
Weak Linear Layers in Word-Oriented Partial
SPN and HADES-Like Schemes

Lorenzo Grassi1,2, Christian Rechberger1 and Markus Schofnegger1

1 IAIK, Graz University of Technology
2 Digital Security Group, Radboud University, Nijmegen

firstname.lastname@iaik.tugraz.at
l.grassi@cs.ru.nl

Abstract. Designing cryptographic permutations and ciphers using a substitution-
permutation network (SPN) approach where the nonlinear part does not cover the full
state has recently gained attention due to favourable implementation characteristics
in various scenarios.
For these word-oriented partial SPN schemes with a fixed linear layer, our goal is
to better understand linear layer construction. In this paper we derive conditions
which allow either to set up or to prevent attacks based on infinitely long truncated
differentials with probability 1. Our analysis is rather broad as in contrast to earlier
independent work on this problem, we consider (1) trails that are invariant and trails
that are not, and (2) trails with and without active S-boxes.
In both cases (namely, active and inactive S-boxes), we are able to provide rigorous
sufficient and necessary conditions that prevent the analyzed attacks. On the practical
side, we present a tool which is able to determine whether a given linear layer is
vulnerable based on these results.
Besides P-SPN schemes, our observations may also have a crucial impact on the very
recent Hades design strategy, which mixes rounds with full S-box layers and rounds
with partial S-box layers.
Keywords: Partial SPN · Linear Layer · Subspace Trails · Hades Schemes

Lorenzo Grassi, Christian Rechberger and Markus Schofnegger I

Contents
1 Introduction 2

1.1 Our Contribution . 2
1.2 Related Work . 4

2 Preliminaries 6
2.1 SPN and Partial SPN Schemes . 6
2.2 Invariant Subspaces and Subspace Trails 8
2.3 Preliminary Assumptions . 9

3 Subspace Trails for P-SPN Schemes (Inactive S-Boxes) 10
3.1 Preliminary Results . 10
3.2 Infinitely Long Invariant Subspace Trails: A (Sufficient) Condition on the

Linear Layer M . 11
3.3 Linear Layers with Low Multiplicative Order 12
3.4 Infinitely Long Iterative (Non-Invariant) Subspace Trails: A Sufficient

Condition on the Linear Layer M . 12
3.5 Infinitely Long Iterative Subspace Trails with No Active S-Boxes: A Neces-

sary and Sufficient Condition . 14
3.6 About Infinitely Long Iterative Subspace Trail with Inactive S-Boxes . . . 16

4 Practical Tests (Inactive S-Boxes) 16
4.1 Algorithm for Detecting “Weak” Matrices 16
4.2 Percentage of “Weak” Linear Layers . 18

5 Subspace Trails for P-SPN Schemes with Active S-Boxes 20
5.1 Preliminaries: Subspace Trails and Truncated Differentials 20
5.2 Infinitely Long Subspace Trail with Active S-Boxes: A Sufficient Condition

on the Linear Layer M . 20
5.3 Infinitely Long Iterative Subspace Trails with Active S-Boxes: A Necessary

and Sufficient Condition . 23

6 Practical Tests (Active S-Boxes) 24
6.1 Algorithm for Detecting “Weak” Matrices 24
6.2 Percentage of “Weak” Linear Layers . 28
6.3 Related Work . 29

7 Conclusion and Open Problems 30

A Related Work II

B 2-Round Iterative Subspace Trail – Details III

C Truncated and Impossible Differentials IV
C.1 Subspace Trails and Truncated Differentials V
C.2 Truncated Differentials with Probability Smaller than 1 VI
C.3 Impossible Differentials . VI

D Results Using our Tool VII
D.1 Starkad and Poseidon Matrices . VII
D.2 Zorro Matrix . VII

II Weak Linear Layers in Word-Oriented Partial SPN and HADES-Like Schemes

E Examples of Infinitely Long Subspace Trails with Active S-Boxes VIII
E.1 A Generalization of Example (4) . VIII
E.2 Another Example of an Infinitely Long Iterative Subspace Trail with Active

S-Boxes . VIII

2 Weak Linear Layers in Word-Oriented Partial SPN and HADES-Like Schemes

1 Introduction
Modern cryptography developed many techniques that go well beyond solving traditional
confidentiality and authenticity problems in two-party communication. Among many
others, this includes practical applications of secure multi-party computation (MPC), fully
homomorphic encryption (FHE), and zero-knowledge proofs (ZK) that use symmetric
primitives. A possible guiding principle for designs aiming at such applications is as follows:
Linear operations are much cheaper to compute than nonlinear ones. This fact is also
true in the context of masking, a widespread countermeasure against side-channel attacks
(SCA) in which all the computations are performed on shared secrets1.

Driven by all these application areas and settings, many new symmetric primitives
have recently been proposed to reduce the multiplicative complexity in various ways. They
include masking-friendly designs like PICARO [42], Zorro [24], LS-designs [31], several
FHE-friendly symmetric encryption schemes such as LowMC [5], FLIP [41], Kreyvium [17]
and Rasta [22], some MPC-friendly block ciphers such as MiMC [4, 30], GMiMC [3] and
HadesMiMC [27] (and its hash variant Poseidon [25]), and some primitives dedicated to
proof systems such as Jarvis and Friday [7], Vision and Rescue [6].

By minimizing the multiplicative complexity, these new schemes based on specialized
designs outperform “classical” schemes when targeting these particular applications. At
the same time, all these primitives are based on innovative constructions which are (in
general) not well analyzed yet: In some cases, the implementation constraints at the
base of their designs may have introduced some unexpected weaknesses. This was indeed
the case for Zorro (broken by statistical attacks [45]), LowMC (first version broken by
a higher-order differential attack [21]), Jarvis and Friday (broken by a Gröbner basis
attack [2]), and more recently MiMC (broken by a higher-order differential attack [23]) and
Starkad (only in the case in which the linear layer has a low multiplicative order [13]).

In this paper, we focus on word-oriented partial SPN and Hades-like schemes. Our
goal is to better understand how the choice of the linear layer influences their security
against some particular attacks explained in the following.

1.1 Our Contribution
A partial substitution-permutation network (P-SPN) is a variation of the SPN approach
in which part of the substitution layer is replaced with an identity mapping (with the
goal to decrease the overall number of nonlinear operations). As already mentioned, two
concrete examples of P-SPN ciphers are Zorro [24] and LowMC [5]. Zorro is a 128-bit
lightweight AES-like cipher which reduces the number of S-boxes per round from 16 to
only 4 (to compensate, the number of rounds has been increased to 24), while LowMC is
a flexible block cipher based on an SPN structure, which combines an incomplete S-box
layer with a strong linear layer in order to provide security.

Arguably, the main difference between these two designs regards the choice of the
linear layer. While Zorro uses the same linear layer in all rounds, LowMC uses different
pseudo-random linear layers for each round. Even if the second strategy can potentially
prevent statistical attacks (as discussed in [5]), it has some drawbacks. First of all, the
implementation cost in terms of computation time or memory may become a problem, even
when considering the optimizations proposed in [35, 20]. Moreover, the security analysis
against other attacks may become more complicated, since the linear layer is different in
each round. Finally, a poor choice of the linear layers may not provide security against
statistical attacks, as shown concretely in [21].

For all these reasons, in this paper we focus only on the first strategy (which is also
used in Hades-like schemes, discussed later): Our goal is to better understand which

1We recall that from a theoretical point of view, the problem of masking a cryptographic implementation
has strong connections with the problem of secure multiparty computation [34, 32].

Lorenzo Grassi, Christian Rechberger and Markus Schofnegger 3

properties a linear layer has to fulfill in order to prevent the existence of infinitely long
truncated differentials with prob. 1 [37], or equivalently infinitely long subspace trails
[28, 29] (namely, the existence of a non-trivial subspace U ⊆ Ft of inputs that is mapped
into a proper (affine) subspace of the state space over any number of rounds).

We consider both invariant and non-invariant subspaces, and we also provide results in
the case of subspace trails with active S-boxes. In addition, we present an algorithm and a
concrete implemented tool which, given a square matrix, can be used to detect infinitely
long subspace trails in the case of inactive and active S-boxes.

Influence of the Branch Number. Let us focus on a word-oriented partial SPN scheme
over Ft, where the linear layer is simply defined as the multiplication with a t× t MDS
matrix. Since such a matrix provides full diffusion at word level, and since a partial
nonlinear layer is applied, one may expect that after a certain – even huge – number of
rounds, the corresponding cipher is secure.

As we are going to show with a concrete example, this is not always the case. Indeed,
consider a partial SPN scheme defined over (Fp)4 for some prime number p, and let the
round transformation be

R(i) (x = (x[1], x[2], x[3], x[4])T
)

= k(i) +

4 4 5 1
1 3 5 3
3 2 4 1
4 1 4 4

 ·
S(x[1])

x[2]
x[3]
x[4]

 (1)

for a “good” S-box S : F→ F, where R(i) denotes the i-th round function and k(i) denotes
the i-th round key. Even though the 4 × 4 matrix used in this scheme can be an MDS
matrix for sufficiently large2 p, an invariant subspace trail generated by the subspace
S =

〈
(0, 1,−1, 1)T

〉
can be set up for an arbitrary number of rounds.

Infinitely Long Subspace Trails for Word-Oriented P-SPN Schemes. The previous
example allows us to conclude that a high branch number alone is not sufficient in the case
of word-oriented partial SPN schemes when compared to the case of (full) SPN schemes.
For this reason, in the following we analyze how the details of the matrix that defines
the linear layer influences the security against statistical attacks. Specifically, working
independently of the details of the S-box and of the values of the round keys and constants,
we present sufficient and necessary conditions that allow to determine if a given matrix
provides security w.r.t. the considered attacks (i.e., if infinitely long (non-trivial) subspace
trails for the given matrix exist).

Both in the case of inactive S-boxes (see Section 3 for details) and in the case of active
S-boxes (see Section 5 for details),

(1) we show that an infinitely long subspace trail exists if and only if the invertible fixed
matrix that defines the linear layer satisfies some particular properties, and

(2) we show how to construct such an infinitely long subspace trail if it exists.

Moreover, if the matrix is diagonalizable, we show that the infinitely long subspace trail
(if existent) is always related to the eigenspaces of the matrix. We further emphasize that
we do not only focus on invariant subspace trails (in other words, a non-trivial infinitely
long subspace trail is not necessarily invariant). Indeed, such a subspace trail is

(1) invariant if it is related to the eigenspaces of M , and

(2) not invariant if it is related to the eigenspaces of Mk for k ≥ 2.
2It is an MDS matrix for e.g. p = 4 206 590 407, which results in a block size of approximately 128 bits.

4 Weak Linear Layers in Word-Oriented Partial SPN and HADES-Like Schemes

In both cases, examples are provided to present and support the results. We remark that
we do not impose any condition on the matrix M (with the only exception that it is
invertible), i.e., we do not limit ourselves to work only with MDS matrices. Moreover, the
results we obtain are quite different from what is known for the SPN case.

To summarize, both in the case of active and inactive S-boxes, we present a rigorous
necessary and sufficient condition that guarantees that no infinitely long (invariant and
iterative) subspace trail exists.

Dedicated Tool. Together with our theoretical observations, we also provide practical
Sage implementations based on our results. Given a square matrix, the tool and the
underlying algorithms are able to detect the structural vulnerabilities described in this
paper (invariant and iterative trails), both in the case of inactive and active S-boxes and
for binary and prime fields.

The tool is split into three different algorithms to cover all our results. The vulnerability
of a single matrix can be evaluated quickly, and to also get a better understanding of the
percentage of vulnerable matrices for given matrix dimensions and field sizes, we applied
our tool to large sets of pseudo-randomly sampled matrices. The result of these tests is
that indeed the number of vulnerable matrices is significant, and sometimes even larger
than 10%. All details about the tool and the results are given in Section 4 and Section 6.

Impact on Hades-Like Schemes. Our results have a considerable impact on the Hades
strategy as well [27], recently proposed at Eurocrypt’20. This strategy is a high-level
design approach for cryptographic permutations and keyed permutations addressing the
needs of new applications that emphasize the role of multiplications in these designs, with
a focus on simple arguments for its security. The main ingredient of the Hades strategy
is to mix rounds with full S-box layers and rounds with partial S-box layers in order to
provide good performance while still being secure. The external rounds with full S-box
layers together with the wide trail strategy are used for the security against differential
and linear attacks. The main goal of the middle rounds with a single S-box each is to
provide security against algebraic attacks by increasing the degree of the overall scheme.

In [27], the authors define the linear layer as a multiplication of the state with a fixed
MDS matrix (namely, a matrix with maximum branch number), and no other properties
have to be fulfilled by the linear layer. It follows that in the case of a “weak” MDS matrix
(namely, a matrix that does not satisfy the properties proposed in this work), an attacker
can potentially choose an input space of texts for which no S-box is activated over all
rounds with partial S-box layers. In such a case, the security of the corresponding design
may potentially be lower. Indeed, if no S-box is active, the degree of the function does
not increase in the rounds with partial S-box layers when working with these chosen
texts. Consequently, algebraic attacks become possible, as demonstrated in [13], where
preimage attacks against the sponge hash function Starkad (whose linear layer has a low
multiplicative order) are proposed.

At the same time, a “strong” linear layer can be used by the designer in order to
increase the security against statistical attacks by exploiting the presence of rounds with
partial S-box layers [36]. For all these reasons, we suggest3 that the MDS matrix defining
the linear layer for such a scheme must not be “weak” with respect to the properties given
in this paper. We also point out that currently there is no known key-recovery attack on
HadesMiMC exploiting these properties.

1.2 Related Work
Relation between Eigenvalues, Eigenvectors, and Invariant Subspace Trails. The re-
lation between the eigenvalues and eigenvectors of the linear layer matrix and the existence

3This is also supported by the designers of Hades (private communication).

Lorenzo Grassi, Christian Rechberger and Markus Schofnegger 5

of an infinitely long (invariant) subspace trail is already known in the literature. Such a
relation was pointed out by Abdelraheem et al. [1], and later on generalized by Beyne in
[12]. In more detail, Abdelraheem et al. found such a result by analyzing the invariant
subspace trails of PRINTcipher (which was presented one year before in [38]), while Beyne
found such a result as a generalization and improvement of the nonlinear invariant subspace
attack on Midori-64 [44]. In particular, in [12] a connection between the eigenvalues of
the correlation matrix that defines the round function and the existence of an invariant
subspace trail is made. More details are given in Appendix A.

The results presented in [1, 12] focus on SPN ciphers and on invariant subspaces only.
As a consequence, this analysis heavily depends both on the effect of the key (namely, the
invariant subspace only holds in the case of weak keys4) and in general on the details of
the S-box. Here we point out that the situation for partial SPN ciphers/permutations is
different: The results found for SPN ciphers do not (trivially) apply to the P-SPN case
and vice-versa.

First of all, in P-SPN ciphers, it is possible to set up infinitely long invariant subspaces
independently of the choice of the key, of the key schedule, of the round constants, and
of the details of the S-box. In other words, for the case of P-SPN ciphers, the existence
of an infinitely long invariant subspace trail may depend only on the properties of the
linear layer, which is not the case for an SPN cipher due to the full nonlinear layer (since
every round of an SPN cipher contains at least one active S-box, it is not possible to work
independently of it).

Secondly, this also has an impact on the subspace trail that can be set up. For SPN
ciphers, due to the restriction on the key and on the round constants, it is possible to set
up an invariant subspace trail e.g. of the form R(U + v) = U +w only in the case in which
v is in a subset of Ft. This restriction is not necessary in the P-SPN case. Moreover, for
this class of ciphers, the following facts hold:

• The subspace trail does not need to be invariant in order to be infinitely long (i.e.,
we do not restrict ourselves to the case R(U + v) = U + w).

• A non-trivial infinitely long invariant subspace trail can potentially be set up both
in the case in which no S-box is active, and – for the first time – also in the case
in which some (or even all) S-boxes are active. The crucial point is that we do not
need to consider the details of the S-box (i.e., we do not require the S-box to fulfill
any specific properties), which is not possible for the case of SPN ciphers.

More details about this are given in the following.

Tools for (Invariant) Subspace Trails for SPN Ciphers. Given SPN ciphers/schemes,
tools that look for (finitely long) invariant subspace trails and/or (weak-key) subspace
trails have already been published in the literature, see e.g. [39] and [26]. In both cases,
the goal is to build the smaller subspace of texts that preserves some given properties
(e.g., being invariant) for a certain number of rounds under some weak keys. The tools
proposed in this paper (for the case of active S-boxes) resemble, in some ways, the strategies
already proposed in [39, 26] in order to search for the infinitely long subspace trails we are
looking for. Since the goals of these tools are not equal, some important differences can
be highlighted. First, here we focus on the matrix that defines the linear layer, working
independently of the round keys, the round constants, and the details of the S-box, while
in [39, 26] these details are relevant. Secondly, the results presented in [39, 26] aim to
cover a finite number of rounds, while here we focus on preventing infinitely long subspace
trails. More details about this are given in Section 6.

4The existence of such an invariant subspace can be easily prevented by a careful choice of the round
constants, as shown in [11].

6 Weak Linear Layers in Word-Oriented Partial SPN and HADES-Like Schemes

Infinitely Long Invariant Subspace Trails for Hades. We note that the idea of considering
infinitely long invariant subspace trails for a certain class of linear layer – that is, Cauchy
matrices (a class of MDS matrices) over a Boolean field F2n generated in the very specific
way given in [25] – has recently been studied independently in [36] and [13]. In there, the
authors show that matrices belonging to this class always have a low multiplicative order5.
This fact may introduce weaknesses in the scheme6, due to the existence of infinitely long
(non-trivial) subspace trails that can be exploited to break it. A concrete example of this
is the preimage attack on Starkad presented in [13].

While the observations presented in [36] and [25] focus on a small class of (Cauchy)
matrices, our results do not make such specific assumptions about the matrices used in
the linear layers. For example, this may be useful in the case in which one is interested in
studying possible variants of Hades-like schemes in which the MDS matrix is replaced by
a matrix with a smaller (known) branch number which is cheaper to implement (e.g., a
near-MDS matrix). Moreover, let us recall that the middle (partial) rounds can potentially
be exploited to increase the security against statistical attacks, as suggested in [36]. The
results presented here are naturally relevant in such a case.

Security against Statistical Attacks. In this paper, we present properties which a matrix
defining the linear layer must not satisfy in order to prevent infinitely long subspace trails.
However, in general this does not help in predicting the number of rounds necessary to
provide security against, for example, statistical attacks. Such a contribution can be
found in [10], where the authors propose generic techniques for differential and linear
cryptanalysis of SP networks with partial nonlinear layers. However, it does not analyze
which properties a matrix must satisfy in order to prevent infinitely long subspace trails –
as we do here. Hence, our work and the one proposed in [10] complement each other.

2 Preliminaries
Notation. We denote subspaces with calligraphic letters (e.g., S). Further, we use the
superscript notation together with parentheses to differentiate subspaces with similar
properties (e.g., S(i)). By Sc we denote the complementary subspace of S. We recall that
two cosets S+a and S+ b are considered to be equivalent if and only if a− b ∈ S. Matrices
are denoted by non-calligraphic letters, and the superscript notation for matrices is used
to indicate powers of matrices in their traditional form. The entry of a vector x ∈ Ft is
denoted by x[i] for i ∈ {1, . . . , t}, while the entry of a matrix M in the j-th column of
the i-th row is denoted either by Mi,j or by M [i, j]. We denote by {e1, . . . , et} the unit
vectors of Ft (i.e., ei has a single 1 in the i-th word). Finally, given a generic subspace
X ⊆ Ft and a matrix M , let M · X := {M · x | x ∈ X}.

2.1 SPN and Partial SPN Schemes
In this paper, we will focus on partial SPN ciphers and permutations over ((Fq)t ,+, ·),
where q ≥ 2 is a prime power (if q = 2n, then ((Fq)t ,+, ·) corresponds to ((F2n)t ,⊕, ·)).
These schemes are similar to classical (full) SPN schemes, with the only difference being
that the S-boxes (i.e., the nonlinear functions of the cipher) are not applied to the whole
state.

Before going on, we highlight that all our results are independent of the round keys and
constants. For this reason, in the following we do not clearly distinguish between ciphers
and permutations, and we occasionally just refer to them using the term “schemes”.

5The multiplicative order of a matrix M is the smallest (integer positive) exponent k ≥ 1 such that
Mk = µI, where µ ∈ F and I is the identity matrix.

6In [36], the authors show how to fix this problem by choosing Cauchy matrices that do not have such
properties and how to exploit them in order to provide stronger security arguments against statistical
attacks.

Lorenzo Grassi, Christian Rechberger and Markus Schofnegger 7

SPN Ciphers. We denote the application of r rounds of an SPN cipher by Erk : Ft → Ft,
where k ∈ Ft is a fixed secret key and t ∈ N denotes the number of cells. For every input
x = (x[1], . . . , x[t]) ∈ Ft, the encryption is defined by Erk(x) = (Fr ◦ · · · ◦ F0) (x + k(0)),
where Fi : Ft → Ft is defined as Fi(x) = R(x) + k(i) for i ∈ [1, t] and the round keys
k(0), . . . , k(r) ∈ Ft. In the case of an SPN permutation, the secret round keys are just
replaced by public round constants. We denote by R the composition of the S-box and the
linear layer, i.e., we have R : Ft → Ft with

R(x) = (M ◦ S)(x) = M(S1(x[1]), . . . , St(x[t])),
where Si : F → F for i ∈ [1, t] is a nonlinear polynomial S-box. Finally, M : Ft → Ft
denotes an invertible non-trivial linear layer defined by the multiplication with a matrix

M(x) =


M1,1 M1,2 . . . M1,t
M2,1 M2,2 . . . M2,t
...

...
. . .

...
Mt,1 Mt,2 . . . Mt,t

 ·

x[1]
x[2]
...
x[t]

 ,

where Mi,j ∈ F for i ∈ [1, t] and j ∈ [1, t].
Definition 1. A linear layer M ∈ Ft×t is non-trivial if it ensures full diffusion7 (in the
sense that each word of the output depends on each word of the input and vice versa)
after a finite number of rounds.

Note that all SPN ciphers can be written in this way. Just to give some examples, if M
is an MDS matrix8, the cipher is similar to Shark [43]. For AES [19] or AES-like ciphers
(where the linear layer is obtained as a combination of a ShiftRows and a MixColumns
operation), many entries of M are equal to 0.

Partial SPN (P-SPN) Ciphers. The main and only difference to an SPN cipher regards
the S-box layer. For the case of partial SPN (P-SPN) ciphers, the round (and so the S-box
layer) is defined as

R(·) = M ◦ (S1 || · · · || Ss || Is+1 || · · · || It︸ ︷︷ ︸
S-box layer

)(·), (2)

where 1 ≤ s < t and where Is+1 = · · · = It are identity functions. In other words, instead
of having a full S-box layer, the nonlinear functions are applied only to a part of the state,
while the rest of the state remains unchanged.

In this paper, we assume that the s S-boxes are applied to the first s words. Note that
given any partial SPN cipher, it is always possible to find an equivalent representation
such that the S-boxes are applied to the first s words.

Hades-Like Schemes. The recently proposed Hades strategy [27] combines both SPN
and partial SPN schemes in the following way:

• The initial Rf and the final Rf rounds contain full S-box layers, for a total of
RF = 2Rf rounds with full S-box layers.

• In the middle of the construction, RP rounds with partial S-box layers are used.
Roughly speaking, RF rounds provide security against statistical attacks, while RP rounds
are exploited in order to increase the overall degree of the encryption/decryption function,
in an attempt to provide security against algebraic attacks.

7The linear layer defined by the multiplication with M provides full diffusion if there exists r ∈ N such
that after the r-round permutation every output word yj depends on every input word xi for each state
x ∈ Ft, where i ∈ [1, t] and j ∈ [1, t]. For example, the identity matrix does not fulfill this condition.

8A matrix M ∈ Ft×t is called a maximum distance separable (MDS) matrix iff it has a branch number
B(M) equal to B(M) = t+1. The branch number ofM is defined as B(M) = minx∈Ft{wt(x)+wt(M(x))},
where wt(·) is the bundle weight in wide trail terminology.

8 Weak Linear Layers in Word-Oriented Partial SPN and HADES-Like Schemes

2.2 Invariant Subspaces and Subspace Trails
2.2.1 Invariant Subspace Attack

The invariant subspace attack, introduced in [38] and reconsidered e.g. in [39], is based on
the possibility to set up an invariant subspace trail, defined as follows.

Definition 2. Let Kweak be a set of keys and k ∈ Kweak, with k =
(
k(0), . . . , k(r)), where

k(j) is the j-th round key. For k ∈ Kweak, the subspace IS generates an invariant subspace
trail of length r for the round function Rk(·) = R(·) + k if for each i ∈ {1, . . . , r} there
exists a non-empty set Ai ⊆ ISc (where ·c denotes the complement) for which

∀ai ∈ Ai : ∃ai+1 ∈ Ai+1 s.t. Rk(i)(IS + ai) = R(IS + ai) + k(i) = IS + ai+1.

All keys in the set Kweak are weak keys.

Let us remark the main difference for invariant subspace attacks when working with
partial SPN ciphers instead of SPN ones. In this last case and to the best of our knowledge,
the sets Ai are (almost always) non-trivial subsets of Ft. As shown in the following, this
restriction is not mandatory in the case of partial SPN schemes. For this reason, in the
following we work independently of the details of the S-box, and we assume that Ai = Ft
for each i and that the set Kweak is equal to the set of all possible keys.

2.2.2 Subspace Trail Attack

Subspace trails were first defined in [28], and they are strictly related to truncated
differential attacks, as shown in [40]. We refer to [28] for more details about the concept
of subspace trails. However, our treatment here is meant to be self-contained.

Definition 3. Let (U1, . . . ,Ur+1) denote a set of r+1 subspaces with dim(Ui) ≤ dim(Ui+1).
If for each i ∈ {1, . . . , r} and for each ai there exists ai+1 ∈ Uci+1 such that

R(i)(Ui + ai) ⊆ Ui+1 + ai+1,

then (U1, . . . ,Ur+1) is a subspace trail of length r for the function F (·) = R(r) ◦ · · · ◦R(1)(·).
If all the previous relations hold with equality, the trail is called a constant-dimensional
subspace trail.

Iterative (Constant-Dimensional) Subspace Trails. We now introduce the concept of
infinitely long iterative (constant-dimensional) subspace trails.

Definition 4. Let {V1,V2, . . . ,Vr} be a constant-dimensional subspace trail for r rounds.
We call this subspace trail an infinitely long iterative (constant-dimensional) subspace trail
of period r for the considered scheme if it repeats itself an infinite number of times, i.e., if

{V1,V2, . . . ,Vr,V1,V2, . . . ,Vr, . . . ,V1,V2, . . . ,Vr, . . . }

is an infinitely long subspace trail.

Clearly, an invariant subspace trail is also an iterative subspace trail for the case of
P-SPN schemes (under the previous assumptions), while not every iterative subspace trail
is also an invariant subspace trail. At the same time, the following result holds.

Proposition 1. Working over Ft, let {V1, . . . ,Vr} be an infinitely long iterative subspace
trail of period r. If dim(〈V1, . . . ,Vr〉) < t, then 〈V1, . . . ,Vr〉 generates an infinitely long
invariant subspace trail.

Lorenzo Grassi, Christian Rechberger and Markus Schofnegger 9

Proof. The subspace 〈V1, . . . ,Vr〉 is invariant since each coset of Vi is mapped into a coset
of Vi+1 (where the subindex is taken modulo r + 1).

While, to the best of our knowledge, no example of infinitely long iterative constant-
dimensional subspace trails for SPN ciphers is given in the literature, a poor choice of the
linear layer allows to find them for the case of P-SPN schemes.

Weak-Key Subspace Trails. For completeness, we mention that a generalization of the
two previous attacks, called “weak-key subspace trail attack”, has been proposed in [26]
(it basically corresponds to a subspace trail that holds for a class of weak keys only).

Truncated Differential Trails. Before going on, we briefly mention the link between trun-
cated differential trails and subspace trails. Differential attacks [15] exploit the fact that
pairs of plaintexts with certain differences yield other differences in the corresponding cipher-
texts with a non-uniform probability distribution. A variant of this attack/distinguisher
is the truncated differential one [37], in which the attacker can predict only part of the
difference between pairs of texts. Using the subspace terminology, given pairs of plaintexts
that belong to the same coset of a subspace X , one considers the probability that the
corresponding ciphertexts belong to the same coset of a subspace Y to set up an attack
(see e.g. [16] for details). In particular, note that two texts are in the same coset of a given
subspace if and only if their difference belongs to such a subspace:

x, y ∈ V + α if and only if x− y ∈ V.

The relation between truncated differential trails and subspace trails has been studied in
details in [40, 16]. Finally, impossible differential and truncated impossible differential
attacks based on differentials that hold with probability 0 have been studied in [14].

2.3 Preliminary Assumptions

Before going on, we make clear that in our work we consider the following assumptions.

“Generic” S-Box. We assume that the S-box has no linear structure (in other words,
for an S-box S, it is not possible to find U ,V ⊆ F s.t. for each u there exists v for which
S(U + u) = V + v). Under this assumption, one can work independently of the details
of the S-box. Indeed, as was shown in [40], there are only two essential subspace trails
({0} → {0} and F → F) when working at word level if the S-box has no non-trivial lin-
ear structure. E.g., both the AES S-box and the cube one (x 7→ x3) satisfy this assumption.

No Weak Keys. We only consider infinitely long constant subspace trails which are
independent of the key. E.g., we assume that the key schedule prevents the possibility of
setting up infinitely long constant subspace trails for a class of weak keys.

Limited Number of S-Boxes. We further assume s < dt/2e, i.e., that the number
of S-boxes s is smaller than dt/2e. This implies that the choice of the linear layer is crucial
to guarantee that at least one S-box is active after a finite number of rounds. Indeed, in the
case in which a fixed linear layer matrix M is used, let 2 ≤ b ≤ t+ 1 be its branch number.
If 2t− 2s < b, then at least b+ 2s− 2t ≥ 1 S-boxes are active in every two consecutive
rounds. Note that this can never happen if s < dt/2e (equivalently, s ≤ dt/2e − 1), since
2t− 2s ≥ t+ 2 > b.

10 Weak Linear Layers in Word-Oriented Partial SPN and HADES-Like Schemes

3 Subspace Trails for P-SPN Schemes (Inactive S-Boxes)
In the case of SPN ciphers, (weak-key) infinitely long subspace trails can be prevented
by carefully choosing the round constants (see [11] for details) and by exploiting the fact
that a full S-box layer together with a reasonable linear layer provides full diffusion after a
finite number of rounds. In the case of P-SPN schemes, however, the situation is different.

First of all, due to the fact that the S-box layer is not complete, the details of the
round constants (together with a non-trivial linear layer) are not sufficient by themselves to
provide security against the infinitely long subspace attacks just recalled. In this sense, the
linear layer plays a crucial role in order to provide security. Here we focus on constructions
in which the same linear layer is used in each round (e.g., Zorro [24]).

3.1 Preliminary Results
Due to the fact that the nonlinear layer is only partial in P-SPN schemes, parts of the
state go through the S-box layer unchanged. In particular, if the nonlinear layer consists
of s ≥ 1 S-boxes and t− s ≥ 1 identity functions, it is always possible to find an initial
subspace such that no S-box is active (at least) in the first

⌊
t−s
s

⌋
rounds. Indeed, assuming

the s S-boxes are applied to the first s words and by choosing texts in the same coset of
S = 〈v1, . . . , vd〉 (where d = dim (S) ≥ t− s ·

⌊
t−s
s

⌋
) such that

∀i ∈ {1, . . . , b(t− s)/sc} ,∀j ∈ {1, . . . , d} : (M i−1 · vj)[1, 2, . . . , s] = 0 || 0 || · · · || 0 ∈ Fs,

where M0 = I is the identity matrix, it follows that no S-box is active in the first
⌊
t−s
s

⌋
rounds. We formalize this result in the following definition.
Definition 5. Consider the case of a P-SPN scheme over Ft with 1 ≤ s < t S-boxes
applied to the first s words defined as in Eq. (2). Let S(i) be defined as

S(i) =
{
v ∈ Ft

∣∣ (M j · v)[1, . . . , s] = 0 || · · · || 0∈ Fs, j < i
}
, (3)

where S(0) = Ft, and where dim
(
S(i)) ≥ t− i · s. Then S(i) generates a subspace trail for

the first i (consecutive) rounds with no active S-boxes. Further, note that S(i+1) ⊆ S(i).
Lemma 1. Given a P-SPN scheme over Ft with s S-boxes applied to the first s words
defined as in Eq. (2), let S(i) be defined as in Definition 5. Then, for each i ≥ 1,

S(i+1) =
{
v ∈ S(i)

∣∣∣ (M · v)[1, . . . , s] = 0 || · · · || 0∈ Fs
}

= S(i) ∩ (M−(i−1) · S(1)) ⊆ S(i).

Proof. Given S(1) = 〈es+1, . . . , et〉, note that (M · x)[1, . . . , s] = 0 || · · · || 0∈ Fs if and
only if M · x ∈ 〈es+1, es+2, . . . , et〉 = S(1), or equivalently x ∈ (M−1 · S(1)). Hence,

S(i+1) = S(1) ∩ (M (−1) · S(1)) ∩ (M (−w) · S(1)) ∩ · · · ∩ (M (−i) · S(1)).
Given x ∈ Ft, it follows that x ∈ S(i+1) if and only if x ∈ S(i) and x ∈ (M−(i−1) · S(1))

In the case in which dim
(
S(b t−s

s c)
)
≥ s, the previous definition can naturally be

extended to more rounds, as stated in the following.
Proposition 2. Consider the case of a P-SPN scheme over Ft with 1 ≤ s < t S-boxes
applied to the first s words as in Eq. (2), and let S(i) be defined as before. Let R ≥

⌊
t−s
s

⌋
s.t. dim

(
S(R)) ≥ 1 and dim

(
S(R+1)) = 0. For each r ≤ R, the collection{

S(r),M · S(r),M2 · S(r), . . . ,Mr−1 · S(r)
}

is a subspace trail for the first r rounds (with no active S-boxes).
This well-known result (see e.g. [5, Sect. 5.1] or [24, Sect. 4.1]) does not require any

assumption about the matrix M that defines the linear layer. In the following, we will
explore in which cases it is possible to set up an infinitely long subspace trail.

Lorenzo Grassi, Christian Rechberger and Markus Schofnegger 11

3.2 Infinitely Long Invariant Subspace Trails: A (Sufficient) Condition
on the Linear Layer M

As is well-known in the literature (see e.g. the results presented in [1, 12] and recalled
in Appendix A), one possible strategy to set up invariant subspace trails is to analyze
the eigenspaces of the matrix M that defines the linear layer. Here we exploit the same
approach, but first we recall some preliminary concepts.

Definition 6. Given M ∈ Ft×t, the subspace P = 〈ρ1, . . . , ρd〉 ∈ Ft is the (right)
eigenspace ofM for the eigenvalue λ if the conditionM ·ρi = λ·ρi is satisfied ∀i ∈ {1, . . . , d}.

Definition 7. M is a diagonalizable matrix9 if and only if there exists an (invertible)
matrix P ∈ Ft×t s.t. P−1 ·M · P = D = diag(λ1, . . . , λt) is a diagonal matrix.

Theorem 1. Given a P-SPN scheme with s S-boxes per round defined as in Eq. (2), let
M ∈ Ft×t be an invertible matrix. Let λ1, . . . , λτ be its eigenvalues and let P1, . . . ,Pτ be
the corresponding eigenspaces. Let

IS = 〈P1 ∩ 〈es+1, . . . , et〉 , . . . ,Pτ ∩ 〈es+1, . . . , et〉〉 .

If 1 ≤ dim(IS) < t, then IS generates a (non-trivial) infinitely long invariant subspace
trail (with no active S-boxes).

Equivalently, let IS be defined as IS = 〈P ′1, . . . ,P ′τ 〉 , where P ′i ⊆ Pi is a subspace of
Pi for i ∈ {1, . . . , τ}. If IS ∩ 〈es+1, . . . , et〉 = IS, it generates an infinitely long invariant
subspace trail. This equivalent definition will be used in the following, and we emphasize
that this result provides only a sufficient condition.

Proof. To prove the previous result, we have to show that for each a ∈ Ft there exists b
s.t. M ◦ S(IS + a) = IS + b. Hence, we omit the key and constant additions since they
only change the coset.

First of all, note that no S-box is active since IS ⊆ 〈es+1, . . . , et〉. Hence, only the coset
changes through the S-box layer. Secondly, since Pi is an eigenspace of the linear layer
M for each i ∈ {1, . . . , τ}, it follows that Pi ∩ 〈es+1, . . . , et〉 remains invariant through it.
The result follows immediately.

It is crucial to work independently on the eigenspaces of M . Indeed, consider the
case in which P1 = 〈v〉, P2 = 〈w〉, and 〈P1,P2〉 ∩ 〈es+1, . . . , et〉 = 〈v + αw〉. Given
x ∈ 〈P1,P2〉∩〈es+1, . . . , et〉, M ·x does not belong to such a subspace since M · (v+αw) =
λv ·

(
v + α · λw

λv
· w
)
, where λw 6= λv.

Example. Consider the P-SPN scheme over F4 with s = 1 proposed in Eq. (1).

• In the case in which the 4×4 matrix M is defined as in Eq. (1), IS = 〈(0, 1,−1, 1)T 〉
generates an infinitely long invariant subspace trail. Indeed, note that (0, 1,−1,−1)T

is an eigenvector of M and that 〈(0, 1,−1, 1)T 〉 ∩ 〈e2, e3, e4〉 = 〈(0, 1,−1, 1)T 〉 (hence,
this is a concrete example of the result given in the previous theorem).

• IfM = circ(2, 3, 1, 1), the only eigenspaces are given by 〈(1, 1, 1, 1)T 〉 and 〈(1,−1, 1,−1)T 〉
(with eigenvalues equal to 7 and −1, respectively). They both do not satisfy the
results of the theorem just given.

9A t× t matrix is diagonalizable if and only if the sum of the dimensions of its eigenspaces is equal to t.

12 Weak Linear Layers in Word-Oriented Partial SPN and HADES-Like Schemes

3.3 Linear Layers with Low Multiplicative Order
As a next step, here we provide a first sufficient condition that, if satisfied by M , leads to
an infinitely long iterative (non-invariant) subspace trail.

Proposition 3. Given a P-SPN scheme over Ft defined as in Eq. (2), let M ∈ Ft×t be
an invertible matrix. If there exists l ∈ {2, . . . ,R} (where R ≥

⌊
t−s
s

⌋
is defined as in

Proposition 2) and µ ∈ F \ {0} such that M l = µ · I (equivalently, if M has multiplicative
order l), where I ∈ Ft×t is the identity matrix, it is always possible to find an infinitely
long iterative subspace trail.

Proof. As we have seen before, it is always possible to find an initial subspace of the form{
S(l),M · S(l),M2 · S(l), . . . ,M l−1 · S(l)} such that no S-box is active for the first l ≤ R

rounds (see Definition 5). Here, we only have to show that such an l-round subspace trail
is repeated infinitely. To do this, we compute M i · S(l) for i ≥ l. By definition, there exist
j1, j2 ∈ N s.t. i = j1 · l + j2, where j2 < l. Thus,

M i · S(l) = (M l)j1 ·M j2 · S(l) = (µ · I)j1 ·M j2 · S(l) = M j2 · S(l).

For example,
{
S(l),M · S(l),M2 · S(l), . . . ,M l−1 · S(l)} is an infinitely long iterative

subspace trail which is not invariant.

Cauchy Matrices in [25]: A Concrete Example from the Literature

A concrete example has recently been pointed out by Keller et al. [36] and by Beyne et al.
[13]. In these papers, the authors focus on the Cauchy matrix M ∈ (F2n)t×t proposed in
[25] and defined as

Mi,j = 1
xi + xj + r

,

where xi = i− 1 for i ∈ {1, . . . , t} and t ≤ r ≤ p− t. Such a matrix is used as the linear
layer of some Hades-like permutations, namely Starkadπ and Poseidonπ [25].

In [46, Sect. 3.2] and in [36, 13], the authors prove that if t = 2τ , the previous matrix
has a multiplicative complexity equal to 2, namely that M2 is a multiple of the identity.10

Hence, the previous result applies perfectly to this case.

3.4 Infinitely Long Iterative (Non-Invariant) Subspace Trails: A Suffi-
cient Condition on the Linear Layer M

Until now, we focused only on the properties of M . However, since we are not working in
a closed field, a possible generalization of the previous result can be presented.

Let M be an invertible matrix in Ft×t. If M is diagonalizable, then M l, where l ∈ N,
is also diagonalizable:

P ·M · P−1 = D =⇒ P ·M l · P−1 = Dl.

The other direction is not true in general, as given in the following proposition.

Proposition 4 ([33]). IfM is invertible, F is algebraically closed, andM l is diagonalizable
for some l that is not an integer multiple of the characteristic of F, thenM is diagonalizable.

Since no finite field can be algebraically closed, it follows that M l may contain more
eigenvalues thanM . In other words, if λ is an eigenvalue ofM , then λl is also an eigenvalue

10In [13], the authors generalize the result by assuming that {x1, x2, . . . , xt} forms a closed subgroup of
GF (2n). By definition of xi, this is always the case for Starkadπ if t is a power of 2.

Lorenzo Grassi, Christian Rechberger and Markus Schofnegger 13

of M l. The opposite is not true in general: Given an eigenvalue λ of M l, it is possible
that λ1/l does not exist, which means that there is no corresponding eigenvalue for M .

This fact has an impact on the existence of infinitely long subspace trails. Indeed, in
the case in which there exists l ≥ 2 s.t. M l has more eigenvalues than M , it is potentially
possible to set up an iterative subspace trail which is not invariant (and for which no S-box
is active) for any number of rounds.

Theorem 2. Given a P-SPN scheme with s S-boxes defined as in Eq. (2), let M ∈ Ft×t

be an invertible matrix. Let λ(l)
1 , . . . , λ

(l)
τ be the eigenvalues of M l for some l ≥ 1, and let

P(l)
1 , . . . ,P(l)

τ be their corresponding eigenspaces (where τ ≤ t). For each r ≥ 1, let IS(r)

be the subspace defined as

IS(r) =
〈
S(r) ∩ P(r)

1 ,S(r) ∩ P(r)
2 , . . . ,S(r) ∩ P(r)

τ

〉
,

where S(r) is the subspace constructed as in Eq. (3) s.t. no S-box is active in the first r
rounds. If 1 ≤ dim

(
IS(r)

)
< t, an infinitely long iterative subspace trail of the form{

IS(r),M · IS(r),M2 · IS(r), . . . ,Mr−1 · IS(r)
}

is generated.

Proof. The proof of this result is analogous to the ones given before. It is sufficient to
note that (1) no S-box is active due to the definition of S(r) (see Eq. (3)) and that (2)
the subspace trail is iterative with a period equal to r since IS(r) is constructed using the
eigenspaces of Mr.

We point out that this result reduces to the previous one in the case in which l = 1,
since S(1) = 〈es+1, . . . , et〉, and that it provides only a sufficient condition.

Low Multiplicative Order. This result also includes the case in which the matrix has a
low multiplicative order, as shown in the following corollary.

Corollary 1. Theorem 2 implies the result presented in Proposition 3.

Proof. Assume there exists l such that M l = µ · I. Then e1, . . . , et are all eigenvectors
of M l with eigenvalue µ (equivalently, the space Ft is an eigenspace of M l w.r.t. the
eigenvalue µ). Moreover, let S(l) be the subspace constructed as in Eq. (3) such that no
S-box is active in the first l rounds. Since 〈e1, . . . , et〉 is an eigenspace of M l corresponding
to the eigenvalue µ, it follows that S(l) is an invariant subspace of M l. Hence, due to
the previous considerations,

{
S(l),M · S(l),M2 · S(l), . . . ,M l−1 · S(l)} is an infinitely long

iterative (constant-dimensional) subspace trail.

We remark that the two conditions are not equivalent (namely, Proposition 3 does not
imply in general Theorem 2), as shown in the following concrete example.

Example. Consider the circulant matrix M = circ(a, b, c, d) over F4. Its eigenvalues are

a+ b+ c+ d, ±
√
a2 + b2 − 2ac+ c2 − 2bd+ d2, a− b+ c− d,

while the eigenvalues ofM2 are (a+b+c+d)2, a2+b2−2ac+c2−2bd+d2 and (a−b+c−d)2.
Since x 7→ x2 is not a permutation over Fp for a prime p ≥ 3 (see Hermite’s criterion),
there exist a, b, c, d, s.t. a2 + b2 − 2ac+ c2 − 2bd+ d2 is not a square. Hence, for certain
values of a, b, c, d ∈ Fp, it is possible that M has two eigenvalues, while M2 has always

14 Weak Linear Layers in Word-Oriented Partial SPN and HADES-Like Schemes

four eigenvalues.11 This fact can be exploited in order to construct a matrix M that is not
a multiple of the identity and for which an infinitely long iterative subspace trail exists.
Given a P-SPN scheme over (Fp)5 with s = 1, a concrete example of such a matrix is

M =


x y w y w
z0 a b c d
z1 b c d a
z2 c d a b
z3 d a b c


for particular values of a, b, c, d, x, y, w, zj ∈ Fp s.t. (1) the matrix is invertible and it
provides full diffusion (at word level after a finite number of rounds) for cryptographic
purposes and (2) the circulant matrix circ(a, b, c, d) has only 2 eigenvalues.

The iterative (non-invariant) subspace trail is thus given by
{
IS = 〈(0, 0, 1, 0,−1)T 〉,

M · IS = 〈(0, b− d, c− a, d− b, a− c)T 〉
}
, where M2 · IS = IS and where M2 6= µ · I for

each µ ∈ Fp (we refer to Appendix B for more details).

3.5 Infinitely Long Iterative Subspace Trails with No Active S-Boxes:
A Necessary and Sufficient Condition

Consider the case of a Cauchy matrix M generated as in [25] (recalled in Section 3.3) for
t = 24 and F2n , where n = 63. As shown in [36, Page 20], the subspace S(5) defined as in
Eq. (3) satisfies M · S(5) = S(5) and (M · x)[1] = 0 for all x ∈ S(5).

The reason why we highlight this fact is that it provides an example of a matrix for
which our conditions given before are only sufficient but not necessary. In other words,
if the previous condition (namely, Theorem 2) is both necessary and sufficient, then the
subspace S(5) must be related to the eigenspaces of M . However, by simple practical tests,
this is not the case since M j for j ∈ [1, 5] does not have any eigenvalues and eigenspaces.

More generally, let d be the dimension of a (generic) invariant subspace S = 〈s1, . . . , sd〉
for a t× t matrix M . Such a subspace is related to the eigenvectors of M if there exist
α1, . . . , αd,A ∈ F (with (α1, . . . , αd) 6= (0, . . . , 0) and A 6= 0) s.t. M · (α1 · s1 + α2 · s2 +
· · ·+αd · sd) = A · (α1 · s1 +α2 · s2 + · · ·+αd · sd) (by definition). Since M · si =

∑
j β

i
j · sj

for certain βij ∈ F (S is invariant) and since {si}i are linearly independent, a non-trivial
solution of the previous equality exists if there is (at least) one A 6= 0 s.t.

det


β1

1 − A β2
1 . . . βd1

β1
2 β2

2 − A . . . βd2
...

...
. . .

...
β1
s β2

d . . . βdd − A

 = 0.

If this is not the case (remember that this can happen since F is not algebraically closed),
then S is an invariant subspace but it is not related to the eigenspaces of M . Hence, we
can deduce the following.

Theorem 3. Given a P-SPN scheme with s S-boxes defined as in Eq. (2), let M ∈ Ft×t
be an invertible matrix. A subspace IS, where 1 ≤ dim(IS) < t, generates an infinitely
long invariant subspace trail (with no active S-boxes) if and only if there exists i ≥ 1
s.t. S(i) =

(
M · S(i)) and IS ⊆ S(i). Similarly, a subspace IS, where 1 ≤ dim(IS) < t,

generates an infinitely long iterative (non-invariant) subspace trail of period l ≥ 2 (with no
active S-boxes) if and only if there exists12 i ≥ l s.t. S(i) =

(
M l · S(i)) and IS ⊆ S(i).

11E.g., given (a, b, c, d) = (1, 1, 2, 3), a2 + b2 − 2ac+ c2 − 2bd+ d2 is a square in F11, but not in F13.
12Note that there cannot exist an iterative subspace trail with no active S-boxes where i < l. Indeed,

assume e.g. l = i+1 and S(i) 6= S(i+1). Hence, the subspace trail {S(i),M ·S(i), . . . ,M i−1 ·S(i),M i ·S(i)}
should be iterative. However, there is no guarantee that no S-box is active in M i · S(i) due to the definition
of S(i). This can happen only in the case S(i) = S(i+1), which implies that the period is actually i+ 1.

Lorenzo Grassi, Christian Rechberger and Markus Schofnegger 15

Proof. Let us focus on the case l = 1 (analogous proof for l ≥ 2). First, we show that
IS = S(i) =

(
M · S(i)) is an infinitely long invariant subspace trail (with no active S-boxes).

This follows immediately by the definition of S(i) (which implies that no S-box is active)
and by Lemma 1 (which, together with S(i) =

(
M · S(i)), implies that S(j) = S(j+1) for

each j ≥ i). Indeed, under the assumption S(i) =
(
M · S(i)), it follows that ∀x ∈ S(i):

M · x ∈ S(i) ⊆ S(1) = 〈es+1, . . . , et〉. Due to the result of Lemma 1, this implies that if
x ∈ S(i) =

(
M · S(i)), then x ∈ S(i+1).

Vice-versa, here we show that given an infinitely long invariant subspace trail IS (with
no active S-boxes), there must exist i ≥ 1 s.t. S(i) =

(
M · S(i)) and IS ⊆ S(i). To do this,

observe that all pairs of texts which do not activate any S-box in the first i rounds are in
the same coset of S(i). Focusing on the linear layer, note that a subspace X is invariant if
and only if M ·X = X . This means that IS ⊆ S(i), where S(i) must satisfy S(i) = M · S(i).
The result follows immediately.

For example, for the Cauchy matrix M generated as in [25] and recalled before, the
subspace S(5) satisfies M · S(5) = S(5). Moreover, the following results hold.

Corollary 2. The infinitely long subspace trail with inactive S-boxes presented in Theorem 1
and Theorem 2 satisfies Theorem 3.

Proof. Let us focus here on the case l = 1 (analogous proof for l ≥ 2). Let P1, . . . ,Pτ be
the eigenspaces of M , and let P ′j = Pj ∩ S(1) for each j ∈ {1, . . . , τ}. Our goal is to show
that there exists i ≥ 1 s.t. S(i) =

(
M · S(i)) and 〈P ′1, . . . ,P ′τ 〉 ⊆ S(i).

Since 〈P ′1, . . . ,P ′τ 〉 is invariant, 〈P ′1, . . . ,P ′τ 〉 ⊆ S(i) for each i ≥ 1. Hence, let S(i) =
〈P ′1, . . . ,P ′τ ,Q(i)〉 where Q(i) ∩ P ′j = ∅ for each j ∈ {1, . . . , τ} (where 0 ≤ dim

(
Q(i)) <

dim
(
S(i))). By the definition of the subspace Q(i) and since S(i+1) ⊆ S(i), it follows that

Q(i+1) ⊆ M · Q(i), and therefore either Q(i+1) = M · Q(i) or Q(i+1) ⊂ M · Q(i) (namely,
dim

(
Q(i+1)) < dim

(
M · Q(i))). Thus, there must exist i ≥ 1 s.t. either Q(j+1) = M · Q(j)

for each j ≥ i or dim
(
Q(j)) = 0 for each j ≥ i. This concludes the proof.

Theorem 4. Given a P-SPN scheme with s S-boxes defined as in Eq. (2), let M ∈ Ft×t
be an invertible matrix. If M is diagonalizable, the result regarding the existence of an
infinitely long subspace trail with inactive S-boxes of Theorem 1 and Theorem 2 provides
both a necessary and a sufficient condition. In other words, under the assumption that M
is diagonalizable (where P(l)

1 , . . . ,P(l)
τ are the eigenspaces of M l),

(1) a subspace IS generates an infinitely long invariant subspace trail (with no active
S-boxes) if and only if IS = 〈P1 ∩ 〈es+1, . . . , et〉 , . . . ,Pτ ∩ 〈es+1, . . . , et〉〉, and

(2) a subspace IS generates an infinitely long iterative subspace trail (with no active
S-boxes) of period l ≥ 2 if and only if IS =

〈
P(l)

1 ∩ S(l), . . . ,P(l)
τ ∩ S(l)

〉
, where S(l)

is the subspace constructed as in Eq. (3) s.t. no S-box is active in the first l rounds.

Proof. Let P1, . . . ,Pτ be the eigenspaces of the matrix M . Since M is diagonalizable,
dim (P1) + · · · + dim (Pτ) = t and M l is diagonalizable (with the same eigenspace). It
follows that a subspace X satisfies M l · X = X (for l ≥ 1) if and only if there exists
I := {ι1, . . . , ι|I|} ⊆ {1, . . . , τ} s.t. X = 〈P ′ι1 , . . . ,P

′
ι|I|
〉, where P ′j is a non-null subspace of

Pj . The result follows immediately by combining this fact with the results of Theorem 3.

An Open Problem. Before going on, we mention that a possible future open problem is
to find a direct relation between the result of Theorem 3 and the properties of the matrix
M (similar to the sufficient conditions on M for the existence of an infinitely long subspace
trail given in Theorem 1 and Theorem 2). To achieve this result, one idea could be to

16 Weak Linear Layers in Word-Oriented Partial SPN and HADES-Like Schemes

work over the algebraic closure13 F? of the field F. Indeed, a field F is algebraically closed
if and only if for each natural number t every linear map over Ft has some eigenvectors.14

3.6 About Infinitely Long Iterative Subspace Trail with Inactive S-
Boxes

As finally question, one may ask if there exists an example of a P-SPN scheme for which
there exists no invariant subspace trail and at the same time there exists an iterative
subspace trail with inactive S-boxes. As we are going to show this is not possible.

Proposition 5. Consider a P-SPN scheme with s S-boxes defined as in Eq. (2). The
existence of an iterative subspace trail with inactive S-boxes is only possible in the case in
which there exists an invariant subspace trail with inactive S-boxes.

Proof. As shown in Proposition 1, let {V1, . . . ,Vr} be an infinitely long iterative subspace
trail of period r (with inactive S-boxes). If dim(〈V1, . . . ,Vr〉) < t, then 〈V1, . . . ,Vr〉
generates an infinitely long invariant subspace trail. Hence, if dim(〈V1, . . . ,Vr〉) = t, it
would be possible that an iterative subspace trail with inactive S-boxes exists and at the
same time no invariant subspace trail exists. However, note that dim(〈V1, . . . ,Vr〉) = t can
never occur in the case of inactive S-boxes. Indeed, since the first s words of V1, . . . ,Vr
are equal to zero (in order to guarantee that no S-box is active), it is not possible that
〈V1, . . . ,Vr〉 generates the full space Ft.

This does not result in iterative subspace trails with inactive S-boxes being useless.
Indeed, let {V1, . . . ,Vr} be an infinitely long iterative subspace trail of period r (with
inactive S-boxes). If dim(V1) < dim(〈V1, . . . ,Vr〉) (note: strictly less), then the data cost
to set up the iterative subspace trail may be much less than the cost to set up an invariant
subspace trail. This can be crucial in scenarios in which there is a limitation on the data
allowed for an attack.

4 Practical Tests (Inactive S-Boxes)
In this section, we first present an algorithm which can be used to find vulnerabilities and
to detect “weak” matrices (w.r.t. the attacks presented before). Secondly, we test several
matrices over Fp and over F2n to give an idea of the percentage of “weak” matrices.

4.1 Algorithm for Detecting “Weak” Matrices
Algorithm 1 is based on the results just presented in the previous section. It is designed in
order to distinguish the case in which the infinitely long subspace trail is related to the
eigenspaces of M l for l ≥ 1 or not.

Here we focus on the condition 1 ≤ i ≤
⌊
t−s
s

⌋
, and we explain why it is sufficient to

detect all infinitely long subspace trails without active S-boxes. Since S(i+1) = S(i) ∩ (M ·
S(i)) and S(i+1) ⊆ S(i), only two cases are possible:

(1) S(i+1) = S(i): In this case, an invariant subspace trail (with inactive S-boxes)
generated by S(i+1) = M · S(i) = S(i) exists.

(2) S(i+1) ⊂ S(i), where dim
(
S(i+1)) = dim

(
S(i))−1: In this case, an iterative subspace

trail (with inactive S-boxes) S(i) = M l · S(i) for 2 ≤ l ≤ i may exist.
13A field F is algebraically closed if every nonconstant polynomial in F[X] (the univariate polynomial

ring with coefficients in F) has a root in F. For example, no finite field F is algebraically closed, because if
a1, a2, . . . , an are all the elements of F, then the polynomial (x− a1)(x− a2) · · · (x− an) + 1 has no root
in F. By contrast, the field of complex numbers is algebraically closed.

14A linear map over a field F has an eigenvector if and only if its characteristic polynomial has a root.
Therefore, when F is algebraically closed, every linear map of Fn has some eigenvector.

Lorenzo Grassi, Christian Rechberger and Markus Schofnegger 17

Algorithm 1: Determining the existence of (iterative) infinitely long subspace
trails without active S-boxes, using Theorem 1, Theorem 2, and Theorem 3.
Data: P-SPN scheme over Ft with s S-boxes applied to the first s words (where

the S-box has no linear structure).
Result: 1 if an (iterative) infinitely long subspace trail exists, 0 otherwise.

1 flag1 ← 0, flag2 ← 0.
2 T ← ∅. // T stores all iterative subspace trais found
3 Let S(i) denote the subspace s.t. no S-box is active in the first i rounds

(Definition 5), and let
{
P(i)

1 ,P(i)
2 , . . . ,P(i)

τ

}
denote the eigenspaces15of M i.

4 for i← 1 to
⌊
t−s
s

⌋
do

5 if ∃µ ∈ F s.t. M i = µ · I (where I is the identity matrix) then
6 return 1: Discard the matrix M (due to low multiplicative order).
7 IS(i) ←

〈
P(i)

1 ∩ S(i),P(i)
2 ∩ S(i), . . . ,P(i)

τ ∩ S(i)
〉
.

8 if dim
(
IS(i)

)
≥ 1 and IS(i) 6= Ft then

9 return 1: Discard the matrix M (due to eigenspaces of M i).
10 if dim

(
S(i)) ≥ 1 then

11 if S(i) =
(
M · S(i)) then

12 flag1 ← 1;
13 T ← T ∪ S(i);
14 for j ← 2 to i do
15 if S(i) =

(
M j · S(i)) then

16 flag2 ← 1;
17 T ← T ∪ S(i);
18 if flag2 = 1 then
19 return 1: Discard the matrix M (due to existence of invariant and iterative

subspace trails T – see Theorem 3).
20 else if flag1 = 1 then
21 return 1: Discard the matrix M (due to existence of invariant subspace trail(s)

T – see Theorem 3).
22 else
23 return 0: No (iterative) infinitely long subspace trail found.

Moreover, remember that if S(i+1) 6= S(i), then dim
(
S(b t−s

s c+1)
)
≤ s−1, where i ≤

⌊
t−s
s

⌋
.

In other words, since S(·) are subspaces, the case S(i+1) 6= S(i) where dim
(
S(i+1)) =

dim
(
S(i)) can never happen.16 As a result, if S(i+1) 6= S(i) for each i ≤

⌊
t−s
s

⌋
and since

Theorem 3 provides both a necessary and a sufficient condition,
⌊
t−s
s

⌋
rounds are sufficient

to determine if an infinitely long subspace trail with inactive S-boxes exists.

Remark. Before going on, we highlight that vulnerable matrices found in Line 5 and
Line 8 of Algorithm 1 are also vulnerable to the condition evaluated in Line 10 (as expected,
due to the previous results). In other words, it is not necessary to check the condition on
the eigenspaces of M l: we decided to do that in order to better understand the percentage
of weak matrices whose vulnerability is related to their eigenspaces. Indeed, this percentage

15Note that if P(i) is an eigenspace of M i, it is also an eigenspace of Mj for j ≥ i.
16Assume by contradiction that S(i+1) 6= S(i) and dim

(
S(i+1)

)
= dim

(
S(i)
)
. Hence, S(i+1) =

〈S(i) ∩ S(i+1),X〉 for a certain subspace X such that dim(X) ≥ 1. As a result, S(i+1) is not a subspace of
S(i), which cannot happen (see e.g. Lemma 1).

18 Weak Linear Layers in Word-Oriented Partial SPN and HADES-Like Schemes

is high (higher than 95% by our tests).
Moreover, in the part starting in Line 10, it would be sufficient to consider the case j = 1

(corresponding to the case of invariant subspace trail), due to the result of Proposition 5.
We decided to include j ≥ 2 for completeness, in the case in which one is interested to
look for iterative subspace trails (due to, e.g., a restriction on the data cost, as explained
before).17

Computational Cost of Algorithm 1. First, the computation of the subspace S(i) requires
the resolution of a system of s linear equations, for a total cost of O (sω) ⊆ O

(
t3
)
(where

2 < ω ≤ 3). We further regard the complexity of a multiplication of two t× t matrices as
an element of O

(
t3
)
.

In a reduced form, only the condition in Line 10 of Algorithm 1 needs to be evaluated,
since it already includes the other conditions. This line is iterated

⌊
t−s
s

⌋
times and at

most t multiplications of t× t matrices take place in this line. Hence, the total complexity
is an element of O

(
t4
)
.

When including all calculations, the computations of the eigenspaces of M i and more
matrix multiplications in general are needed. The eigendecomposition of a t× t matrix
needs a number of field operations in O

(
t3
)
. The total runtime is then also an element

in O
(⌊
t−s
s

⌋
· t3
)
⊆ O

(
t4
)
, however, the hidden constants are significantly larger. In

practical tests, evaluating only the condition in Line 10 thus leads to a considerably better
performance.

Implementation. We make our implementation available online18. This tool can be used
to detect vulnerabilities of given matrices over prime field or binary fields.

Computational Cost in Practice. There are various ways to implement Algorithm 1 in
practice. We decided to store the powers of the input matrix M beforehand, i.e., we
compute and storeM,M2, . . . ,M l, where l is the number of iterations. Hence, the memory
cost depends on l and is then essentially in O

(
l · t2

)
for a t× t matrix M .

The runtime is dominated by finding a solution to the system of equations and by
building the eigendecomposition of a matrix. Both complexities are in O

(
t3
)
for t × t

matrices. Just to give some concrete practical numbers, for n = 16, the test for a single
matrix takes about 30 milliseconds for t = 4, while it takes about 600 milliseconds for
t = 12 (using an Intel Xeon E5-2699v4 with a maximum clock frequency of 3.60 GHz).
When omitting the computation of eigenspaces and evaluating only the condition in Line 10
of Algorithm 1 (which is sufficient from the designer’s point of view), the test takes about
4 and 50 milliseconds, respectively, for the two cases.

4.2 Percentage of “Weak” Linear Layers
We implemented Algorithm 1 in Sage and used it to get an idea of the percentage of
matrices that are vulnerable to the attack without active S-boxes presented in Section 3.

Different Classes of Matrices. For concrete use cases, we set s = 1 and we focus on
two scenarios, namely random invertible matrices and random Cauchy matrices19. As
the source for randomness we use Sage’s random engine in both cases (and for choosing
e.g. the prime numbers). In the first scenario, we create a matrix space, sample random
matrices, and finally determine if they are invertible. In the second scenario, we generate

17Note that in this case, the pseudo code has to be modified slightly.
18https://extgit.iaik.tugraz.at/krypto/linear-layer-tool
19We recall that M ∈ Ft×t is a Cauchy matrix if there exists {xi, yi}ti=1 s.t. Mi,j = 1

xi+yj
, where for

each i 6= j : xi 6= xj , yi 6= yj , xi + yj 6= 0. Cauchy matrices are MDS matrices.

https://extgit.iaik.tugraz.at/krypto/linear-layer-tool

Lorenzo Grassi, Christian Rechberger and Markus Schofnegger 19

Table 1: Percentage of vulnerable matrices for Algorithm 1 and orders t, when considering
prime fields GF(p).

Random Invertible
dlog2(p)e 4 8 4 8 8 16 8 16
t 3 3 4 4 8 8 12 12
Vulnerable (%) 7.42 0.54 7.46 0.46 0.42 < 0.01 0.38 < 0.01

MDS (Random Cauchy)
dlog2(p)e 4 8 4 8 8 16 8 16
t 3 3 4 4 8 8 12 12
Vulnerable (%) 7.72 0.50 5.76 0.58 0.50 0.02 0.38 < 0.01

Table 2: Percentage of vulnerable matrices for Algorithm 1 and orders t, when considering
binary fields GF(2n).

Random Invertible
n 4 8 4 8 8 16 8 16
t 3 3 4 4 8 8 12 12
Vulnerable (%) 6.32 0.60 5.66 0.38 0.34 < 0.01 0.40 < 0.01

MDS (Random Cauchy)
n 4 8 4 8 8 16 8 16
t 3 3 4 4 8 8 12 12
Vulnerable (%) 6.60 0.42 5.38 0.40 0.66 < 0.01 0.38 < 0.01

Cauchy matrices using random (and valid) starting sequences. We tested all matrices using
both prime fields and binary fields, focusing on square matrices of order t ∈ {3, 4, 8, 12, 16}
and on fields with a size of n ∈ {4, 8, 16} (and dlog2(p)e ∈ {4, 8, 16} for prime fields).
Moreover, we tested our algorithm on the concrete matrices used to instantiate Starkad
and Poseidon. We present these results in Appendix D.1.

Concrete Results. The sample size for all tests was set to 50000. While a matrix chosen
completely at random (or without considering our results) may be vulnerable with a
significant probability, it is easy to choose a matrix which is not vulnerable to the attacks
presented above. Namely, given the estimated percentages of vulnerable matrices found in
the tables above, the probability of finding a “secure” matrix (w.r.t. our results) is already
quite high after trying two or more different matrices. In other words, our tool can easily
be used to find matrices which are not vulnerable to the attacks presented in Section 3.

Regarding the tables, we can immediately see that the choice of p (or n) has an impact
on the number of vulnerable matrices. Specifically, increasing p (or n) tends to result in a
higher probability for a matrix to be secure against the attacks presented here.

Finally, we briefly mention that a very high percentage of “weak” matrices (higher than
95% in practical tests) are identified due to their eigenspaces, that is due to the results
from Theorem 1 - Theorem 2 rather than by the generic results from Theorem 3.

20 Weak Linear Layers in Word-Oriented Partial SPN and HADES-Like Schemes

5 Subspace Trails for P-SPN Schemes with Active S-Boxes
Until now, we focused on the case in which no S-box is active. Here, we analyze the
scenario in which S-boxes are active.

5.1 Preliminaries: Subspace Trails and Truncated Differentials
We first present a generic result regarding the minimum number of rounds for which it is
possible to set up a subspace trail with a probability of 1.

Proposition 6. Given a partial SPN scheme over Ft with s < dt/2e S-boxes defined as in
Eq. (2), there exists a subspace trail with prob. 1 on at least 2 ·

⌊
t−s
s

⌋
rounds, defined by{

S(b t−s
s c),M · S(b t−s

s c), . . . ,Mb
t−s

s c−1 · S(b t−s
s c),A(1), . . . ,A(b t−s

s c)
}
,

where S(i) is defined as in Eq. (3) and where A(i) :=
〈
M(e1), . . . ,M(es),M · A(i−1)〉 for

i ≥ 1 (where A(0) := Mb
t−s

s c−1 · S(b t−s
s c)).

As for Proposition 2, this well-known result (whose proof can be found in Appendix C)
only depends on the number of S-boxes, and no assumption on the matrix M is made.
Similar to the case presented in Section 3.1, note that depending on the details of the
linear layer, a longer subspace trail of dimension 1 can be set up.

5.2 Infinitely Long Subspace Trail with Active S-Boxes: A Sufficient
Condition on the Linear Layer M

Next, we analyze infinitely long subspace trails in the case of active S-boxes. Working as
in Section 3, here we study which properties a linear layer must satisfy in order to set up
an infinitely long subspace trail also in the case of active S-boxes.

5.2.1 Infinitely Long Invariant Subspace Trails with Active S-Boxes

Using the approach proposed in Section 3.2, we first focus on the case of invariant subspace
trails with active S-boxes.

Theorem 5. Given a P-SPN scheme with s S-boxes defined as in Eq. (2), let M ∈ Ft×t
be an invertible matrix. Let λ1, . . . , λτ be the eigenvalues of M , and let P1, . . . ,Pτ be the
corresponding eigenspaces (where τ ≤ t). Let I = {i1, . . . , i|I|} ⊆ {1, . . . , s} be the indices
of the words with active S-boxes (where I 6= ∅), and let

IS = 〈P ′1, . . . ,P ′τ 〉 ,

where P ′h is a subspace of Ph for each h ∈ {1, . . . , τ}. If 1 ≤ dim(IS) < t and if IS
satisfies

1. IS ∩
〈
ei1 , . . . , ei|I| , es+1, . . . , et

〉
= IS, and

2. ∀i ∈ I ⊆ {1, . . . , s} : IS ∩ 〈ei〉 = 〈ei〉 ,

then IS generates an infinitely long invariant subspace trail with active S-boxes.

Proof. The first condition ensures that no l-th word is active, where l /∈ I. For each i-th
active word, where i ∈ I, the second condition implies that the entire space 〈ei〉 is included
in IS. The consequence is that, when applying the S-box, the subspace remains the same.

As for the results given in the previous sections, this subspace remains invariant through
the linear layer since it is defined using the eigenspaces of M . Hence, IS results in an
infinitely long invariant subspace trail.

Lorenzo Grassi, Christian Rechberger and Markus Schofnegger 21

Note that the number of active S-boxes in the previous subspace trail is proportional to
the number of rounds (so, potentially “infinite”). As before, we emphasize that, in general,
the previous observation provides only a sufficient condition.

The result just given is hard to exploit in practice, since a direct construction of IS is
missing. This means that one has to consider all possible subspaces of the eigenspaces P,
which is more expensive when working over a large field F (e.g., Fp or F2n for large p or
n) in the case in which one of these eigenspaces has a dimension larger than 1. Indeed,
since the number of subspaces of X ⊆ Ft of dimension dim(X)− 1 ≥ 1 is an element of
O(|F|dim(X)−1) (see e.g. [33] for details), the cost of this step could be proportional to the
size of the field F. In the following, we show how to solve this problem.

Example. Given a P-SPN scheme with s = 1, consider the following 4 × 4 matrix M
defined over F:

M =

0 (1−M1,3 · b−M1,4 · c)/a M1,3 M1,4
a (−M2,3 · b−M2,4 · c)/a M2,3 M2,4
b (−M3,3 · b−M3,4 · c)/a M3,3 M3,4
c (−M4,3 · b−M4,4 · c)/a M4,3 M4,4

 , (4)

where a 6= 0. A proper choice of a, b, c and M·,· provides invertibility and “full diffusion”
(at word level after a finite number of rounds) for cryptographic purposes. The subspace

IS =
〈
e1 = (1, 0, 0, 0)T , v = (0, a, b, c)T

〉
,

where M · e1 = v and M · v = e1, is invariant under the round transformation for any
number of rounds. Indeed, since the first word can take every value and because the S-box
is applied only to this word, IS remains invariant (note that the S-box is active). Hence,
this is a concrete example of an infinitely long invariant subspace trail with active S-boxes,
where P1 = 〈v+ e1〉 and P2 = 〈v− e1〉 are the eigenspaces of the matrix M that satisfy the
conditions given in the previous theorem (we refer to Appendix E.1 for other examples).

Lastly, we remark that matrices of the form Eq. (4) are currently used in the literature:
For example, the circulant almost-MDS matrix over F2n defined as circ(0, 1, 1, 1) is used
in Midori [9] and QARMA [8].

A P-SPN Scheme Vulnerable to Invariant Subspace Trails with Active S-Boxes, but
not to Trails with Inactive S-Boxes. Here we provide an example of a P-SPN scheme
vulnerable to subspace trails with active S-boxes, but not to trails with inactive S-boxes.
In order to do this, we first propose the following observation for the case s = 1.

Lemma 2. Consider a P-SPN scheme with s = 1 S-box per round defined as in Eq. (2).
Assume there exists a (non-trivial) infinitely long invariant subspace trail IS with active
S-boxes (hence, 1 ≤ dim(IS) < t). Given V(0) := ISc, let V(i+1) = V(i) ∩ (M · V(i)) for
each i ≥ 0. An infinitely long (invariant/iterative) subspace trail IS ′ ⊆ ISc with no active
S-boxes exists if and only if there exists an integer i and 0 ≤ l ≤ i s.t. IS ′ ⊆ V(i) and
V(i) = M l · V(i), where M0 = I is the identity matrix.

The proof of this proposition is analogous to the one presented for Theorem 3. It is
sufficient to note that 〈e1〉 ⊆ IS. This implies that ISc ⊆ 〈e2, . . . , et〉 (that is, x[1] = 0
for each x ∈ ISc), hence ISc ⊆ S(1) (where S(1) is defined as in Eq. (3)).

Note that since dim(ISc) ≤ t− 1, there must exist a finite j s.t. either V(j+1) = V(j)

or dim(V(j)) = 0 (see the argument given in Section 4).
Given a P-SPN scheme with s = 1, an example for a matrix fulfilling these properties

(i.e., leading to a scheme which is not vulnerable in the case of inactive S-boxes, but which
allows for invariant subspace trails in the case of active S-boxes) is given by the 4× 4 MDS

22 Weak Linear Layers in Word-Oriented Partial SPN and HADES-Like Schemes

matrix

M =


3 1 1 2
3 4 2 1
2 1 3 4
4 1 4 1


over Fp, where p = 4 145 377 273 and dlog2(p′)e = 32.

5.2.2 Infinitely Long Iterative Subspace Trails with Active S-Boxes

The previous results can be generalized to iterative (non-invariant) subspace trails with
active S-boxes by considering the eigenspaces of M l for l ≥ 2.

Theorem 6. Given a P-SPN scheme with s S-boxes defined as in Eq. (2), let M ∈ Ft×t

be an invertible matrix. Let λ(l)
1 , . . . , λ

(l)
τ be the eigenvalues of M l for a certain l ≥ 1,

and let P(l)
1 , . . . ,P(l)

τ be the corresponding eigenspaces. For 0 ≤ j ≤ l − 1, let Ij =
{i(j)1 , . . . , i

(j)
|Ij |} ⊆ {1, . . . , s} be the positions of the active S-boxes20 in the j-th round.21

Let IS = 〈P ′1, . . . ,P ′τ 〉 , where P ′h is a certain subspace of P(l)
h for h ∈ {1, . . . , τ}. If

1 ≤ dim(IS(l)) < t and if IS(l) satisfies

1. ∀j ∈ {0, . . . , l − 1} : (M j · IS) ∩
〈
e
i

(j)
1
, . . . , e

i
(j)
|Ij |
, es+1, . . . , et

〉
= (M j · IS) and

2. ∀j ∈ {0, . . . , l − 1},∀i ∈ Ij ⊆ {1, . . . , s} : (M j · IS(l)) ∩ 〈ei〉 = 〈ei〉,

then {IS(l),M · IS(l), . . . ,M l−1 · IS(l)} generates an infinitely long iterative subspace trail
with active S-boxes.

Proof. The proof of this result is analogous the ones given before. In more detail, the
subspace trail is iterative with a period equal to r since IS(l) is constructed using the
eigenspaces of M l (as in the case of Theorem 2). Secondly, as in the case of Theorem 5, in
each round the first condition ensures that no l-th word is active, where l /∈ |Ij |, while the
second condition ensures that the entire space 〈ei〉 is included in IS for each i-th active
word (where i ∈ |Ij |). The consequence is that, when applying the S-box, the subspace
remains the same. The result follows immediately.

Examples. Given a P-SPN scheme with s = 1, consider again the 4× 4 matrix M defined
in Eq. (4). The subspace IS =

〈
e1 = (1, 0, 0, 0)T

〉
generates an infinitely long iterative

subspace trail with active S-boxes (of period 2) of the form{
IS =

〈
e1 = (1, 0, 0, 0)T

〉
,M · IS =

〈
(0, a, b, c)T

〉}
,

where I2i = {1} and I1+2i = ∅ for each i ≥ 0.
For a second example, consider the case of a P-SPN scheme over (F2n)4 with s = 1 and

M = circ(0, 1, 1, 1). Clearly, both
〈
(0, 1, 1, 0)T

〉
and

〈
(0, 1, 0, 1)T

〉
are invariant subspace

trails with inactive S-boxes. As shown before,
〈
(1, 0, 0, 0)T , (0, 1, 1, 1)T

〉
is an invariant

subspace trail with active S-boxes, while
〈
(1, 0, 0, 0)T

〉
is an iterative (non-invariant)

subspace trail with active S-boxes. By combining them, it is possible to set up new iterative
subspace trails with active S-boxes, e.g. IS =

〈
(1, 0, 0, 0)T , (0, 1, 1, 0)T , (0, 1, 0, 1)T

〉
. A

generalization of this result is presented in Appendix E.2.
20Note that in general the number of active S-boxes and their positions do not need to be fixed (if this

is the case, it is sufficient to impose Ix = Iy for x, y < l).
21Note that Ij = ∅ is also possible. That is, we do not require |Ij | ≥ 1.

Lorenzo Grassi, Christian Rechberger and Markus Schofnegger 23

5.3 Infinitely Long Iterative Subspace Trails with Active S-Boxes: A
Necessary and Sufficient Condition

As done for trails with no active S-boxes, we present a necessary and sufficient condition
regarding the existence of infinitely long subspace trails with active S-boxes.

Theorem 7. Given a P-SPN scheme with s S-boxes defined as in Eq. (2), let M ∈ Ft×t
be an invertible matrix. Given an integer l ≥ 1, for each 0 ≤ j ≤ l − 1, let Ij =
{i(j)1 , . . . , i

(j)
|Ij |} ⊆ {1, . . . , s} be the positions of the active S-boxes in the j-th round.22 A

subspace IS of 1 ≤ dim(IS) < t generates an infinitely long subspace trail of period l (with
active S-boxes if ∃Ij s.t. |Ij | ≥ 1) if and only if the following conditions are satisfied:

1. ∀j ∈ {0, . . . , l − 1} : (M j · IS) ∩ 〈e
i

(j)
1
, . . . , e

i
(j)
|Ij |
, es+1, . . . , et〉 = (M j · IS),

2. ∀j ∈ {0, . . . , l − 1},∀i ∈ Ij ⊆ {1, . . . , s} : (M j · IS) ∩ 〈ei〉 = 〈ei〉,

3. IS = (M l · IS).

If l = 1, the subspace trail is invariant.

Proof. As before, the proof of this theorem is analogous to the ones given for Theorem 3
and Theorem 5. We start by showing that a subspace that satisfies the three conditions
given before generates an infinitely long iterative subspace trail with active S-boxes. The
proof is almost equal to the one given for Theorem 6: The only difference is that the
condition that IS is related to the eigenspace of M l is replaced by the more generic
assumption that IS satisfies IS = (M l · IS).

Vice-versa, assume that a subspace IS generates an infinitely long iterative subspace
trail of period l with active S-boxes. First of all, this can happen if and only if it satisfies
the condition IS = (M l · IS). The other two conditions are related to the assumption
that the S-box does not have any linear structure. Indeed, under this assumption, only
two scenarios can happen: The input (and so the output) of the S-box is constant, or the
input (and so the output) of the S-box is active (namely, it can take any possible value).
The first and the second condition guarantee these two facts in each round. If this would
not be the case (namely, if the input of the S-box is neither active nor constant), note that
every information about the trail would be lost (due to the assumption on the S-box), and
the trail cannot be set up.

As expected, the results presented in Theorem 5 and Theorem 6 satisfy the previous
theorem. This is simply due to the fact that the subspace IS defined in Theorem 5 and
Theorem 6 is related to the eigenspaces of M l, which satisfy the condition IS = (M l · IS).
We formulate the following corollary.

Corollary 3. The infinitely long subspace trails with active S-boxes presented in Theorem 5
and Theorem 6 satisfy Theorem 7.

Finally, the following result holds in the case in which M is diagonalizable.

Theorem 8. Given a P-SPN scheme with s S-boxes defined as in Eq. (2), let M ∈ Ft×t
be an invertible matrix. If M is diagonalizable, the result regarding the existence of an
infinitely long invariant subspace trail with active S-boxes of Theorem 5 and Theorem 6
provides both a necessary and a sufficient condition.

Proof. The proof is completely equivalent to the one given before for the case of Theorem 4.
In particular, it is sufficient to note that if M is diagonalizable, then a subspace X satisfies
X = M l · X if and only if X is related to the eigenspaces of M l.

22Note that Ij = ∅ is also possible. That is, we do not require |Ij | ≥ 1.

24 Weak Linear Layers in Word-Oriented Partial SPN and HADES-Like Schemes

About Iterative Subspace Trails. Due to the results presented in Section 3.6, one may
ask if there exist non-trivial iterative subspace trails with active S-boxes, namely P-SPN
schemes for which there exist iterative subspace trails with active S-boxes but no subspace
trails with inactive S-boxes or invariant subspace trails with active S-boxes. As showed in
the following, such schemes exist even if they are “rare”. Just to give a concrete example,
consider the P-SPN over F3

p (for s = 1 and t = 3) where the linear layer is defined by the
matrix

M =

0 1 −1
1 −2 1
1 −4 2

 .

The subspace trail{
V0 = 〈(1, 0, 0)T 〉,V1 = M · V0 = 〈(0, 1, 1)T 〉,V2 = M2 · V0 = 〈(0, 1, 2)T 〉

}
is iterative (since V0 = M3 · V0) with active S-boxes. Since dim(〈V0,V1,V2〉) = 3, it is
not possible to set up an invariant subspace trail via the previous iterative subspace trail.
Moreover, using the results and the tools presented in the paper, it is possible to show
that (e.g., for the prime p = 251) no invariant subspace trail or trails with inactive S-boxes
can cover an infinite number of rounds.

6 Practical Tests (Active S-Boxes)
The result given in Theorem 7 seems hard to exploit in practice: A direct construction
of the infinitely long subspace trail with active S-boxes is indeed missing. Without such a
direct construction, the computational cost of evaluating all subspaces IS would likely be
too large, as mentioned before. Here, we solve this problem by proposing two algorithms,
respectively one for the case of infinitely long invariant subspace trails and one for the
case of iterated trails (both with active S-boxes). Secondly, we test several matrices over
Fp and over F2n to get an idea of the percentage of “weak” matrices.

6.1 Algorithm for Detecting “Weak” Matrices
In the case of infinitely long subspace trails with inactive S-boxes (see Algorithm 1), the
starting point is the full space Ft: The idea is to remove subspaces of texts step by step
until an infinitely long subspace trail with inactive S-boxes is found. Here we work in
the opposite way. Exploiting the definition of IS, the idea is to add subspaces until an
infinitely long subspace trail with active S-boxes is found.

In the following, we assume that no infinitely long subspace trails with inactive S-boxes
exist for the analyzed scheme. Moreover, we recall that we work under the assumption
that the S-box has no linear structure. This assumption is crucial in order to have only
two cases, namely the case in which the input of the S-box is constant and the case in
which the input of the S-box is active (namely, the input can take any possible value).
Since the S-box is a permutation, these two cases remain unchanged through the S-box.
In other words, if the input is neither constant nor active, all information is lost when
applying the S-box. This is not the case if the S-box has a linear structure.

6.1.1 Case: Infinitely Long Invariant Subspace Trails with Active S-Boxes

The algorithm we present is based on the result presented in Theorem 7 restricted to the
case l = 1. Let I ⊆ {1, . . . , s} be the positions of the active S-boxes s.t. I := {ι1, ι2, . . . , ι|I|}
(where |I| ≥ 1). Due to the first and the second points of Theorem 7, a subspace IS
generating an infinitely long invariant subspace trail with active S-boxes must satisfy

〈eι1 , . . . , eι|I|〉 ⊆ IS ⊆ 〈eι1 , . . . , eι|I| , es+1, . . . , et〉,

Lorenzo Grassi, Christian Rechberger and Markus Schofnegger 25

where remember that if IS ∩ 〈ei〉 = 〈ei〉 and IS ∩ 〈ej〉 = 〈ej〉, then 〈ei, ej〉 ⊆ IS since IS
is a subspace. Hence, if the active S-boxes are in position I, the subspace 〈eι1 , . . . , eι|I|〉
must be part of IS. For this reason, we initialize IS with 〈eι1 , . . . , eι|I|〉.

The infinitely long subspace trail IS is invariant if and only if the condition IS = M ·IS
is satisfied. In order to achieve it, we increase the initial subspace IS ← 〈eι1 , . . . , eι|I|〉
by adding subspaces until it stabilizes. In more detail, we compute 〈IS,M · ei,M2 ·
ei, . . . ,M

j · ei, . . . 〉 for each i ∈ I and for each j ≥ 1. Indeed, if ei ∈ IS and if the
condition IS = M · IS must be satisfied, it follows that M · ei (and its entire span) is in
IS. In a similar way, if M · ei ∈ IS and if the condition IS = M · IS must be satisfied, it
follows that M · (M · ei) = M2 · ei (and its entire span) is in IS, and so on. Hence, the
following two scenarios are possible:

1. For each i ∈ I, there exists ji ≥ 1 s.t. 〈IS,M · ei,M2 · ei, . . . ,M ji · ei〉 = 〈IS,M ·
ei,M

2 · ei, . . . ,M ji · ei,M ji+1 · ei,M ji+2 · ei, . . . 〉, that is, the vectors M j+h · ei are
already in IS for each h ≥ 1. In this case, the subspace〈

eι1 ,M · eι1 ,M2 · eι1 , . . . ,M j · eι1 , eι2 ,M · eι2 ,M2 · eι2 , . . . ,M j · eι2 , . . . ,
eι|I| ,M · eι|I| ,M

2 · eι|I| , . . . ,M
j · eι|I|

〉
,

(5)

where j = maxi∈I(ji), is invariant under the linear layer transformation.

2. There exists no ji s.t. the previous scenario is satisfied. If this is the case, then

dim(〈IS,M ·ei,M2 ·ei, . . . ,M ji ·ei,M ji+1 ·ei〉) = 1+dim(〈IS,M ·ei,M2 ·ei, . . . ,M ji ·ei〉),

which means that after a finite number of iterations the subspace reaches the
maximum possible dimension t. In such a case, it follows that there exists no
infinitely long invariant subspace trail with active S-boxes (apart from the trivial
one) for the particular analyzed I ⊆ {1, . . . , s}.

We emphasize the following two facts. First, it is possible that the subspace IS generated
as in Eq. (5) does not satisfy IS ⊆ 〈eι1 , . . . , eι|I| , es+1, . . . , et〉 (that is, the active S-boxes
are not only in the positions I ⊆ {1, . . . , s}). At the same time, since Theorem 7 provides
both a necessary and a sufficient condition and since we evaluate all possible subsets of
{1, . . . , s} (corresponding to the positions of the active S-boxes), if a subspace trail is
infinitely long and invariant, it is found using the previous approach.

6.1.2 Case: Infinitely Long Iterative Subspace Trails with Active S-Boxes

Next, we present an algorithm for the case of infinitely long iterative subspace trails with
active S-boxes.

Let {V1, . . . ,Vr} be an infinitely long iterative subspace trail of period r. By def-
inition, this means that it repeats itself an infinite number of times, i.e., it generates
{V1,V2, . . . ,Vr,V1,V2, . . . ,Vr, . . . ,V1,V2, . . . ,Vr, . . . }. It is simple to observe that Vl is
invariant every l rounds for each l ∈ {1, . . . , r}. This simple observation, which is satisfied
by all iterative subspace trail, is the starting point for our algorithm.

Since Vl is invariant every l rounds, the idea is to exploit a modified version of the
previous algorithm (where M must be replaced by M l) in order to find a subspace trail
with active S-boxes that is invariant every l rounds (and not every single round). We call
such a subspace trail an l-round invariant subspace trail. Once such an l-round invariant
subspace trail V is found, the idea is simply to determine if it generates an iterative
subspace trail of the form

{V,M · V, . . . ,M l−1 · V} (6)
with respect to Theorem 7 (namely, if there exists {I0, I1, . . . , Ir−1} s.t. at the j-th round
only the i-th S-boxes with i ∈ Ij are active and all the others are constant).

26 Weak Linear Layers in Word-Oriented Partial SPN and HADES-Like Schemes

Algorithm 2: Determining the existence of (invariant) infinitely long subspace
trails with active S-boxes based on Theorem 7.
Data: P-SPN scheme over Ft with s S-boxes applied to the first s words (where

the S-box has no linear structure).
Result: 1 if (invariant) infinitely long invariant subspace trail with active S-boxes

is found, 0 otherwise.
1 foreach Is ⊆ {1, 2, . . . , s} s.t. |Is| ≥ 1 (where Is := {ι1, ι2, . . . , ι|Is|}) do
2 IS ← 〈eι1 , . . . , eι|Is|

〉.
3 foreach i ∈ Is do
4 v ← ei.
5 do
6 δ ← dim(IS).
7 v ←M · v.
8 IS ← 〈IS, v〉.
9 if dim(IS) = t or IS ∩ 〈eι1 , . . . , eι|Is|

, es+1, . . . , et〉 6= IS then
10 break (move to next Is)
11 while dim(IS) > δ

12 return 1: infinitely long invariant subspace trail with active S-boxes found: IS
with active S-boxes in Is.

13 return 0: No infinitely long invariant subspace trail with active S-boxes found.

Note that the subspace cannot be of a generic form {V,V2, . . . ,Vl} (namely, for generic
subspaces V2, . . . ,Vl), but it must be of the form just given in Eq. (6). First of all, this is
due to the fact that the round function is not a random permutation, but it is defined by
the linear layer M . Secondly, under the assumption that there is no linear structure for
the S-box, it is possible to generate an infinitely long subspace trail if and only if the input
of each S-box is either constant or active. In such a case, the S-box layer only changes the
coset, but not the subspace itself.

6.1.3 Remark

Before going on, we highlight that Algorithm 2 and Algorithm 3 only look for “real”
infinitely long (respectively) invariant and iterative subspace trails with active S-boxes.
To be more precise, consider the case of a P-SPN scheme for which there exists both an
infinitely long invariant subspace trail with active S-boxes – denoted by IS1 – and an
infinitely long (respectively) invariant and iterative subspace trail with inactive S-boxes of
period r (namely, r = 1 for the invariant case, and r ≥ 2 otherwise) – denoted by IS2 –
which are independent, that is, s.t.

∀j ∈ {0, ..., r − 1} : IS1 ∩ (M j · IS2) = ∅.

Clearly, 〈IS1, IS2〉 is an infinitely long resp. invariant and iterative subspace trail with
active S-boxes. Examples are given in Section 5.2.1, Section 5.2.1, and Appendix E.2.

At the same time, it is not hard to see that 〈IS1, IS2〉 cannot be identified by
Algorithm 3 (due to the fact that (1) IS1 is invariant, (2) IS2 is a trail with inactive
S-boxes and – more importantly – (3) IS1 and IS2 are independent).23 In conclusion,
Algorithm 3 can only identify iterative subspace trails with active S-boxes that cannot be
decomposed into independent subspace trails as before (e.g., an invariant one with active
S-boxes and an invariant/iterative one with inactive S-boxes).

23In any case, note that the matrix that defines such a P-SPN scheme would be identified as weak (and
so discarded) by e.g. Algorithm 2.

Lorenzo Grassi, Christian Rechberger and Markus Schofnegger 27

Algorithm 3: Determining the existence of (iterative) infinitely long subspace
trails with active S-boxes of period at most l ≥ 2 based on Theorem 7.
Data: P-SPN scheme over Ft with s S-boxes applied to the first s words (where

the S-box has no linear structure).
Result: 1 if (iterative) infinitely long iterative subspace trail with active S-boxes

(of period at most l ≥ 2) is found, 0 otherwise.
1 flag ← 0.
2 T ← ∅. // T stores all iterative subspace trails found
3 for r ← 2 to l do
4 foreach I ⊆ {1, 2, . . . , s} (where I := {ι1, ι2, . . . , ι|I|} and I 6= ∅) do
5 Apply Algorithm 2 to Mr, and let IS be the resulting “invariant” subspace

trail with active S-boxes in I, or let IS = ∅ if such a trail does not exist.
// Check for a meaningful iterative subspace trail

6 if dim(IS) ≥ 1 then
7 if IS = M · IS then

// The subspace trail is invariant
8 break (move to next r)
9 I(1) ← ∅, I(2) ← ∅, . . . , I(r−1) ← ∅.

10 for j ← 1 to r − 1 do
11 IS ←M · IS.
12 for i← 1 to s do
13 E(i) ← 〈e1, . . . , ei−1, ei+1, . . . , es, es+1, . . . , et〉.
14 if IS ∩ E(i) 6= IS (equivalently, IS 6⊆ E(i)) then
15 if IS ∩ 〈ei〉 = 〈ei〉 then
16 I(j) ← I(j) ∪ {i}.
17 else
18 break (move to next r)
19 flag ← 1.
20 T ← T ∪ {IS, r, {I, I(1), I(2), . . . , I(r−1)}}.

// In the case flag = 0 (hence, T = ∅), no infinitely long
iterative subspace trail (of period ≤ l) was found.

21 return flag: infinitely long iterative subspace trails T with active S-boxes
found.

6.1.4 Computational Costs

Here we analyze the computational cost of the two algorithms just presented.

Cost of Algorithm 2. We analyze the computational costs of Algorithm 2 in terms of
loop iterations. First, consider the loop starting in the second line, and note that there are
2s − 1 non-empty subsets of {1, . . . , s}. The second loop is iterated |Is| times for each of
these subsets. For the Do-While loop, there are two possible cases. Either it finishes if the
dimension of the new IS is equal to the dimension of the old IS, or the dimension of IS
increased in the last iteration. Observe that the loop ends when dim (IS) = t, and hence
this loop is iterated at most t− 1 times. Consequently, the runtime of Algorithm 2 is an
element in O (2sst), which makes it especially efficient when using only a few S-boxes.

Cost of Algorithm 3. Again, we mainly focus on loop iterations for the indicator of the
final cost. First, we fix the maximum period l of the iterative non-invariant subspace trail.
Now, Algorithm 2 is run l − 1 times. After that, the next loop is iterated l′ − 1 times for

28 Weak Linear Layers in Word-Oriented Partial SPN and HADES-Like Schemes

Table 3: Percentage of vulnerable matrices using Algorithm 1, Algorithm 2, Algorithm 3,
and orders t, when considering prime fields GF(p). We denote by “Sx” and “Vx” the
security and vulnerability w.r.t. to Algorithm x, respectively (e.g., S1 denotes security
w.r.t. Algorithm 1, while V2 denotes vulnerability w.r.t. Algorithm 2). For Algorithm 3,
we use a maximum period of l = 2t.

Random Invertible
dlog2(p)e 4 8 4 8 8 16 8 16
t 3 3 4 4 8 8 12 12
% (V2) 7.70 0.62 7.80 0.44 0.34 < 0.01 0.36 < 0.01
% (V2 ∧ S1) 6.50 0.62 6.96 0.44 0.32 < 0.01 0.36 < 0.01
% (V2 ∨ V1) 13.92 1.16 14.42 0.90 0.74 < 0.01 0.74 < 0.01
% (V3) 0.06 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
% (V3 ∧ S1 ∧ S2) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
% (V3 ∨ V2 ∨ V1) 13.92 1.16 14.42 0.90 0.74 < 0.01 0.74 < 0.01

MDS (Random Cauchy)
dlog2(p)e 4 8 4 8 8 16 8 16
t 3 3 4 4 8 8 12 12
% (V2) 7.56 0.54 5.76 0.42 0.40 < 0.01 0.76 < 0.01
% (V2 ∧ S1) 5.96 0.54 5.00 0.42 0.40 < 0.01 0.76 < 0.01
% (V2 ∨ V1) 13.68 1.04 10.76 1.00 0.90 0.02 1.14 < 0.01
% (V3) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
% (V3 ∧ S1 ∧ S2) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
% (V3 ∨ V2 ∨ V1) 13.68 1.04 10.76 1.00 0.90 0.02 1.14 < 0.01

each l′ ∈ {2, . . . , l}, leading to a total number of repetitions of at most l(l+1)
2 . Finally, the

last loop is iterated s times. Operation costs inside these iterations are negligible. This
leads to the total runtime being an element in O (l · s · (2s · t+ l)), which again makes this
algorithm especially efficient when s is small.

Computational Cost in Practice. We used the same hardware as for the practical tests
in Section 4.2, i.e., an Intel Xeon E5-2699v4 with a maximum clock frequency of 3.60 GHz.
Again, we evaluate the performance of Algorithm 2 and Algorithm 3 when using matrices
over prime fields and for n = 16, t ∈ {4, 12}, and l = 2t. For t = 4, Algorithm 2 takes
about 3 milliseconds and Algorithm 3 takes about 40 milliseconds. For t = 12, Algorithm 2
takes about 16 milliseconds and Algorithm 3 takes about 1 second.

6.2 Percentage of “Weak” Linear Layers
Similar to the case for Algorithm 1, we estimate the percentage of “weak” linear layers
with respect to Algorithm 2 and Algorithm 3. We refer to Section 4.2 for a description
about the matrices we used for our tests. Again, our sample size is 50 000 and we focus on
the case s = 1. To also get a better understanding of the differences between the results
provided by our algorithms, we made the following distinctions:24

(1) matrices which are vulnerable w.r.t. Algorithm 2,

(2) matrices which are vulnerable w.r.t. Algorithm 2 and secure w.r.t. Algorithm 1,
24Naturally, the percentage of matrices fulfilling (2) and (4) has to be lower than or equal to the

percentage of matrices fulfilling resp. (1) and (3) when using the same set of matrices.

Lorenzo Grassi, Christian Rechberger and Markus Schofnegger 29

Table 4: Percentage of vulnerable matrices using Algorithm 1, Algorithm 2, Algorithm 3,
and orders t, when considering binary fields GF(2n). We denote by “Sx” and “Vx” the
security and vulnerability w.r.t. to Algorithm x, respectively (e.g., S1 denotes security
w.r.t. Algorithm 1, while V2 denotes vulnerability w.r.t. Algorithm 2). For Algorithm 3,
we use a maximum period of l = 2t.

Random Invertible
n 4 8 4 8 8 16 8 16
t 3 3 4 4 8 8 12 12
% (V2) 6.26 0.40 6.04 0.36 0.42 < 0.01 0.24 < 0.01
% (V2 ∧ S1) 5.32 0.40 5.48 0.34 0.40 < 0.01 0.24 < 0.01
% (V2 ∨ V1) 11.64 1.00 11.14 0.72 0.74 < 0.01 0.64 < 0.01
% (V3) 0.02 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
% (V3 ∧ S1 ∧ S2) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
% (V3 ∨ V2 ∨ V1) 11.64 1.00 11.14 0.72 0.74 < 0.01 0.64 < 0.01

MDS (Random Cauchy)
n 4 8 4 8 8 16 8 16
t 3 3 4 4 8 8 12 12
% (V2) 6.14 0.36 4.94 0.30 0.40 < 0.01 0.60 < 0.01
% (V2 ∧ S1) 4.98 0.36 4.24 0.30 0.40 < 0.01 0.60 < 0.01
% (V2 ∨ V1) 11.58 0.78 9.62 0.70 1.06 < 0.01 1.12 < 0.01
% (V3) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
% (V3 ∧ S1 ∧ S2) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
% (V3 ∨ V2 ∨ V1) 11.58 0.78 9.62 0.70 1.06 < 0.01 1.12 < 0.01

(3) matrices which are vulnerable w.r.t. Algorithm 3, and

(4) matrices which are vulnerable w.r.t. Algorithm 3 and secure w.r.t. Algorithm 1 and
Algorithm 2.

Table 3 and Table 4 show the results for matrices over GF(p) and GF(2n) respectively.
We can immediatly see that the numbers are not very different from the numbers obtained
by testing Algorithm 1. Indeed, a similar amount of matrices seems to be vulnerable
with respect to Algorithm 2. Interestingly, when first excluding matrices detected by
Algorithm 1, the percentage is in most cases slightly lower but the difference is negligible.
This hints at the fact that properties detected by Algorithm 1 and Algorithm 2 are indeed
significantly different, and only one of the two algorithms is certainly not sufficient in order
to find vulnerabilities.

Moreover, when looking at the numbers obtained by testing Algorithm 3, we can see
how “rare” matrices are which are vulnerable w.r.t. Algorithm 3, but not vulnerable w.r.t.
the other two algorithms (see also Section 5.3). Indeed, for our sample size, the percentage
for such matrices was (approximately) zero.

6.3 Related Work
Before concluding, we mention that the approach just proposed is not completely new in
the literature. In particular, a similar strategy has been proposed in [39] for the research
of invariant subspace trails and in [26] for the research of weak-key subspace trails.

Let us focus on the algorithm proposed in [39]: Given an SPN-like cipher and/or
SPN-like permutation, the goal is to find a subspace U and an offset u that is invariant
under the keyless round function R(·), namely R(U + u) = U + v for a certain v. In the

30 Weak Linear Layers in Word-Oriented Partial SPN and HADES-Like Schemes

case of a cipher, it is sufficient to choose the round key k ∈ Kweak = U + (u− v) if one
aims to keep the coset invariant (depending on the key schedule, such a subspace trail can
cover either a finite or an infinite number of rounds).

The approach used to find such an affine subspace U + u is similar to the one just
proposed. Starting with the smallest possible subspace (e.g., a subspace of dimension 1),
the idea is to increase it until it stabilizes. In more detail, given a round function R(·),
the algorithm guesses a starting offset for the affine subspace U + u0 and then maps it
forwards and backwards through R and R−1, everytime computing the span of the image.
If the subspace stabilizes, an invariant subspace has been found.

Both this and our approach are based on the following observation: “Assume u+A
is an affine subspace such that R(u+A) is also an affine subspace v +A. Then for any
subset X ⊆ A, the linear span of (R(u+X)− v) ∪X is contained in A” (see [39, Lemma
1]). Hence, the algorithm presented in [39] proceeds as follows:

1. The attacker guesses one possible offset u′ of the affine space to be found and fixes
v′ = R(u′). Moreover, they guess a one-dimensional subspace of A, denoted by A0.

2. For each i ≥ 0, they then compute

Ai+1 = 〈R(Ai + u′)− v′,Ai〉.

3. If dim(Ai+1) = dim(Ai), an invariant subspace has been found. Otherwise, if
dim(Ai+1) = t (where R is defined over Ft), the subspace is equal to the entire space.
In such a case, the idea is to restart the algorithm with different offsets or a different
starting subspace A0.

The algorithms we proposed here are similar, but some important differences can be
highlighted:

• First of all, we do not work with the entire round function, but only with the matrix
that defines the linear layer. This is due to the fact that we only consider partial
SPN schemes for which we assume that certain S-boxes are active and others are
inactive (namely, we do not consider the case of an S-box which is neither active
nor constant – namely, for which the input can only take some values). Obviously,
we evaluate all the 2s cases of active/constant S-boxes. This is not possible in the
case of an SPN scheme due to the full S-box layer. In there, one possibility is to
exploit the existence of affine structures of the S-box (namely, the existence of an
affine structure U + u s.t. S-box(U + u) = U + v).

• As a consequence, the work presented in [39] is done (in general) under the assumption
of weak keys and/or weak round constants, while our work is independent of the
round keys and round constants.

• The main impact of the previous facts is that the attacker must guess the initial and
the final cosets in the algorithm presented in [39], while in our case the algorithm is
independent of these values. Again, this is possible due to the presence of a partial
S-box layer.

7 Conclusion and Open Problems
In this paper, we presented necessary and sufficient conditions that a (highly non-trivial)
linear layer must satisfy in order to prevent the existence of infinitely long subspace
trail attacks. As already mentioned, several problems are still open for future research.
Besides the ones already mentioned before (e.g., the impact of considering the eigenval-
ues/eigenspaces of M over the algebraic closure F? of F), here we list other problems that
could be interesting for future research.

Lorenzo Grassi, Christian Rechberger and Markus Schofnegger 31

• In the whole paper, we work independently of the details of the S-box, since we
assume that it is not possible to set up any non-trivial subspace trail for the S-box.
However, this is not always the case (e.g., consider the examples given in [40]). As a
future open problem, one could extend the result given in this paper for the case
of active S-boxes to this case. In particular, assume there exist non-trivial U ,V s.t.
for each u: S(U + u) = V + v for a certain v. Hence, besides the cases in which the
input of the S-box is only active or constant, one should consider the case in which
the input of the S-box corresponds to a coset of U .

• It could make sense to analyze how the key schedule influences the possibility to set
up a weak-key infinitely long subspace trail. What is a possible countermeasure that
allows to prevent this case? Is the analysis provided in [11] valid also in the case of
P-SPN schemes?

• Here, we only consider the case in which the linear layer is defined as an invertible
matrix M ∈ Ft×t. It could be interesting to extend our results to the case in which
the entries of the matrix are linearized polynomials (namely, polynomials of the form
P (x) =

⊕d
i=0 ρi · x2i for d ≥ 1 which can be computed efficiently over a Boolean

field).

• Is it possible to extend the results presented in this paper when the scheme is defined
over a ring (instead of a field)?

References
[1] Abdelraheem, M.A., Ågren, M., Beelen, P., Leander, G.: On the Distribution of

Linear Biases: Three Instructive Examples. In: Advances in Cryptology - CRYPTO
2012. LNCS, vol. 7417, pp. 50–67. Springer (2012)

[2] Albrecht, M.R., Cid, C., Grassi, L., Khovratovich, D., Lüftenegger, R., Rechberger, C.,
Schofnegger, M.: Algebraic Cryptanalysis of STARK-Friendly Designs: Application
to MARVELlous and MiMC. In: Advances in Cryptology - ASIACRYPT 2019. LNCS,
vol. 11923, pp. 371–397 (2019)

[3] Albrecht, M.R., Grassi, L., Perrin, L., Ramacher, S., Rechberger, C., Rotaru, D., Roy,
A., Schofnegger, M.: Feistel structures for mpc, and more. In: Computer Security -
ESORICS 2019. LNCS, vol. 11736, pp. 151–171 (2019)

[4] Albrecht, M.R., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: Efficient
Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity. In:
ASIACRYPT 2016. LNCS, vol. 10031, pp. 191–219 (2016)

[5] Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for
MPC and FHE. In: EUROCRYPT 2015. LNCS, vol. 9056, pp. 430–454 (2015)

[6] Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of Symmetric-
Key Primitives for Advanced Cryptographic Protocols. Cryptology ePrint Archive,
Report 2019/426 (2019), https://eprint.iacr.org/2019/426

[7] Ashur, T., Dhooghe, S.: MARVELlous: a STARK-Friendly Family of Cryptographic
Primitives. Cryptology ePrint Archive, Report 2018/1098 (2018)

[8] Avanzi, R.: The QARMA Block Cipher Family. Almost MDS Matrices Over Rings
With Zero Divisors, Nearly Symmetric Even-Mansour Constructions With Non-
Involutory Central Rounds, and Search Heuristics for Low-Latency S-Boxes. IACR
Trans. Symmetric Cryptol. 2017(1), 4–44 (2017)

https://eprint.iacr.org/2019/426

32 Weak Linear Layers in Word-Oriented Partial SPN and HADES-Like Schemes

[9] Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T., Regaz-
zoni, F.: Midori: A Block Cipher for Low Energy. In: Advances in Cryptology –
ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436 (2015)

[10] Bar-On, A., Dinur, I., Dunkelman, O., Lallemand, V., Keller, N., Tsaban, B.: Crypt-
analysis of SP Networks with Partial Non-Linear Layers. In: EUROCRYPT 2015.
LNCS, vol. 9056, pp. 315–342 (2015)

[11] Beierle, C., Canteaut, A., Leander, G., Rotella, Y.: Proving Resistance Against
Invariant Attacks: How to Choose the Round Constants. In: Advances in Cryptology
– CRYPTO 2017. LNCS, vol. 10402, pp. 647–678 (2017)

[12] Beyne, T.: Block Cipher Invariants as Eigenvectors of Correlation Matrices. In:
Advances in Cryptology - ASIACRYPT 2018. LNCS, vol. 11272, pp. 3–31 (2018)

[13] Beyne, T., Canteaut, A., Dinur, I., Eichlseder, M., Leander, G., Leurent, G., Naya-
Plasencia, M., Perrin, L., Sasaki, Y., Todo, Y., Wiemer, F.: Out of Oddity – New
Cryptanalytic Techniques against Symmetric Primitives Optimized for Integrity Proof
Systems. Cryptology ePrint Archive, Report 2020/188 (2020), https://eprint.iacr.
org/2020/188 – accepted at Crypto 2020

[14] Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31 Rounds
Using Impossible Differentials. In: EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23
(1999)

[15] Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. Journal
of Cryptology 4(1), 3–72 (1991)

[16] Blondeau, C., Leander, G., Nyberg, K.: Differential-Linear Cryptanalysis Revisited.
Journal of Cryptology 30(3), 859–888 (2017)

[17] Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Paillier,
P., Sirdey, R.: Stream Ciphers: A Practical Solution for Efficient Homomorphic-
Ciphertext Compression. J. Cryptology 31(3), 885–916 (2018)

[18] Daemen, J., Govaerts, R., Vandewalle, J.: Correlation Matrices. In: Fast Software
Encryption 1994 – FSE’94. LNCS, vol. 1008, pp. 275–285 (1994)

[19] Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography, Springer (2002)

[20] Dinur, I., Kales, D., Promitzer, A., Ramacher, S., Rechberger, C.: Linear Equiva-
lence of Block Ciphers with Partial Non-Linear Layers: Application to LowMC. In:
EUROCRYPT 2019. LNCS, vol. 11476, pp. 343–372 (2019)

[21] Dinur, I., Liu, Y., Meier, W., Wang, Q.: Optimized Interpolation Attacks on LowMC.
In: ASIACRYPT 2015. LNCS, vol. 9453, pp. 535–560 (2015)

[22] Dobraunig, C., Eichlseder, M., Grassi, L., Lallemand, V., Leander, G., List, E.,
Mendel, F., Rechberger, C.: Rasta: A Cipher with Low ANDdepth and Few ANDs
per Bit. In: CRYPTO 2018. LNCS, vol. 10991, pp. 662–692 (2018)

[23] Eichlseder, M., Grassi, L., Lüftenegger, R., Øygarden, M., Rechberger, C., Schofnegger,
M., Wang, Q.: An Algebraic Attack on Ciphers with Low-Degree Round Functions:
Application to Full MiMC. Cryptology ePrint Archive, Report 2020/182 (2020),
https://eprint.iacr.org/2020/182

https://eprint.iacr.org/2020/188
https://eprint.iacr.org/2020/188
https://eprint.iacr.org/2020/182

Lorenzo Grassi, Christian Rechberger and Markus Schofnegger 33

[24] Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.X.: Block Ciphers That Are
Easier to Mask: How Far Can We Go? In: CHES 2013. LNCS, vol. 8086, pp. 383–399
(2013)

[25] Grassi, L., Kales, D., Khovratovich, D., Roy, A., Rechberger, C., Schofnegger, M.:
Starkad and Poseidon: New Hash Functions for Zero Knowledge Proof Systems.
Cryptology ePrint Archive, Report 2019/458 (2019)

[26] Grassi, L., Leander, G., Rechberger, C., Tezcan, C., Wiemer, F.: Weak-Key Subspace
Trails and Applications to AES. Cryptology ePrint Archive, Report 2019/852 (2019),
https://eprint.iacr.org/2019/852

[27] Grassi, L., Lüftenegger, R., Rechberger, C., Rotaru, D., Schofnegger, M.: On a
Generalization of Substitution-Permutation Networks: The HADES Design Strategy.
In: Advances in Cryptology - EUROCRYPT 2020. LNCS, vol. 12106, pp. 674–704
(2020)

[28] Grassi, L., Rechberger, C., Rønjom, S.: Subspace Trail Cryptanalysis and its Applica-
tions to AES. IACR Trans. Symmetric Cryptol. 2016(2), 192–225 (2016)

[29] Grassi, L., Rechberger, C., Rønjom, S.: A new structural-differential property of
5-round AES. In: Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10211, pp. 289–317 (2017)

[30] Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., Smart, N.P.: MPC-Friendly Symmet-
ric Key Primitives. In: ACM SIGSAC Conference on Computer and Communications
Security – 2016. pp. 430–443. ACM (2016)

[31] Grosso, V., Leurent, G., Standaert, F., Varici, K.: LS-Designs: Bitslice Encryption
for Efficient Masked Software Implementations. In: Fast Software Encryption - FSE
2014. LNCS, vol. 8540, pp. 18–37 (2014)

[32] Grosso, V., Standaert, F., Faust, S.: Masking vs. multiparty computation: how large
is the gap for AES? J. Cryptographic Engineering 4(1), 47–57 (2014)

[33] Huppert, B., Willems, W.: Lineare Algebra (2nd edition). Undergraduate texts in
mathematics, Vieweg+Teubner, Wiesbaden (2010)

[34] Ishai, Y., Sahai, A., Wagner, D.A.: Private Circuits: Securing Hardware against
Probing Attacks. In: Advances in Cryptology - CRYPTO 2003. LNCS, vol. 2729, pp.
463–481 (2003)

[35] Kales, D., Perrin, L., Promitzer, A., Ramacher, S., Rechberger, C.: Improvements
to the Linear Layer of LowMC: A Faster Picnic. Cryptology ePrint Archive, Report
2017/1148 (2017)

[36] Keller, N., Rosemarin, A.: Mind the Middle Layer: The HADES Design Strategy
Revisited. Cryptology ePrint Archive, Report 2020/179 (2020), https://eprint.
iacr.org/2020/179

[37] Knudsen, L.R.: Truncated and Higher Order Differentials. In: FSE 1994. LNCS,
vol. 1008, pp. 196–211 (1994)

[38] Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A Cryptanalysis of
PRINTcipher: The Invariant Subspace Attack. In: Advances in Cryptology - CRYPTO
2011. LNCS, vol. 6841, pp. 206–221 (2011)

https://eprint.iacr.org/2019/852
https://eprint.iacr.org/2020/179
https://eprint.iacr.org/2020/179

34 Weak Linear Layers in Word-Oriented Partial SPN and HADES-Like Schemes

[39] Leander, G., Minaud, B., Rønjom, S.: A Generic Approach to Invariant Subspace
Attacks: Cryptanalysis of Robin, iSCREAM and Zorro. In: EUROCRYPT 2015.
LNCS, vol. 9056, pp. 254–283 (2015)

[40] Leander, G., Tezcan, C., Wiemer, F.: Searching for Subspace Trails and Truncated
Differentials. IACR Trans. Symmetric Cryptol. 2018(1), 74–100 (2018)

[41] Méaux, P., Journault, A., Standaert, F., Carlet, C.: Towards Stream Ciphers for Effi-
cient FHE with Low-Noise Ciphertexts. In: Advances in Cryptology - EUROCRYPT
2016. LNCS, vol. 9665, pp. 311–343 (2016)

[42] Piret, G., Roche, T., Carlet, C.: PICARO - A Block Cipher Allowing Efficient Higher-
Order Side-Channel Resistance. In: Applied Cryptography and Network Security -
ACNS 2012. LNCS, vol. 7341, pp. 311–328 (2012)

[43] Rijmen, V., Daemen, J., Preneel, B., Bosselaers, A., Win, E.D.: The Cipher SHARK.
In: FSE 1996. LNCS, vol. 1039, pp. 99–111 (1996)

[44] Todo, Y., Leander, G., Sasaki, Y.: Nonlinear Invariant Attack - Practical Attack on
Full SCREAM, iSCREAM, and Midori64. In: Advances in Cryptology - ASIACRYPT
2016. LNCS, vol. 10032, pp. 3–33 (2016)

[45] Wang, Y., Wu, W., Guo, Z., Yu, X.: Differential Cryptanalysis and Linear Distin-
guisher of Full-Round Zorro. In: ACNS 2014. LNCS, vol. 8479, pp. 308–323 (2014)

[46] Youssef, A.M., Mister, S., Tavares, S.E.: On the Design of Linear Transformations for
Substitution Permutation Encryption Networks. In: Selected Areas in Cryptography -
SAC 1996. pp. 40–48 (1997)

Lorenzo Grassi, Christian Rechberger and Markus Schofnegger I

SUPPLEMENTARY MATERIAL

Scripts and Implementations
As supplementary material, we provide the following code files:

• algorithms_gf2n.sage

• algorithms_gfp.sage

These files contain Sage implementations of Algorithm 1, Algorithm 2, Algorithm 3, and
various utility functions, where the first one can be used for binary fields and the second
one can be used for prime fields. We also include a file named README.txt which contains
more detailed instructions on how to use these scripts.

Further, we provide a file named matrix_examples.txt which contains the Zorro
matrix (as described in Appendix D.2), and examples for the matrices described in
Section 5.2.1, Section 5.3, and Appendix E.1. Note that new examples can easily be
generated with our scripts, and we refer to the README.txt file for more details.

II Weak Linear Layers in Word-Oriented Partial SPN and HADES-Like Schemes

A Related Work
In order to discuss the results in [1] and [12], and the relation between them and the ones
presented in this paper, we first briefly recall the definition of correlation matrices [18].

Definition 8. Let F : Fn2 → Fm2 be a vectorial Boolean function. The correlation matrix
CF ∈ R2m×2n of F is the representation of the transition matrix of F with respect to the
character basis of the algebra C[Fn2] and C[Fm2]. The coordinates of CF are

CFu,v = 1
2n ·

∑
x∈Fn

2

(−1)u
T ·F (x)+vT ·x.

Using these notions, we recall the results presented in the literature.

Proposition 7 (Theorem 5 of [1]). Consider an invertible vectorial Boolean function F ,
a subspace U , the orthogonal subspace U⊥, and a vector d. Let CFu,v be the correlation
matrix of F , and let ω = (ωu)u∈U⊥ , where ωu = (−1)dT ·u. Then CF ·ωT = ωT if and only
if F (U + d) = U + d.

This result has been generalized by Beyne in [12], who defines a “block cipher invariant”
in the following way.

Definition 9 (Definition 2 of [12]). A vector v ∈ C2n is an invariant for a block cipher
Ek : Fn2 → Fn2 if and only if it is an eigenvector of the correlation matrix CEk . If v is a
multiple of (1, 0, . . . , 0)T , it will be called a trivial invariant.

For the case of invariant subspace trails, the same approach – opportunely modified
– can potentially be exploited in order to find the results proposed here. In particular,
using the properties of CF just presented, it follows that in the case of a round function
Rk(·) = k ⊕ R(·) = k + M ◦S(·), where S(·) ≡ [S(·) || · · · || S(·) || I(·) || · · · || I(·)] and
where M(·) = M · (·), it holds that

CRk = CkCR = CkCM · CS = Ck[CM]
(
[CS]⊗s ⊗ [CI]⊗(t−s)),

where CMu,v = δ(u + MT · v), CIu,v = δ(u + v), and where Ck is a diagonal matrix. In
the case studied here, it is not hard to see that if no S-box is active, the eigenvalues and
eigenvectors of CMu,v are strictly related to the eigenvalues and eigenvectors of M , leading
to the previous result.

Differences in Our Work. Here we highlight the main differences in our work.

1. Both [1] and [12] focus on invariant subspaces only. As a consequence, one has to
take care of the effect of the key (namely, of Ck) on the eigenvectors of CR (namely,
of the part of the round that is independent of the key).

2. We do not require that the subspace is invariant (namely, we do not restrict ourselves
to the case R(U + v) = U + w). At the same time, an r-round iterative subspace
trail can be seen as an invariant subspace trail for r rounds of the cipher. Hence, the
previous result can be adapted in order to include this case.

3. In our case, we look for infinitely long iterative subspace trails in P-SPN schemes
which are independent of the secret key and of the key schedule. Again, this is not
possible for an SPN cipher due to the full nonlinear layer.

Lorenzo Grassi, Christian Rechberger and Markus Schofnegger III

B 2-Round Iterative Subspace Trail – Details

In this section, we present all the details of the concrete example of an iterative subspace
trail that is not invariant given in Section 3.4.

The starting point is given by the circulant matrix M = circ(a, b, c, d) with elements
a, b, c, d ∈ Fp, which is invertible if and only if its determinant is different from zero:

−a4 + b4 − 4ab2c+ 2a2c2 − c4 + 4a2bd+ 4bc2d− 2b2d2 − 4acd2 + d4 6= 0 mod p.

Depending on a, b, c, d, such a matrix can have either 2 or 4 eigenvalues and eigenvectors,
while M2 has always 4 eigenvalues and eigenvectors. In particular, the eigenvalues and
eigenvectors of M are given by

λ0 = a+ b+ c+ d : (1, 1, 1, 1)T ,

λ1 = −
√
a2 + b2 − 2ac+ c2 − 2bd+ d2 : (b− d,−a+ c+ λ1, d− b, a− c− λ1)T ,

λ2 =
√
a2 + b2 − 2ac+ c2 − 2bd+ d2 : (b− d,−a+ c+ λ2, d− b, a− c− λ2)T ,

λ3 = a− b+ c− d : (1,−1, 1,−1)T ,

while the eigenvalues and eigenvectors of M2 are given by

Λ0 = (λ0)2 = a2 + 2a(b+ c+ d) + b2 + 2b(c+ d) + c2 + 2cd+ d2 : (1, 1, 1, 1)T ,
Λ1 = (λ1)2 = a2 + b2 − 2ac+ c2 − 2bd+ d2 : (1, 0,−1, 0)T ,
Λ2 = (λ2)2 = a2 + b2 − 2ac+ c2 − 2bd+ d2 : (0, 1, 0,−1)T ,
Λ3 = (λ3)2 = a2 − 2a(b− c+ d) + b2 − 2b(c− d) + c2 − 2cd+ d2 : (1,−1, 1,−1)T .

Let Mt×t ∈ Ft×t be the matrix defined as

M5×5 =


x y0 y1 y0 y1
z0 a b c d
z1 b c d a
z2 c d a b
z3 d a b c

 ,

where

(1) the coefficients are chosen in order to provide invertibility and “full diffusion” (at
word level after a finite number of rounds) for cryptographic purposes, and

(2) a, b, c, d are chosen such that the corresponding matrix has only 2 eigenvalues, namely

∀x ∈ Fp : a2 + b2 − 2 · a · c+ c2 − 2 · b · d+ d2 6= x2 mod p,

(remember that x 7→ x2 is not a permutation over Fp for a prime p ≥ 3 – see e.g.
Hermite’s criterion). For example, a choice of the form a = c and b = d is not allowed,
since the matrix would then have 4 eigenvalues.

IV Weak Linear Layers in Word-Oriented Partial SPN and HADES-Like Schemes

Note that

(1)


a b c d
b c d a
c d a b
d a b c


︸ ︷︷ ︸
≡circ(a,b,c,d)

·


0
1
0
−1

 =


b− d
c− a
−(b− d)
−(c− a)

 ,

(2)


a b c d
b c d a
c d a b
d a b c


2

·


0
1
0
−1

 = (a2 + b2 − 2ac+ c2 − 2bd+ d2) ·


0
1
0
−1

 , and

(3)
(
x y x y

)
·


0
1
0
−1

 =
(
0
)
.

Working in F5, and due to these considerations, the subspace S defined by S =
〈
(0, 0, 1, 0,−1)T

〉
is a 2-round iterative subspace trail, since

(1) M · S =
〈
(0, b− d, c− a, d− b, a− c)T

〉
, and

(2) M2 · S = S.

Finally, note that M2 is not necessarily equal to a multiple of the identity. For example,
note that (M2

5×5)1,5 6= 0, where25 (M2
5×5
)

1,5 = xy0 + y0a + y1b + y0c + y1d is different
from 0 by appropriately choosing the entries.

Other Examples. Note that many other examples can be constructed in a similar way.
For example, the matrix M8×8 defined by

M8×8 =
(
circ(s, z, s, z) circ(a, b, c, d)
circ(a, b, c, d) circ(u, v, u, v)

)
,

where a, b, c, d are chosen such that the corresponding circulant matrix has only 2 eigenval-
ues, allows for a 2-round iterative subspace trail defined by

S =
〈
(0, 1, 0,−1, 0, 0, 0, 0)T

〉
.

Indeed,

(1) M8×8 ·
〈
(0, 1, 0,−1, 0, 0, 0, 0)T

〉
=
〈
(0, 0, 0, 0, b− d, c− a, d− b, a− c)T

〉
, and

(2) (M8×8)2 ·
〈
(0, 1, 0,−1, 0, 0, 0, 0)T

〉
=
〈
(0, 1, 0,−1, 0, 0, 0, 0)T

〉
.

C Truncated and Impossible Differentials
So far, we discussed the possibility to set up truncated differentials with probability
1. However, this does not guarantee security against all other generalizations, precisely
truncated differentials with probability smaller than 1 and impossible differentials. Here
we briefly focus on this case. However, we point out that we do not discuss the minimum
number of rounds necessary to provide security against these attacks, since they strongly
depend on the details of the linear layer.

25The entry of a matrix M in the j-th column of the i-th row is denoted either by Mi,j or by M [i, j].

Lorenzo Grassi, Christian Rechberger and Markus Schofnegger V

As we are going to show, in the case in which the details of the S-box are not taken into
account, (the “basic” variants of) truncated and/or of impossible differential distinguishers
which are independent of the secret key can be set up for (at most) 2R rounds, where
R ≥ 2

⌊
t−s
s

⌋
is the maximum number of rounds for which it is possible to set up a truncated

differential with probability 1.

Remark. We stress that the details of the construction (e.g., the S-box, the linear
layer, the key schedule) can potentially be used to improve the previous attacks. That
is, 2R rounds refer only to the “basic” variants of such attacks, and this number must be
considered only as a lower bound in order to provide security.

C.1 Subspace Trails and Truncated Differentials
Proposition 8. Given a partial SPN scheme over Ft with s ≤ dt/2e S-boxes, it is always
possible to set up a subspace trail with probability 1 on at least 2 ·

⌊
t−s
s

⌋
rounds, defined byS(b t−s

s c),M · S(b t−s
s c), . . . ,Mb

t−s
s c−1 · S(b t−s

s c)︸ ︷︷ ︸
no active S-boxes

,A(1), . . . ,A(b t−s
s c)

 , (7)

where S(·) is defined as in Eq. (3), where A(i) :=
〈
M(e1), . . . ,M(es),M · A(i−1)〉 for each

i ≥ 1, and where A(0) := Mb
t−s

s c−1 · S(b t−s
s c).

As done before and w.l.o.g., in the following we omit the round key and constant
additions (since they only change the coset and we deal with differences).

Proof. The subspace trail defined over the first
⌊
t−s
s

⌋
rounds is already analyzed in

Section 3.1. Such a subspace trail cannot be extended for more rounds without activating
any S-box since

Mb
t−s

s c−1 · S(b t−s
s c) 6⊆ 〈es+1, . . . , et〉 .

Hence, at least one S-box is active after
⌊
t−s
s

⌋
rounds. It follows that the only way to

extend the trail is by increasing the dimension of such a subspace, that is,

R
(
Mb

t−s
s c · S(b t−s

s c)
)
⊆ A(1) =

〈
Mb

t−s
s c+1 · S(b t−s

s c),M(e1), . . . ,M(es)
〉
.

Indeed, the only thing one can do is to consider the biggest subspace for which

S-box
(
M(b t−s

s c) · S(b t−s
s c)

)
⊆

〈
e1, e2, . . . , es︸ ︷︷ ︸
Due to S-boxes

,Mb
t−s

s c · S(b t−s
s c)︸ ︷︷ ︸

Due to identity part

〉
.

In this way, we lose information about the output of the S-box layer (while nothing changes
for the part of the identity layer), but we can extend the subspace trail. Working in the
same way, it follows that

R
(
A(1)

)
⊆ A(2) =

〈
M · A(1),M(e1), . . . ,M(es)

〉
,

and, more generally,

R
(
A(r)

)
⊆ A(r+1) =

〈
M · A(r),M(e1), . . . ,M(es)

〉
.

This operation can be repeated until the dimension of the subspace is smaller than t. Since
for a generic scheme the dimension of S(b t−s

s c) is s and the dimension increases by s in
each additional round, the dimension remains smaller than t for up to 2 ·

⌊
t−s
s

⌋
rounds.

VI Weak Linear Layers in Word-Oriented Partial SPN and HADES-Like Schemes

Truncated Differentials. Due to the relation between subspace trails and truncated
differentials [40], it is possible to set up a truncated differential distinguisher on at least
2 ·
⌊
t−s
s

⌋
rounds with probability 1.

C.2 Truncated Differentials with Probability Smaller than 1
Here we exploit the relation between truncated differentials and subspace trails [28, 40]
and the results just given in order to analyze the minimum number of rounds to prevent
these attacks. We recall following proposition from [28].

Proposition 9. Let
{
S(b t−s

s c),M · S(b t−s
s c), . . . ,Mb

t−s
s c−1 · S(b t−s

s c),A(1), . . . ,A(b t−s
s c)

}
be a subspace trail of prob. 1 defined as in Eq. (7). For simplicity, let r = 2 · b(t− s)/sc
and let

{V0,V1, . . . ,Vb(t−s)/sc−1,Vb(t−s)/sc, . . . ,V2·b(t−s)/sc−2} :=

:=
{
S(b t−s

s c),M · S(b t−s
s c), . . . ,Mb

t−s
s c−1 · S(b t−s

s c),A(1), . . . ,A(b t−s
s c)

}
.

If there exist 0 ≤ v < u ≤ w < r s.t.
dim(Vv ∩ Vu)

dim(Vu) >
dim(Vw)

t

(equivalently, s.t. given a text x ∈ Ft P
(
x ∈ Vv | x ∈ Vu

)
> P(x ∈ Vw

)
, where P(·) denotes

the probability), then it is always possible to set up a truncated differential distinguisher
for w + u− v rounds with prob. |F|− dim(Vu)+dim(Vv∩Vu).

The result follows from the fact that for each pair (x, y) of plaintexts, where x 6= y,

P
(
Ek(x)−Ek(y) ∈ Vw | x−y ∈ V0)= P

(
Ek(x)−Ek(y) ∈ Vv | x−y ∈ Vu

)
= |F|

dim(Vv∩Vu)

|F|dim(Vu)

independently of the secret key k, due to the fact that
∀a, b : ∃c, d s.t. Ru(V0 + a) ⊆ Vu + b and Rw−v(Vv + b) ⊆ Vw + d,

where Rx(·) denotes the x-round encryption function. For comparison, in the case of a
random permutation Π(·),

P
(
Π(x)−Π(y) ∈ Vw | x− y ∈ V0)= |F|dim(Vw)

|F|t
.

We finally recall that for each subspace X ,Y,
dim(X ∩ Y) = dim(X) + dim(Y)− dim(X ∪ Y),

where dim(X ∪ Y) can be easily computed by using a Gram–Schmidt process on X ∪ Y.

C.3 Impossible Differentials
Impossible differential and truncated impossible differential distinguishers/attacks [14]
exploit differentials that hold with probability 0.
Proposition 10. Let {V0, . . . ,Vr−1} be a subspace trail of prob. 1 defined as in Proposi-
tion 9. If there exist 0 ≤ v < u < r s.t.

P
(
x ∈ Vv | x ∈ Vu

)
= 0

(equivalently, dim(Vv ∩ Vu) = 0), it is always possible to set up an impossible differential
distinguisher for r + u− v rounds.

The reason of the previous result is analogous to the one given before for truncated
differential distinguishers with prob. ≤ 1.

Lorenzo Grassi, Christian Rechberger and Markus Schofnegger VII

D Results Using our Tool
D.1 Starkad and Poseidon Matrices
In addition to the statistical tests described in Section 4, we also used our tool for the
Cauchy matrices using specific starting sequences defined for Starkad and Poseidon
[25]. We recall that the matrix M ′ over F2n for Starkad and the matrix M ′′ over Fp for
Poseidon are defined by

M′i,j = 1
xi ⊕ yj

and M
′′

i,j = 1
xi + yj

, (8)

where xi = i, yi = i+ t, and i ∈ [0, t− 1].

Table 5: Vulnerable matrices for Algorithm 1 and orders t and field sizes n = dlog2(p)e
when considering the Starkad and Poseidon specifications.

Starkad Specification (over F2n)
n 4 8 4 8 8 16 8 16
t 3 3 4 4 8 8 12 12
Vulnerable No No Yes Yes Yes Yes Yes Yes

Poseidon Specification (over Fp)
dlog2(p)e 4 8 4 8 8 16 8 16
t 3 3 4 4 8 8 12 12
Vulnerable No No No No No No No No

Comparison with Related Results. When using our tool for matrices with various sizes
(i.e., different values for t), we can observe that some matrices over F2n (i.e., the matrices
used for Starkad) are vulnerable to the attacks described in this paper. We can also
observe, however, that matrices over Fp using the same t values are not vulnerable. The
detailed results for some instances are shown in Table 5.

These results are not new in the literature, since similar conclusions have already been
shown in [36, 13]. Moreover, in [36] the authors explain how to modify the choice of xi
and yj in Eq. (8) in order to fix this problem. This solution consists in changing the
starting sequences for the Cauchy generation method. For completeness, we also tested
our algorithm for the matrices suggested in [36]. As expected, we arrive at the same
conclusion, namely, that it is not possible to set up infinitely long subspace trails for the
Cauchy matrices proposed in [36] (in the case of inactive S-boxes).

D.2 Zorro Matrix
We also checked the Zorro [24] matrix with our tool. Zorro is a variant of AES where
only 4 S-boxes (at the first row) are applied per round. In our setting, Zorro is a P-SPN
cipher over (F28)16 with s = 4 where the linear layer is defined by the 16× 16 matrix

∀x ∈ (F28)16 : MZorro · x := MC · SR · x,

where

SR =


I 0 0 0
0 I2 0 0
0 0 I3 0
0 0 0 I4

 ,

VIII Weak Linear Layers in Word-Oriented Partial SPN and HADES-Like Schemes

where I is the 4× 4 identity matrix, 0 is the 4× 4 null matrix and

I2 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 , I3 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , I4 =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 ,

and where

MC =


2 · I 3 · I I I
3 · I I I 2 · I
I I 2 · I 3 · I
I 2 · I 3 · I I

 ,

where again I is the 4× 4 identity matrix, and where 2 ≡ X ∈ F28 and 3 ≡ X + 1 ∈ F28 .
As expected, using our tool, we found that there exists no infinitely long (iterative or

invariant) subspace trail for this matrix, both in the case of inactive S-boxes and in the
case of active S-boxes.

E Examples of Infinitely Long Subspace Trails with Active
S-Boxes

E.1 A Generalization of Example (4)
In Section 5.2.1, we proposed an example of a matrix for which an infinitely long invariant
subspace trail with active S-boxes exists. In such an example, one entry of the matrix is
fixed and equal to zero. Here we would like to show that this is not a necessary condition
in order to guarantee that such subspace trails exist.

Indeed, consider again a P-SPN scheme over F4 with s = 1 (i.e., one S-box is applied
in each round). Let M be the matrix defined as

M =

1 (−M1,3 · b−M1,4 · c)/a M1,3 M1,4
a (−a−M2,3 · b−M2,4 · c)/a M2,3 M2,4
b (−b−M3,3 · b−M3,4 · c)/a M3,3 M3,4
c (−c−M4,3 · b−M4,4 · c)/a M4,3 M4,4

 ,

where a 6= 0. A proper choice of a, b, c and M·,· provides invertibility and “full diffusion”
(at word level after a finite number of rounds) for cryptographic purposes.

Similar to the previous argument, it is possible to show that the subspace

S =
〈
e1 = (1, 0, 0, 0)T , v = (1, a, b, c)T

〉
generates an infinitely long invariant subspace trail with active S-boxes.

E.2 Another Example of an Infinitely Long Iterative Subspace Trail
with Active S-Boxes

Here, we discuss a possible construction of an iterative subspace trail with active S-boxes.

Proposition 11. Given a P-SPN scheme with s S-boxes defined as in Eq. (2), letM ∈ Ft×t
be an invertible matrix. Assume there exists an integer l ≥ 2 s.t.

(1) λ1, . . . , λτ are the eigenvalues of M and P1, . . . ,Pτ the corresponding eigenspaces
(where τ < t), and

(2) (λ1)l, . . . , (λτ)l, λτ+1, . . . , λψ where ψ > τ are the eigenvalues of M l and P1, . . . ,Pτ ,
Pτ+1, . . . ,Pψ the corresponding eigenspaces (where ψ ≤ t).

Lorenzo Grassi, Christian Rechberger and Markus Schofnegger IX

Let I = {i1, . . . , i|I|} ⊆ {1, . . . , s} be the indices of the words with active S-boxes (where
I 6= ∅). Let IS = 〈P ′1, . . . ,P ′τ 〉 (where P ′j is a certain subspace of Pj for each j ∈ {1, . . . , τ})
be an infinitely long invariant subspace trail defined as in Theorem 5. Let IS ′ be the
subspace defined as IS ′ =

〈
S(r) ∩ Pτ+1,S(r) ∩ Pτ+2, . . . ,S(r) ∩ Pψ

〉
, where S(r) is the

subspace constructed as in Eq. (3) s.t. no S-box is active in the first r rounds. If
dim(IS ′),dim(IS) ≥ 1, the subspace (and its subspaces) defined as 〈IS, IS ′〉 generates
an infinitely long iterative (non-invariant) subspace trail with active S-boxes.

By construction, note that the previous subspaces IS and IS ′ are composed of two
independent parts, namely (1) an invariant subspace trail with active S-boxes and (2) an
iterative subspace trails with no active S-boxes.

Example. In order to construct a concrete example, we combine the previous results
proposed in Section 3.4 and in Section 5.2.1. Given a P-SPN scheme over F8 with s = 1, a
concrete example of such a matrix is given by

M =
(
M (1) M (2)

M (3) M (4)

)
s.t. M provides invertibility and “full diffusion” (at word level after a finite number of
rounds) for cryptographic purposes, where M (1) is the 4 × 4 matrix defined in Eq. (4),
M (4) = circ(a, b, c, d) as in Section 3.4 s.t. circ(a, b, c, d) has only 2 eigenvalues, M (2)

satisfies M (2)
i,1 = M

(2)
i,3 and M (2)

i,2 = M
(2)
i,4 for i ∈ [1, 4], and finally M (3) satisfies M (3)

i,1 = 0
and M (3)

i,2 +M
(3)
i,3 +M

(3)
i,4 = 0 for i ∈ [1, 4]. The subspace IS defined as

IS =
〈

(1, 0, 0, 0, 0, 0, 0, 0)T ,
(

0,M (1)
2,0 ,M

(1)
3,0 ,M

(1)
4,0 , 0, 0, 0, 0

)T
, (0, 0, 0, 0, 0, 1, 0,−1)T

〉
,

generates an infinitely long iterative (non-invariant) subspace trail with active S-boxes.

	Introduction
	Our Contribution
	Related Work

	Preliminaries
	SPN and Partial SPN Schemes
	Invariant Subspaces and Subspace Trails
	Preliminary Assumptions

	Subspace Trails for P-SPN Schemes (Inactive S-Boxes)
	Preliminary Results
	Infinitely Long Invariant Subspace Trails: A (Sufficient) Condition on the Linear Layer M
	Linear Layers with Low Multiplicative Order
	Infinitely Long Iterative (Non-Invariant) Subspace Trails: A Sufficient Condition on the Linear Layer M
	Infinitely Long Iterative Subspace Trails with No Active S-Boxes: A Necessary and Sufficient Condition
	About Infinitely Long Iterative Subspace Trail with Inactive S-Boxes

	Practical Tests (Inactive S-Boxes)
	Algorithm for Detecting "Weak" Matrices
	Percentage of "Weak" Linear Layers

	Subspace Trails for P-SPN Schemes with Active S-Boxes
	Preliminaries: Subspace Trails and Truncated Differentials
	Infinitely Long Subspace Trail with Active S-Boxes: A Sufficient Condition on the Linear Layer M
	Infinitely Long Iterative Subspace Trails with Active S-Boxes: A Necessary and Sufficient Condition

	Practical Tests (Active S-Boxes)
	Algorithm for Detecting "Weak" Matrices
	Percentage of "Weak" Linear Layers
	Related Work

	Conclusion and Open Problems
	Related Work
	2-Round Iterative Subspace Trail – Details
	Truncated and Impossible Differentials
	Subspace Trails and Truncated Differentials
	Truncated Differentials with Probability Smaller than 1
	Impossible Differentials

	Results Using our Tool
	Starkad and Poseidon Matrices
	Zorro Matrix

	Examples of Infinitely Long Subspace Trails with Active S-Boxes
	A Generalization of Example (4)
	Another Example of an Infinitely Long Iterative Subspace Trail with Active S-Boxes

