
A New Encoding Algorithm for a
Multidimensional Version of the Montgomery

Ladder

Aaron Hutchinson1 and Koray Karabina2,3

1 University of Waterloo
a5hutchinson@uwaterloo.ca
2 Florida Atlantic University

kkarabina@fau.edu
3 National Research Council Canada
koray.karabina@nrc-cnrc.gc.ca

Abstract. We propose a new encoding algorithm for the simultane-
ous differential multidimensional scalar point multiplication algorithm
d-MUL. Previous encoding algorithms are known to have major draw-
backs in their efficient and secure implementation. Some of these draw-
backs have been avoided in a recent paper in 2018 at a cost of losing
the general functionality of the point multiplication algorithm. In this
paper, we address these issues. Our new encoding algorithm takes the
binary representations of scalars as input, and constructs a compact bi-
nary sequence and a permutation, which explicitly determines a regular
sequence of group operations to be performed in d-MUL. Our algorithm
simply slides windows of size two over the scalars and it is very effi-
cient. As a result, while preserving the full generality of d-MUL, we
successfully eliminate the recursive integer matrix computations in the
originally proposed encoding algorithms. We also expect that our new
encoding algorithm will make it easier to implement d-MUL in constant
time. Our results can be seen as the efficient and full generalization of
the one dimensional Montgomery ladder to arbitrary dimension.

Keywords: d-MUL, scalar multiplication algorithm, scalar encoding, Montgomery

ladder

MSC: 94A60, 11Y16

1 Introduction

Efficient and secure scalar multiplication algorithms are essential in modern cryp-
tography. A (single dimensional) scalar multiplication algorithm for a group G is
one which takes an integer α and group element P ∈ G as input and produces the
element αP as output. Such an algorithm is required in numerous protocols such
as Diffie-Hellman key exchange, and digital signature generation and verification.
In such group based cryptographic schemes, scalar multiplication dominate the

run time of the system, and therefore it is crucial to minimize its cost. Some cryp-
tographic applications can further make use of multidimensional scalar multipli-
cation algorithms, which take vectors (α1, . . . , αd) of integers and (P1, . . . , Pd) of
group elements as input and produces the element α1P1 + · · ·+αdPd as output.
For example, verifying a signature in the Elliptic Curve Digital Signature Algo-
rithm (ECDSA) requires computing a point uP +vQ, where P and Q are public
parameters and u and v are derived from the given signature. Multidimensional
scalar multiplication can also speed up single scalar multiplication with a fixed
base P . For λ = b|G|1/dc and λi = λi−1, one can write α =

∑d
i=1 αiλi for

0 ≤ αi < λ, precompute Pi = λiP , and compute

αP = (

d∑
i=1

αiλi)P =

d∑
i=1

αiPi

through multiscalar multiplication with input αi, Pi, i = 1, ..., d. If the group
G is equipped with efficiently computable endomorphisms, one can use similar
techniques to speed up single scalar multiplication with variable base P because
the cost of precomputating Pi becomes negligible compared to the overall cost;
see [4,3].

Scalar multiplication algorithms have been studied heavily in the past. One
very interesting single dimensional algorithm is the Montgomery ladder [7]. A
key difference between the Montgomery ladder and the double-and-add algo-
rithm is that the Montgomery ladder is regular in the sense that every iteration
of the main loop performs the same operations. It is known that irregularity
of algorithms can be exploited through side-channel analysis and underlying
scalars may be recovered by attackers; see [9]. Therefore, regularity is essential
for security when the scalar α must be kept secret, such as in Diffie-Hellman
public key derivation. Another interesting key feature of the Montgomery ladder
is that it allows the use of differential point addition (P,Q, P − Q 7→ P + Q),
where the knowledge of the difference of the points helps to write more efficient
formulas [8]. As an example, 73P can be computed in seven steps by setting
[T,B] = [0, P], tracing the bits bi of 73 from left to right, updating

[T,B]← [2T, T +B] if bi = 0,

[T,B]← [T +B, 2B] if bi = 1,

and so performing one addition and one doubling at each step; see Table 1. Note
that the difference of the points to be added is always known (0 or P).

Bernstein [1] proposed a regular two dimensional differential addition chain
(the DJB algorithm). The DJB algorithm computes α1P1+α2P2 for `-bit scalars
in ` steps, performing two additions and one doubling at each step. In particular,
the DJB algorithm initiates T [1] ← 0, T [2] ← P1, T [3] ← P2, and at each step,
[T [1], T [2], T [3]] is updated by doubling one T [i] and adding two distinct pairs of
points. Given the bit sequence of α1 and α2, a recursive formula was presented
in [1] to encode a sequence for the update rules. Table 2 shows an example for
computing 73P + 59Q in seven steps, performing 1 doubling and 2 additions per

i 1 2 3 4 5 6 7

bi 1 0 0 1 0 0 1

T 0 P 2P 4P 9P 18P 36P 73P
B P 2P 3P 5P 10P 19P 37P 74P

Table 1: Montgomery ladder for α = 73

step. Note that the difference of the points to be added is always known (0, P ,
Q, or P ±Q).

i 1 2 3 4 5 6 7

T [1] 0 P +Q 3P +Q 5P + 3Q 9P + 7Q 19P + 15Q 37P + 29Q 73P + 59Q
T [2] P 2P 2P + 2Q 4P + 4Q 10P + 8Q 18P + 14Q 36P + 30Q 74P + 58Q
T [3] Q 2P +Q 3P + 2Q 5P + 4Q 9P + 8Q 18P + 15Q 37P + 30Q 74P + 59Q

Table 2: The DJB algorithm for computing 73P + 59Q

In 2017, a generalization of the Montgomery ladder to d dimensions was made
in [6] by means of an algorithm called d-MUL, originally based on an algorithm
of Brown from 2006 in [2]. d-MUL uses a sequence of state matrices (defined
in Section 2.1) to derive an encoding of the scalar vector (α1, . . . , αd), which
is used to perform the scalar multiplication. For `-bit scalars αi, the encoding
algorithm in [6] requires dealing with (d + 1) × d integer matrices with `-bit
integers. Even though the underlying matrix arithmetic is simple, it introduces
non-trivial overhead cost, and makes it harder to resist against side-channel
attacks. For example, a constant time implementation of d-MUL at the 128-
bit security level in [5] reported about 10, 000 cycle counts for the encoding
phase. After encoding, d-MUL loops through ` steps, where one doubling and d
(differential) addition are performed per step in a regular fashion.

A second paper [5] further explored d-MUL. The motivation in [5] is to bypass
the encoding step, and immediately start scalar multiplication by a carefully
chosen sequence of group operations: d additions and 1 doubling per step, for a
total number of ` steps. In particular, a bijection was established between 2`dd!
different choices of (r, σ), where r is a length-`d bitstring and σ is a permutation
on {1, 2, ..., d}, and the set of all state matrices containing (at most) `-bit odd
scalars [α1, ..., αd]. In short, by sampling r and σ at random, one can compute
a point α1P1 + · · · + αdPd, for some αi sampled at random among `-bit odd
integers without explicitly constructing αi, or their binary representation.

When d = 1 and d = 2, the algorithms in [5], which we call randomized
d-MUL, greatly simplify. When d = 1, there is only one choice of σ = [1], and
given r, the scalar multiplication algorithm starts with

T [1]← 0, T [2]← P ;

bits ri of r are traced from left to right, and T [1] and T [2] are updated as follows

[T [1], T [2]]← [2T [ri + 1], T [1] + T [2]].

Table 3 gives an example with r = [1 1 0 1 1 0 1], which in the end computes
73P . Note that the relation between the scalar and the r-sequence is not obvious.
This may be compared to the Montgomery ladder computation in Table 1.

i 1 2 3 4 5 6 7

ri 1 1 0 1 1 0 1

T [1] 0 2P 2P 4P 10P 18P 36P 74P
T [2] P P 3P 5P 9P 19P 37P 73P

Table 3: Randomized d-MUL with r = [1 1 0 1 1 0 1]

When d = 2, there are two choices of σ ∈ {[1, 2], [2, 1]}, and given r, the
scalar multiplication algorithm starts with

T [1]← 0, T [2]← P, T [3]← P +Q, if σ = [1, 2],

T [1]← 0, T [2]← Q, T [3]← P +Q, if σ = [2, 1];

bits ri of r are traced from left to right, and T [1] and T [2] are updated such that

[T [1], T [2], T [3]]← [2T [r2i−1 + r2i + 1], T [r2i + 1] + T [r2i + 2], T [1] + T [3]].

Table 4 gives an example with σ = [1, 2] and r = [01 11 00 10 11 01 01], which in
the end computes 73P + 59Q. As in the case of d = 1, the relation between the
scalars and the r-sequence is not obvious. One may compare this computation
to the DJB algorithm example in Table 2.

i 1 2 3 4 5 6 7

r2i−1r2i 01 11 00 10 11 01 01

T [1] 0 2P 2P + 2Q 4P + 4Q 10P + 8Q 18P + 14Q 36P + 30Q 74P + 60Q
T [2] P 2P +Q 3P + 2Q 5P + 4Q 9P + 8Q 18P + 15Q 37P + 30Q 74P + 59Q
T [3] P +Q P +Q 3P + 3Q 5P + 3Q 9P + 7Q 19P + 15Q 37P + 29Q 73P + 59Q

Table 4: Randomized d-MUL with σ = [1, 2] and r = [01 11 00 10 11 01 01]

The randomized d-MUL method [5] may be useful for some applications
where one is interested in computing

∑
αiPi for some random scalars αi, but not

for some specific (priori-fixed) values αi. Therefore, applications of this method
are limited despite it being very efficient. Deriving αi from a given (r, σ) was
made explicit but the connection between (r, σ) and the corresponding αi in the
other direction was not entirely clear in [5]. In particular, it is not known how to
derive (r, σ) from given αi other than running the original d-MUL encoding as
mentioned before, which has its own efficiency and potential security drawbacks.

2 Preliminaries and Our Contributions

In this paper, we derive many theoretical results which explore the connection
between (r, σ) and the scalars (α1, . . . , αd) appearing in the output of the d-
MUL algorithm from [5]. We use these theoretical results to derive an efficient

and compact encoding of an integer vector (α1, . . . , αd) as a bitstring, which we
use to build a regular scalar multiplication algorithm similar to that of [5]. In
particular, our new encoding algorithm takes the bitstring representations of αi’s
and constructs a pair (r, σ) by simply sliding windows of size two from right to
left. As a result, while preserving the full generality of d-MUL, we successfully
eliminate the recursive integer matrix computations in the original encoding
algorithm as proposed in [6]. Therefore, we expect significant time and memory
savings in the encoding phase of d-MUL. We also expect that our new encoding
algorithm will make it easier to implement d-MUL in constant time.

When αi are `-bit odd positive integers for i = 1, ..., d, our encoding algo-
rithm simplifies to Algorithm 1. Note that Algorithm 1 processes two bits at a
time and uses small tables, large integer matrices are not required, and there
is no if/else branch in the algorithm. These are some desired features for an
efficient and secure implementation of an algorithm. As an example, running
Algorithm 1 with α = 73 yields the r-sequence as in Table 3, and running it
with [α1, α2] = [73, 59] yields the r-sequence as in Table 4 and the permutation
σ = [1, 2]. We should emphasize again that previous encoding algorithms do not
offer such an efficient algorithm to construct the r-sequence from a given scalar
sequence for general d ≥ 1. Given the r-sequence and σ, point multiplication
can be performed using the same rules as described above, or more generally, as
described in [5]. Our algorithm in its full generalization to `-bit scalars, including
the point multiplication part, is presented later in this paper in Algorithm 4.

Below we give some preliminaries before formally stating the contributions
and organization of this paper in Subsection 2.2.

2.1 Preliminaries

In this subsection we summarize some key definitions and results from [6] and [5]
as points of reference. Details can be found in the respective papers. We point
out that d-dimensional scalar multiplication algorithms in a group G correspond
to those in Zd by identifying combinations α1P1 + · · · + αdPd with the vector
(α1, . . . , αd); this identification is a group isomorphism modulo the order of Pi
in component i, and so we restrict to studying algorithms in Zd.

Notation. Throughout this paper, we will write (b1b2 · · · bn)2 for the binary
representation of an integer, where b1 is the most significant digit and bn is the
parity digit. For binary strings r1 and r2 we use r1||r2 to denote their concate-
nation. As usual for a matrix A, we write Ai for the ith row of A, and Ai,j for
the entry in the ith row and jth column. Matrix indices always begin at 1. We
use ej to denote the unit basis row vector with a 1 in the jth column and 0s
elsewhere.

The primary structure that the d-MUL algorithm is built on is a state matrix.

Definition 1. A (d+ 1)× d state matrix A is integer-valued and satisfies:

Algorithm 1: New Encoding for d-MUL

Input: Odd integers α1, . . . , αd ∈ [0, 2`), points P1, . . . , Pd ∈ G, G abelian
Output: A binary sequence r of length `d bits and a permutation σ on {1, ..., d}

1 Let B[i] be the binary representation of αi, with extra leading 0.
2 σ ← [d− i : i = 0, ..., (d− 1)]
3 r ← []
4 for k = ` down to 1 do
5 t← [], rt ← []
6 for i = 1 to d do
7 t[i]← (B[i][k] +B[i][k + 1]) mod 2
8 end
9

10 h← 0
11 for i = 1 to d do
12 rt[i]← t[σ[i]]
13 h← h+ rt[i]

14 end
15

16 r ← rt||r
17 L← [], c0 ← 0, c1 ← 0
18 for i = 1 to d do
19 w0 ← (1− rt[i]), c0 ← c0 + w0

20 w1 ← rt[i], c1 ← c1 + w1

21 sgn← (1− 2rt[i])
22 L[h+ sgn · (w0 · c0 + w1 · (c1 − 1))]← σ[i]

23 end
24 σ ← L

25 end
26 return r, σ

1. each row Ai has i− 1 odd entries.
2. for 1 ≤ i ≤ d, we have Ai+1 −Ai ∈ {ej ,−ej} for some 1 ≤ j ≤ d.

The difference vector for A is cA := Ad+1 − A1. We define a bijection σA :
{2, . . . , d+ 1} → {1, . . . , d}, called the column sequence of A, by letting σA(i)
be the position in which Ai − Ai−1 is nonzero. The magnitude of A is defined
as |A| = max

i,j
{|Aij |}.

By “matrix” we will always mean a state matrix unless otherwise stated. All
state matrices considered in this paper will have a common size of (d + 1) × d
for some dimension d; we will never consider matrices of different sizes simul-
taneously. We mostly consider matrices with non-negative values. Our interest
will lie in pairs of state matrices having special properties, which we introduce
shortly in Definition 3. We first state a few necessary results which were proved
in [5].

Lemma 1. For a state matrix A, the row sum Am+An has |m−n| odd entries.

Corollary 1. Let A and B be state matrices such that every row in A is the
sum of two rows from B. Then for every k there is some m such that Ak =
Bm +Bm+k−1. In particular, A1 = 2Bh+1, where h is the number of odd entries
in the integer row vector 1

2A1.

Theorem 1. For a state matrix A, there is a unique state matrix B such that
every row in A is the sum of two rows from B.

Definition 2. Let A and B be state matrices such that every row in A is the
sum of two rows from B. The addition sequence {ak}d+1

k=1 for A corresponding
to B is defined to be ak = (xk, yk), where xk and yk are the unique row indices
for which Ak = Bxk +Byk

As it turns out, there are exactly 2d many addition sequences corresponding
to a (d + 1) × d matrix B which each yield a different matrix A. The following
definition gives a bijection between binary strings and additions sequences, which
we use to encode the sequence as a binary string.

Definition 3. Let B be a (d+1)×d state matrix and r a binary string of length
d. Let h be the number of 1’s in r. Define a recursive sequence ak = (xk, yk) of
ordered pairs by x1 = y1 = h+ 1 and

ak =

{
(xk−1, yk−1 + 1) if rk−1 = 0

(xk−1 − 1, yk−1) if rk−1 = 1

for 2 ≤ k ≤ d + 1. The extension matrix of B corresponding to r is the
(d+ 1)×d state matrix A having addition sequence ak with respect to the matrix
B.

B A

2 4 2 2

2 4 2 3

3 4 2 3

3 3 2 3

3 3 3 3





6 8 4 6

5 8 4 6

5 7 4 6

5 7 5 6

5 7 5 5


σB : (4123) σA : (1234)

cB = (1,−1, 1, 1) cA = (−1,−1, 1,−1)

Fig. 1: Two state matrices A and B of dimension d = 4, along with their column
sequences and difference vectors. A is the extension matrix of B corresponding
to the bitstring r = 1001.

Figure 1 gives an example of an extension matrix. Iterating the construction
in Definition 3 allows us to built a sequence of matrices given a long binary
string.

Definition 4. Let B be a (d + 1) × d state matrix. Let r1, . . . , r` be binary
strings of length d, and r = r1|| · · · ||r`. The extension sequence with base B
corresponding to r is a sequence {A(i)}`+1

i=1 of (d+ 1)× d state matrices defined
recursively by A(1) = B, and A(i+1) is the extension matrix of A(i) corresponding
to ri.

This definition gives us a way of encoding an entire sequence of matrices
{A(i)}`+1

i=1 as a simple pair (B, r). Note also that by Theorem 1 the entire sequence
is uniquely determined by the final matrix A`. The idea of the randomized d-
MUL algorithm in [5] is to randomly choose a {0, 1}-valued state matrix B
and binary string of length `d, and output the last row of the last matrix of
the corresponding extension sequence. The group version of the algorithm can
these operations without constructing the matrix sequence explicitly by using
the encoding given in Definition 4.

2.2 Contributions and Organization

The main contributions of this paper are:

1. We derive many theoretical results on state matrices and extension sequences.
In particular, we determine the exact relationship between the pair (B, r)
and the last row of the last matrix of the corresponding extension sequence
{A(i)}. This relationship is stated precisely in Theorem 4, which details how
the sequence of matrices built in the algorithm of [6] can be modeled and
encoded using the efficient framework of [5].

2. Using the results of Theorem 4 we detail a new version of d-MUL, a d-
dimensional scalar multiplication algorithm which is a full generalization of
the Montgomery ladder to d dimensions. This version of d-MUL recodes the
`-bit input scalars (α1, . . . , αd) very efficiently into a `d-length bitstring r,
a process only involving permuting the XOR of consecutive bits of the αi.
After recoding the scalars, we use the algorithm of [5] to perform the scalar
multiplication with the careful choice of the bitstring r. In particular, this
version retains the pattern of 1 point doubling D and d point additions
A for each bit of the input scalars, giving an operation cost of `D + `dA
for the point addition stage. Furthermore, every addition can be performed
as a differential addition. Our algorithm does not require storage of any
precomputed points, unless differential additions are employed.

In Section 3 we state and prove many theoretical results on extension se-
quences of state matrices with the aim of optimizing the d-MUL algorithm. In
Section 4 we apply the results of Section 3 to construct a new version of the
d-MUL algorithm.

3 Theoretical Results

In this section we solve the following two problems:

1. Let {A(k)}`k=1 be an extension sequence with |A(1)| = 1. Given only the

binary representation of the entries in the row vector A
(`)
1 + A

(`)
d+1, find a

simple expression giving the binary representations of the entries in A
(k)
1 for

all k = 1, . . . , `.
2. Let A be an extension matrix of B corresponding to the bitstring r, and let
σA and σB be the column sequences for A and B, respectively. Find a simple
method for determining (σB , r) given only (A1, σA).

We make use of the solution to these two problems in the following manner. For a
vector (α1, . . . , αd) of positive odd ` bit integers, choose a matrix A(`) such that

A
(`)
1 +A

(`)
d+1 =

[
α1 · · · αd

]
and let {A(k)}`k=1 be the derived extension sequence.

Then using the solution to (1) we can determine A
(k)
1 for every k, and by iterating

the solution to (2) we can determine all column sequences σk for each matrix
A(k) as well as the bitstring r for the entire sequence {A(k)}`k=1. This allows us
to determine (r, σ1) without ever having to construct any matrices. Furthermore
A(1) is completely determined by σ1 since |A(1)| = 1. This entire process can then
be turned into a method for constructing an efficient addition chain algorithm
which uses only the bits of the αi and the initial choice of column sequence σ`,
and which has very small storage costs and encoding phase.

This section will solve problems (1) and (2) above, whose solutions yield The-
orem 4 giving an equivalence of two extension sequence constructions. Section 4
will use the solutions to these problems to detail an efficient scalar multiplication
algorithm similar to the original d-MUL algorithm of [6].

3.1 Determining the Bits of an Extension Sequence

The output of the addition chain constructed in Theorem 4 of [5] is always
determined by the last row of the final matrix, and so it makes sense to analyze
how these final rows change throughout the sequence of state matrices. Our first
result of this section finds the connection between the last rows of successive
matrices.

Theorem 2. Let A be an extension matrix of B. Let Bd+1,i = B1,i + ci and
B1,i +Bd+1,i = (b1b2 · · · bn−11)2. If A1 = 2Bh+1, then

A1,i +Ad+1,i =


(b1b2 · · · bn−111)2 if (Bh+1,i is even and ci = −1)

or (Bh+1,i is odd and ci = 1)

(b1b2 · · · bn−101)2 if (Bh+1,i is even and ci = 1)

or (Bh+1,i is odd and ci = −1)

Proof. We consider two cases.

1. Suppose Bh+1,i is even. Then

A1,i +Ad+1,i = 2Bh+1,i + (B1,i +Bd+1,i)

= 2B1,i + (B1,i +Bd+1,i) since Bh+1,i is even

= B1,i +Bd+1,i − ci + (B1,i +Bd+1,i)

= 2 · (b1b2 · · · bn−11)2 − ci
= (b1b2 · · · bn−110)2 − ci

2. Suppose Bh+1,i is odd. Then

A1,i +Ad+1,i = 2Bh+1,i + (B1,i +Bd+1,i)

= 2Bd+1,i + (B1,i +Bd+1,i) since Bh+1,i is odd

= B1,i +Bd+1,i + ci + (B1,i +Bd+1,i)

= 2 · (b1b2 · · · bn−11)2 + ci

= (b1b2 · · · bn−110)2 + ci

The result follows when considering ci = 1 and ci = −1 in both cases.

With this theorem we can relate the top and bottom rows in a sequence of
matrices with the bits of the final matrix, as described in the following corollary.

Corollary 2. Let {A(i)}`i=1 be an extension sequence such that |A(1)| = 1. Let

A
(`)
1,i +A

(`)
d+1,i = (b

(i)
1 b

(i)
2 · · · b

(i)
`−11)2. Then for 1 ≤ k ≤ `,

(1) A
(k)
1,i +A

(k)
d+1,i = (b

(i)
1 b

(i)
2 · · · b

(i)
k−11)2,

(2) A
(k)
1,i = (b

(i)
1 b

(i)
2 · · · b

(i)
k−1)2 + b

(i)
k−1,

(3) A
(k)
d+1,i = (b

(i)
1 b

(i)
2 · · · b

(i)
k−1)2 + 1− b(i)k−1.

with b
(i)
0 := 0.

Proof. Note that (2) and (3) follow immediately from (1) since any odd integer
a with binary representation (b1b2 · · · bk−11)2 can be written as a = t + (t +
1) for some unique integer t, with the even integer in {t, t + 1} expressible as
(b1b2 · · · bk−1)2+bk−1 and the odd integer expressible as (b1b2 · · · bk−1)2+1−bk−1.

To prove (1), we use backwards induction on k. The base case k = ` is given

by assumption. Assume that A
(k+1)
1,i +A

(k+1)
d+1,i = (b

(i)
1 b

(i)
2 · · · b

(i)
k 1)2 for some k. By

Theorem 2 the binary expansion of A
(k+1)
1,i +A

(k+1)
d+1,i is exactly that of A

(k)
1,i +A

(k)
d+1,i

with a single bit inserted between the final two bits, and so A
(k)
1,i + A

(k)
d+1,i =

(b
(i)
1 b

(i)
2 · · · b

(i)
k−11)2.

The above corollary solves problem (1) posed at the beginning of this section.

3.2 Determining the Column Sequence and Bitstring from an
Extension Matrix

In this subsection we solve problem (2) detailed at the introduction to this
section. The following theorem provides an alternative method for describing
the addition sequence for a given extension matrix, which will be needed in the
results to come.

Theorem 3. Let A be an extension matrix of B. Let A1 =
[
2α1 2α2 · · · 2αd

]
,

let σA be the column sequence for A, and let ak = (xk, yk) be the addition
sequence for A corresponding to B. Then for k ≥ 1 we have

ak+1 =

{
(xk − 1, yk) if ασA(k+1) is odd

(xk, yk + 1) if ασA(k+1) is even

Proof. Fix k ≥ 1. Then

2ασA(k+1) = Bxk,σA(k+1) +Byk,σA(k+1) = Ak,σA(k+1) ≡ 0 mod 2

and

Bxk+1,σA(k+1) +Byk+1,σA(k+1) = Ak+1,σA(k+1) ≡ 1 mod 2

and so we have

ak+1 = (xk − 1, yk)

⇐⇒ Bxk,σA(k+1) ≡ 1 mod 2 and Bxk+1,σA(k+1) ≡ 0 mod 2

(since xk+1 < xk)

⇐⇒ ασA(k+1) is odd

and similarly

ak+1 = (xk, yk + 1)

⇐⇒ Byk,σA(k+1) ≡ 0 mod 2 and Byk+1,σA(k+1) ≡ 1 mod 2

(since yk+1 > yk)

⇐⇒ ασA(k+1) is even.

We can now derive an expression for the binary string giving the addition
sequence for two state matrices A and B using only the column sequence for A
and the row which was doubled from B.

Corollary 3. Let A be an extension matrix of B. Let A1 =
[
2α1 2α2 · · · 2αd

]
and let σA be the column sequence for A. Then

r = (ασA(2) mod 2)|| · · · ||(ασA(d+1) mod 2)

is the binary string giving the addition sequence for A corresponding to B, where
|| denotes concatenation of bits.

Proof. Let ak = (xk, yk) be the addition sequence for A corresponding to B,
and let âk = (x̂k, ŷk) be the recursive sequence obtained from r using Definition
3. We show that ak = âk for every k by induction on k. For k = 1, we have

A1 =
[
2α1 2α2 · · · 2αd

]
= 2Bh+1 by Corollary 1, where h is the number of odds

in
[
α1 α2 · · · αd

]
, and so a1 = (h + 1, h + 1). By the definition of an extension

matrix, we have x̂1 = ŷ1 = 1 +
d∑
i=1

(ασA(i+1) mod 2) = 1 +
d∑
i=1

(αi mod 2) = 1 +h

since σ is a bijection. Therefore a1 = â1.
Let ri be the ith bit in r. If k ≥ 1, we have

âk+1 =

{
(x̂k − 1, ŷk) if rk = 1

(x̂k, ŷk + 1) if rk = 0

=

{
(x̂k − 1, ŷk) if ασA(k+1) is odd

(x̂k, ŷk + 1) if ασA(k+1) is even
by definition of r

=

{
(xk − 1, yk) if ασA(k+1) is odd

(xk, yk + 1) if ασA(k+1) is even
by inductive hypothesis

= ak+1 by Theorem 3.

We can now relate the column sequences of the two state matrices A and
B through the following definition. Lemma 2 to follow shows this relationship
explicitly.

Definition 5. Let σ : {2, 3, . . . , d + 1} → {1, 2, . . . , d} be a bijection and let
b1, . . . , bd be bits. Define the bijection τ : {2, 3, . . . , d + 1} → {1, 2, . . . , d} as
follows:

1. Initialize two empty lists L0 and L1.
2. For i = 1 to d, append σ(i+ 1) to the end of Lbi .
3. Let L = reverse(L1)||L0, where || denotes concatenation.
4. Define τ(i+ 1) = L(i) for 1 ≤ i ≤ d.

Define Ψ as the function giving τ from σ and b1, . . . , bd; that is,

Ψ(σ, (b1, . . . , bd)) = τ.

When given a list as input, the function reverse returns the list in re-
verse order. Note that τ is a bijection since L contains each of the values
σ(2), σ(3), . . . , σ(d+ 1) exactly once.

Lemma 2. Let A be an extension matrix of B. Let σA and σB be the column

sequences for A and B, respectively, and let A1 =
[
2α1 · · · 2αd

]
. Then

σB = Ψ
(
σA, (ασA(2) mod 2, . . . , ασA(d+1) mod 2)

)
.

Proof. Let τ = Ψ
(
σA, (ασA(2) mod 2, . . . , ασA(d+1) mod 2)

)
. We begin by noting

that at step 3 in defining τ we have that the size of L1 is |{i : αi = 1 mod 2}| = h.
Let 1 ≤ k ≤ d. We examine two cases.

Suppose ασA(k+1) is odd. Then

Ak+1 = Ak + cAσA(k+1)eσA(k+1) = Bxk +Byk + cAσA(k+1)eσA(k+1)

and by Theorem 3 we have ak+1 = (xk+1, yk+1) = (xk − 1, yk) and

Ak+1 = Bxk+1
+Byk+1

= Bxk−1 +Byk = Bxk − cBσB(xk)
eσB(xk) +Byk

Equating these two expressions for Ak+1 gives σB(xk) = σA(k + 1). We point
out that |{ασA(i) : 2 ≤ i ≤ k + 1, ασA(i) odd}| = h + 1 − xk+1 since x1 = h + 1
and xi decreases exactly when an odd αj is found. In defining τ , step 2 would
put σA(k+ 1) into LασA(k+1) mod 2 = L1 and we would have L1(h+ 1− xk+1) =

σA(k+1). Since the order of L1 is reversed to form L, we have τ(xk) = L(xk−1) =
L(xk+1) = L1(h+ 1− xk+1) = σA(k + 1) = σB(xk).

Suppose now ασA(k+1) is even. Then Ak+1 = Bxk + Byk + cAσA(k+1)eσA(k+1)

as before, and by Theorem 3 we have ak+1 = (xk+1, yk+1) = (xk, yk + 1) and so

Ak+1 = Bxk+1
+Byk+1

= Bxk +Byk+1 = Bxk +Byk + cBσB(yk+1)eσB(yk+1)

Equating these two expressions for Ak+1 gives σB(yk+1) = σA(k+1). Similarly
to the first case we have |{ασA(i) : 2 ≤ i ≤ k + 1, ασA(i) even}| = yk+1 − (h+ 1)
since y1 = h + 1 and yi increases exactly when an even αj is found. Step 2 in
τ ’s definition would put σA(k+ 1) into LασA(k+1) mod 2 = L0 and we would have

L0(yk+1− (h+ 1)) = σA(k+ 1). Since L0 is concatenated to the end of L1 when
forming L, we have τ(yk + 1) = L(yk) = L0(yk − h) = L0(yk+1 − (h + 1)) =
σA(k + 1) = σB(yk + 1).

Since the sequence {xi}d+1
i=1 takes on every value in {1, 2, . . . , h + 1} and

{yi}d+1
i=1 takes on every value in {h+ 1, h+ 2, . . . , d+ 1}, we have that σB = τ .

This concludes the proof.

With Corollary 3 and Lemma 2, we have solved problem (2).

3.3 Alternative Construction of an Extension Sequence

We now arrive at our primary result of this section, which uses the results from
the previous subsections to directly construct the binary string for an extension
sequence yielding a given d-tuple.

Theorem 4. Suppose the following are given:

– (α1, α2, . . . , αd), where each αi is an odd positive integer with ` bits or less
– σ` : {2, 3, . . . , d+ 1} → {1, 2, . . . , d} a bijection.

From this information, let αi = (b
(i)
1 b

(i)
2 · · · b

(i)
`−11)2 and:

1. Let A(`) be the state matrix having
i) A

(`)
1,i = (b

(i)
1 b

(i)
2 · · · b

(i)
`−1)2 + b

(i)
`−1,

ii) A
(`)
d+1,i = (b

(i)
1 b

(i)
2 · · · b

(i)
`−1)2 + 1− b(i)`−1,

iii) column sequence σ`.
Let {A(i)}`i=1 be the unique (Theorem 1) sequence of state matrices such that
every row from A(i) is the sum of two rows from A(i−1) for 1 < i ≤ `, and
let σi be the column sequence for A(i).

2. Define a recursive sequence by σ̂` = σ` and

σ̂k = Ψ
(
σ̂k+1, ((b

(σ̂k+1(2))
k−1 ⊕ b(σ̂k+1(2))

k), . . . , (b
(σ̂k+1(d+1))
k−1 ⊕ b(σ̂k+1(d+1))

k))
)

for 1 ≤ k < `, where b
(i)
0 := 0 and “⊕” denotes XOR of bits. Let

r(k) = (b
(σ̂k+1(2))
k−1 ⊕ b(σ̂k+1(2))

k)|| · · · ||(b(σ̂k+1(d+1))
k−1 ⊕ b(σ̂k+1(d+1))

k)

for 1 ≤ k < `, where || denotes concatenation.

Then σk = σ̂k for 1 ≤ k ≤ ` and {A(i)}`i=1 is the extension sequence corre-
sponding to r = r(1)||r(2)|| · · · ||r(`−1) and having a base given by a matrix having
magnitude 1 and column sequence σ̂1.

Proof. We first note that for any 0 ≤ k < ` and 1 ≤ i ≤ d, Corollary 2 gives

A
(k+1)
1,i = (b

(i)
1 b

(i)
2 · · · b

(i)
k−1b

(i)
k)2 + b

(i)
k . In both cases that b

(i)
k = 0 or b

(i)
k = 1, we

see that 1
2A

(k+1)
1,i mod 2 = b

(i)
k−1 ⊕ b

(i)
k , where b

(i)
j := 0 for j < 1.

We show σk = σ̂k for all k by backwards induction on k. When k = ` we have
σ` = σ̂` by definition. Suppose σk+1 = σ̂k+1 for some k. Taking A = A(k+1) and
B = A(k) in the supposition of Lemma 2, we conclude that

σk = Ψ
(
σk+1, (

1
2A

(k+1)
1,σk+1(2)

mod 2, . . . , 12A
(k+1)
1,σk+1(d+1) mod 2)

)
= Ψ

(
σk+1, (b

(σk+1(2))
k−1 ⊕ b(σk+1(2))

k , . . . , b
(σk+1(d+1))
k−1 ⊕ b(σk+1(d+1))

k)
)

= σ̂k

since σk+1 = σ̂k+1.
Now we show that A(k+1) is the extension matrix of A(k) corresponding to

r(k) for a fixed k. Taking A = A(k+1) and B = A(k) in the supposition of
Corollary 3, we have that the binary string giving the addition sequence for
A(k+1) corresponding to A(k) is

(1
2A

(k+1)
1,σk+1(2)

mod 2)|| · · · ||(1
2A

(k+1)
1,σk+1(d+1) mod 2)

= (b
(σk+1(2))
k−1 ⊕ b(σk+1(2))

k)|| · · · ||(b(σk+1(d+1))
k−1 ⊕ b(σk+1(d+1))

k)

= r(k)

since we’ve already shown σk = σ̂k for all k.
By definition we now have that {A(i)}`i=1 is the extension sequence with base

A(1) corresponding to r. By Theorem 4.4 of [6], A(1) has magnitude 1 and by
definition has column sequence σ1 = σ̂1. This concludes the proof of the theorem.

In the context of Theorem 4, note that

A
(`)
1,i +A

(`)
d+1,i =

[
(b

(i)
1 b

(i)
2 · · · b

(i)
`−1)2 + b

(i)
`−1

]
+
[
(b

(i)
1 b

(i)
2 · · · b

(i)
`−1)2 + 1− b(i)`−1

]
= 2 · (b(i)1 b

(i)
2 · · · b

(i)
`−1)2 + 1 = (b

(i)
1 b

(i)
2 · · · b

(i)
`−11)2 = αi.

The significance of Theorem 4 is the following. The d-MUL algorithm, Algo-
rithm 3 in [6], is performed using the method of item (1) in Theorem 4; that is,
it computes the sequence {A(i)}`i=1 explicitly and stores the addition sequence
information for each matrix. This is a very costly operation in terms of clock cy-
cles and storage. Theorem 4 shows that the algorithm can be performed instead
using item (2) by only computing the sequence {σi}`i=1 (given by Ψ) and the bit
string r, therefore bypassing any matrix or integer arithmetic and allowing us to
begin computing points immediately after r has been constructed. An algorithm
similar to that of Algorithm 2 of [5] can then be used to compute the same
output as running the original d-MUL with the input (a1, . . . , ad) and a choice
for σ`.

4 Optimized d-MUL

In this section we present Algorithm 4, which is essentially Algorithm 3.2 of
[5] in which the bitstring r is constructed through the method of item (2) in
Theorem 4 to give a desired set of output scalars. This is in contrast to choosing
r uniformly at random as in [5].

In addition to using the alternative method of computation given by Theorem
4, we address a potential security issue when formulating Algorithm 4. The
algorithm in [5] and many of the results in this paper have produced an integer
vector with odd entries, and with the intention of subtracting off a binary vector
v to yield an output vector with entries of arbitrary parity. How exactly the
point corresponding to this vector v is subtracted off has not yet been discussed.

Let Pi be the points of a desired linear combination. If all 3d elements of the
set {c1P1 + · · · + cdPd : ci ∈ {0, 1}} are stored, such as when using differential
additions, then the point corresponding to the binary vector v is one such point;
this point may then be looked up and a single addition can be performed to
complete the scalar multiplication.

If these 3d points are not stored, then more care should be taken. If each Pi
satisfying vi = 1 is to be subtracted off from the output in succession, then this
may leak information about the scalars of the desired linear combination (or at
the very least the number of even scalars). One solution is to simply not perform
the subtraction by v at all and settle for an output in which all scalars are odd.
This would cut down the size of the output space by a factor of 2d. This may or
may not be acceptable for a given application of the algorithm.

We give an alternative solution to this problem now, which essentially just
adds another iteration in the state matrix sequence. That is, we make the sacri-
fice of an additional d additions and 1 doubling for added security and a uniform
output. Suppose we wish to compute the point α1P1 + · · ·+ αdPd for arbitrary

`-bit αi (not necessarily odd or positive). If any αi is negative, we may negate
αi and Pi and treat αiPi as (−αi)(−Pi). With negligible preprocessing we may

therefore assume every αi is positive. Let (b
(i)
1 b

(i)
2 · · · b

(i)
`)2 be the binary repre-

sentation of αi, and define α̂i as (b
(i)
1 b

(i)
2 · · · b

(i)
`)2+b

(i)
` −1. Then αi− α̂i ∈ {0, 1},

and 2α̂i + 1 has `+ 1 bits. We then apply Theorem 4 to the odd integers 2α̂i + 1
for 1 ≤ i ≤ d and some column sequence σ. By item (1) of the same theorem,
we get a state matrix A(`+1) satisfying:

1. A
(`+1)
1,i = (b

(i)
1 b

(i)
2 · · · b

(i)
`)2 + b

(i)
` ,

2. A
(`+1)
d+1,i = (b

(i)
1 b

(i)
2 · · · b

(i)
`)2 + 1− b(i)` ,

3. A(`+1) has column sequence σ.

The matrix A(`+1) therefore contains all of the original values α1, . . . , αd. If σ

is chosen carefully, then this matrix will contain the row
[
α1 α2 · · · αd

]
. Specifi-

cally, we may choose σ as any bijection in which the indices for all odd αi come
before those which are even. The index corresponding to this row will be exactly
h := 1 +

∑
(αi mod 2).

We note that Theorem 4 doesn’t use the last parity bits of the αi, but in
this context we are applying the theorem to the integers 2α̂i + 1. Therefore the
final “1” bit of 2α̂i + 1 will be ignored, but the rest will be used to construct
a bitstring r of length `d. That is, we use exactly the bits of α̂i with an extra
leading “0” bit.

Details of Algorithm 4: Here we give some details regarding Algorithm 4.
The notation Ai(j) refers to line j of Algorithm i.

1. To simplify the presentation we deal with negative integer inputs by calling
Algorithm 3, Sanitize, using the method described at the beginning of this
section. This is, if αi is negative we replace αi by −αi and Pi by −Pi. If
working in a setting such as a Montgomery curve using XZ-coordinates,
this step isn’t necessary since Pi is identified with −Pi.

2. Similarly, we separate the process of choosing an initial column sequence σ
into a different algorithm, Algorithm 2: ChooseSeq. We choose any per-
mutation for which the indices of the odd αi are placed before the indices
for the even αi. The RandomPermutation function seen in Algorithm 2
returns a permutation of the input set chosen uniformly at random, repre-
sented in list form. The lists σE and σO are concatenated to form a single
permutation.

3. The binary representation in line A4(4) is computed with the most signifi-

cant bit of α̂i being b
(i)
2 and the parity bit being b

(i)
`+1.

4. The loop A4(6) follows Definition 5 while also constructing the bitstring r
simultaneously.

5. The loop A4(14) is essentially the same as that seen in the Randomized d-
MUL algorithm of [5]. The conditional seen in [5] has been replaced in favor
of a much simpler, compact, and equivalent assignment for both x and y.

Algorithm 2: ChooseSeq

Input: Integers α1, . . . , αd
Output: Permutation on {1, 2, . . . , d}

1 Evens← {i : αi ≡ 0 mod 2}
2 Odds← {i : αi ≡ 1 mod 2}
3 σE ← RandomPermutation(Evens)
4 σO ← RandomPermutation(Odds)
5 return σO||σE

Algorithm 3: Sanitize

Input: Integers α1, . . . , αd, points P1, . . . , Pd ∈ G, G abelian
Output: Positive integers α1, . . . , αd, points P1, . . . , Pd ∈ G, G abelian

1 for i = 1 to d do
2 if αi < 0 then
3 αi ← −αi
4 Pi ← −Pi
5 end

6 end
7 return α, P

A special case is when all scalars αi are positive and odd. In this case, the
Sanitize step has no effect, and ChooseSeq amounts to choosing any permuta-
tion on d elements. Furthermore, the α̂i calculated in Algorithm 4 are equal to the
input αi. This special case leads to an encoding given by the implementation-
oriented Algorithm 1, where we skip sanitization and always make the same
choice of initial σ. In addition, the construction of the array L is done without
an if/else branch for side-channel resistance.

A basic Magma implementation of Algorithm 4 can be found here:

https://github.com/AaronHutchinson/d-MUL-Optimized-2020-

4.1 Differential Additions

This subsection aims to outline an alternate version of Algorithm 4 which utilizes
differential additions. Our only sacrifice to gain knowledge of point differences
is storing each column sequence σ generated in the loop on line 6 of Algorithm
4. We can compute point differences using the following theorem.

Theorem 5. Let A be an extension matrix of B with addition sequence {ak}d+1
k=1.

If σ is the column sequence for B and c is the difference vector for B, then
By1 −Bx1

is the zero row matrix and for 2 ≤ k ≤ d+ 1 we have

Byk −Bxk =

yk∑
i=xk+1

cσ(i)eσ(i).

https://github.com/AaronHutchinson/d-MUL-Optimized-2020-

Proof. We use induction on k. When k = 1 we have x1 = y1 by definition of
an addition sequence, and so By1 − Bx1

is zero. Assume that Byk − Bxk =∑yk
i=xk+1 cσ(i)eσ(i) for some k with 1 ≤ k ≤ d. We have either that ak+1 =

(xk − 1, yk) or ak+1 = (xk, yk + 1).
Suppose that ak+1 = (xk−1, yk) so that yk+1 = yk and xk+1 = xk−1. Then

Byk+1
−Bxk+1

= Byk −Bxk−1 = Byk − (Bxk − cσ(xk)eσ(xk))

= (Byk −Bxk) + cσ(xk)eσ(xk) =

yk∑
i=xk+1

cσ(i)eσ(i) + cσ(xk)eσ(xk)

=

yk∑
i=xk

cσ(i)eσ(i) =

yk+1∑
i=xk+1+1

cσ(i)eσ(i).

If ak+1 = (xk, yk + 1) then yk+1 = yk + 1 and xk+1 = xk, and so

Byk+1
−Bxk+1

= Byk+1 −Bxk = (Byk + cσ(yk+1)eσ(yk+1))−Bxk
= (Byk −Bxk) + cσ(yk+1)eσ(yk+1)

=

(
yk∑

i=xk+1

cσ(i)eσ(i)

)
+ cσ(yk+1)eσ(yk+1)

=

yk+1∑
i=xk+1

cσ(i)eσ(i) =

yk+1∑
i=xk+1+1

cσ(i)eσ(i).

This concludes the proof.

Suppose that all rows in the set S = {[t1, . . . , td] : ti ∈ {0, 1,−1}} are stored.
Then the above theorem tells us exactly how to find the proper element of S for
the difference which corresponds to a sum Bi+Bj . The only knowledge required
to compute this row is the column sequence σ and the difference vector c. We
will now show that only a slight modification of Algorithm 4 will allow us to
perform differential additions.

Let αi and α̂i for i = 1, . . . , d be as in Section 4, and let σ be any column
sequence. Again by Theorem 4 we may derive a sequence {A(k)}`+1

k=1 of state
matrices where each row in A(k+1) is the sum of two rows from A(k) and the
final matrix A(`+1) satisfies:

1. A
(`+1)
1,i = (b

(i)
1 b

(i)
2 · · · b

(i)
`)2 + b

(i)
` ,

2. A
(`+1)
d+1,i = (b

(i)
1 b

(i)
2 · · · b

(i)
`)2 + 1− b(i)` ,

3. A(`+1) has column sequence σ

where (b
(i)
1 b

(i)
2 · · · b

(i)
`)2 is the binary representation of αi. We recall that the

difference vector c for any state matrix A is defined to be Ad+1 −A1. Applying
Corollary 2 to our current scenario, we find that the ith entry of the difference
vector for A(k) is exactly

A
(k)
d+1,i −A

(k)
1,i =

(
(b

(i)
1 b

(i)
2 · · · b

(i)
k−1)2 + 1− b(i)k−1

)
−
(

(b
(i)
1 b

(i)
2 · · · b

(i)
k−1)2 + b

(i)
k−1

)
= 1− 2b

(i)
k−1

Algorithm 4: Optimized d-MUL

Input: Integers α1, . . . , αd ∈ (−2`, 2`), points P1, . . . , Pd ∈ G, G abelian
Output: Group element α1P1 + · · ·+ αdPd

1 α, P ← Sanitize(α, P).
2 σ ← ChooseSeq(α).
3 α̂← (α1 + (α1 mod 2)− 1, . . . , αd + (αd mod 2)− 1)

4 Let (0 b
(i)
2 b

(i)
3 · · · b

(i)
` b

(i)
`+1)2 be the binary form of α̂i, with extra leading 0.

5 Initialize an empty binary array r of length `d.
6 for k = ` down to 1 do

7 For i = 1 to d, assign r(k−1)d+i ← b
(σ(i))
k ⊕ b(σ(i))k+1 .

8 Initialize empty lists L0 and L1 of length d.
9 For i = 1 to d, append σ(i) to the end of L

b
(σ(i))
k

⊕b(σ(i))
k+1

.

10 Overwrite σ ← Reverse(L1)||L0, where || denotes concatenation.

11 end
12 Initialize group elements Q1, . . . , Qd+1, R1, . . . Rd+1 as id(G).
13 For i = 1 to d, assign Qi+1 ← Qi + Pσ(i).
14 for k = 1 to ` do
15 h, x, y ← r(k−1)d+1 + · · ·+ rkd + 1
16 R1 ← 2Qh
17 for i = 1 to d do
18 x← x− r(k−1)d+i, y ← y + 1− r(k−1)d+i

19 Ri+1 ← Qx +Qy
20 end
21 Q← R

22 end
23 h← (α1 mod 2) + · · ·+ (αd mod 2) + 1
24 return Qh

Therefore the entries of this difference vector are given “for free”, as they only
depend on the bits in position k − 1 of the αi.

With this discussion in mind, Algorithm 4 may be altered so that each σ
derived in the loop beginning on line 6 is saved in a table so that the column
sequence for matrix A(i) is stored as σi. One may then use Theorem 5 to find
the difference corresponding to each sum; it is exactly

A(i)
yk
−A(i)

xk
=

yk∑
i=xk+1

(1− 2b
(σi(k))
i−1)eσi(k).

5 Conclusions

There are now three versions of the d-MUL algorithm: Original d-MUL (Algo-
rithm 3 of [6]), Randomized d-MUL (Algorithm 2 of [5]), and Optimized d-MUL
(Algorithm 4 in this paper). Optimized d-MUL seems to be a direct improve-
ment over Original d-MUL, since the storage of two (d + 1) × d matrices with

large entries, ` many arrays D, and large integer arithmetic is exchanged for
the storage of a single `d length bitstring and the computation of ` many simple
permutations. We therefore see no reason to use Original d-MUL over Optimized
d-MUL.

We believe that Randomized d-MUL may still be preferable over Optimized
d-MUL in certain special situations. If a given application only calls for a random
linear combination, then it would be more efficient to employ Randomized d-
MUL over Optimized d-MUL since in the former case we need only generate a
random bit string rather than derive it from random scalars as in the latter case.
The efficiency gain is slightly more dramatic when the scalars of the combination
need not be known, since the derivation of the scalars in Randomized d-MUL is
split off into an independent algorithm. On the other hand, if the setting calls for
a specific linear combination to be computed from given points, we see no way
to use Randomized d-MUL in such a setting and so Optimized d-MUL seems to
be the best option out of these three algorithms.

Acknowledgment

This research has been partially supported by the U.S. Army Research Office
(ARO) under the award number W911NF-17-1-0311. The content is solely the
responsibility of the authors and does not necessarily represent the official views
of the ARO. The authors thank reviewers for their comments.

References

1. D. Bernstein. Differential addition chains. Technical report, 2006. Available at
http://cr.yp.to/ecdh/diffchain-20060219.pdf.

2. D. Brown. Multi-Dimensional Montgomery Ladders for Elliptic Curves. ePrint
Archive: Report 2006/220. Available at http://eprint.iacr.org/2006/220.

3. D. Galbraith, X. Lin, and M. Scott. Endomorphisms for Faster Elliptic Curve
Cryptography on a Large Class of Curves. Journal of Cryptology, 24:446–469, 2011.

4. R. Gallant, R. Lambert, and S. Vanstone. Faster point multiplication on elliptic
curves with efficient endomorphisms. Advances in Cryptology - CRYPTO 2011,
Lecture Notes in Computer Science, 2139:190–200, 2001.

5. H. Hisil, A. Hutchinson, and K. Karabina. d-MUL: Optimizing and Implementing a
Multidimensional Scalar Multiplication Algorithm over Elliptic Curves. 8th Inter-
national Conference on Security, Privacy, and Applied Cryptography Engineering -
SPACE 2018, Lecture Notes in Computer Science, 11348:198–217, 2018.

6. A. Hutchinson and K. Karabina. Constructing Multidimensional Differential Addi-
tion Chains and Their Applications. Journal of Cryptographic Engineering, 9(1):1–
19, 2019.

7. P.L. Montgomery. Evaluating Recurrences of the Form Xm+n = f(Xm, Xn, Xm−n)
via Lucas Chains. Available at https://cr.yp.to/bib/1992/montgomery-lucas.

ps, 1983.
8. P.L. Montgomery. Speeding the Pollard and Elliptic Curve Methods of Factoriza-

tion. Mathematics of Computation, 48:243–264, 1987.
9. J. Jaffe P. Kocher and B. Jun. Differential Power Analysis. Advances in Cryptology

— CRYPTO ’99, Lecture Notes in Computer Science, 1666:388–397, 1999.

http://cr.yp.to/ecdh/diffchain-20060219.pdf
http://eprint.iacr.org/2006/220
https://cr.yp.to/bib/1992/montgomery-lucas.ps
https://cr.yp.to/bib/1992/montgomery-lucas.ps

	A New Encoding Algorithm for a Multidimensional Version of the Montgomery Ladder

