher, Juan A. Garay, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas.
But why does it work? A rational protocol design treatment of bitcoin. In Jesper Buus
Nielsen and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018,
Part II, volume 10821 of Lecture Notes in Computer Science, pages 34–65, Tel Aviv,
Israel, April 29 – May 3, 2018. Springer, Heidelberg, Germany.

[BK14] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair proto-
cols. In Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology –
CRYPTO 2014, Part II, volume 8617 of Lecture Notes in Computer Science, pages
421–439, Santa Barbara, CA, USA, August 17–21, 2014. Springer, Heidelberg, Ger-
many.

[BKM17] Iddo Bentov, Ranjit Kumaresan, and Andrew Miller. Instantaneous decentralized
poker. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology –
ASIACRYPT 2017, Part II, volume 10625 of Lecture Notes in Computer Science, pages
410–440, Hong Kong, China, December 3–7, 2017. Springer, Heidelberg, Germany.

[BL18] Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round
oblivious transfer via garbled interactive circuits. In Jesper Buus Nielsen and Vincent
Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, Part II, volume 10821

29

of Lecture Notes in Computer Science, pages 500–532, Tel Aviv, Israel, April 29 –
May 3, 2018. Springer, Heidelberg, Germany.

[Can00] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067, 2000. http://eprint.iacr.
org/2000/067.

[Can03] Ran Canetti. Universally composable signatures, certification and authentication.
Cryptology ePrint Archive, Report 2003/239, 2003. http://eprint.iacr.org/2003/
239.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable
security with global setup. In Salil P. Vadhan, editor, TCC 2007: 4th Theory of
Cryptography Conference, volume 4392 of Lecture Notes in Computer Science, pages
61–85, Amsterdam, The Netherlands, February 21–24, 2007. Springer, Heidelberg,
Germany.

[CJS14] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security with a
global random oracle. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM
CCS 2014: 21st Conference on Computer and Communications Security, pages 597–
608, Scottsdale, AZ, USA, November 3–7, 2014. ACM Press.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally compos-
able two-party and multi-party secure computation. In 34th Annual ACM Symposium
on Theory of Computing, pages 494–503, Montréal, Québec, Canada, May 19–21, 2002.
ACM Press.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agree-
ment. SIAM Journal on Computing, 12(4):656–666, 1983.

[GB96] Shafi Goldwasser and Mihir Bellare. Lecture notes on cryptography. Summer course
Cryptography and computer security at MIT, 1999:1999, 1996.

[GKM+13] Juan A. Garay, Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas.
Rational protocol design: Cryptography against incentive-driven adversaries. In 54th
Annual Symposium on Foundations of Computer Science, pages 648–657, Berkeley,
CA, USA, October 26–29, 2013. IEEE Computer Society Press.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental
poker keeping secret all partial information. In 14th Annual ACM Symposium on
Theory of Computing, pages 365–377, San Francisco, CA, USA, May 5–7, 1982. ACM
Press.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28(2):270–299, 1984.

[Gol09] Oded Goldreich. Foundations of cryptography: volume 2, basic applications. Cambridge
university press, 2009.

30

http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2003/239
http://eprint.iacr.org/2003/239

[IKLP06] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. On combining privacy
with guaranteed output delivery in secure multiparty computation. In Advances in
Cryptology - CRYPTO 2006, 26th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 20-24, 2006, Proceedings, pages 483–500, 2006.

[IOZ14] Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party computation with
identifiable abort. In Juan A. Garay and Rosario Gennaro, editors, Advances in Cryp-
tology – CRYPTO 2014, Part II, volume 8617 of Lecture Notes in Computer Science,
pages 369–386, Santa Barbara, CA, USA, August 17–21, 2014. Springer, Heidelberg,
Germany.

[KB14] Ranjit Kumaresan and Iddo Bentov. How to use bitcoin to incentivize correct compu-
tations. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014: 21st
Conference on Computer and Communications Security, pages 30–41, Scottsdale, AZ,
USA, November 3–7, 2014. ACM Press.

[KB16] Ranjit Kumaresan and Iddo Bentov. Amortizing secure computation with penalties.
In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
and Shai Halevi, editors, ACM CCS 2016: 23rd Conference on Computer and Com-
munications Security, pages 418–429, Vienna, Austria, October 24–28, 2016. ACM
Press.

[KMB15] Ranjit Kumaresan, Tal Moran, and Iddo Bentov. How to use bitcoin to play decentral-
ized poker. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, ACM CCS
2015: 22nd Conference on Computer and Communications Security, pages 195–206,
Denver, CO, USA, October 12–16, 2015. ACM Press.

[KMTZ13] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally com-
posable synchronous computation. In Amit Sahai, editor, TCC 2013: 10th Theory of
Cryptography Conference, volume 7785 of Lecture Notes in Computer Science, pages
477–498, Tokyo, Japan, March 3–6, 2013. Springer, Heidelberg, Germany.

[KZZ16] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party
computation using a global transaction ledger. In Marc Fischlin and Jean-Sébastien
Coron, editors, Advances in Cryptology – EUROCRYPT 2016, Part II, volume 9666 of
Lecture Notes in Computer Science, pages 705–734, Vienna, Austria, May 8–12, 2016.
Springer, Heidelberg, Germany.

[LMPs04] Matt Lepinski, Silvio Micali, Chris Peikert, and abhi shelat. Completely fair sfe and
coalition-safe cheap talk. In Soma Chaudhuri and Shay Kutten, editors, 23rd ACM
Symposium Annual on Principles of Distributed Computing, pages 1–10, St. John’s,
Newfoundland, Canada, July 25–28, 2004. Association for Computing Machinery.

[LMs05] Matt Lepinski, Silvio Micali, and abhi shelat. Collusion-free protocols. In Harold N.
Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium on Theory of Com-
puting, pages 543–552, Baltimore, MA, USA, May 22–24, 2005. ACM Press.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party
computation. Journal of Cryptology, 22(2):161–188, April 2009.

31

[PR18] Arpita Patra and Divya Ravi. On the exact round complexity of secure three-party
computation. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryp-
tology – CRYPTO 2018, Part II, volume 10992 of Lecture Notes in Computer Science,
pages 425–458, Santa Barbara, CA, USA, August 19–23, 2018. Springer, Heidelberg,
Germany.

[PST17] Rafael Pass, Elaine Shi, and Florian Tramèr. Formal abstractions for attested exe-
cution secure processors. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
Advances in Cryptology – EUROCRYPT 2017, Part I, volume 10210 of Lecture Notes
in Computer Science, pages 260–289, Paris, France, April 30 – May 4, 2017. Springer,
Heidelberg, Germany.

A Security proofs

A.1 Proof of Theorem 1

Proof. We start the proof by assuming that at least one party is honest. In order to prove this
part of the theorem we need to show a collection of efficiently computable transformations Sim =
{Sim1, . . . ,Simn} mapping ITMs to ITMs such that for every set of adversaries A = {A1, . . . ,An},
and every PPT environment Z the following holds:

cp-execḠ,RΠHT,A,Z ≈ cp-execḠ,Fφ,Sim(A),Z

For i = 1, . . . n, the simulator Si = Sim(Ai) queries(GetTrapdoor, sid) F? with the command
(GetTrapdoor, sid). F? checks that sid is equal to its session id. If it is, then F? sends (Trapdoor, sid)
to T HT. T HT then generates the string K̃, n couples of signing-verification keys, and authenti-
cates the verification keys using the master secret key msk (as shown in Fig 1) thus obtaining
((sigk1, vk1, cert1), . . . , (sigkn, vkn, certn), K̃). F? then sends T HT this information to F? which for-
wards them to the simulator Si.
Si then computes PRG(K̃) = R, parses R as r1|| . . . ||rn−1||r′1|| . . . r′n−1 and computes ej ←

Enc(pkn, 0
λ; rj), σj ← Sign(sigkj , ej) for all j ∈ {1, . . . , n− 1}. In addition, the simulator computes

the value (y1, . . . , yn−1, f, vkn, σ, certn) where for j = 1, . . . , n − 1, yj ← Enc(pkj , 0
λ; r′j) and σ ←

Sign(sigkn, y1|| . . . ||yn−1||f ||sid). From here onwards the behaviors of the simulators differ. Without
loss of generality we describe how the simulator S1 works since Si with i ∈ {2, . . . , n−1} will follow
exactly the same strategy as S1. We then show how the simulator Sn works.

S1. The simulator S1 internally runs the adversary A1, emulates the token functionality T HT for
A1 for the session id sid and acts on the behalf of the parties p2, . . . , pn. S1 executes the following
steps.

1. Send (e2, f, vk2, σ2, cert2), . . . , (en−1, f, vkn−1, σn−1, certn−1) to A1.
2. If A1 sends I = (Input, sid, x, f ′) to T HT then do the following.

- If ctrsid1 is not defined then define it and set ctrsid1 ← 1 otherwise output ⊥ and stop.

- Output (e1, f, vk1, σ1, cert1)

3. If A1 sends (e1, f, vk1, σ1, cert1) over broadcast then send (sid, x1) to F .
4. Upon receiving y1 from F send (y1, . . . , yn−1, f, vkn, σ, certn) to A1.

32

5. Upon receiving (Output, sid, z) from p1, if z = (y1, . . . , yn−1, f, vkn, σ, certn) then send y1 to
A1, output ⊥ otherwise.

Sn. The simulator Sn internally runs the adversary p?n, emulates the token functionality T HT for
p?n for the session id sid and acts on the behalf of the parties p1, . . . , pn−1. Sn executes the following
steps.

1. Send ((e1, f, vk1, σ1, cert1), . . . , (en−1, f, vkn−1, σn−1, certn−1)) to p?n.
2. If I = (Input, sid, xn, f

′, (e′1, f1, vk′1, σ
′
1, cert′1), . . . , (e′n−1, fn−1, vkn−1, σ

′
n−1, cert′n−1)) is re-

ceived from p?n, then check if for j = 1, . . . , n−1: e′j = ej , σ
′
j = σj , vkj = vk′j and certi = cert′i.

If it is not, then output ⊥ and stop, otherwise execute the following steps.

- If ctrsidn is not defined then defined it and set ctrsidn ← 1 otherwise output ⊥ and stop.

- Send xn to F and upon receiving yn from F send (y1, . . . , yn−1, f, vkn, σ, certn) to p?n.

The main differences from the real world are that the adversarial parties see dummy encryp-
tions instead of the encryptions. We note that the simulation strongly relies on the fact that the
adversaries cannot forge the signatures output of the hardware token functionalities. Indeed, by
forging a signature an adversary could: 1) change the input of another party, or 2) use the inputs
of the honest parties to evaluate a functions f ′ 6= f or 3) evaluate the same function multiple times
on the same honest parties inputs by changing the value sid thus completely breaking the security
of the protocol.

In the case that all the parties are corrupted then we rely on the fact that F is CP-well-formed
functionality and we allow the adversarial parties to communicate freely via F . More precisely,

1. Whenever a message m is received on the ith adversarial interface, F outputs (i,m) to the
first adversarial interface.

2. Whenever a message of the form (i,m) is received on the first adversarial interface, F outputs
the message m to the ith adversarial interface.

A.2 Proof of Lemmata 1 and 2

A.2.1 Proof of Lemma 1.

We start the proof by assuming that at least one party is honest. In order to prove this part
of the theorem we need to show a collection of efficiently computable transformations Sim =
{Sim1, . . . ,Simn} mapping ITMs to ITMs such that for every set of adversaries A = {A1, . . . ,An},
and every PPT environment Z the following holds:

cp-execḠ,RΠHT-FBS,A,Z ≈ cp-execḠ,Fφ,Sim(A),Z

By assumption on the security of the MPC protocol, we know that ∀A ∃S ∀Z such that

execḠ,B
ΠMPC,A,Z ≈ execḠ,FS,Z .

We consider now S for the case where there are no corrupted parties and describe how Si =
Sim(A)i works for i = 1, . . . n. Without loss of generality we formally describe how the simulator
S1 works since the other simulators follow exactly the same strategy.

33

The simulator S1 queries (GetTrapdoor, sid) F? with the command (GetTrapdoor, sid). F?
checks that sid is equal to its session id. If it is, then F? sends (Trapdoor, sid) to
T HT-FBS. T HT-FBS then generates the string K̃, n couples of signing-verification keys, and au-
thenticates the verification keys using the master secret key msk (as shown in Fig 4) thus
obtaining ((sigk1, vk1, cert1), . . . , (sigkn, vkn, certn), K̃). T HT-FBS sends this information to F?
which forwards them to the simulator S1. S1 then computes PRG(K̃) = R, parses R as
ρ||r1

1|| . . . ||r
m+1
1 || . . . ||r1

n|| . . . ||rm+1
n and uses ρ to run the simulator of the MPC, S. Let

{msg`j}j∈[n],`∈[m] be the messages contained in the transcript obtained by the MPC simulator S.

For all j ∈ [n] and ` ∈ [m] computes σ`j ← Sign(sigkj , msg
`
j ||ΠMPC||`; r`j). Then S1 executes the

following steps.

• Send (msg`2, vk2, σ
`
2, cert2), . . . , (msg`n, vkn, σ

`
n, certn) to A1.

• If I = (Input, sid, x1, R1,Π
MPC) is received from A1 then do the following.

- If ctrsid = 0 then ctrsid
′ ← 1 otherwise output ⊥ and stop.

- Set x← x1, l← 1 and send (msg1
1,Π

MPC, vk1, σ
1
1, cert1) to A1.

- If I = (NextMsg, sid, {msg`i
′
, σ`i
′
, vki

′, certi
′}i∈[n]) is received then do the following.

- If ` 6= l or l > m output ⊥ and stop, otherwise continue with the following steps.

- For all j ∈ [n] if msg`j 6= msg`j
′

or σ`j 6= σ`j
′

or certi
′ 6= certi or vki

′ 6= vki then output
(⊥, pi) and stop.

- Set l← l + 1.

- If ` ≤ m then send (msgl1, sid,ΠMPC, σl1) to A1.

- If ` = m+ 1 then send x to F . Upon receiving y1 from F send y1 to A1.

The proof relies on the observation that (unless the adversary breaks the security of the strong
signature scheme), then the adversary just acts as an observer on the channel. That is, the corrupted
party A1 can only inspect the messages generated by T HT-FBS

1 and the messages received on the
channel which are honestly generated using T HT-FBS.7 For this reason S1, . . . ,Sn can run a simulator
S of ΠMPC that works when there are no corrupted parties. We recall that the behavior of the
corrupted parties cannot influence the output of S as long as the signature scheme is secure.

A.2.2 Proof of Lemma 2.

This proof follows immediately from the GUC security of ΠMPC. Indeed, we note that the token
functionalities simply run ΠMPC even in the case that a unsigned message is received (or a message
is not received at all). This also enables identifiable abort (unanimous abort) if ΠMPC enables it.

7If that is not the case then either the protocol would abort, or a reduction to the security of the signature scheme
can be done.

34

A.3 Proof of Theorem 4

Proof. In the case that all the parties are malicious then we rely on the fact that 〈Ff 〉 is CP-well-
formed functionality and we allow the adversarial parties to communicate freely via 〈Ff 〉 following
the same approach proposed in the proof of Theorem 1.

In the case that at least one party is honest then we need to show collection of efficiently
computable transformations Sim = {Sim1, . . . ,Simn} mapping ITMs to ITMs such that for every
set of adversaries A = {A1, . . . ,An}, and every PPT environment Z the following holds:

cp-execḠ,RΠHT,A,Z ≈ cp-exec
Ḡ,〈Ff 〉
φ,Sim(A),Z

The simulators are equal to the simulators showed in the proof of Theorem 1 except for the
following details. If Si receives an invalid message m from p?i (i.e. a message that would yield an
honest party to abort) then Si sends (COLLUDE, sid,m) to 〈Ff 〉 and stops. This situation captures
the ability of the corrupted parties to interact with each others at the price of being detected by
the honest parties. Indeed, we recall that ΠHT enjoys the identifiable abort property. The payoff we
have defined ensures that an adversary is never incentivized to abort (i.e. break the CP property).
Given that we have proved in Theorem 1 that the if no party aborts then ΠHT is collusion-preserving
then we can claim that ΠHT is CPAP . The same arguments can be applied to ΠHT-FBS.

B Impossibility results in the mediated model

We motivate our study of collusion-preservation using the broadcast channel, by proving that
desirable properties—robustness, fairness, and identifiable abort—are impossible in the mediated
model when the mediator may be corrupt. We recall that in the mediated model, every party
communicates only to a central node called the mediator.

Intuitively, these impossibilities stem from the mediator being able to cut off communication
between itself and any party, at any time. Robustness is simple to show to be impossible, since
the mediator can simply stop all communication. To break fairness, the mediator can end commu-
nication in the protocol after one party receives his output and before another party receives his.
This strategy can be used also to break unanimous abort and allow one honest party to receive
his output while others do not. Lastly, identifiability is not possible as a corrupt mediator can
“frame” an honest party as having aborted, by simply ignoring messages from this party. Since
other parties only communicate through the mediator, they cannot identify whether the party or
the mediator has misbehaved.

We state and prove these impossibilities formally in the theorems below.

Theorem 7. Robustness is not possible when the mediator may be corrupted. This holds even when
all other parties are honest.

Proof. The mediator simply does nothing, and thus nothing can be computed.

Theorem 8. Consider a protocol in which each party interacts with the mediator a number of times
that is polynomial in the security parameter. Then fairness and unanimous abort are not possible
when the mediator may be corrupted, unless the output can be computed without the parties’ inputs.
This holds even if all other parties are honest.

35

Proof. We will prove that fairness and unanimous abort are impossible. Consider three parties,
honest parties Alice (A) and Bob (B), and the corrupt mediator (M) who has no inputs and some
constant as output (e.g., 1). Since the mediator controls when messages are sent during the protocol,
we consider the following protocol format: In odd-numbered interactions, A interacts with M; in
even-numbered interactions, B interacts with M.

M’s attack is the following. M guesses an interaction number in which only one of A or B has
the output (this is always possible since A and B never receive messages at the same time), and
aborts at the beginning of the interaction, depriving the other party of the output. Since there is
a polynomial number of choices, M succeeds with non-negligible probability.

Formally: Suppose the final interaction in the protocol is between A and M. Assuming that
fairness is possible, we show that if this protocol has fairness, then A and B can compute their
outputs without sending any messages.

Since the final interaction does not involve B, B must have known the output prior to the final
interaction. Suppose the corrupt M chooses to abort in the final interaction (Since the number
of rounds is polynomial, he chooses to abort at this round with non-negligible probability). By
fairness (since B knows the output without the final message), A must also be able to learn the
output without the final interaction. This means both A and B learn the output without the final
interaction.

Similarly, the second-to-last interaction (between B and M) does not involve A, so A must have
known the output prior to this interaction. By fairness, if M chooses to abort in the second-to-last
interaction, B must also be able to learn the output without this interaction. Thus both A and B
learn the output without the second-to-last round.

Continue the argument for the number of interactions, and A and B both learn the output
without sending any messages.

The proof does not work when the number of interactions is exponential. This is because the
mediator will only guess correctly with negligible probability, which interaction to abort at (we
allow negligible failure of the fairness property).

Theorem 9. Identifiability is not possible in the mediated model when the mediator may be cor-
rupted, regardless of the number of honest parties.

Proof. We show that it is impossible to distinguish between a case where the mediator is corrupt,
or some other party A is corrupt. Suppose a corrupt mediator M wishes to simulate a party A
aborting at round r. M follows the protocol until round r − 1. At rounds ≥ r, M simply ignores
(does not send nor receive from) A, and does whatever it is supposed to do when A aborts. Since
all parties communicate only via M, the messages they receive in this scenario are exactly the same
as if the mediator were honest, but a corrupt party A has followed the protocol before round r
and stops sending messages after round r. Thus, they cannot correctly identify whether M or A is
corrupt in the case of an abort.

C Motivation for using compensation paradigm for disincentiviz-
ing aborts

In this work we observe that the notions of collusion-preservation (and so collusion-freeness) do
not capture all the possible attacks that an adversary can do in order to send subliminal message.

36

Indeed and adversary A = (A1,A2) could adapt the following strategy. A1 aborts any time that
his input has the last two bits different from 00. Clearly, even if A1 and A2 are isolated, in the
case that the protocol does not abort A2 has some information about A1’s input that the honest
parties do not have. This attack becomes more interesting in the case of reactive functionalities,
where the parties can get intermediate outputs. As a concrete example of reactive functionality we
consider the game of poker. We can think to use a CP protocol to shuffle a deck of cards and let
the parties play. An adversary A could have a strategy in which A1 aborts if he does not have an
ace and a king in the second hand, and continues the game otherwise. It should be easy to see that
with high probability A1 will be able to communicate more than one bit of information to A. We
note that this issue arises only because the CP definition allows the parties to abort, which is in
general an unavoidable attack.

D Hardware token

Our protocols assume that each party has access to a stateful hardware token which might perform
fresh encryptions and signatures with respect to some hidden keys. Moreover, an adversary that has
physical access to the HT can only query it and get the result back, without having the possibility to
inspect the intermediate steps of the computation or tamper with the token. A similar assumption
is used in [AOZZ15] to generate randomness hidden from the adversary, in order to obtain receipt-
freeness. The work of [PST17] provides a formal and composable abstraction of the Intel SGX
hardware token, which has all the features we have just described. In this work, following [AOZZ15],
we abstract the hardware token by means of an ideal functionality that has a secret state (the secret
keys), a public state (the public key and the signature verification key) and code. All the outputs
of the HT are signed together with the code that has been run to generate the output. This process
is called attestation and assures parties holding the verification key of the HT that the output has
been generated following a specified code. In order to simplify our token functionality description
we omit the signature of the code. We note that by assuming the existence of hardware tokens we
are also implicitly assuming a setup assumption that is stronger than a public key infrastructure
(PKI). Indeed, we require that all parties running our protocol know each other hardware token
public keys and that those public keys are generated honestly. However, we note this approach is
still meaningful in the context of collusion-freeness/collusion-preservation since the hardware token
(and the public keys) are generated before inputs are given to the parties and even before the
function being computed is agreed upon.

E Mediated model vs hardware token

A natural question is whether trusted hardware and non-aborting adversaries are too strong as
assumptions. We answer this in the negative. We show that (stateful) hardware tokens are insuf-
ficient to obtain CP when the communication resource is a broadcast channel and the parties are
allowed to abort. Hence, this implies that the assumption that hardware tokens exist is weaker
than assuming that a mediator exists. Conversely, we show that the an honest mediator can be
used to obtain an hardware token.

To prove the first implication (that HT and broadcast are weaker than a mediator in the star
topology) we just observe that an adversary can send any message over the channel without filter.

37

This means that nothing prevents an adversary A1 from sending an encrypted message to another
adversarial party A2 using the public key of A2.

To prove the other implication we simply observe that an honest mediator can run any code,
hence, he can also run the code of a hardware token. Since the mediator is assumed to be honest,
then we implicitly have a proof that a computation made by the mediator has been done correctly.
In addition, the mediator is a party that can have secret information that are not accessible to
anybody else (since the adversary does not have the power to corrupt it), exactly like a hardware
token.

F A note on games with short strategy description

In [LMs05] it is observed that it would be trivial to avoid subliminal communication in a model in
which players commit to their strategy (when the strategy can be described in a short way) and
then run a secure function evaluation on these commitments. Indeed, once the strategy of a game
is committed in a collusion-preserving manner, if the parties are not allowed to abort, then any
subliminal communication between the malicious parties cannot harm the outcome of the game.
The situation is more complicated in the case that the malicious parties are allowed to abort since
such a behaviour could cause the game to stop. The aborts can be prevented by simply using the
approach proposed in [KZZ16]. In this the authors show how to promote a protocol Π that securely
evaluate the function f with publicly identifiable abort into a “robust” protocol Π′. That is, either
Π′ terminates and the honest parties get the output, or the parties that were behaving honestly
get a monetary compensation via a blockchain.

To obtain CP for games with short strategy description we simply let the parties to commit
to their strategies and their inputs using a collusion-preserving protocol that allows the parties
to abort (like our protocol). And if the commitment phase has been successful then we run the
protocol Π′ as described above using as input the committed values.

G A note on correlated equilibria

In strategic games, players can achieve correlated equilibrium by observing the same public signal.
In our construction, this public signal can be the setup (e.g. public keys) or the broadcasted protocol
messages. Similarly, the original CP construction by Alwen et al. introduces a public signal as a
GUC-complete setup (e.g., ACRS) is assumed [Theorem 5.1, [AKMZ12]]. Indeed, this introduces
additional correlated equilibria to the ideal game; however, collusion preservation ensures that no
meaningful information (about the input or output) can be communicated using the additional
correlation.

H Formal definitions

Definition 7 (Strong unforgeable signature scheme). A triple of ppt algorithms (Gen, Sign,Ver)
is called a signature scheme if it satisfies the following properties.

Completeness: For every pair (s, v)
$←− Kgen(1λ), and every m ∈ {0, 1}λ, we have that

Pr[Ver(v,m,Sign(s,m)) = 0] < ν(λ).

38

Consistency (non-repudiation): For any m, the probability that Kgen(1λ) generates (s, v) and
Ver(v,m, σ) generates two different outputs in two independent invocations is smaller than
ν(λ).

(Strong) Unforgeability: For every ppt A, there exists a negligible function ν, such that for all
auxiliary input z ∈ {0, 1}? it holds that:

Pr[(s, v)
$←− Kgen(1λ); (m,σ)

$←− ASign(s,·)(z, v)∧
Ver(v,m, σ) = 1 ∧ (m,σ) /∈ Q] < ν(λ)

where Q denotes the set of the couples message-signature {(mi, σi)}i∈λ where mi is requested

by A to the oracle Sign(s, ·) which returns σi
$←− Sign(s,mi) for all i ∈ {1, . . . , λ}.

In this paper we also make use of the UC-signature functionality proposed in [Can03] that we
denote with FSIGN. We also use the the fact that a scheme Σ = (Gen, Sign,Ver) that satisfies Def. 7
can be turned into a scheme that UC-realized the functionality FSIGN [Can03, Thm 2]. We assume
familiarity with FSIGN, and for more discussion on this functionality we refer the reader to Sec. I.1
Fig. 9.

Definition 8 (CPA-secure Symmetric Encryption Scheme (from notes of [GB96], Definition 6.8)).
A triple of ppt algorithms SE = (Gen,Enc,Dec) is called a chosen-plaintext-attack-secure symmetric
encryption scheme if it satisfies the following properties.

Completeness: For every secret key s
$←− Gen(1λ), and every m ∈ {0, 1}λ, we have that

Pr[Dec(s,Enc(s,m)) = m] = 1.

CPA-Security: Let the left-or-right encryption oracle be as follows, where b ∈ {0, 1}, m0,m1 ∈
{0, 1}λ:

Oracle Enc(LR(m0,m1, b)):
if |m0| 6= |m1| then return ⊥
c

$←− Enc(mb)
return c

Let A be an adversary. We consider the following experiments:

Experiment Expind-cpa-1
SE (A) : Experiment Expind-cpa-0

SE (A) :

s
$←− Gen(1λ) s

$←− Gen(1λ)

d
$←− AEnc(LR(·,·,1)) d

$←− AEnc(LR(·,·,0))

return d return d

For every ppt A, there exists a negligible function ν such that it holds that:∣∣∣Pr[Expind-cpa-1
SE (A) = 1]− Pr[Expind-cpa-0

SE (A) = 1]
∣∣∣ < ν(λ)

39

Definition 9 (Pseudo-Random Function (from book of [Gol09])). A function PRF : {0, 1}λ ×
{0, 1}λ → {0, 1}cλ is called a pseudo-random function if it satisfies the following properties.

Efficient: For every k ∈ {0, 1}λ, and every m ∈ {0, 1}cλ, there exists a ppt algorithm to compute
PRFk(m) = PRF(k,m).

Indistinguishable from Random: For every ppt A, there exists a negligible function ν, such
that for all auxiliary input z ∈ {0, 1}? it holds that:∣∣∣∣∣∣ Pr

k
$←−{0,1}λ

(APRFk(z) = 1)− Pr
f

$←−F
(Af (z) = 1)

∣∣∣∣∣∣ < ν(λ)

where F = {f : {0, 1}λ → {0, 1}cλ}

Definition 10 (CP-well-formed functionality). We say that a CP functionality F is a CP-well-
formed functionality if, when all parties are corrupt F has the following behavior on its adversaries’
interfaces:

1. Whenever a message m is received on the ith adversarial interface, F outputs (i,m) to the
first adversarial interface.

2. Whenever a message of the form (i, msg) is received on the first adversarial interface, F
outputs the message m to the ith adversarial interface.

I UC security with global setup (GUC)

The core of (GUC) security is the indistinguishability between the real and ideal worlds. In the
real world, parties execute a protocol Π and communicate over a channel defined in the model.
In the ideal world, parties access a functionality F which obtains inputs from them and returns
to them the output directly. A protocol Π securely-realizes a functionality F if any adversary A
in the real world can be emulated by a simulator Sim in the ideal world. That is, the two worlds
cannot be distinguished by a distinguisher, called the environment Z. In addition, the property of
composability means that a protocol Π remains secure, even after replacing its calls to a subroutine
F1 (a functionality) with calls to a protocol Π1 that securely realizes F1. We call Π a F1-hybrid
protocol.

Below, we formally define the GUC framework of Canetti et al. [CDPW07]. Let R and Ḡ be
functionalities. Let Π be a R-hybrid protocol, Ḡ a setup, A an adversary, and Z an environment.
The output of the environment Z after an execution of Π in the GUC Ḡ-hybrid model in presence

of A is denoted as execḠ,RΠ,A,Z . The output of Z in the ideal world where the simulator Sim interacts

with an ideal functionality F and the setup Ḡ is denoted as execḠ,FΠ,Sim,Z .

Definition 11 (UC with Global Setup). Let Ḡ be a global setup, and R be a resource. For an
n-party efficient protocol Π and functionality F , we say that Π GUC-realizes F if ∀A ∃Sim ∀Z

execḠ,RΠ,A,Z ≈ execḠ,FSim,Z

40

I.1 The basic signature functionality

In Fig. 9, we provide the basic UC signature functionality proposed in [Can03] modified to support
strong unforgeability.

Key Generation.
Upon receiving a value (KEY GEN, sid) from some party S ∈ P, verify that sid = (S, sid′)
for some sid. If not, then ignore the request. Else, hand (KEY GEN, sid) to the A. Upon
receiving (VERIFICATION KEY, sid, v) from the A, output (VERIFICATION KEY, sid, v) to S,
and record the pair (S, v).
Signature. If I = (SIGN, sid,m) is received from party S, verify that sid = (S, sid′) for
some sid′. If not, then ignore the request, else send (SIGN, sid,m) to A. Upon receiving
I = (SIGNATURE, sid,m, σ) from A, verify that no entry (m,σ, v, 0) is stored. If it is, then
output an error message to S and halt. Else, send (SIGNATURE, sid,m, σ) to S, and store
the entry (m,σ, v, 1).
Verification
Upon receiving a value (VERIFY, sid,m, σ, v′) from some party pi, hand (VERIFY, sid,m, σ, v′)
to the adversary. Upon receiving (VERIFIED, sid,m, φ) from the adversary do:

1. If v′ = v and the entry (m,σ, v, 1) is recorded, then set f = 1. (This condition
guarantees completeness: If the verification key v′ is the registered one and σ is a
legitimately generated signature for m, then the verification succeeds.)

2. Else, if v′ = v, the signer is not corrupted, and the entry (m,σ, v, 1) is recorded,
then set f = 0 and record the entry (m,σ, v, 0). (This condition guarantees strong
unforgeability: If v′ is the registered one, the signer is not corrupted, and a signature
σ of m has never been generated, then the verification fails.)

3. Else, if there is an entry (m,σ, v′, f ′) stored, then let f = f ′ . (This condition
guarantees consistency: All verification requests with identical parameters will result
in the same answer.)

4. Else, let f = φ and record the entry (m,σ, v′, φ)

Send (VERIFIED, sid,m, f) to pi.

Figure 9: The FSIGN functionality with strong unforgeability of [Can03]

J Modeling synchrony

In Figure 10 we model the global clock, which is used to keep track of the current time/round.

K Secure function evaluation and broadcast functionalities

In Fig. 11 and 12 we provide the SFE and broadcast functionalities proposed in [GKM+13]. In
Fig 13 we provide the formal description of the for unanimous abort functionality FUNA (the

41

The functionality is available to all participants. The functionality is parametrized
with variable τ , a set of parties P = p1, . . . , pn, and a set F of functionalities. For
each party pi ∈ P it manages variable di. For each F ∈ F it manages variable dF
Initially, τ = 0,P = ∅ and F = ∅.

- Upon receiving (CLOCK-UPDATE, sid) from some party pi ∈ P set di = 1 execute
Round-Update and forward (CLOCK-UPDATE, sid, pi) to A.

- Upon receiving (CLOCK-UPDATE, sid) from some functionality { ∈ F set dF = 1,
execute Round-Update and return (CLOCK-UPDATE, sid, F) to F .

- Upon receiving (CLOCK-READ, sid) from any participant (including the envi-
ronment, the adversary, or any ideal-shared or local-functionality) return
(CLOCK-READ, sid, τ) to the requester.

Procedure Round-Update: If dF = 1 for all F ∈ F and di = 1 for all honest pi ∈ P,
then set τ = τ + 1 and reset dF = 0 and di = 0 for all parties in P.

Figure 10: The functionality Gclock

description of the functionality extends to 3-party functionality provided in [PR18]).

FfSFE is as follows, given a function f : ({0, 1}∗ ∪ {⊥})n×R→ ({0, 1}∗)n and a set of parties
P. Initialize the variables x1, . . . , xn, y1, . . . , yn to a default value ⊥.
• Upon receiving (Input, v) from some party pi ∈ P, set xi := v and send a message

(Input, i) to the adversary.
• Upon receiving (Output) from some party pi ∈ P, do:

1. If xj has been set for all j ∈ H, and y1, . . . , yn have not yet been set, then choose

r
$←− R and set (y1, . . . , yn) := f(x1, . . . , xn, r).

2. Output yi to pi

Figure 11: The FfSFE functionality of [GKM+13]

42

B is as follows, given a set of parties P.
• Upon receiving xi from party pi ∈ P, send xi to every party in P. (If B is considered a

UC functionality, the output is given in a delayed manner, cf. [Can00])

Figure 12: The broadcast functionality B of [GKM+13]

• Upon receiving (Input, v) from some party pi ∈ P, set xi := v and send a message
(Input, i) to the adversary. If v is outside the domain of pi consider xi = ABORT.

• If there exists i ∈ {1, . . . , n} such that xi = ABORT the set (y = ⊥) else set y =
f(x1, . . . , xn) and send y to the adversary.

• Upon receiving ok from the adversary, send y to the honest parties (if they query the
functionality to get the output).

• Upon receiving ABORT from the adversary send ⊥ to the honest parties (if they query the
functionality to get the output)

Figure 13: The FUNA.

43

	Introduction
	Overview of our contributions
	Overview of our techniques

	Organization of the paper
	Related literature
	Preliminaries
	Hardware tokens and setup assumptions.
	Secure function evaluation.
	Security with identifiable (unanimous) abort.
	Collusion-preserving computation.
	Rational protocol design.

	Collusion-preservation with non-aborting adversaries
	Collusion-preservation with fallback security
	Security of HT-FBS.

	Our new model: RPD-CP
	Utility of the attacker A.
	Utility of the protocol designer D
	Security definitions

	Our CPAP protocol
	How to disincentivize aborting strategy concretely.
	Penalization functionality
	Protocol with compensation/penalization.

	Acknowledgments
	Security proofs
	Proof of Theorem 1
	Proof of Lemmata 1 and 2
	Proof of Lemma 1.
	Proof of Lemma 2.

	Proof of Theorem 4

	Impossibility results in the mediated model
	Motivation for using compensation paradigm for disincentivizing aborts
	Hardware token
	Mediated model vs hardware token
	A note on games with short strategy description
	A note on correlated equilibria
	Formal definitions
	UC security with global setup (GUC)
	The basic signature functionality

	Modeling synchrony
	Secure function evaluation and broadcast functionalities

