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Abstract. Designing cryptographic permutations and ciphers using a substitution-
permutation network (SPN) approach where the non-linear part does not cover the full
state has recently gained attention due to favourable implementation characteristics
in various scenarios.
For word-oriented partial SPN schemes with a fixed linear layer, our goal is to better
understand how the details of the linear layer affect the security of the construction.
In this paper we derive conditions which allow either to set up or to prevent attacks
based on infinitely long truncated differentials with probability 1. Our analysis is
rather broad compared to earlier independent work on this problem, since we consider
(1) both invariant and non-invariant/iterative trails, and (2) trails with and without
active S-boxes.
For these cases, we provide rigorous sufficient and necessary conditions for the matrix
that defines the linear layer in order to prevent the analyzed attacks. On the practical
side, we present a tool which is able to determine whether a given linear layer is
vulnerable based on these results. Further, we propose a sufficient condition for the
linear layer that – if satisfied – ensures that no infinitely long truncated differential
exists. This condition is related to the degree and the irreducibility of the minimal
polynomial of the matrix that defines the linear layer.
Besides P-SPN schemes, our observations may also have a crucial impact on the
recent Hades design strategy, which mixes rounds with full S-box layers and rounds
with partial S-box layers.
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1 Introduction
Modern cryptography developed many techniques that go well beyond solving traditional
confidentiality and authenticity problems in two-party communications. Among many
others, this includes practical applications of secure multi-party computation (MPC),
fully homomorphic encryption (FHE), and zero-knowledge (ZK) proofs using symmetric
primitives. Designs for these applications are usually led by the idea that linear operations
are more efficient than non-linear ones in these scenarios. This fact is also true in the
context of masking, a widespread countermeasure against side-channel attacks (SCA) in
which all the computations are performed on shared secrets.

Driven by all these application areas, many new symmetric primitives have recently
been proposed to reduce the multiplicative complexity in various ways. They include
masking-friendly designs like PICARO [42], Zorro [23], LS-designs [30], several FHE-
friendly symmetric encryption schemes such as LowMC [4], FLIP [40], Kreyvium [17],
and Rasta [22], some MPC-friendly block ciphers such as MiMC [3, 29], GMiMC [2] and
HadesMiMC [26] (and its hash variant Poseidon [24]), and some primitives dedicated to
proof systems such as Jarvis and Friday [6], Vision and Rescue [5].

1.1 Choosing the Linear Layer in Partial SPN Schemes
Some of the recalled designs (e.g., LowMC, Zorro, and Poseidon) reach the goal of
minimizing the total number of multiplications by making use of rounds with a partial
S-box layer. These designs are called partial substitution-permutation network (P-SPN)
schemes. They are a variant of SPN schemes, in which a plaintext block is transformed
into a ciphertext block by applying several alternating rounds of substitution boxes and
permutations to provide confusion and diffusion. For an SPN cipher over Ft, the substitution
layer usually consists of t parallel (independent) non-linear functions called S-boxes. The
permutation layer is in most cases a linear operation defined by the multiplication of the
state with a t× t matrix.

In the case of a partial substitution-permutation network (P-SPN), part of the substitu-
tion layer is replaced with an identity mapping, leading to substantial practical advantages
in many applications in which the cost of a non-linear operation is significantly higher than
the cost of a linear one. This approach has been proposed for the first time by Gérard
et al. [23] at CHES 2013. A concrete instantiation of their methodology is Zorro [23],
a 128-bit lightweight AES-like cipher which reduces the number of S-boxes per round
from 16 to only 4 (to compensate, the number of rounds has been increased to 24). A
similar approach has then been considered by Albrecht et al. [4] in the recent design of a
family of block ciphers called LowMC proposed at Eurocrypt 2015. LowMC is a family of
block ciphers based on an SPN structure which combines an incomplete S-box layer with
a strong linear layer in order to guarantee security and to be competitive in applications
like MPC, FHE, or ZK.

While Zorro uses the same linear layer in all rounds, LowMC uses different pseudo-
random linear layers for each round. Both these two strategies have their advantages and
disadvantages. For example, even if the second strategy may provide security against
statistical attacks (as discussed in [4]), it has some drawbacks. First, the computation time
or memory may become a problem, even when considering the optimizations proposed in
[33, 20]. Secondly, the security analysis against other attacks may become harder, since
the linear layer is different in each round. Moreover, a poor choice of the linear layers may
not provide security against statistical attacks, as shown concretely in [21].1 Finally, the

1In particular, the fact that the designers of LowMC allow to instantiate it using a pseudo-random
source that is not cryptographically secure is risky, since using an over-simplified source for pseudo
randomness may give a malicious party additional control over the LowMC instantiation, and may allow
finding weak instances much faster than exhaustively searching for them.
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possibility to have different matrices at every round can be exploited in order to insert a
backdoor, as recently shown in [41] in the case of a tweakable version of LowMC.

More generically, a considerable disadvantage of partial SPN schemes is that many
strategies proposed in the literature for SPN schemes for providing security are no longer
applicable and have to be replaced by more ad-hoc approaches. This includes the well-
known wide trail strategy [19], which is one of the main approaches used in order to achieve
provable security against various statistical attacks, as the differential [14, 15] and linear
[39] ones. Instead of choosing larger S-boxes with strong properties, the wide trail strategy
aims to design the linear round transformations in such a way that the minimum number
of active S-boxes over multiple rounds is increased. However, this strategy can only work
in the case in which the S-box layer is full (or almost full), i.e., it is not directly applicable
to most partial SPN schemes. In the case of Zorro, the heuristic argument proposed
by the designers turned out to be insufficient, as Wang et al. [45] (and later on Bar-On
et al. [9]) found iterative differential and linear characteristics that were missed by the
heuristic and used them to break full Zorro. Similarly, the authors of LowMC chose the
number of rounds in order to guarantee that no differential or linear characteristic can
cover the whole cipher with non-negligible probability. However, they do not provide
similarly strong security arguments against other attack vectors including algebraic attacks,
and key-recovery attacks on LowMC have thus been found [21].

1.2 Our Contribution and Related Work
Automated characteristic search tool and dedicated key-recovery algorithms for SP networks
with partial non-linear layers have been presented in [9]. In there, the authors propose
generic techniques for differential and linear cryptanalysis of SP networks with partial
non-linear layers. As a main result, this tool can be used in order to understand how many
rounds a given scheme requires in order to be secure. However, focusing on the matrix
that defines the linear layer, it is not clear which properties it must satisfy in order to
prevent infinitely long subspace trails.

Focusing on partial SPN schemes with a fixed linear layer (e.g., Zorro), our goal is to
understand which properties a linear layer has to fulfill in order to prevent the existence
of infinitely long truncated differentials with prob. 1 [35], or equivalently infinitely long
subspace trails [27, 28] (i.e., the existence of a non-trivial subspace U ⊆ Ft of inputs that
is mapped into a proper (affine) subspace of the state space over any number of rounds).

Infinitely Long Subspace Trails: Necessary & Sufficient Conditions for P-SPN Schemes.
Specifically, we present sufficient and necessary conditions that a matrix must satisfy in
order to guarantee security against infinitely long (non-trivial) subspace trails. In more
details, we analyze

(1) the case of inactive S-boxes in which the input difference of the S-box is equal to
zero (see Section 3 - Section 4), and

(2) the case of active S-boxes in which the input difference of the S-box can take any
possible value (see Section 6).

In both cases, we show that an infinitely long subspace trail exists if and only if the
invertible fixed matrix that defines the linear layer satisfies some particular properties, and
we show how to construct such an infinitely long subspace trail if it exists. Our results are
independent of the details of the S-box (with the only exception that the S-box has no
non-trivial linear structure), of the round keys, and of the round constants.

In the particular case in which the matrix is diagonalizable, the infinitely long subspace
trail (if existent) is always related to the eigenspaces of the matrix. This is not surprising,
since the relation between the eigenvalues and eigenvectors of the linear layer matrix
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and the existence of an infinitely long (invariant) subspace trail is already known in the
literature. Such a relation was e.g. pointed out by Abdelraheem et al. [1], and later on
generalized by Beyne in [11]. In more detail, Abdelraheem et al. found such a result by
analyzing the invariant subspace trails of PRINTcipher (which was presented one year
before in [36]), while Beyne found such a result as a generalization and improvement of the
non-linear invariant subspace attack on Midori-64 [44]. In particular, in [11] a connection
between the eigenvalues of the correlation matrix that defines the round function and the
existence of an invariant subspace trail is made. More details are given in Appendix A.
However, we point out that all these results focus on SPN schemes and on invariant
subspaces only. As a consequence, this analysis heavily depends both on the effect of the
key (namely, the invariant subspace only holds in the case of weak keys) and in general on
the details of the S-box, which is not the case here. The existence of such an invariant
subspace can be prevented by carefully choosing the round constants, as shown in [10].

More generally, the infinitely long subspace trails (if existent) are always related to the
invariant subspaces of the matrix M that defines the linear layer, namely the subspaces
X that remains invariant when applying the matrix multiplication: M · X = X . These
subspaces can be found via the primary decomposition theorem, which allows to split the
full space Ft into a direct sum of invariant and independent subspaces for M . This is
possible by computing the Frobenius normal form of the matrix (as recalled in Section 2).

We emphasize that we do not focus on invariant subspace trails only, since a non-trivial
infinitely long subspace trail is not necessarily invariant. In particular, such a subspace
trail is invariant if it is related to the invariant subspaces of M , and not invariant if it is
related to the invariant subspaces of M l for l ≥ 2. In this last case, we call the subspace
trail iterative. In both cases, examples are provided to present and support the results.

To summarize, both in the case of inactive and active S-boxes, we present rigorous
necessary and sufficient conditions which guarantee that no infinitely long (invariant and
iterative) subspace trail exists. As a final result, we are able to present a sufficient (but in
general not necessary) condition for the linear layer that – if satisfied – ensures that no
infinitely long truncated differential exists. This condition is related to the degree and the
irreducibility of the minimal polynomial of the matrix that defines the linear layer.

Dedicated Tool. Together with our theoretical observations, we also provide practical
Sage implementations based on our results. Given a square matrix, the tool and the
underlying algorithms are able to detect the structural vulnerabilities described in this
paper (invariant and iterative trails), both in the case of inactive and active S-boxes and
for binary and prime fields.

The tool is split into three different algorithms to cover all our results. The vulnerability
of a single matrix can be evaluated quickly. In order to get a better understanding of the
number of vulnerable matrices for given dimensions and field sizes, we applied our tool
to large sets of pseudo-randomly sampled matrices. These tests show that the number of
vulnerable matrices is in general small (and slightly larger than 10% only in a few particular
cases). Details about the tool and the results are given in Section 5 and Section 7.

Impact on Hades-Like Schemes. Finally, our results have an impact on the Hades
strategy as well [26]. The main property of this strategy is to mix rounds external with
full S-box layers and middle rounds with partial S-box layers in order to minimize the
total number of multiplications. The rounds with full S-box layers are used for the security
against differential and linear attacks, while the purpose of the middle rounds is to provide
security against algebraic attacks by increasing the degree of the overall scheme.

In [26], the authors define the linear layer as a multiplication of the state with a fixed
MDS matrix, and no other properties have to be fulfilled by the linear layer. It follows that
in the case of a “weak” MDS matrix (i.e., a matrix that does not satisfy the properties
proposed in this work), an attacker can potentially choose an input space of texts for which
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no S-box is activated in the rounds with partial S-box layers. In such a case, the security
of the corresponding design may potentially be lower. For the particular matrices used in
[24], vulnerabilities related to the multiplicative order were shown in [12, 34].2 Our results
allow to solve this problem easily.

2 Preliminaries
Notation. We denote subspaces with calligraphic letters (e.g., S). Further, we use the
superscript notation together with parentheses to differentiate subspaces with similar
properties (e.g., S(i)). By Sc we denote the complementary subspace of S. We recall that
two cosets S + a and S + b are equivalent if and only if a− b ∈ S. Matrices are denoted by
non-calligraphic letters. The entry of a vector x ∈ Ft is denoted by x[i] for i ∈ {1, . . . , t},
while the entry of a matrix M in the j-th column of the i-th row is denoted by Mi,j .

We denote by {e1, . . . , et} the unit vectors of Ft (i.e., ei has a single 1 in the i-th word).
Given an arbitrary subspace X ⊆ Ft and a matrix M , let M · X := {M · x | x ∈ X}. We
use the symbol ⊕ to denote the direct sum of two spaces. Finally, the span 〈v, w〉 is always
defined w.r.t. the space F, that is, 〈v, w〉 = {α · v + β · w | α, β ∈ F}.

2.1 Partial SPN Schemes
In this paper, we will focus on partial SPN ciphers and permutations over ((Fq)t ,+, ·),
where q ≥ 2 is a prime power.3 Before going on, we highlight that all our results are
independent of the round keys and constants. For this reason, in the following we do not
clearly distinguish between ciphers and permutations, and we occasionally just refer to
them using the term schemes.

Partial SPN (P-SPN) Schemes. We denote the application of r rounds of a P-SPN
cipher by Erk : Ft → Ft, where k ∈ Ft is a fixed secret key and t ∈ N denotes the
number of cells. For every input x = (x1, . . . , xt) ∈ Ft, the encryption is defined by
Erk(x) = (Fr ◦ · · · ◦ F1) (x+ k(0)), where Fi : Ft → Ft is defined as Fi(x) = R(x) + k(i) for
a round key k(i) and for each i ∈ {1, . . . , r}. In the case of an unkeyed P-SPN permutation,
the secret round keys are just replaced by public round constants.

We denote by R the composition of the S-box and the linear layer, i.e., we have
R : Ft → Ft with

R(x) = (M ◦ S)(x) = M(S1(x1), . . . , Ss(xs), xs+1, . . . , xt), (1)

where Si : F → F for i ∈ {1, . . . , s} is a non-linear permutation.4 Finally, M ∈ Ft×t
denotes an invertible non-trivial linear layer defined by the multiplication with a matrix,
i.e., (M(x))j =

∑
iMi,j · xi, where Mi,j ∈ F for i ∈ {1, . . . , t} and j ∈ {1, . . . , t}.

Definition 1. A linear layer M ∈ Ft×t is non-trivial if it ensures full diffusion (in the
sense that each word of the output depends on each word of the input and vice versa)
after a finite number of rounds.

All word-wise (aligned) P-SPN schemes can be written in this way. Morever, in this
paper we assume that the s S-boxes are applied to the first s words. Note that given any

2The multiplicative order of a matrix M is the smallest (positive integer) exponent k ≥ 1 such that
Mk = µI, where µ ∈ F and I is the identity matrix.

3In the case in which q = 2, the field corresponds to (F2
t,⊕, ·), where ⊕ corresponds to the XOR sum.

In order to avoid confusion between the XOR sum and the direct sum, we use the symbol ⊕ to denote the
direct sum only, and we use the symbol + to denote the sum over the field Fq .

4Note that this implies that t− s input words are unaffected by the S-box layer, and indeed this is the
only difference to classical SPN schemes.
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P-SPN scheme, it is always possible to find an equivalent representation s.t. the S-boxes
are applied to the first s words.

We further assume that the number of S-boxes s is smaller than dt/2e. This implies
that the choice of the linear layer is crucial for guaranteeing that at least one S-box is
active after a finite number of rounds.5

Hades-Like Schemes. The recently proposed Hades strategy [26] combines both SPN
and partial SPN schemes. In particular, the initial Rf and the final Rf rounds contain
full S-box layers, for a total of RF = 2Rf rounds with full S-box layers. However, in
the middle of the construction, RP rounds with partial S-box layers are used. Roughly
speaking, RF rounds provide security against statistical attacks, while RP rounds increase
the overall degree of the function in an attempt to prevent algebraic attacks.

Assumption on the S-Box. In this paper, we only work with S-boxes that do not have
any linear structures. That is, for an S-box S over F, we assume that it is not possible to
find U ,V ⊂ F s.t. for each u ∈ F there exists v ∈ F s.t. S(U + u) = V + v. If the S-box has
no non-trivial linear structures, there are only two essential subspace trails ({0} → {0}
and F → F) when working at word level, as was shown in [38]. Under this assumption,
one can work independently of the details of the S-box. For example, both the AES S-box
and the cube one (x 7→ x3) satisfy this assumption.

2.2 Invariant Subspaces and Subspace Trails
2.2.1 Invariant Subspace Attack

The invariant subspace attack, introduced in [36] and reconsidered e.g. in [37], is based on
the possibility to set up an invariant subspace trail, defined as follows.

Definition 2 (Invariant Subspace Trails). Let Kweak be a set of keys and k ∈ Kweak,
with k =

(
k(0), . . . , k(r)), where k(j) is the j-th round key. For k ∈ Kweak, the subspace I

generates an invariant subspace trail of length r for the round function Rk(·) = R(·) + k if
for each i ∈ {1, . . . , r} there exists a non-empty set Ai ⊆ Ic for which

∀ai ∈ Ai : ∃ai+1 ∈ Ai+1 s.t. Rk(i)(I + ai) = R(I + ai) + k(i) = I + ai+1.

All keys in the set Kweak are weak keys.

Let us remark the main difference for invariant subspace attacks when working with
partial SPN ciphers instead of SPN ones. In this last case and to the best of our knowledge,
the sets Ai are (almost always) non-trivial subsets of Ft. However, due to the fact that
the non-linear layer is not full, this restriction is not mandatory in the case of partial SPN
schemes. For this reason, in the following we work independently of the details of the
S-box, and we assume that Ai = Ft for each i and that the set Kweak is equal to the set of
all possible keys.

2.2.2 Subspace Trail Attack

Subspace trails were first defined in [27], and they are strictly related to truncated
differential attacks, as shown in [38].

5In the case in which a fixed linear layer matrix M is used, let 2 ≤ β ≤ t+ 1 be its branch number. If
2t− 2s < β, then at least β + 2s− 2t ≥ 1 S-boxes are active in every two consecutive rounds. Note that
this can never happen if s < dt/2e (equivalently, s ≤ dt/2e − 1), since 2t− 2s ≥ t+ 2 > β.
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Definition 3 (Subspace Trails). Let (U1, . . . ,Ur+1) denote a set of r + 1 subspaces with
dim(Ui) ≤ dim(Ui+1). If for each i ∈ {1, . . . , r} and for each ai there exists ai+1 ∈ Uci+1
such that

R(i)(Ui + ai) ⊆ Ui+1 + ai+1,

then (U1, . . . ,Ur+1) is a subspace trail of length r for the function F (·) = R
(r)
k(r) ◦· · ·◦R

(1)
k(1)(·).

If the relations hold with equality, the trail is called a constant-dimensional subspace trail.

Iterative (Constant-Dimensional) Subspace Trails. We now introduce the concept of
infinitely long iterative (constant-dimensional) subspace trails.

Definition 4 (Iterative Subspace Trails). Let {V1,V2, . . . ,Vl} be a constant-dimensional
subspace trail for l rounds. We call this subspace trail an infinitely long iterative (constant-
dimensional) subspace trail of period l for the considered scheme if it repeats itself an
infinite number of times, i.e., if

{V1,V2, . . . ,Vl,V1,V2, . . . ,Vl, . . . ,V1,V2, . . . ,Vl, . . . }

is an infinitely long subspace trail.

Clearly, an invariant subspace trail is also an iterative subspace trail for the case of
P-SPN schemes (under the previous assumptions), while not every iterative subspace trail
is also an invariant subspace trail. At the same time, the following result holds.

Proposition 1. Working over Ft, let {V1, . . . ,Vl} be an infinitely long iterative subspace
trail of period l. If dim(〈V1, . . . ,Vl〉) < t, then 〈V1, . . . ,Vl〉 generates an infinitely long
invariant subspace trail.

Proof. The subspace 〈V1, . . . ,Vl〉 is invariant since each coset of Vi is mapped into a coset
of Vi+1 (where the subindex is taken modulo l + 1).

While, to the best of our knowledge, no example of infinitely long iterative constant-
dimensional subspace trails for SPN ciphers is given in the literature, a poor choice of the
linear layer allows to find them for the case of P-SPN schemes.

Truncated Differential Trails. Before going on, we briefly mention the link between
truncated differential trails and subspace trails. Differential attacks [14] exploit the fact
that pairs of plaintexts with certain differences yield other differences in the corresponding
ciphertexts with a probability distribution that is different from that one would expect from
a random permutation. A variant of this attack/distinguisher is the truncated differential
one [35], in which the attacker can predict only part of the difference between pairs of
texts. Using the subspace terminology, given pairs of plaintexts that belong to the same
coset of a subspace X , one considers the probability that the corresponding ciphertexts
belong to the same coset of a subspace Y to set up an attack (see e.g. [16] for details).
In particular, note that two texts are in the same coset of a given subspace if and only if
their difference belongs to such a subspace:

x, y ∈ V + v if and only if x− y ∈ V.

The relation between truncated differential trails and subspace trails has been studied in
details in [38, 16]. Finally, impossible differential and truncated impossible differential
attacks based on differentials that hold with probability 0 have been studied in [13].
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2.3 Decomposition Theorem & Frobenius Normal Form
Finally, we recall several notions from linear algebra useful for presenting our results,
starting with the concept of eigenvalues/eigenspaces.

Definition 5. Given M ∈ Ft×t, the subspace P = 〈ρ1, . . . , ρd〉 ∈ Ft is the (right)
eigenspace ofM for the eigenvalue λ if the conditionM ·ρi = λ·ρi is satisfied ∀i ∈ {1, . . . , d}.

Definition 6. M is a diagonalizable matrix if and only if there exists an (invertible)
matrix P ∈ Ft×t s.t. P−1 ·M · P = D = diag(λ1, . . . , λt) is a diagonal matrix.

Definition 7. A field F is algebraically closed if every non-constant polynomial in F[x]
has a root in F.

As is well-known, not all matrices are diagonalizable. At the same time, when working
over a field F that is algebraically closed, there always exists an invertible matrix P ∈ Ft×t
such that J := P−1 ·M · P is in the Jordan form. The Jordan form of a square matrix is
equal to

J =


J1 0 . . . 0 0
0 J2 . . . 0 0
... . . . ...
0 0 . . . Jl−1 0
0 0 . . . 0 Jl

 , where Ji :=



j1 1 0 . . . 0 0
0 j2 1 . . . 0 0
... . . . . . . ...
0 0 . . . jti−2 1 0
0 0 . . . 0 jti−1 1
0 0 . . . 0 0 jti


(2)

are square matrices in Fti×ti s.t.
∑l
i=1 ti = t (and ti ≥ 1) and where 1 ≤ l ≤ t. The

Jordan form of a given matrix can be exploited to easily compute the characteristic and
the minimal polynomial of this matrix.

Definition 8. Let M be an invertible matrix over Ft. The characteristic polynomial
ψ(x) ∈ F[x] is defined as ψ(x) = det(M − x · I). The minimal polynomial φ(x) ∈ F[x] is
the monic polynomial of minimal degree s.t.

1. φ(M) · v = 0t for each v ∈ Ft, and

2. if p(x) is annihilating (in the sense that p(M) · v = 0t for each v ∈ Ft), then φ(x)
divides p(x).

By definition, det(M) = ψ(0). Moreover,

• the minimal polynomial divides the characteristic polynomial (which implies that
deg(φ),deg(ψ) ≤ t), and

• an eigenvalue of the matrix is a root of both the minimal and of the characteristic
polynomial, and vice-versa (namely, each root is an eigenvalue).

Proposition 2 ([32, Prop. 1 & Prop. 2]). Let M ∈ Ft×t be an invertible matrix with
minimal polynomial φ(x). There exists (at least) one vector v ∈ Ft s.t.

v,M · v,M2 · v, . . . ,Mdeg(φ)−1 · v

are linearly independent.

Among other things , the Jordan form matrix can be exploited to split the full space Ft
in subspaces that are independent and invariant through the matrix M . However, since we
work over Ftq for finite q and since no finite field can be algebraically closed6, it is possible

6If a1, a2, . . . , aN are all the elements of a finite field F, then the polynomial (x− a1) · (x− a2) · · · · ·
(x− aN ) + 1 has no root in F.
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that the Jordan normal form does not exist. Here we recall a generalization of the Jordan
normal form, known as the Frobenius normal form, that can be computed even if the field
is not algebraically closed.

Definition 9. Let M ∈ Ft×t. The Frobenius normal form of M is the matrix F ∈ Ft×t
for which there exists an invertible matrix Q ∈ Ft×t s.t.

F = Q×M ×Q−1 = diag(C1, C2, . . . , Cl) =


C0 0 . . . 0 0
0 C1 . . . 0 0
... . . . ...
0 0 . . . Cl−1 0
0 0 . . . 0 Cl


for 1 ≤ l ≤ t, where

• Ci ∈ Fti×ti is the (invertible) companion matrix

Ci =


0 0 . . . 0 −c0,i
1 0 . . . 0 −c1,i
0 1 . . . 0 −c2,i
... . . . ...
0 0 . . . 1 −cti−1,i


associated to the monic polynomial pi(x) = c0,i + c1,i · x+ c2,i · x2 + · · ·+ cti−1,i ·
xti−1 + xti ,

• for each 1 ≤ i ≤ l − 1 the polynomial pi divides the polynomial pi+1, and

• pl is the minimal polynomial φ(x) of M and ψ(x) =
∏l
i=1 pi(x) is the characterestic

polynomial of M .

In particular, note that given a companion matrix Ci over Fti , then Fti = 〈e1〉Ci
, since

pi(e1) = e2, pi(e2) = e3, . . . , pi(eti−1) = eti and pi(eti) = −c0,i ·e1−c1,i ·e2+· · ·−cti−1,i ·eti .
As already mentioned, such normal form can be exploited in order to decompose the full

space Ft in subspaces that are invariant through M , as recalled in the following theorem.

Definition 10. Let M ∈ Ft×t be an invertible matrix, and let V ⊆ Ft be a subspace. V is
said to be M -invariant if and only if M · V = V . Moreover, if V is an M -invariant subspace
of Ft, then

• V is said to be directly indecomposable if there are no non-trivial subspaces V1,V2 ⊆ V
s.t. V = V1 ⊕ V2, and

• V is said to be cyclic if ∃v ∈ V s.t. V = 〈v,M · v,M2 · v, . . . ,M l · v, . . . 〉 ≡ 〈v〉M .

Theorem 1 (Primary Decomposition Theorem [31, Sect. 6.4] - [32, Theorem 3]). Let M
be an invertible matrix in Ft×t. Let φ(x) ∈ F[x] be its minimal polynomial s.t.

φ(x) = [p1(x)]α1 · [p2(x)]α2 · · · · · [pm(x)]αm ,

where αi ≥ 1 and pi, pj are monic, irreducible, and relatively prime. The subspace Ft can
be rewritten as a direct sum7 decomposition

Ft = A1 ⊕A2 ⊕ · · · ⊕ Am, (3)
7Recall that V = V1 ⊕ V2 if and only if ∀v ∈ V there exist vi ∈ Vi s.t. v = v1 ⊕ v2.
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where for each j ∈ {1, . . . ,m}

Aj := ker([pj(A)]αj ) := {x ∈ Ft | [pj(A)]αj · x = 0 || 0 || · · · || 0︸ ︷︷ ︸
≡0t

}

(where ker(X) is the kernel of the matrix X ∈ Ft×t) such that

(1) Ai are linearly independent (in the sense that Ai ∩ Aj = {0} for i 6= j),

(2) Ai are M -invariant for each i, and

(3) the minimal polynomial of a linear operator Mi induced on Ai by M is pi(x)αi .

Note that the previous decomposition does not imply that there are no non-trivial
subspaces ofAi that areM -invariant. For example, consider a 3×3 matrixM = diag(1, 1, 2).
In such a case the minimal polynomial is φ(x) = (x − 1) · (x − 2), and F3 = A1 ⊕ A2,
where A1 = 〈e1, e2〉 and A2 = 〈e3〉. At the same time, while A2 is “irreducible”, it is easy
to find subspaces of A1 that are invariant through M , namely all subspaces of the form
A′1 = 〈α · e1 + β · e2〉 for α, β ∈ F.

3 Infinitely Long Invariant Subspace Trails for P-SPN
Schemes (Inactive S-Boxes)

Focusing on P-SPN schemes which use the same linear layer in each round (e.g., Zorro
[23]), here we study the properties that the matrix that defines the linear layer must satisfy
in order to prevent infinitely long invariant subspace trails (with no active S-boxes).

3.1 Preliminary Results
Due to the fact that the non-linear layer is only partial in P-SPN schemes, parts of the
state go through the S-box layer unchanged. In particular, if the non-linear layer consists
of s ≥ 1 S-boxes (applied to the first s words) and t− s ≥ 1 identity functions, it is always
possible to find an initial subspace such that no S-box is active (at least) in the first

⌊
t−s
s

⌋
rounds. By choosing texts in the same coset of S = 〈v1, . . . , vdim(S)〉 such that

∀i ∈
{

1, . . . ,
⌊
t− s
s

⌋}
: (M i−1 · vj)[1, 2, . . . , s] = 0 || 0 || · · · || 0 ∈ Fs

for each j ∈ {1, . . . ,dim (S)} and where M0 = I be the identity matrix, no S-box is active
in the first

⌊
t−s
s

⌋
rounds. We formalize this result in the following definition.

Definition 11. Consider the case of a P-SPN scheme over Ft with 1 ≤ s < t S-boxes
applied to the first s words defined as in Eq. (1). Let S(i) be defined as

S(i) =
{
v ∈ Ft

∣∣ (M j · v)[1, . . . , s] = 0 || · · · || 0∈ Fs, j < i
}
, (4)

where S(0) = Ft, and where dim
(
S(i)) ≥ t− i · s. Then S(i) generates a subspace trail for

the first i (consecutive) rounds with no active S-boxes. Further, note that S(i+1) ⊆ S(i).

Lemma 1. Given a P-SPN scheme over Ft with s S-boxes applied to the first s words
defined as in Eq. (1), let S(i) be defined as in Definition 11. Then, for each i ≥ 1,

S(i+1) =
{
v ∈ S(i)

∣∣∣ (M · v)[1, . . . , s] = 0 || · · · || 0∈ Fs
}
⊆ S(i).
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Proof. Given S(1) = 〈es+1, . . . , et〉, note that (M · x)[1, . . . , s] = 0 || · · · || 0∈ Fs if and
only if M ·x ∈ 〈es+1, es+2, . . . , et〉 = S(1), or equivalently x ∈ S(1) ∩ (M−1 · S(1)). Working
recursively, it follows that S(i+1) = S(i) ∩ (M−1 · S(i)), which is equivalent to

S(i+1) = S(1) ∩ (M (−1) · S(1)) ∩ (M (−2) · S(1)) ∩ · · · ∩ (M (−i) · S(1)).

In the case in which dim
(
S(b t−s

s c)
)
≥ s, the previous definition can naturally be

extended to more rounds, as stated in the following.

Proposition 3. Consider the case of a P-SPN scheme over Ft with 1 ≤ s < t S-boxes
applied to the first s words as in Eq. (1), and let S(i) be defined as before. Let R ≥

⌊
t−s
s

⌋
s.t. dim

(
S(R)) ≥ 1 and dim

(
S(R+1)) = 0. For each r ≤ R, the collection{

S(r),M · S(r),M2 · S(r), . . . ,Mr−1 · S(r)
}

is a subspace trail for the first r rounds (with no active S-boxes).

This well-known result (see e.g. [4, Sect. 5.1] or [23, Sect. 4.1]) does not require any
assumption about the matrix M that defines the linear layer. In the following, we will
explore in which cases it is possible to set up an infinitely long subspace trail. In order to
do this, we start by reconsidering some results already published in the literature.

3.2 Infinitely Long Invariant Subspace Trails via Eigenspaces of M

As it is well-known in the literature (see e.g. the results presented in [1, 11] and recalled
in Appendix A), one possible strategy to set up invariant subspace trails is to analyze the
eigenspaces of the matrix M that defines the linear layer.

Proposition 4. Given a P-SPN scheme with s S-boxes per round defined as in Eq. (1),
let M ∈ Ft×t be an invertible matrix. Let λ1, . . . , λτ be its eigenvalues and let P1, . . . ,Pτ
be the corresponding eigenspaces. Let

I =
〈
P1 ∩

〈
es+1, . . . , et

〉
, . . . ,Pτ ∩

〈
es+1, . . . , et

〉〉
.

If 1 ≤ dim(I) < t, then I generates a (non-trivial) infinitely long invariant subspace trail
(with no active S-boxes).

Equivalently, let I be defined as I =
〈
P ′1, . . . ,P ′τ

〉
, where P ′i ⊆ Pi is a subspace of

Pi for i ∈ {1, . . . , τ}. If I ∩
〈
es+1, . . . , et

〉
= I, it generates an infinitely long invariant

subspace trail. This equivalent definition will be used in the following, and we emphasize
that this result provides only a sufficient condition.

Proof. To prove the previous result, we have to show that for each a ∈ Ft there exists b
s.t. M ◦ S(I + a) = I + b. Hence, we omit the key and constant additions since they only
change the coset. First of all, note that no S-box is active since I ⊆

〈
es+1, . . . , et

〉
, and

thus only the coset changes through the S-box layer. Secondly, since Pi is an eigenspace
of the linear layer M for each i ∈ {1, . . . , τ}, it follows that Pi ∩

〈
es+1, . . . , et

〉
remains

invariant through it. The result follows immediately.

It is crucial to work independently on the eigenspaces of M . Indeed, consider the
case in which P1 =

〈
v
〉
, P2 =

〈
w
〉
, and

〈
P1,P2

〉
∩ 〈es+1, . . . , et〉 =

〈
v + αw

〉
. Given

x ∈
〈
P1,P2

〉
∩〈es+1, . . . , et〉, M ·x does not belong to such a subspace sinceM · (v+αw) =

λv ·
(
v + α · λw

λv
· w
)
, where λw 6= λv.
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Examples. Consider a P-SPN scheme over F4 with s = 1. If the 4× 4 matrix M is

M =


4 4 5 1
1 3 5 3
3 2 4 1
4 1 4 4

 ,

then I = 〈(0, 1,−1, 1)T 〉 generates an infinitely long invariant subspace trail. Indeed, note
that (0, 1,−1, 1)T is an eigenvector of M and 〈(0, 1,−1, 1)T 〉∩〈e2, e3, e4〉 = 〈(0, 1,−1, 1)T 〉.
Hence, this is a concrete example of the result given in the previous theorem, and it is
independent of the branch number of M . Indeed, such a 4× 4 matrix can even be an MDS
matrix for sufficiently large p.8

As a second example, if M = circ(2, 3, 1, 1), the only eigenspaces are given by
〈(1, 1, 1, 1)T 〉 and 〈(1,−1, 1,−1)T 〉 (with eigenvalues equal to 7 and −1, respectively).
Neither of them satisfies the results of the theorem just given. Hence, there exist matrices
which provide security against invariant subspace trails with inactive S-boxes, even though
they have eigenspaces. This is also true for the most generic case of iterative subspace
trails with active S-boxes.

3.3 A Necessary and Sufficient Condition for the Existence of Infinitely
Long Invariant Subspace Trails (with Inactive S-boxes)

As shown in Section 2.3, a subspace does not have to be an eigenspace of the matrix in
order to be invariant. In particular, as we have seen in Theorem 1, the space Ft can be
rewritten as a direct sum decomposition

Ft = A1 ⊕A2 ⊕ · · · ⊕ Am, (5)

where – among other properties – all subspaces Ai are M -invariant. Hence, the previous
result can be generalized by replacing the eigenspaces of the matrix with the subspaces Ai,
which lead us to a necessary and sufficient condition. In order to do that, we first present
the following result.

Theorem 2. Given a P-SPN scheme with s S-boxes defined as in Eq. (1), let M ∈ Ft×t
be an invertible matrix. A subspace I, where 1 ≤ dim(I) < t, generates an infinitely long
invariant subspace trail (with no active S-boxes) if and only if I ⊆ S(1) and I = (M · I).
In particular, I ⊆ S(1) ∩

(
M · S(1)).

Proof. We work with differences. That is, instead of proving that each coset of I is
mapped into a coset of I after one round, we are going to prove that given two elements
in the same coset of I (namely, an input difference in I), then the corresponding output
elements are still in the same coset of I (namely, the output difference lies in I), i.e.,
Prob(R(x)−R(y) ∈ I | x− y ∈ I) = 1. We use this approach in the entire paper.

The fact that a subspace I ⊆ S(1) s.t. I = M · I generates an infinitely long invariant
subspace trail (with no active S-boxes) is trivial. Indeed, the definition of S(1) (which
implies that no S-box is active) together with the fact that I = M · I implies the result.
Vice-versa, here we show that given an infinitely long invariant subspace trail I (with no
active S-boxes), it must satisfy I ⊆ S(1) and I = M · I. To do this, observe that all pairs
of texts which do not activate any S-box in the next round are in the same coset of S(1)

(by its definition). Focusing on the linear layer, note that a subspace X is invariant if and
only if M · X = X . The result follows immediately.

Finally, we prove that I ⊆ S(1) ∩
(
M · S(1)). Since I ⊆ S(1), it follows that (M · I) ⊆

(M · S(1)), where M is a linear operation. As a result, I ⊆ (M · S(1)) since I = M · I.
8It is an MDS matrix for e.g. p = 4 206 590 407, which results in a block size of approximately 128 bits.
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Theorem 3. Given a P-SPN scheme with s S-boxes defined as in Eq. (1), let M ∈ Ft×t
be an invertible matrix. Let φ(x) be the minimal polynomial of M s.t. φ(x) = [p1(x)]α1 ·
[p2(x)]α2 · · · · · [pm(x)]αm , where αi ≥ 1 and pi, pj are monic, irreducible, and relatively
prime. Let {A1, . . . ,Am} be the primary decomposition of Ft w.r.t. the matrix M , as
defined in Theorem 1, i.e., a collection of independent subspaces in Ft which are M-
invariant and s.t. Ft =

⊕
iAi. Let {X1, . . . ,Xm} be a collection of subspaces defined

as
Xi := Ai ∩ 〈es+1, . . . , et〉. (6)

A subspace I, where 1 ≤ dim(I) < t, generates an infinitely long invariant subspace trail
(with no active S-boxes) if and only if

I = 〈P1,P2, . . . ,Pm〉,

where Pi ⊆ Xi is an M -invariant subspace. In particular, Pi ⊆ Xi ∩ (M · Xi).

In the following, note that the condition Ai ∩ 〈es+1, . . . , et〉 can be replaced by the
condition Ai ∩ S(1).

Proof. Proving that I = 〈P1,P2, . . . ,Pm〉 generates an infinitely long invariant subspace
trail (with no active S-boxes) is trivial. Indeed, by definition of Pi, no S-box is active
(since Pi ⊆ Xi ⊆ 〈es+1, . . . , et〉 for i ∈ {1, . . . ,m}). The fact that I is M -invariant follows
from the fact that all Pi are M -invariant subspaces of Xi (by assumption). Hence, every
input difference in I is mapped into an output difference in I.

Vice-versa, assume that I generates an infinitely long invariant subspace trail with
inactive S-boxes. Let

Pi := Ai ∩ I.

Obviously, all Pi are subspaces. First of all, note that all Pi are subspaces of 〈es+1, . . . , et〉,
since no S-box is active by definition of I. Indeed, if there exists a non-trivial Pi s.t.
Pi∩〈e1, . . . , es〉 6= {0}, then eventually at least one S-box would be active (since I generates
an infinitely long subspace trail), which contradicts the assumption that no S-box is active.
Moreover, note that Pi isM -invariant. Indeed, if x ∈ Pi, thenM ·x belongs to Ai for j ≥ 0
(since Ai is M -invariant) and to I for j ≥ 1 (since it generates an infinitely long subspace
trail), which implies that M · x ∈ Pi. Finally, I = 〈P1,P2, . . . ,Pm〉 since Ai ∩ Aj = {0}
for i 6= j, and since Ft =

⊕
iAi.

As a last thing, Pi ⊆ Xi ∩ (M · Xi) follows from the fact that Pi ⊆ Xi and Pi = M · Pi,
as in the proof of Theorem 2.

Proposition 5. Under the assumptions of the previous theorem, let X (0)
i := Ai ∩

〈es+1, . . . , et〉. For j ≥ 1, we define

X (j)
i = X (j−1)

i ∩M · X (j−1)
i .

Let li ≥ 0 be the smallest (finite) integer s.t. X (li)
i = X (li+1)

i . The biggest M-invariant
subspace Pi of Xi that satisfies the previous theorem is equal to X (li)

i .

Proof. All X (j)
i are subspaces of X (0)

i ⊆ Ai, where Ai is invariant underM by construction.
Hence, either dim(X (j)

i ) < dim(X (j−1)
i ) or dim(X (j)

i ) = dim(X (j−1)
i ). If dim(X (j)

i ) =
dim(X (j−1)

i ), then X (j)
i = X (j−1)

i . Indeed, note that dim(X (j−1)
i ∩ M · X (j−1)

i ) =
dim(X (j−1)

i ) if and only if X (j−1)
i = M · X (j−1)

i , which implies that X (j)
i = X (j−1)

i .
By construction, this is the biggest M -invariant subspace of Ai ∩ 〈es+1, . . . , et〉.

Finally, note that the index li s.t. X (j)
i = X (j+1)

i for each j ≥ li is always finite. Indeed,
in the case in which dim(X (j)

i ) < dim(X (j−1)
i ) for each j < li, we have that X (j)

i = {0} for
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each j ≥ li. Otherwise there exists li s.t. X (j)
i = X (j+1)

i 6= {0} for each j ≥ li. In both
cases, li is at most equal to the dimension of X (0)

i , since at each step the dimension of
X (j)
i either remains constant or decreases by 1.

Corollary 1. The infinitely long invariant subspace trail with inactive S-boxes presented
in Proposition 4 satisfies Theorem 3. The two results are equivalent if the matrix is
diagonalizable.
Proof. The invariant subspace considered in Proposition 4 is equal to the one considered
in Theorem 3 under the condition

Pi =
{
Xi if Xi is an eigenspace of M,

{0} otherwise.

This concludes the proof.

Before going on, we highlight that Theorem 3 and Proposition 4 are not equivalent, in
the sense that there are matrices M that admit infinitely long invariant subspace trails
which are independent of their eigenspaces. A concrete example is given by the Cauchy
matrix M generated as in [24] (recalled in Section 4.1) for t = 24 and F2n , where n = 63.
As shown in [34, Page 20], the subspace S(5) defined as in Eq. (4) satisfies M · S(5) = S(5)

and (M · x)[1] = 0 for all x ∈ S(5). At the same time, the subspace S(5) is not related to
any eigenspaces of M j for j ∈ {1, . . . , 5}.

4 Iterative Subspace Trails with Inactive S-Boxes
The previous results can be generalized to obtain a necessary and sufficient condition
regarding the existence of infinitely long iterative subspace trails with inactive S-boxes.
Proposition 6. Given a P-SPN scheme with s S-boxes defined as in Eq. (1), let M ∈ Ft×t
be an invertible matrix. A subspace I, where 1 ≤ dim(I) < t, generates an infinitely long
iterative (non-invariant) subspace trail of period l ≥ 2 (with no active S-boxes) if and only
if I ⊆ S(l) and I =

(
M l · I

)
. In particular, I ⊆ S(l) ∩

(
M l · S(l)).9

The proof is a simple generalization of the one given for Theorem 2.
Proposition 7. Given a P-SPN scheme with s S-boxes defined as in Eq. (1), let M ∈ Ft×t

be an invertible matrix. Let {A(l)
1 ,A(l)

2 , . . . ,A(l)
m } be the primary decomposition of Ft w.r.t.

the matrix M l, as defined in Theorem 1, that is, a collection of independent subspaces in
Ft that are M l-invariant and s.t. Ft =

⊕
iA

(l)
i . For each l ≥ 2, let {X1, . . . ,Xm} be a

collection of subspaces defined as

Xi := A(l)
i ∩ S

(l).

A subspace I, where 1 ≤ dim(I) < t, generates an infinitely long iterative subspace
trail (with no active S-boxes) of period l ≥ 2 if and only if

I = 〈P1,P2, . . . ,Pm〉,

where Pi ⊆ Xi is a subspace that is M l-invariant. In particular, Pi ⊆ Xi ∩
(
M l · Xi

)
.

Proof. The proof of this result is equivalent to the one given in Theorem 3. In particular,
• the condition Pi ⊆ S(l) guarantees that no S-box is active in {I,M · I, . . . ,M l−1 · I}

by definition of S(l), and

• the subspace I is l-round invariant, since each subspace A(l)
i is M l-invariant.

9In order to simplify the notation, we use I to denote either an invariant subspace trail or an iterative
subspace trail. The period of the trail is clear from the context.
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Connection to the Existence of Invariant Subspace Trails. One may wonder if there
exists an example of a P-SPN scheme for which there exists no invariant subspace trail,
but at the same time there exists an iterative subspace trail with inactive S-boxes. As we
are going to show, this is not possible.

Proposition 8. Consider a P-SPN scheme with s S-boxes defined as in Eq. (1). An
iterative subspace trail with inactive S-boxes can only exist if there exists an invariant
subspace trail with inactive S-boxes.

Proof. As shown in Proposition 1, let {V1, . . . ,Vl} be an infinitely long iterative subspace
trail of period l (with inactive S-boxes). If dim(〈V1, . . . ,Vl〉) < t, then 〈V1, . . . ,Vl〉 generates
an infinitely long invariant subspace trail. Hence, if dim(〈V1, . . . ,Vl〉) = t, it would be
possible that an iterative subspace trail with inactive S-boxes exists and at the same time
no invariant subspace trail exists. However, note that dim(〈V1, . . . ,Vl〉) = t can never
occur in the case of inactive S-boxes. Indeed, since Vi ⊆ 〈es+1, . . . , et〉 for each i ∈ {1, ..., l}
(to guarantee that no S-box is active), it follows that 〈V1, . . . ,Vl〉 ⊆ 〈es+1, . . . , et〉 can
never generate the full space Ft (indeed, 〈V1, . . . ,Vl〉 ∩ 〈e1, . . . , es〉 = {0}).

This does not mean that iterative subspace trails with inactive S-boxes are useless.
Indeed, let {V1, . . . ,Vl} be an infinitely long iterative subspace trail of period l (with
inactive S-boxes). If dim(Vi) < dim(〈V1, . . . ,Vl〉) (note: strictly less), then the data cost
of setting up the iterative subspace trail may be smaller than the cost of setting up an
invariant subspace trail. This can be crucial in scenarios in which there is a limitation on
the data allowed for an attack.

4.1 Linear Layers with Low Multiplicative Order
Here we propose a first example of a matrix that generates an infinitely long iterative
(non-invariant) subspace trail.

Proposition 9. Given a P-SPN scheme over Ft defined as in Eq. (1), let M ∈ Ft×t be
an invertible matrix. If there exists l ∈ {2, . . . ,R} (where R ≥

⌊
t−s
s

⌋
is defined as in

Proposition 3) and µ ∈ F \ {0} such that M l = µ · I (i.e., M has a multiplicative order of
l), where I ∈ Ft×t is the identity matrix, then S(l) generates an infinitely long iterative
subspace trail of period l.

Proof. To prove the result, it is sufficient to see that
{
S(l),M · S(l), . . . ,M l−1 · S(l)} is

an iterative subspace trail with no active S-boxes. This is a consequence of the fact that
M l ·S(l) = µ ·I ·S(l) = S(l), and because no S-boxes are active by the definition of S(l).

Cauchy Matrices in [24] – An Example from the Literature. A concrete example has
recently been pointed out by Keller et al. [34] and by Beyne et al. [12]. In these papers,
the authors focus on the Cauchy matrix M ∈ (F2n)t×t proposed in [24] and defined as

Mi,j = 1
xi + xj + r

, (7)

where xi = i− 1 for i ∈ {1, . . . , t} and t ≤ r ≤ p− t. Such a matrix is used as the linear
layer of some Hades-like permutations, namely Starkadπ and Poseidonπ [24]. In [46,
Sect. 3.2] and in [34, 12], the authors prove that if t = 2τ , the previous matrix has a
multiplicative order equal to 2, namely that M2 is a multiple of the identity.10 Hence, the
previous result applies perfectly to this case.

10In [12], the authors generalize the result by assuming that {x1, x2, . . . , xt} forms a closed subgroup of
GF (2n). By definition of xi, this is always the case for Starkadπ if t is a power of 2.
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4.2 Linear Layer with Low-Degree Minimal Polynomial
As we have just seen, a matrix M has a low multiplicative order if there exists a small l
s.t. M l = µ · I, or equivalently M l − µ · I = 0. Given the polynomial p(x) = xl − µ, it is
easy to see that p(·) annihilates the entire space, since

∀v ∈ Ft : p(M) · v = (M l − µI) · v = 0t×t · v = 0t.

Hence, p(·) divides the minimal polynomial of M . A generalization of the previous result
is given in the following proposition.

Proposition 10. Given a P-SPN scheme over Ft defined as in Eq. (1), let M ∈ Ft×t be
an invertible matrix. Let φ be the minimal polynomial of M , and let l be its degree. Assume
l is “low”, namely l satisfies 2 ≤ l ≤ R (where R ≥

⌊
t−s
s

⌋
is defined as in Proposition 3).

Moreover, let 1 ≤ h ≤ l be a divisor of l (and let l′ ≥ 1 s.t. l = l′ · h). Assume that the
minimal polynomial is of the form

φ(x) = xl +
l′−1∑
i=1

αi·h · xi·h + α0, (8)

i.e., only monomials whose exponents are a multiple of h appear. Let us define I as

I = 〈S(l),Mh · S(l),M2h · S(l), . . . ,M l−h · S(l)〉,

where S(l) is defined as in Eq. (4). If 1 ≤ dim(I) < t, I generates an infinitely long
iterative subspace trail of period h (invariant if h = 1) with no active S-boxes.

Note that the special case h = l corresponds to the one presented in Proposition 9.

Proof. The proof is similar to the one already presented in Proposition 9, noting that:

1. ∀i = 0, 1, . . . , h− 1: M i · I ∈ 〈M i · S(l),Mh+i · S(l),M2h+i · S(l), . . . ,M l−h+i · S(l)〉.

2. Mh · I ∈ 〈S(l),Mh · S(l),M2h · S(l), . . . ,M l−h · S(l)〉 follows from the fact that
φ(M) = 0 (hence, M l = −

∑l′−1
i=0 αi·h ·M i·h).

The fact that no S-box is active follows from the definition of S(l).

4.2.1 A Concrete Example: The Starkad Matrix

A concrete example for this case is given by the matrix used for Starkad over F263 with
t = 24, built by using the definition given in Eq. (7) in Section 4.1. Indeed, the minimal
polynomial of this matrix is

φStarkad(x) = x6 + α4 · x4 + α2 · x2 + α0

for particular α4, α2, α0 ∈ F263 . Following Proposition 10, we see that l = 6, h = 2, l′ = 3.
An iterative subspace trail can thus be constructed, as also shown in [34].

4.2.2 A Generic Example via the Eigenspaces of M l

Finally, we show a concrete example of a matrix that satisfies the previous result. Consider a
matrixM whose minimal polynomial is defined as in Eq. (8), that is, φ(x) =

∑l′

i=0 αi·h ·xi·h,
and assume h ≥ 2. This polynomial is related to φ′(y) =

∑l′

i=0 αi·h · yi by replacing y with
xh. By definition, note that if φ is the minimal polynomial of M , φ′ is a multiple of the
minimal polynomial of Mh. Moreover, remember that every solution ŷ of φ′ (namely, such
that φ′(ŷ) = 0) is an eigenvalue of M l and that each solution x̂ of φ is an eigenvalue of M .
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Since we are working over a finite field F (which is not algebraically closed), given a zero ŷ
of φ′ as before, it is possible that there is no x̂ that satisfies (x̂)h = ŷ. In other words, it is
possible that there exists an eigenspace of the matrix M l that is not an eigenspace of M .
In more details, if E is an eigenspace of M with eigenvalue λ, then E is also an eigenspace
of M l with eigenvalue λl, i.e.,

M · E = λ · E =⇒ M l · E = λl · E .

Working over a space which is not algebraically closed, the other direction is not true in
general. These facts can be exploited to present a more generic example of an iterative
subspace trail, as given in the following lemma.

Lemma 2. Given a P-SPN scheme with s S-boxes defined as in Eq. (1), let M ∈ Ft×t

be an invertible matrix. Let λ(l)
1 , . . . , λ

(l)
τ be the eigenvalues of M l for some l ≥ 1, and let

P(l)
1 , . . . ,P(l)

τ be their corresponding eigenspaces (where τ ≤ t). The subspace I defined as
I :=

〈
S(l) ∩ P(l)

1 ,S(l) ∩ P(l)
2 , . . . ,S(l) ∩ P(l)

τ

〉
generates an infinitely long iterative subspace

trail of period l with no active S-box.

Proof. The proof of this result is analogous to the one proposed for Proposition 9. In
particular, it is sufficient to note that no S-box is active due to the definition of S(l) (see
Eq. (4)), and that the subspace trail is iterative with a period equal to l since I(l) is
constructed via the eigenspaces of M l.

We point out that this result includes the case in which the matrix has a low multi-
plicative order.

Corollary 2. Lemma 2 implies the result presented in Proposition 9.

Proof. Assume there exists l such that M l = µ · I. Then e1, . . . , et are all eigenvectors
of M l with eigenvalue µ. Moreover, let S(l) be the subspace constructed as in Eq. (4)
such that no S-box is active in the first l rounds. Since 〈e1, . . . , et〉 is an eigenspace of
M l corresponding to the eigenvalue µ, it follows that S(l) is an invariant subspace of M l.
Hence, due to the previous considerations,

{
S(l),M · S(l),M2 · S(l), . . . ,M l−1 · S(l)} is an

infinitely long iterative (constant-dimensional) subspace trail.

We remark that the two conditions are not equivalent (namely, Proposition 9 does in
general not imply Lemma 2), as shown in the following concrete example.

Example. Consider the circulant matrix M = circ(a, b, c, d) over F4. Its eigenvalues are

a+ b+ c+ d, ±
√
a2 + b2 − 2ac+ c2 − 2bd+ d2, a− b+ c− d,

while the eigenvalues of M2 are (a + b + c + d)2, a2 + b2 − 2ac + c2 − 2bd + d2, and
(a− b+ c−d)2. Since x 7→ x2 is not a permutation over Fp for a prime p ≥ 3 (see Hermite’s
criterion), there exist a, b, c, d, s.t. a2 + b2 − 2ac+ c2 − 2bd+ d2 is not a square. Hence,
for certain values of a, b, c, d ∈ Fp, it is possible that M has two eigenvalues, while M2 has
always four eigenvalues.11 This fact can be exploited in order to construct a matrix M
that is not a multiple of the identity and for which an infinitely long iterative subspace
trail exists. Given a P-SPN scheme over (Fp)5 with s = 1, a concrete example of such a
matrix is

M =


x y w y w
z0 a b c d
z1 b c d a
z2 c d a b
z3 d a b c


11E.g., given (a, b, c, d) = (1, 1, 2, 3), a2 + b2 − 2ac+ c2 − 2bd+ d2 is a square in F11, but not in F13.
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Algorithm 1: Determining the existence of invariant infinitely long subspace
trails without active S-boxes, using Theorem 3 and Proposition 5.
Data: P-SPN scheme over Ft with s S-boxes applied to the first s words (where

the S-box has no linear structure).
Result: 1 if an invariant infinitely long subspace trail exists, 0 otherwise.

1 Obtain A1,A2, . . . ,Am using Theorem 1.
2 for i← 1 to m do
3 Ai ← Ai ∩ 〈es+1, . . . , et〉.
4 while dim(Ai) > 0 do
5 if Ai = M · Ai then
6 break
7 Ai ←M · Ai.
8 I ← 〈A1,A2, . . . ,Am〉.
9 if dim(I) > 0 then

10 return 1: Discard the matrix M (due to existence of an invariant subspace
trail generated by I – Theorem 3).

11 return 0: No infinitely long subspace trail found.

for particular values of a, b, c, d, x, y, w, zj ∈ Fp s.t. (1) the matrix is invertible and it
provides full diffusion (at word level after a finite number of rounds) for cryptographic
purposes and (2) the circulant matrix circ(a, b, c, d) has only two eigenvalues.

The iterative (non-invariant) subspace trail is thus given by
{
I = 〈(0, 0, 1, 0,−1)T 〉,

M · I = 〈(0, b− d, c− a, d− b, a− c)T 〉
}
, where M2 · I = I and where M2 6= µ · I for each

µ ∈ Fp (we refer to Appendix B for more details).

5 Practical Tests (Inactive S-Boxes)
In this section, we first present an algorithm which can be used to find vulnerabilities and
to detect weak matrices (w.r.t. the attacks presented before). Moreover, we test several
matrices over Fp and over F2n to give an idea of the number of these matrices.

5.1 Algorithm for Detecting Weak Matrices
In order to find the vulnerabilities, we use the results given in Theorem 3 and Proposition 5.
In more detail, we first decompose the full space into (potentially smaller) M -invariant
subspaces, that is, Ft =

⊕m
i=1Ai, where this decomposition results from Theorem 1. For

this purpose, we need the minimal polynomial of the matrix obtained by the Frobenius
normal form. We then take the intersection of these subspaces with the unit vectors at
the identity positions of the non-linear layer, i.e., X (0)

i = Ai ∩ 〈es+1, . . . , et〉. Now we
apply Proposition 5 to each of these X (0)

i , which means reducing the dimensions of these
subspaces until the dimension becomes either zero or until the subspace has a nonzero
dimension and does not change when applying the matrix multiplication. These final
subspaces are Pi for i ∈ {1, . . . ,m}. We now build the space

I = 〈P1,P2, . . . ,Pm〉

and report that the matrix is vulnerable w.r.t. infinitely long invariant subspace trails if
and only if dim(I) > 0. The detailed steps are shown as a pseudo code in Algorithm 1.

We emphasize that, while Algorithm 1 only detects infinitely long invariant subspace
trails, this is sufficient in order to also prevent infinitely long iterative subspace trails. We
refer to Proposition 8 for more details.
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Table 1: Percentage of vulnerable matrices for Algorithm 1 and orders t, when considering
prime fields GF(p).

dlog2(p)e 8 4 6 16 8 12 16 8
t 3 4 4 4 8 8 8 12
Vulnerable (%)
(Random Invertible) 0.46 8.94 2.06 < 0.01 0.51 0.03 < 0.01 0.50

Vulnerable (%)
(MDS, Random Cauchy) 0.49 6.12 2.03 < 0.01 0.49 0.03 < 0.01 0.52

Computational Cost of Algorithm 1. The complexity of computing the Frobenius nor-
mal form is an element of O(t3) for a t× t matrix [43]. Moreover, since m ≤ t and since
the dimension of each Ai can be reduced at most t times, the complexity of the loop is an
element of O(t2). Hence, the computational cost is an element of O(t3 + t2) = O(t3).

Implementation. We make our implementation available online.12 This tool can be used
to detect vulnerabilities of given matrices over prime field or binary fields.

Computational Cost in Practice. In our practical runtime tests, we focus on prime fields
GF(p). To give some concrete numbers, for dlog2(p)e = 16, the test for a single matrix
takes about 4 milliseconds for t = 4, while it takes about 30 milliseconds for t = 16 (using
an Intel Xeon E5-2699v4 with a maximum clock frequency of 3.60 GHz). Moreover, note
that the algorithm is easily parallelizable. Indeed, Proposition 5 can be applied to each Ai
separately.

5.2 Percentage of Weak Linear Layers
We implemented Algorithm 1 in Sage and used it to get an idea of the percentage of
matrices that are vulnerable to the attack without active S-boxes presented in Section 3.

Different Classes of Matrices. For concrete use cases, we set s = 1 and we focus on
two scenarios, namely random invertible matrices and random Cauchy matrices.13 As
the source for randomness we use Sage’s random engine in both cases (and for choosing
e.g. the prime numbers). In the first scenario, we create a matrix space, sample random
matrices, and finally determine if they are invertible. In the second scenario, we generate
Cauchy matrices using random (and valid) starting sequences. We tested all matrices using
both prime fields and binary fields, focusing on square matrices of order t ∈ {3, 4, 8, 12}
and on fields with a size of n ∈ {4, 6, 8, 12, 16} (and dlog2(p)e ∈ {4, 6, 8, 12, 16} for prime
fields). Moreover, we tested our algorithm on the concrete matrices used to instantiate
Starkad and Poseidon. We present these results in Appendix E.1.

Concrete Results. The sample size for all tests was set to 100 000 and the results are
given in Table 1 and Table 2. We can immediately see that the choice of p (or n) has
a significant impact on the number of vulnerable matrices. Specifically, increasing p (or
n) tends to result in a higher probability for a matrix to be secure against the attacks

12https://extgit.iaik.tugraz.at/krypto/linear-layer-tool
13We recall that M ∈ Ft×t is a Cauchy matrix if there exists {xi, yi}ti=1 s.t. Mi,j = 1

xi+yj
, where for

each i 6= j : xi 6= xj , yi 6= yj , xi + yj 6= 0. Cauchy matrices are MDS matrices.

https://extgit.iaik.tugraz.at/krypto/linear-layer-tool
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Table 2: Percentage of vulnerable matrices for Algorithm 1 and orders t, when considering
binary fields GF(2n).

n 8 4 6 16 8 12 16 8
t 3 4 4 4 8 8 8 12
Vulnerable (%)
(Random Invertible) 0.37 6.26 1.50 < 0.01 0.40 0.03 < 0.01 0.41

Vulnerable (%)
(MDS, Random Cauchy) 0.39 5.14 1.48 < 0.01 0.41 0.02 < 0.01 0.37

presented here. We can observe that this is also true when keeping N = n · t constant. For
example, (n, t) = (16, 4) results in a very different probability compared to (n, t) = (8, 8)
(similar for (n, t) = (8, 3) and (n, t) = (6, 4), or for (n, t) = (12, 8) and (n, t) = (8, 12)).

However, even for small fields, a secure matrix can easily be found by just testing a
small number of matrices with our tool.

6 Infinitely Long Subspace Trails for P-SPN Schemes (Ac-
tive S-Boxes)

Until now, we focused on the case in which no S-box is active. Here, we analyze the
scenario in which S-boxes are active.

6.1 Preliminary: Subspace Trails and Truncated Differentials
We first present a generic result regarding the minimum number of rounds for which it is
possible to set up a subspace trail with a probability of 1.

Proposition 11. Given a partial SPN scheme over Ft with s < dt/2e S-boxes defined as
in Eq. (1), there exists a subspace trail with prob. 1 on at least 2 ·

⌊
t−s
s

⌋
rounds, defined by{

S(b t−s
s c),M · S(b t−s

s c), . . . ,Mb
t−s

s c−1 · S(b t−s
s c),A(1), . . . ,A(b t−s

s c)
}
,

where S(i) is defined as in Eq. (4) and where A(i) :=
〈
M(e1), . . . ,M(es),M · A(i−1)〉 for

i ≥ 1 (where A(0) := Mb
t−s

s c−1 · S(b t−s
s c)).

As for Proposition 3, this well-known result (whose proof can be found in Appendix C)
only depends on the number of S-boxes, and no assumption on the matrix M is made.
Similar to the case presented in Section 3.1, note that depending on the details of the
linear layer, a longer subspace trail of dimension 1 can be set up.

6.2 Infinitely Long Invariant Subspace Trails with Active S-Boxes via
the Eigenspaces of M

Using the approach from Section 3.2, here we present some simple examples of infinitely
long invariant subspace trails with active S-boxes based on the eigenspaces of the matrix
M . For this purpose, let us first introduce the concept of “compatible” subspaces.

Definition 12. Let s ∈ {1, . . . , t − 1} be an integer. Let V ⊆ Ft be a subspace and let
I ⊆ {1, . . . , s}. We say that the subspace V is I-compatible if and only if

• if I = ∅, then V ⊆ 〈es+1, . . . , et〉;
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• if I = {ι1, ι2, . . . , ι|I|}, then

1. V ⊆ 〈eι1 , . . . , eι|I| , es+1, . . . , et〉;
2. 〈eι1 , . . . , eι|I|〉 ⊆ V.

If there exists I ⊆ {1, . . . , s} s.t. V is I-compatible, then I is unique, in the sense that
V is not J-compatible for any J 6= I. At the same time, note that it is possible that there
is no I s.t. V is I-compatible. For example, working over (Fp)t for a prime p ≥ 3 and
t ≥ 3, consider the subspace V = 〈e1 + 2 · e2〉. If s = 1, we can immediately see that there
is no I s.t. the subspace V is I-compatible.

Proposition 12. Given a P-SPN scheme with s S-boxes defined as in Eq. (1), letM ∈ Ft×t
be an invertible matrix. Let λ1, . . . , λτ be the eigenvalues of M , and let P1, . . . ,Pτ be the
corresponding eigenspaces (where τ ≤ t). Let I = {ι1, . . . , ι|I|} ⊆ {1, . . . , s} be the indices
of the active S-boxes (where I 6= ∅), and let

I =
〈
P ′1, . . . ,P ′τ

〉
,

where P ′h is a subspace14 of Ph for h ∈ {1, . . . , τ}. If 1 ≤ dim(I) < t and if I is I-
compatible, then I generates an infinitely long invariant subspace trail with active S-boxes.

Proof. Since I is I-compatible, the first condition in Definition 12 ensures that the l-th
S-box is not active if l /∈ I. For each i-th active S-box, where i ∈ I, the second condition
in Definition 12 implies that the entire space 〈ei〉 is included in I. The consequence is
that, when applying the S-box, the subspace remains the same.

As for the results given in the previous sections, this subspace remains invariant through
the linear layer since it is defined via the eigenspaces of M . Hence, I results in an infinitely
long invariant subspace trail.

Note that the number of active S-boxes in the previous subspace trail is proportional to
the number of rounds (so, potentially “infinite”). As before, we emphasize that, in general,
the previous observation provides only a sufficient condition.

Example. Given a P-SPN scheme with s = 1, consider the following 4 × 4 matrix M
defined over F:

M =

0 (1 − M1,3 · b − M1,4 · c)/a M1,3 M1,4
a (−M2,3 · b − M2,4 · c)/a M2,3 M2,4
b (−M3,3 · b − M3,4 · c)/a M3,3 M3,4
c (−M4,3 · b − M4,4 · c)/a M4,3 M4,4

 , (9)

where a 6= 0. A proper choice of a, b, c and M·,· provides invertibility and “full diffusion”
(at word level after a finite number of rounds) for cryptographic purposes. The subspace

I =
〈
e1 = (1, 0, 0, 0)T , v = (0, a, b, c)T

〉
,

where M · e1 = v and M · v = e1, is invariant under the round transformation for any
number of rounds. Indeed, since the first word can take every value and because the S-box
is applied only to this word, I remains invariant (note that the S-box is active). Hence,
this is a concrete example of an infinitely long invariant subspace trail with active S-boxes,
where P1 = 〈v+ e1〉 and P2 = 〈v− e1〉 are the eigenspaces of the matrix M that satisfy the
conditions given in the previous theorem (we refer to Appendix E.3 for other examples).

Lastly, we remark that matrices of the form Eq. (9) are currently used in the literature.
For example, the circulant almost-MDS matrix over F2n defined as circ(0,1,1,1) is used in
Midori [8] and QARMA[7].

14We start with eigenspaces since any such constructed input space is invariant when ignoring the S-boxes.
By imposing additional conditions for the active S-boxes we finally arrive at subspaces of eigenspaces.
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6.3 A Necessary and Sufficient Condition for the Existence of Infinitely
Long Invariant Subspace Trails with Active S-boxes

As done before, the natural step is to replace the eigenspace of M with subspaces that
are M -invariant. As a main result, in this section we present a necessary and sufficient
condition that allows to discard “weak” matrices with respect to invariant subspaces with
active/inactive S-boxes.

Theorem 4. Given a P-SPN scheme with s S-boxes defined as in Eq. (1), let M ∈ Ft×t
be an invertible matrix and assume that the S-box has no (non-trivial) linear structure. Let
I ⊆ {1, . . . , s} be the positions of the active S-boxes (note that I = ∅ is also possible, that is,
we do not require |I| ≥ 1). A subspace I with 1 ≤ dim(I) < t generates an infinitely long
invariant subspace trail (with active S-boxes if |I| ≥ 1) if and only if I is both M -invariant
and I-compatible.

Proof. The case I = ∅ corresponds to the case analyzed in Theorem 2. Hence, here we
assume |I| ≥ 1 (where I = {i1, i2, . . . , i|I|}).

Our approach is based on the strategy proposed for Theorem 3 and Proposition 12.
We first show that an M -invariant and I-compatible subspace generates an infinitely long
invariant subspace trail with active S-boxes. The proof is almost equal to the one given
for Proposition 12. The only difference is that the condition that I is related to the
eigenspaces of M is replaced by the more generic assumption that I is an M -invariant
subspace. At the same time, since I is I-compatible (i.e., 〈ei1 , ei2 , . . . , ei|I|〉 ⊆ I and
I ⊆ 〈ei1 , ei2 , . . . , ei|I| , es+1, . . . , et〉), every i-th S-box is active if and only if i ∈ I, and
inactive otherwise. We recall that for an active S-box the input difference can take each
possible value in F, and for an inactive S-box the input difference is equal to zero.

Vice-versa, assume that a subspace I generates an infinitely long invariant subspace
trail with active S-boxes. First of all, this can happen if and only if it satisfies the condition
I = M · I. Indeed, by contradiction, if there exists x ∈ I s.t. M · x /∈ I, then I would not
be invariant. Moreover, since the subspace trail is invariant and with active S-boxes, each
S-box can only be either constant or active. In particular, only two scenarios are possible.
Either the input difference (and the output difference) of the S-box is equal to zero15 or
the input (and the output) of the S-box is active. Since the S-box does not have any linear
structure, other cases are not compatible with the hypothesis of an invariant subspace trail
with active S-boxes. Hence, there must exist I ⊆ {1, . . . , s} s.t. I is I-compatible.

As expected, the result presented in Proposition 12 satisfies the previous theorem. This
is due to the fact that the subspace I defined in Proposition 12 is related to the eigenspaces
of M , which satisfy the condition I = M · I. We formulate the following corollary.

Corollary 3. The infinitely long subspace trail with active S-boxes presented in Proposi-
tion 12 satisfies Theorem 4.

As previously done for the case of inactive S-boxes, we will now generalize Proposition 12
by replacing the eigenspaces with the generic invariant subspaces of M .

Theorem 5. Given a P-SPN scheme with s S-boxes defined as in Eq. (1), let M ∈ Ft×t be
an invertible matrix. Assume that the S-box has no (non-trivial) linear structure. Let φ(x)
be the minimal polynomial of M s.t. φ(x) = [p1(x)]α1 · [p2(x)]α2 · · · · · [pm(x)]αm , where
αi ≥ 1 and pi, pj are monic, irreducible, and relatively prime. Let {A1,A2, . . . ,Am} be
the primary decomposition of Ft w.r.t. the matrix M , as defined in Theorem 1.

A subspace I, where 1 ≤ dim(I) < t, generates an infinitely long invariant subspace
trail with active S-boxes only in positions I = {i1, . . . , i|I|} ⊆ {1, 2, . . . , s} (that is, where

15Equivalently, the input and the output of the S-box are constant.
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the i-th S-box is active if and only if i ∈ I) if and only if

I = 〈P1,P2, . . . ,Pm〉,

where Pi is an M -invariant subspace of Ai ∩ 〈ei1 , ei2 , . . . , ei|I| , es+1, . . . , et〉 such that I is
I-compatible.

Proof. The proof of this theorem is a consequence of the result given in Theorem 4 and in
Theorem 1. In particular, due to the argument given in Theorem 4, we immediately see
that I = 〈P1,P2, . . . ,Pm〉, where I is both M -invariant and I-compatible, generates an
infinitely long invariant subspace trail with active S-boxes.

Vice-versa, if a subspace generates an infinitely long invariant subspace trail with active
S-boxes, then it must be M -invariant and I-compatible, due to Theorem 4 and due to the
fact that the S-box has no non-trivial linear structure. The particular shape of I is due to
Theorem 1. Following the proof of Theorem 3, let

Pi := Ai ∩ I.

All Pi are M -invariant subspaces. In particular, we have that I = 〈P1,P2, . . . ,Pm〉 since
all Ai are independent (in the sense that Ai ∩ Aj = {0}) and since Ft =

⊕
iAi.

We emphasize that in general it is not trivial to give a precise “description/shape” of
the subspaces Pi. This is due to the fact that we have two conditions, first all Pi have
to be M -invariant and secondly the full subspace I must be I-compatible. For example,
there may be two subspaces Ai,Aj such that they are both M -invariant and such that

• neither Ai nor Aj are I-compatible, but

• 〈Ai,Aj〉 is I-compatible.

In such a case, the span 〈Ai,Aj〉 can generate an infinitely long invariant subspace with
active S-boxes, but not the two subspaces Ai,Aj . As a concrete example working over Ftp
for a prime p� 1 and t ≥ 3, consider the subspace V = 〈e1 + 2 · e2〉 and W = 〈e1 − e2〉,
and assume that they are both M -invariant for a particular matrix M . If s = 1, it is not
hard to see that neither V nor W are I-compatible, while 〈V,W〉 = 〈e1, e2〉 is obviously
{1}-compatible. Hence, while in the case of inactive S-boxes we can work independently
on the subspaces Ai (obtained as the decomposition of the Ft), here it is not possible.

A special (trivial) case of the previous theorem is given in the following corollary.

Corollary 4. Given a P-SPN scheme with s S-boxes defined as in Eq. (1), let M ∈ Ft×t
be an invertible matrix. Let φ(x) be the minimal polynomial of M s.t. φ(x) = [p1(x)]α1 ·
[p2(x)]α2 · · · · · [pm(x)]αm where αi ≥ 1 and pi, pj are monic, irreducible, and relatively
prime. Let {A1,A2, . . . ,Am} be the primary decomposition of Ft w.r.t. the matrix M . If
there exists I ⊆ {1, . . . , s} and a subspace Ai s.t. Ai is I-compatible, then Ai generates an
infinitely long invariant subspace trail with active S-boxes.

An Example for Showing the Difference Between Inactive and Active S-Boxes. Finally,
one may ask if there exist P-SPN schemes which are vulnerable to subspace trails with
active S-boxes, but not to trails with inactive S-boxes. Assuming a P-SPN scheme with
s = 1, an example for a matrix fulfilling these properties is given by the 4× 4 MDS matrix

M =


3 1 1 2
3 4 2 1
2 1 3 4
4 1 4 1


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over Fp for large p � 1 (e.g., where p = 4 145 377 273 and dlog2(p′)e = 32). In such a
case, I =

〈
(1, 0, 0, 0)T , (0, 1, 0, 2)T , (0, 0, 1, p− 1)T

〉
generates an infinitely long invariant

subspace trail with active S-boxes. Using our proposed tool, it is possible to see that no
infinitely long invariant or iterative subspace trail with inactive S-boxes exists.

6.4 Infinitely Long Iterative Subspace Trails with Active S-Boxes
As a final step, we generalize the previous results in order to cover the case of iterative
subspace trails with active S-boxes.

Theorem 6. Given a P-SPN scheme with s S-boxes defined as in Eq. (1), let M ∈ Ft×t
be an invertible matrix and assume that the S-box has no (non-trivial) linear structure.
Let l ≥ 1 be the period of the iterative subspace trail. For each j ∈ {1, 2, . . . , l}, let
Ij ⊆ {1, . . . , s} be the positions of the active S-boxes (note that Ij = ∅ is also possible, that
is, we do not require |Ij | ≥ 1) at the (r + 1)-th round for r = j mod l.

A subspace I of dimension 1 ≤ dim(I) < t generates an infinitely long iterative subspace
trail (with active S-boxes if at least one Ij satisfies |Ij | ≥ 1) of period l if and only if

(1) M j · I is Ij-compatible for j ∈ {0, 1, . . . , l − 1}, and

(2) I is M l-invariant.

Proof. This result is a generalization of Theorem 4. In particular, I forms an l-round
invariant subspace trail, i.e., a trail that is equal every l rounds. Hence, all l-round iterative
subspace trails are of the form {I,M · I,M2 · I, . . . ,M l−1 · I}. Since we assume that the
S-box has no (non-trivial) linear structure, such a trail has active S-boxes if and only if
the first condition (namely, there exists Ij s.t. M j−1 · I is Ij compatible) is satisfied.

We highlight that the active S-boxes are not forced to be in an active position (it is
also possible that no S-box is active in some rounds). Moreover, the following result holds.

Theorem 7. Given a P-SPN scheme with s S-boxes defined as in Eq. (1), let M ∈ Ft×t
be an invertible matrix. Assume that the S-box has no (non-trivial) linear structure. Let
l ≥ 2, and let {A(l)

1 ,A(l)
2 , . . . ,A(l)

m } be the primary decomposition of Ft w.r.t. the matrix
M l, as defined in Theorem 1.

A subspace I, where 1 ≤ dim(I) < t, generates an infinitely long iterative subspace
trail of period l ≥ 2 with active S-boxes only in positions Ij = {i1,j , . . . , i|Ij |,j} ⊆ {1, . . . , s}
in the j-th round (where j is taken modulo l) if and only if

I = 〈P1,P2, . . . ,Pm〉,

where Pi is an M l-invariant subspace of A(l)
i ∩ 〈ei1,0, ei2,0, . . . , ei|I0|,0 , es+1, . . . , et〉 s.t.

∀j ∈ {0, 1, . . . , l − 1} : (M j · I) is Ij-compatible.

The proof is a simple generalization of the one given for Theorem 5 based on Theorem 6.

Examples. Given a P-SPN scheme with s = 1, consider again the 4× 4 matrix M defined
in Eq. (9). The subspace I =

〈
e1 = (1, 0, 0, 0)T

〉
generates an infinitely long iterative

subspace trail with active S-boxes (of period 2) of the form{
I =

〈
e1 = (1, 0, 0, 0)T

〉
,M · I =

〈
(0, a, b, c)T

〉}
,

where I2i = {1} and I1+2i = ∅ for each i ≥ 0.
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For a second example, consider the case of a P-SPN scheme over (F2n)4 with s = 1 and
M = circ(0, 1, 1, 1). Clearly, both

〈
(0, 1, 1, 0)T

〉
and

〈
(0, 1, 0, 1)T

〉
are invariant subspace

trails with inactive S-boxes. As shown before,
〈
(1, 0, 0, 0)T , (0, 1, 1, 1)T

〉
is an invariant

subspace trail with active S-boxes, while
〈
(1, 0, 0, 0)T

〉
is an iterative (non-invariant)

subspace trail with active S-boxes. By combining them, it is possible to set up new iterative
subspace trails with active S-boxes, e.g., I =

〈
(1, 0, 0, 0)T , (0, 1, 1, 0)T , (0, 1, 0, 1)T

〉
. A

generalization of this result is presented in Appendix E.3.2.

About Iterative Subspace Trails with Active S-Boxes

Due to the results presented in Proposition 8, one may ask if there exist non-trivial iterative
subspace trails with active S-boxes, namely P-SPN schemes for which there exist iterative
subspace trails with active S-boxes but no subspace trails with inactive S-boxes or invariant
subspace trails with active S-boxes. As shown in the following, such schemes exist even if
they are “rare”. Just to give a concrete example, consider a P-SPN scheme over F3

p (for
s = 1 and t = 3), where the linear layer is defined by the matrix

M =

0 1 −1
1 −2 1
1 −4 2

 . (10)

The (non-trivial) subspace trail{
V0 = 〈(1, 0, 0)T 〉,V1 = M · V0 = 〈(0, 1, 1)T 〉,V2 = M2 · V0 = 〈(0, 1, 2)T 〉

}
is iterative (since V0 is a proper subspace of F3

p and V0 = M3 · V0) with active S-boxes.
Since dim(〈V0,V1,V2〉) = 3, it is not possible to set up an invariant subspace trail via the
previous iterative subspace trail. Moreover, using the results and the tools presented in
the paper, it is possible to show that (e.g., for p = 251) no invariant subspace trail (either
with active or inactive S-boxes) can cover an infinite number of rounds.

7 Practical Tests (Active S-Boxes)
The results given in Theorem 5 to Theorem 7 seem hard to exploit in practice. A direct
construction of the infinitely long subspace trail with active S-boxes is indeed missing.
Without that, the cost of evaluating all subspaces I would likely be too large, since one
has to compute all possible subspaces of A1,A2, . . . ,Am. Here, we fix this problem by
proposing two algorithms, namely one for the case of infinitely long invariant subspace
trails and one for the case of iterative trails (both with active S-boxes). Further, we test
several matrices over Fp and over F2n to get an idea of the number of “weak” matrices.

Before going on, we emphasize again that we work under the assumption that the
S-box has no linear structure. This assumption is crucial in order to have only two cases,
namely the case in which the input of the S-box is constant and the case in which the
input of the S-box is active (namely, the input can take any possible value). Since the
S-box is a permutation, these two cases remain unchanged through the S-box. In other
words, if the input is neither constant nor active, all information is lost when applying the
S-box. This is not the case if the S-box has a linear structure.

7.1 Related Strategies in the Literature
In order to find invariant or iterative subspaces with active S-boxes, we decided to adapt
algorithms already existing in the literature for our goal, that is the one proposed in [37]
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Algorithm 2: Determining the existence of infinitely long invariant subspace
trails with active S-boxes.
Data: P-SPN scheme over Ft with s S-boxes applied to the first s words (where

the S-box has no linear structure).
Result: 1 if (invariant) infinitely long invariant subspace trail with active S-boxes

is found, 0 otherwise.
1 foreach Is ⊆ {1, 2, . . . , s} s.t. |Is| ≥ 1 (where Is := {ι1, . . . , ι|Is|}) do
2 I ← 〈eι1 , . . . , eι|Is|

〉.
3 foreach i ∈ Is do
4 v ← ei.
5 do
6 δ ← dim(I).
7 v ←M · v.
8 I ← 〈I, v〉.
9 if dim(I) = t or I ∩ 〈eι1 , . . . , eι|Is|

, es+1, . . . , et〉 6= I then
10 break (move to next Is)
11 while dim(I) > δ

12 return 1: infinitely long invariant subspace trail with active S-boxes found: I
with active S-boxes in Is.

13 return 0: No infinitely long invariant subspace trail with active S-boxes found.

for the detection of invariant subspace trails and the one proposed in [25] for the detection
of weak-key subspace trails.

Let us focus on the algorithm proposed in [37]. Given an SPN-like permutation, the
goal is to find a subspace U and an offset u that is invariant under the keyless round
function R(·), namely R(U + u) = U + v for a certain v. In the case of an SPN cipher, it
is sufficient to choose the round key k ∈ Kweak = U + (u− v) if one aims to keep the coset
invariant (depending on the key schedule, such a subspace trail can cover either a finite or
an infinite number of rounds).

The approach described in [37, Lemma 1] serves as the basis for our algorithms. Starting
by first guessing one possible offset u of the subspace to be found and fixing v = R(u),
the idea is then to guess a one-dimensional subspace A0 and to increase the space by
computing

Ai+1 = 〈R(Ai + u)− v,Ai〉.

If Ai+1 = Ai for some i > 0, the attacker has found such an invariant subspace. If this is
not the case, the attacker keeps increasing the dimension of the subspace until the space
reaches the full dimension.

7.2 Algorithms for Detecting “Weak” Matrices
Infinitely Long Invariant Subspace Trails with Active S-Boxes. Our main algorithm is
based on the idea proposed in [37] and briefly recalled in Section 7.1. In particular, the
procedure is as follows.

1. We choose an initial subspace I generated by the unit vectors at the active S-box
positions defined in Is.

2. Now, similar to the approach described in [37], we keep increasing the dimension
of the subspace until it stabilizes. For this purpose, we keep adding M j · ei for the
active S-box positions for j ≥ 1. Indeed, note that if we require that I = M · I and
if x ∈ I, it follows that M j · x ∈ I.
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3. If for every active S-box position i there exists an ji ≥ 1 such that M ji+h · ei ∈ I for
h ≥ 1, then

I =
〈
eι1 ,M · eι1 , . . . ,M j · eι1 , . . . , eι|I| ,M · eι|I| , . . . ,M

j · eι|I|
〉

(11)

generates an infinitely long invariant subspace trail for the S-box positions in Is,
where j = max(ji). However, if this condition is not fulfilled for some i, then

dim(〈I,M · ei, . . . ,M ji · ei,M ji+1 · ei〉) = 1 + dim(〈I,M · ei, . . . ,M ji · ei〉),

and hence the dimension of I increased by 1. If the condition is never fulfilled, the
largest possible dimension t will be reached after a finite number of iterations. In this
case, it follows that no infinitely long invariant subspace trail with active S-boxes
exists (apart from the trivial one) for the particular set of active S-box positions Is
chosen in the first step.

A pseudo code for this procedure is given in Algorithm 2.
Note that in the first step, an input space has to be chosen based on some particular unit

vectors. In the original approach proposed in [37], this quickly becomes too expensive due
to the large number of unit vectors in the non-linear parts of the designs being considered.
However, in our setting we focus on word-based designs, and further the number of S-boxes
s is often small (e.g., s = 1 for HadesMiMC/Poseidon). Hence, we are able to determine
if an invariant subspace trail with active S-boxes exists by evaluating all possibilities in a
reasonable amount time – an advantage that is not necessarily related our algorithm, but
to the setting we consider.

Computational Cost of Algorithm 2. Here we analyze the computational cost of Algo-
rithm 2 in terms of loop iterations. First, consider the loop starting in the second line, and
note that there are 2s − 1 non-empty subsets of {1, . . . , s}. The second loop is iterated
|Is| times for each of these subsets. For the Do-While loop, there are two possible cases.
Either it finishes if the dimension of the new I is equal to the dimension of the old I,
or the dimension of I increased in the last iteration. Observe that the loop ends when
dim (I) = t, and hence this loop is iterated at most t− 1 times. Consequently, the runtime
of Algorithm 2 is an element in O (2sst). Note that this runtime, even though being
exponential in s, is not a major issue in the schemes we consider, since in these schemes
the number of S-boxes per round (i.e., s) tends to be small.

Computational Cost in Practice. We used the same hardware as for the practical tests
in Section 5.2, i.e., an Intel Xeon E5-2699v4 with a maximum clock frequency of 3.60 GHz.
Again, we evaluate the performance of Algorithm 2 when using matrices over prime fields
and for n = 16, t ∈ {4, 12}. For t = 4, Algorithm 2 takes about 3 milliseconds. For t = 12,
Algorithm 2 takes about 16 milliseconds.

Infinitely Long Iterative Subspace Trails with Active S-Boxes. A similar algorithm can
also be used to search for infinitely long iterative subspace trails with active S-boxes.
Following the observations from Theorem 6, in this case we need to replace the single
set Is by l potentially different sets I1, I2, . . . , Il, where l is the period of the iterative
subspace trail and where each of these sets denotes the positions of active S-boxes in a
specific round. A pseudo code for this approach is given in Algorithm 3.

7.3 Percentage of “Weak” Linear Layers
Similar to the case for Algorithm 1, we estimate the percentage of “weak” linear layers
with respect to Algorithm 2 and Algorithm 3. We refer to Section 5.2 for a description
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Table 3: Percentage of vulnerable matrices using Algorithm 1, Algorithm 2, Algorithm 3,
and orders t, when considering prime fields GF(p). We denote by “Sx” and “Vx” the
security and vulnerability w.r.t. to Algorithm x, respectively (e.g., S1 denotes security
w.r.t. Algorithm 1, while V2 denotes vulnerability w.r.t. Algorithm 2). For Algorithm 3,
we use a maximum period of l = 2t.

dlog2(p)e 8 4 6 16 8 12 16 8
t 3 4 4 4 8 8 8 12

Random Invertible
% (V2) 0.48 8.94 2.02 < 0.01 0.47 0.03 < 0.01 0.51
% (V2 ∧ S1) 0.48 7.46 1.94 < 0.01 0.46 0.03 < 0.01 0.51
% (V2 ∨ V1) 0.94 16.41 4.00 < 0.01 0.97 0.06 < 0.01 1.01
% (V3 ∧ S2) < 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
% (V3 ∧ S1 ∧ S2) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
% (V3 ∨ V2 ∨ V1) 0.94 16.41 4.00 < 0.01 0.97 0.06 < 0.01 1.01

MDS, Random Cauchy
% (V2) 0.51 6.12 1.84 < 0.01 0.53 0.04 < 0.01 0.48
% (V2 ∧ S1) 0.50 5.29 1.76 < 0.01 0.52 0.04 < 0.01 0.47
% (V2 ∨ V1) 0.99 11.41 3.79 < 0.01 1.01 0.07 < 0.01 0.99
% (V3 ∧ S2) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
% (V3 ∧ S1 ∧ S2) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
% (V3 ∨ V2 ∨ V1) 0.99 11.41 3.79 < 0.01 1.01 0.07 < 0.01 0.99

Table 4: Percentage of vulnerable matrices using Algorithm 1, Algorithm 2, Algorithm 3,
and orders t, when considering binary fields GF(2n). We denote by “Sx” and “Vx” the
security and vulnerability w.r.t. to Algorithm x, respectively (e.g., S1 denotes security
w.r.t. Algorithm 1, while V2 denotes vulnerability w.r.t. Algorithm 2). For Algorithm 3,
we use a maximum period of l = 2t.

n 8 4 6 16 8 12 16 8
t 3 4 4 4 8 8 8 12

Random Invertible
% (V2) 0.38 6.25 1.56 < 0.01 0.42 0.02 < 0.01 0.41
% (V2 ∧ S1) 0.38 5.54 1.51 < 0.01 0.42 0.02 < 0.01 0.40
% (V2 ∨ V1) 0.75 11.80 3.01 < 0.01 0.82 0.04 < 0.01 0.81
% (V3 ∧ S2) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
% (V3 ∧ S1 ∧ S2) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
% (V3 ∨ V2 ∨ V1) 0.75 11.80 3.01 < 0.01 0.82 0.04 < 0.01 0.81

MDS, Random Cauchy
% (V2) 0.40 5.13 1.51 < 0.01 0.36 0.03 < 0.01 0.42
% (V2 ∧ S1) 0.39 4.10 1.44 < 0.01 0.36 0.03 < 0.01 0.41
% (V2 ∨ V1) 0.79 9.24 2.92 < 0.01 0.77 0.05 < 0.01 0.79
% (V3 ∧ S2) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
% (V3 ∧ S1 ∧ S2) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
% (V3 ∨ V2 ∨ V1) 0.79 9.24 2.92 < 0.01 0.77 0.05 < 0.01 0.79

about the matrices we used for our tests. Again, our sample size is 100 000 and we focus
on the case s = 1. To also get a better understanding of the differences between the results
provided by our algorithms, we made the following distinctions:
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(1) matrices which are vulnerable w.r.t. Algorithm 2,
(2) matrices which are vulnerable w.r.t. Algorithm 2 and secure w.r.t. Algorithm 1,
(3) matrices which are vulnerable w.r.t. Algorithm 3 and secure w.r.t. Algorithm 2,
(4) matrices which are vulnerable w.r.t. Algorithm 3 and secure w.r.t. Algorithm 1 and

Algorithm 2.
Table 3 and Table 4 show the results for matrices over GF(p) and GF(2n) respectively.

We can immediately see that the numbers are not very different from the numbers obtained
by testing Algorithm 1. Indeed, a similar amount of matrices seems to be vulnerable
with respect to Algorithm 2. Interestingly, when first excluding matrices detected by
Algorithm 1, the percentage is in most cases slightly lower but the difference is negligible.
This fact suggests that using only one of the two algorithms is not sufficient in order to
find all vulnerabilities.

Moreover, when looking at the numbers obtained by testing Algorithm 3, we can see
the “rarity” of matrices which are vulnerable w.r.t. Algorithm 3, but not vulnerable w.r.t.
the other two algorithms (see also Section 6.4). Indeed, for our sample size, the percentage
for these matrices was close to zero.

8 Conclusion and Open Problems
In this paper, we presented necessary and sufficient conditions that a (highly non-trivial)
linear layer must satisfy in order to prevent the existence of infinitely long subspace trail
attacks.

8.1 Preventing Infinitely Long Subspace Trails – A Sufficient Condition
To conclude the paper, we propose a sufficient condition on the matrix M that defines
the P-SPN scheme that – if satisfied – ensures that no infinitely long (invariant/iterative)
subspace trail (with active/inactive S-boxes) exists. This condition only involves the
details of the minimal polynomial of the matrix, and it is independent of the number of
S-boxes per round. At the same time, we emphasize that it is only a sufficient condition.
Hence, there exist matrices which do not satisfy it but which provide security against the
approaches discussed in this paper.

Proposition 13. Let φ be the minimal polynomial of a matrix M . Assume that φ is
irreducible. For each v ∈ Ft and for each monic polynomial φ′(x) ∈ F[x] s.t. φ′(M) · v = 0
it follows that φ′ = φ.

Proof. As we have seen in Proposition 2, there must exist at least one vector v ∈ Ft s.t.
v,M · v,M2 · v, . . . ,Mdeg(φ)−1 · v are linearly independent. Assume there exists a vector
w ∈ Ft s.t. φ′(M) · w = 0 for a certain polynomial φ′ for which deg(φ′) < deg(φ). In
such a case, w,M · w, . . . ,Mdeg(φ)−1 · w are not linearly independent. In particular, the
subspace W = 〈w,M · w, . . . ,Mdeg(φ′)−1 · w〉 is a proper M -invariant subspace of Ft. Due
to [32, Prop. 2], it follows that φ

∣∣
W= φ′ divides φ. However, this is not possible, since φ

is irreducible. It follows that each monic polynomial φ′(x) ∈ F[x] s.t. φ′(M) · v = 0 has
the same degree as φ.

Next, we have to prove that φ′ = φ. Assume as before there exists v ∈ Ft s.t.
φ′(M) · v = 0 for a certain monic polynomial φ′ where d = deg(φ′) = deg(φ) and φ′ 6= φ.
It follows that there are two linear combinations of v,M · v, . . . ,Md · v that are equal to
zero, one induced by φ′ and one induced by φ (note that they are different since φ′ 6= φ
and since the two polynomials are monic, that is, φ′ is not a multiple of φ). Hence, there
exists a linear combination of v,M · v, . . . ,Md−1 · v that is equal to zero.16 Thus, there

16E.g., if
∑d

i=0 αi(M
iv) = 0 and

∑t

i=0 βi(M
iw) = 0, then

∑d−1
i=0 (αiβd − βiαd)(M iv) = 0.
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Table 5: Percentage of MDS matrices fulfilling the requirement given in Proposition 14.

Cauchy MDS matrices over Fp
dlog2(p)e 8 4 6 16 8 12 16 8
t 3 4 4 4 8 8 8 12
Secure (%) 33.79 26.52 24.66 25.23 13.42 12.89 12.42 8.10

Cauchy MDS matrices over F2n

n 8 4 6 16 8 12 16 8
t 3 4 4 4 8 8 8 12
Secure (%) 31.66 8.49 20.07 24.83 9.75 12.16 12.75 4.73

also exists a polynomial φ′′ of degree strictly less than d for which φ′′(M) · v = 0. Such a
polynomial is a non-trivial divisor of φ, which leads to a contradiction.

Based on this result, we can prove the following proposition.

Proposition 14. Given a P-SPN scheme with s S-boxes defined as in Eq. (1), letM ∈ Ft×t
be an invertible matrix. Assume that the S-box has no (non-trivial) linear structure. If the
minimal polynomial φ of M has maximum degree and it is irreducible, then there is no
infinitely long invariant subspace trail with active/inactive S-boxes.

Proof. Due to the previous proposition and since deg(φ) = t, for each v ∈ Ft \0 the vectors

v,M · v,M2 · v, . . . ,M t−1 · v

are linearly independent. Hence, there is no non-trivial subspace of Ft that is M -invariant.
Indeed, if S is a M -invariant subspace, then v,M · v,M2 · v, . . . ,M t−1 · v must be in S for
each v ∈ S \ {0}. Since v,M · v,M2 · v, . . . ,M t−1 · v are linearly independent and since
S is a subspace, it follows that 〈v,M · v,M2 · v, . . . ,M t−1 · v〉 ⊆ S, that is, dim(S) = t,
which implies that S is a trivial subspace. Hence, there is no non-trivial subspace S in Ft
that generates an infinitely long invariant subspace trail both for the case of active and for
the case of inactive S-boxes (under the assumption that the S-box has no non-trivial linear
structure).

Note that this result does not imply security against infinitely long iterative subspace
trails with active S-boxes. Indeed, as shown in the example given in Eq. (10), there are
matrices for which there exists an infinitely long iterative subspace trail with active S-boxes
but no infinitely long invariant subspace trails. In order to guarantee security against all
infinitely long subspace trails (under the assumption that the S-box has no non-trivial
linear structure), we propose the following result.

Theorem 8. Let l ≥ 1. Given a P-SPN scheme with s S-boxes defined as in Eq. (1),
let M ∈ Ft×t be an invertible matrix. Assume that the S-box has no (non-trivial) linear
structure. If the minimal polynomials of M,M2, . . . ,M l are of maximum degree and
if they are all irreducible, then there is no infinitely long invariant subspace trail with
active/inactive S-boxes and no infinitely long iterative subspace trail with active S-boxes of
period less than or equal to l.

The proof is a simple generalization of the previous results, by keeping in mind that an
iterative subspace trail of period l ≥ 2 is a l-round invariant subspace trail.
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Discussion. As last point, one may ask how many matrices satisfy the required property
just given. Assume that an irreducible polynomial φ(x) ∈ F[x] of degree t is given. Working
with matrices over Ft×t, it is always possible to associate a companion matrix C to such a
minimal polynomial, as given in Definition 9 (note that the characteristic polynomial and
the minimal one are equivalent in this case). It follows that all matrices M similar to C
(i.e., all matricesM of the form A−1 ·C ·A for an invertible matrix A) satisfy Proposition 14
by construction.

For this reason, here we focus on the case of MDS matrices. We practically evaluated
the percentage of Cauchy MDS matrices which satisfy the condition given in Proposition 14.
The results are shown in Table 5. For each of the tests, we set the sample size to 10 000.
We can see that there are major differences between prime fields and binary extension
fields. It is possible to observe that, while increasing the field size and the number of
cells leads to a lower probability of the matrix to be vulnerable, it also leads to a lower
probability of the matrix to satisfy the condition given in Proposition 14. In any case, we
recall that the condition just given is only a sufficient condition, that is, a matrix does not
have to satisfy it in order to guarantee security against the attacks studied in this paper.

8.2 Open Problems
As already mentioned, several problems are still open for future research. They are
summarized in the following.

• In the whole paper, we work independently of the details of the S-box. However, in
some cases, the S-box has some linear structure that can be exploited in order to
improve the results presented here. As a future open problem, one could extend the
result given in this paper for the case of active S-boxes to the case in which there
exist non-trivial U ,V s.t. for each u there exists a certain v s.t. S(U + u) = V + v.

• It could make sense to analyze how the key schedule influences the possibility to set
up a weak-key infinitely long subspace trail. What is a possible countermeasure that
allows to prevent this case? Does the analysis in [10] also apply to P-SPN schemes?

• Here, we only considered the case of linear layers defined as invertible matrices over
Ft×t. It could be interesting to extend our results to the case in which the entries of the
matrix are linearized polynomials (i.e., polynomials of the form P (x) =

⊕d
i=0 ρi · x2i

for d ≥ 1, which can be computed efficiently over a binary field).
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A Related Work
In order to discuss the results in [1] and [11], and the relation between them and the ones
presented in this paper, we first briefly recall the definition of correlation matrices [18].

Definition 13. Let F : Fn2 → Fm2 be a vectorial Boolean function. The correlation matrix
CF ∈ R2m×2n of F is the representation of the transition matrix of F with respect to the
character basis of the algebra C[Fn2 ] and C[Fm2 ]. The coordinates of CF are

CFu,v = 1
2n ·

∑
x∈Fn

2

(−1)u
T ·F (x)+vT ·x.
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Using these notions, we recall the results presented in the literature.

Proposition 15 (Theorem 5 of [1]). Consider an invertible vectorial Boolean function
F , a subspace U , the orthogonal subspace U⊥, and a vector d. Let CFu,v be the correlation
matrix of F , and let ω = (ωu)u∈U⊥ , where ωu = (−1)dT ·u. Then CF ·ωT = ωT if and only
if F (U + d) = U + d.

This result has been generalized by Beyne in [11], who defines a “block cipher invariant”
in the following way.

Definition 14 (Definition 2 of [11]). A vector v ∈ C2n is an invariant for a block cipher
Ek : Fn2 → Fn2 if and only if it is an eigenvector of the correlation matrix CEk . If v is a
multiple of (1, 0, . . . , 0)T , it will be called a trivial invariant.

For the case of invariant subspace trails, the same approach – opportunely modified
– can potentially be exploited in order to find the results proposed here. In particular,
using the properties of CF just presented, it follows that in the case of a round function
Rk(·) = k ⊕ R(·) = k + M ◦S(·), where S(·) ≡ [S(·) || · · · || S(·) || I(·) || · · · || I(·)] and
where M(·) = M · (·), it holds that

CRk = CkCR = CkCM · CS = Ck[CM ]
(
[CS ]⊗s ⊗ [CI ]⊗(t−s)),

where CMu,v = δ(u + MT · v), CIu,v = δ(u + v), and where Ck is a diagonal matrix. In
the case studied here, it is not hard to see that if no S-box is active, the eigenvalues and
eigenvectors of CMu,v are strictly related to the eigenvalues and eigenvectors of M , leading
to the previous result.

Differences in Our Work. Here we highlight the main differences in our work.

1. Both [1] and [11] focus on invariant subspaces only. As a consequence, one has to
take care of the effect of the key (namely, of Ck) on the eigenvectors of CR (namely,
of the part of the round that is independent of the key).

2. We do not require that the subspace is invariant (namely, we do not restrict ourselves
to the case R(U + v) = U + w). At the same time, an r-round iterative subspace
trail can be seen as an invariant subspace trail for r rounds of the cipher. Hence, the
previous result can be adapted in order to include this case.

3. In our case, we look for infinitely long iterative subspace trails in P-SPN schemes
which are independent of the secret key and of the key schedule. Again, this is not
possible for an SPN cipher due to the full non-linear layer.

B 2-Round Iterative Subspace Trail – Details
In this section, we present all the details of the concrete example of an iterative subspace
trail that is not invariant given in Section 4.2.2.

The starting point is given by the circulant matrix M = circ(a, b, c, d) with elements
a, b, c, d ∈ Fp, which is invertible if and only if its determinant is different from zero:

−a4 + b4 − 4ab2c+ 2a2c2 − c4 + 4a2bd+ 4bc2d− 2b2d2 − 4acd2 + d4 6= 0 mod p.

Depending on a, b, c, d, such a matrix can have either 2 or 4 eigenvalues and eigenvectors,
while M2 has always 4 eigenvalues and eigenvectors. In particular, the eigenvalues and



36 Proving Resistance Against Infinitely Long Subspace Trails

eigenvectors of M are given by

λ0 = a+ b+ c+ d : (1, 1, 1, 1)T ,

λ1 = −
√
a2 + b2 − 2ac+ c2 − 2bd+ d2 : (b− d,−a+ c+ λ1, d− b, a− c− λ1)T ,

λ2 =
√
a2 + b2 − 2ac+ c2 − 2bd+ d2 : (b− d,−a+ c+ λ2, d− b, a− c− λ2)T ,

λ3 = a− b+ c− d : (1,−1, 1,−1)T ,

while the eigenvalues and eigenvectors of M2 are given by

Λ0 = (λ0)2 = a2 + 2a(b+ c+ d) + b2 + 2b(c+ d) + c2 + 2cd+ d2 : (1, 1, 1, 1)T ,
Λ1 = (λ1)2 = a2 + b2 − 2ac+ c2 − 2bd+ d2 : (1, 0,−1, 0)T ,
Λ2 = (λ2)2 = a2 + b2 − 2ac+ c2 − 2bd+ d2 : (0, 1, 0,−1)T ,
Λ3 = (λ3)2 = a2 − 2a(b− c+ d) + b2 − 2b(c− d) + c2 − 2cd+ d2 : (1,−1, 1,−1)T .

Let Mt×t ∈ Ft×t be the matrix defined as

M5×5 =


x y0 y1 y0 y1
z0 a b c d
z1 b c d a
z2 c d a b
z3 d a b c

 ,

where
(1) the coefficients are chosen in order to provide invertibility and “full diffusion” (at

word level after a finite number of rounds) for cryptographic purposes, and
(2) a, b, c, d are chosen such that the corresponding matrix has only 2 eigenvalues, namely

∀x ∈ Fp : a2 + b2 − 2 · a · c+ c2 − 2 · b · d+ d2 6= x2 mod p,

(remember that x 7→ x2 is not a permutation over Fp for a prime p ≥ 3 – see e.g.
Hermite’s criterion). For example, a choice of the form a = c and b = d is not allowed,
since the matrix would then have 4 eigenvalues.

Note that

(1)


a b c d
b c d a
c d a b
d a b c


︸ ︷︷ ︸
≡circ(a,b,c,d)

·


0
1
0
−1

 =


b− d
c− a
−(b− d)
−(c− a)

 ,

(2)


a b c d
b c d a
c d a b
d a b c


2

·


0
1
0
−1

 = (a2 + b2 − 2ac+ c2 − 2bd+ d2) ·


0
1
0
−1

 , and

(3)
(
x y x y

)
·


0
1
0
−1

 =
(
0
)
.

Working in F5 and due to these considerations, the subspace S =
〈
(0, 0, 1, 0,−1)T

〉
is a

2-round iterative subspace trail, since
(1) M · S =

〈
(0, b− d, c− a, d− b, a− c)T

〉
, and
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(2) M2 · S = S.
Finally, note that M2 is not necessarily equal to a multiple of the identity. For example,
note that (M2

5×5)1,5 6= 0, where
(
M2

5×5
)

1,5 = xy0 + y0a+ y1b+ y0c+ y1d is different from
0 by appropriately choosing the entries.

Other Examples. Note that many other examples can be constructed in a similar way.
For example, the matrix M8×8 defined by

M8×8 =
(
circ(s, z, s, z) circ(a, b, c, d)
circ(a, b, c, d) circ(u, v, u, v)

)
,

where a, b, c, d are chosen such that the corresponding circulant matrix has only 2 eigenval-
ues, allows for a 2-round iterative subspace trail defined by

S =
〈
(0, 1, 0,−1, 0, 0, 0, 0)T

〉
.

Indeed,
(1) M8×8 ·

〈
(0, 1, 0,−1, 0, 0, 0, 0)T

〉
=
〈
(0, 0, 0, 0, b− d, c− a, d− b, a− c)T

〉
, and

(2) (M8×8)2 ·
〈
(0, 1, 0,−1, 0, 0, 0, 0)T

〉
=
〈
(0, 1, 0,−1, 0, 0, 0, 0)T

〉
.

C Truncated and Impossible Differentials
So far, we discussed the possibility to set up truncated differentials with probability
1. However, this does not guarantee security against all other generalizations, precisely
truncated differentials with probability smaller than 1 and impossible differentials. Here
we briefly focus on this case. However, we point out that we do not discuss the minimum
number of rounds necessary to provide security against these attacks, since they strongly
depend on the details of the linear layer.

As we are going to show, in the case in which the details of the S-box are not taken into
account, (the “basic” variants of) truncated and/or of impossible differential distinguishers
which are independent of the secret key can be set up for (at most) 2R rounds, where
R ≥ 2

⌊
t−s
s

⌋
is the maximum number of rounds for which it is possible to set up a truncated

differential with probability 1.

Remark. We stress that the details of the construction (e.g., the S-box, the linear
layer, the key schedule) can potentially be used to improve the previous attacks. That
is, 2R rounds refer only to the “basic” variants of such attacks, and this number must be
considered only as a lower bound in order to provide security.

C.1 Subspace Trails and Truncated Differentials
Proposition 16. Given a partial SPN scheme over Ft with s ≤ dt/2e S-boxes, it is always
possible to set up a subspace trail with probability 1 on at least 2 ·

⌊
t−s
s

⌋
rounds, defined byS(b t−s

s c),M · S(b t−s
s c), . . . ,Mb

t−s
s c−1 · S(b t−s

s c)︸ ︷︷ ︸
no active S-boxes

,A(1), . . . ,A(b t−s
s c)

 , (12)

where S(·) is defined as in Eq. (4), where A(i) :=
〈
M(e1), . . . ,M(es),M · A(i−1)〉 for each

i ≥ 1, and where A(0) := Mb
t−s

s c−1 · S(b t−s
s c).

As done before and w.l.o.g., in the following we omit the round key and constant
additions (since they only change the coset and we deal with differences).
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Proof. The subspace trail defined over the first
⌊
t−s
s

⌋
rounds is already analyzed in

Section 3.1. Such a subspace trail cannot be extended for more rounds without activating
any S-box since

Mb
t−s

s c−1 · S(b t−s
s c) 6⊆

〈
es+1, . . . , et

〉
.

Hence, at least one S-box is active after
⌊
t−s
s

⌋
rounds. It follows that the only way to

extend the trail is by increasing the dimension of such a subspace, that is,

R
(
Mb

t−s
s c−1 · S(b t−s

s c)
)
⊆ A(1) =

〈
Mb

t−s
s c · S(b t−s

s c),M(e1), . . . ,M(es)
〉
.

Indeed, the only thing one can do is to consider the biggest subspace for which

S-box
(
M(b t−s

s c) · S(b t−s
s c)

)
⊆
〈
e1, e2, . . . , es︸ ︷︷ ︸
Due to S-boxes

,Mb
t−s

s c · S(b t−s
s c)︸ ︷︷ ︸

Due to identity part

〉
.

In this way, we lose information about the output of the S-box layer (while nothing changes
for the part of the identity layer), but we can extend the subspace trail. Working in the
same way, it follows that

R
(
A(1)

)
⊆ A(2) =

〈
M · A(1),M(e1), . . . ,M(es)

〉
,

and, more generally,

R
(
A(r)

)
⊆ A(r+1) =

〈
M · A(r),M(e1), . . . ,M(es)

〉
.

This operation can be repeated until the dimension of the subspace is smaller than t. Since
for a generic scheme the dimension of S(b t−s

s c) is s and the dimension increases by s in
each additional round, the dimension remains smaller than t for up to 2 ·

⌊
t−s
s

⌋
rounds.

Truncated Differentials. Due to the relation between subspace trails and truncated
differentials [38], it is possible to set up a truncated differential distinguisher on at least
2 ·
⌊
t−s
s

⌋
rounds with probability 1.

C.2 Truncated Differentials with Probability Smaller than 1
Here we exploit the relation between truncated differentials and subspace trails [27, 38]
and the results just given in order to analyze the minimum number of rounds to prevent
these attacks. We recall the following proposition from [27].

Proposition 17. Let
{
S(b t−s

s c), . . . ,Mb
t−s

s c−1 · S(b t−s
s c),A(1), . . . ,A(b t−s

s c)
}
be a sub-

space trail of prob. 1 defined as in Eq. (12). For simplicity, let r = 2 · b(t − s)/sc and
let

{V0,V1, . . . ,Vb(t−s)/sc−1,Vb(t−s)/sc, . . . ,V2·b(t−s)/sc−2} :=

:=
{
S(b t−s

s c),M · S(b t−s
s c), . . . ,Mb

t−s
s c−1 · S(b t−s

s c),A(1), . . . ,A(b t−s
s c)

}
.

If there exist 0 ≤ v < u ≤ w < r s.t.

dim(Vv ∩ Vu)
dim(Vu) >

dim(Vw)
t

(equivalently, s.t. given a text x ∈ Ft P
(
x ∈ Vv | x ∈ Vu

)
> P(x ∈ Vw

)
, where P(·) denotes

the probability), then it is always possible to set up a truncated differential distinguisher
for w + u− v rounds with prob. |F|− dim(Vu)+dim(Vv∩Vu).
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The result follows from the fact that for each pair (x, y) of plaintexts, where x 6= y,

P
(
Ek(x)−Ek(y) ∈ Vw | x−y ∈ V0)= P

(
Ek(x)−Ek(y) ∈ Vv | x−y ∈ Vu

)
= |F|

dim(Vv∩Vu)

|F|dim(Vu)

independently of the secret key k, due to the fact that

∀a, b : ∃c, d s.t. Ru(V0 + a) ⊆ Vu + b and Rw−v(Vv + b) ⊆ Vw + d,

where Ri(·) denotes the i-round encryption function. For comparison, in the case of a
random permutation Π(·),

P
(
Π(x)−Π(y) ∈ Vw | x− y ∈ V0)= |F|dim(Vw)

|F|t
.

We finally recall that for each subspace X ,Y,

dim(X ∩ Y) = dim(X ) + dim(Y)− dim(X ∪ Y),

where dim(X ∪ Y) can be easily computed by using a Gram–Schmidt process on X ∪ Y.

C.3 Impossible Differentials
Impossible differential and truncated impossible differential distinguishers/attacks [13]
exploit differentials that hold with probability 0.
Proposition 18. Let {V0, . . . ,Vr−1} be a subspace trail of prob. 1 defined as in Proposi-
tion 17. If there exist 0 ≤ v < u < r s.t.

P
(
x ∈ Vv | x ∈ Vu

)
= 0

(equivalently, dim(Vv ∩ Vu) = 0), it is always possible to set up an impossible differential
distinguisher for r + u− v rounds.

The reason of the previous result is analogous to the one given before for truncated
differential distinguishers with prob. ≤ 1.

D Infinitely Long Iterative Subspace Trails with Active S-
Boxes

In this section, we give the algorithm using the results described in Line 13 for a maximum
period of l = 2t.

Computational Cost of Algorithm 3. We mainly focus on loop iterations for the indicator
of the final cost. First, we fix the maximum period l of the iterative non-invariant subspace
trail. Now, Algorithm 2 is run l− 1 times. After that, the next loop is iterated l′− 1 times
for each l′ ∈ {2, . . . , l}, leading to a total number of repetitions of at most l(l+1)

2 . Finally,
the last loop is iterated s times. Operation costs inside these iterations are negligible. This
leads to the total runtime being an element in O (ls (2st+ l)), which is not a major issue
in the schemes we consider, since in these schemes the number of S-boxes per round (i.e.,
s) tends to be small.

Computational Cost in Practice. We used the same hardware as for the practical tests
in Section 5.2, i.e., an Intel Xeon E5-2699v4 with a maximum clock frequency of 3.60 GHz.
Again, we evaluate the performance of Algorithm 3 when using matrices over prime fields
and for n = 16, t ∈ {4, 12}, and l = 2t. For t = 4, Algorithm 3 takes about 40 milliseconds.
For t = 12, Algorithm 3 takes about 1 second.
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Algorithm 3: Determining the existence of (iterative) infinitely long subspace
trails with active S-boxes of period at most l ≥ 2 based on [37] and Theorem 6.
Data: P-SPN scheme over Ft with s S-boxes applied to the first s words (where

the S-box has no linear structure).
Result: 1 if (iterative) infinitely long iterative subspace trail with active S-boxes

(of period at most l ≥ 2) is found, 0 otherwise.
1 flag ← 0.
2 T ← ∅. // T stores all iterative subspace trails found
3 for r ← 2 to l do
4 foreach I ⊆ {1, 2, . . . , s} (where I := {ι1, . . . , ι|I|} and I 6= ∅) do
5 Apply Algorithm 2 to Mr, and let I be the resulting “invariant” subspace

trail with active S-boxes in I, or let I = ∅ if such a trail does not exist.
// Check for a meaningful iterative subspace trail

6 if dim(I) ≥ 1 then
7 if I = M · I (i.e., the subspace trail is invariant) then
8 break (move to next r)
9 I(1) ← ∅, I(2) ← ∅, . . . , I(r−1) ← ∅.

10 for j ← 1 to r − 1 do
11 I ←M · I.
12 for i← 1 to s do
13 E(i) ← 〈e1, . . . , ei−1, ei+1, . . . , es, es+1, . . . , et〉.
14 if I ∩ E(i) 6= I (eq., I 6⊆ E(i)) then
15 if I ∩ 〈ei〉 = 〈ei〉 then
16 I(j) ← I(j) ∪ {i}.
17 else
18 break (move to next r)
19 flag ← 1.
20 T ← T ∪ {I, r, {I, I(1), I(2), . . . , I(r−1)}}.

// In the case flag = 0 (hence, T = ∅), no infinitely long
iterative subspace trail (of period ≤ l) was found.

21 return flag: infinitely long iterative subspace trails T with active S-boxes
found.

E Results Using our Tool and More Examples of Subspace
Trails with Active S-Boxes

E.1 Starkad and Poseidon Matrices
In addition to the statistical tests described in Section 5, we also used our tool for the
Cauchy matrices using specific starting sequences defined for Starkad and Poseidon
[24]. We recall that the matrix M ′ over F2n for Starkad and the matrix M ′′ over Fp for
Poseidon are defined by

M ′i,j = 1
xi ⊕ yj

and M
′′

i,j = 1
xi + yj

, (13)

where xi = i, yi = i+ t, and i ∈ [0, t− 1].

Comparison with Related Results. When using our tool for matrices with various sizes
(i.e., different values for t), we can observe that some matrices over F2n (i.e., the matrices
used for Starkad) are vulnerable to the attacks described in this paper. We can also
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Table 6: Vulnerable matrices for Algorithm 1 and orders t and field sizes n = dlog2(p)e
when considering the Starkad and Poseidon specifications.

Poseidon Specification (over Fp)
dlog2(p)e 8 4 6 16 8 12 16 8
t 3 4 4 4 8 8 8 12
Vulnerable No No No No No No No No

Starkad Specification (over F2n)
n 8 4 6 16 8 12 16 8
t 3 4 4 4 8 8 8 12
Vulnerable No Yes Yes Yes Yes Yes Yes Yes

observe, however, that matrices over Fp using the same t values are not vulnerable. The
detailed results for some instances are shown in Table 6.

These results are not new in the literature, since similar conclusions have already been
shown in [34, 12]. Moreover, in [34] the authors explain how to modify the choice of xi
and yj in Eq. (13) in order to fix this problem. This solution consists in changing the
starting sequences for the Cauchy generation method. For completeness, we also tested
our algorithm for the matrices suggested in [34]. As expected, we arrive at the same
conclusion, namely, that it is not possible to set up infinitely long subspace trails for the
Cauchy matrices proposed in [34] (in the case of inactive S-boxes).

E.2 Zorro Matrix
We also checked the Zorro [23] matrix with our tool. Zorro is a variant of AES where
only 4 S-boxes (at the first row) are applied per round. In our setting, Zorro is a P-SPN
cipher over (F28)16 with s = 4 where the linear layer is defined by a 16× 16 matrix, where

∀x ∈ (F28)16 : MZorro · x := MC · SR · x,

where

SR =


I 0 0 0
0 I2 0 0
0 0 I3 0
0 0 0 I4

 ,

where I is the 4× 4 identity matrix, 0 is the 4× 4 null matrix, and

I2 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 , I3 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , I4 =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 ,

and where

MC =


2 · I 3 · I I I
3 · I I I 2 · I
I I 2 · I 3 · I
I 2 · I 3 · I I

 ,

where again I is the 4× 4 identity matrix, and where 2 ≡ X ∈ F28 and 3 ≡ X + 1 ∈ F28 .
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As expected, using our tool, we found that there exists no infinitely long (iterative or
invariant) subspace trail for this matrix, both in the case of inactive S-boxes and in the
case of active S-boxes.17

E.3 Examples of Infinitely Long Subspace Trails (Active S-Boxes)
E.3.1 A Generalization of Example Eq. (9)

In Section 6.2, we proposed an example of a matrix for which an infinitely long invariant
subspace trail with active S-boxes exists. In this example, one entry of the matrix is
fixed and equal to zero. Here we show that this is not a necessary condition in order to
guarantee that these subspace trails exist.

Indeed, consider again a P-SPN scheme over F4 with s = 1 (i.e., one S-box is applied
in each round). Let M be the matrix defined as

M =

1 (−M1,3 · b − M1,4 · c)/a M1,3 M1,4
a (−a − M2,3 · b − M2,4 · c)/a M2,3 M2,4
b (−b − M3,3 · b − M3,4 · c)/a M3,3 M3,4
c (−c − M4,3 · b − M4,4 · c)/a M4,3 M4,4

 ,

where a 6= 0. A proper choice of a, b, c and M·,· provides invertibility and “full diffusion”
(at word level after a finite number of rounds) for cryptographic purposes.

Similar to the previous argument, it is possible to show that the subspace

I =
〈
e1 = (1, 0, 0, 0)T , v = (1, a, b, c)T

〉
generates an infinitely long invariant subspace trail with active S-boxes.

E.3.2 Another Example of Infinitely Long Iterative Subspace Trails (Active S-Boxes)

Here we propose another example of an iterative subspace trail with active S-boxes,
obtained by combining the previous results proposed in Section 4.2.2 and in Section 6.2.
Given a P-SPN scheme over F8 with s = 1, a concrete example of such a matrix is given by

M =
(
M (1) M (2)

M (3) M (4)

)
s.t. M provides invertibility and “full diffusion” (at word level after a finite number of
rounds) for cryptographic purposes, where

• M (1) is the 4× 4 matrix defined in Eq. (9),

• M (4) = circ(a, b, c, d) as in Section 4.2.2 s.t. circ(a, b, c, d) has only 2 eigenvalues,

• M (2) satisfies M (2)
i,1 = M

(2)
i,3 and M (2)

i,2 = M
(2)
i,4 for i ∈ {1, . . . , 4}, and

• M (3) satisfies M (3)
i,1 = 0 and M (3)

i,2 +M
(3)
i,3 +M

(3)
i,4 = 0 for i ∈ {1, . . . , 4}.

It is not hard to prove that the subspace I defined as

I =
〈

(1, 0, 0, 0, 0, 0, 0, 0)T ,
(

0,M (1)
2,0 ,M

(1)
3,0 ,M

(1)
4,0 , 0, 0, 0, 0

)T
, (0, 0, 0, 0, 0, 1, 0,−1)T

〉
,

generates an infinitely long iterative (non-invariant) subspace trail with active S-boxes.

17We recall that the statistical attacks [45] on Zorro exploit the existence of differentials with probability
higher than what expected by the designers, and not the existence of infinitely long subspace trails.
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