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Abstract. In the recent trend of CAESAR competition and NIST light-
weight competition, cryptographic community have witnessed the sub-
missions of several cryptographic schemes that are build on public ran-
dom permutations. Recently, in CRYPTO 2019, Chen et al. have ini-
tiated an interesting research direction in designing beyond birthday
bound PRFs from public random permutations and they proposed two
instances of such PRFs. In this work, we extend this research direction
by proposing a nonce-based MAC build from public random permuta-
tions. We show that our proposed MAC achieves 2n/3 bit security (with
respect to the state size of the permutation) and the bound is essentially
tight. Moreover, the security of the MAC degrades gracefully with the
repetition of the nonce.

Keywords: Faulty Nonce, Mirror Theory, Public Permutation, Expectation
Method.

1 Introduction

Nonce-Based MAC. Message Authentication Code (or in short MAC) is an
important cryptogaphic primitive to authenticate any digital message or packet
transmitted over an insecure communication channel. When a sender wants to
send a message m, she computes a MAC function with input m, the shared secret
key k, and possibly an auxiliary input variable ν (called nonce), and obtains a
tag t. Then she sends (ν,m, t) to the receiver. Upon receiving, receiver verifies
the authenticity of (ν,m, t) by computing the MAC using (ν,m, k) and checks
whether the computed tag t′ matches with t.

Wegman-Carter (WC) MAC [25] is the first example of a nonce-based MAC
which masks the hash value of the message with an encrypted nonce to gen-
erate the tag. WC MAC gives optimal security when the nonce is unique for
every authenticated messages. However, its security is compromised if the nonce
repeats even once. Wegman-Cater MAC, when instantiated with a polynomial
hash, then the repetition of the nonce reveals the hash key of the polynomial
hash. However, maintaining the uniqueness of the nonce for every authenticated
messages is a challenging task in practical contexts. For example, it is difficult
to maintain the uniqueness of the nonce while implementing the cipher in a
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stateless device or in cases where the nonce is chosen randomly from a small set.
The nonce may also accidentlly repeats due to a faulty implementation of the
cipher or due to the fault occured by resetting of the nonce itself [4]. Therefore,
the guard from the nonce repetition attack is much desired from a nonce-based
MAC.

As a remedy of this, Encrypted Wegman-Carter-Shoup (EWCS) [11] MAC was
proposed that guarantees the security even when the nonce repeats. But its
security is limited only up to the birthday bound even when nonce is unique.
To this end, Encrypted Wegman-Carter with Davies-Meyer [11] (or EWCDM)
and Decrypted Wegman-Carter with Davies-Meyer [13] (or DWCDM) have been
proposed that gives beyond the birthday bound security when nonce is unique 1

and birthday bound security when nonce repeats 2. However, the security of
both these constructions fall to the birthday bound with a single repetition
of the nonce, i.e., if the nonce ever repeats accidentally, security of both the
constructions immediately drops to the birthday bound.

Nonce Based Enhanced Hash-then-Mask. In FSE 2010 [21], Minematsu
proposed EHtM, a beyond birthday bound secure probabilisitic MAC. It is build
upon two independent n-bit keyed functions Fk1 and Fk2 and an n-bit axu hash
function Hkh , defined as follows:

EHtM(m)
∆
= (r←$ {0, 1}n,Fk1(r)⊕ Fk2(r ⊕ Hkh(m))).

This construction has been further analyzed in [15] for improving its security
bound. In Eurocrypt 2019, Dutta et al. [16] proposed a nonce-based variant of
EHtM, called nEHtM MAC, where the random salt r is replaced by an n − 1
bit nonce value ν and an n-bit block cipher Ek is used as an internal primitive
instead of two independent n-bit keyed functions. Schematic diagram of nEHtM
is shown in Fig. 1.1. Similar to EWCDM and DWCDM, nEHtM gives beyond the
(birthday bound) security in nonce-respecting (resp. nonce misuse) setting. But,
unlike these two constructions, security of nEHtM MAC degrades gracefully with
the repetition of the nonce. In other words, security of nEHtM remains beyond
the birthday bound with a single repetition of the nonce (which is not true for
EWCDM and DWCDM). That is, one can get adequate security from nEHtM if the
repetition of the nonce occurs in a controlled way, a feature which is not present
in EWCDM or DWCDM. This phenomena is formally captured by a notion, called
faulty nonce model [16]. Informally, it says that a nonce is faulty if it appears
in a previous signing query. It has been stated in [16] that faulty nonce model is
a weaker notion than multicollision of nonces – a natural and a popular metric
to measure the misuses of nonce. Under the notion of faulty nonce model, Dutta
et al. have shown that nEHtM is secured roughly upto 22n/3 queries.

We would like to mention here that this construction was also analyzed by Moch
and List [22] in parallel to [16] in the name of HPxNP, where two independent
n-bit block ciphers have been used (as they did not use the domain separation

1 We call this notion nonce-respecting setting
2 We call this notion nonce-misuse setting
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technique). However, Moch and List analyzed its security under the condition of
the uniqueness of the nonce, whereas Dutta et al. [16] proved its graceful security
with respect to the repetition of the nonce.

1.1 Permutation Based Cryptography

All the above discussed nonce-based MACs are build on block ciphers as their
underlying primitives and even stronger, these primitives are evaluated only in
the forward direction. As most of the block ciphers are designed to be efficient in
both the forward and the inverse direction, block ciphers are over-hyped prim-
itives for such purpose [10]. On the other extreme, cryptographic permutations
are particularly designed with the motive to be fast in the forward direction, but
not neccessarily in the inverse direction. Examples of such permutation includes
Keccak [2], Gimli [1], SPONGENT [5]. Moreover, in most of the cases evaluating
an unkeyed public permutation is faster than evaluating a keyed block cipher,
as the latter involves in evaluating the underlying key scheduling algorithm each
time the block cipher is invoked in the design. With the advancement of public
permutation-based designs and the efficiencies of evaluating it in the forward di-
rection, numerous public permutation-based inverse-free hash and authenticated
encryption designs have been proposed. The use of cryptographic permutation
gained the momentum during SHA-3 competition [24]. Furthermore, the selec-
tion of the permutation-based Keccak sponge function as the SHA-3 standard
has given a high level of confidence on using this primitive in the community.
Today, permutation-based sponge construction has become a successful and a
full-fledged alternative to the block cipher-based modes. In fact, in the first
round of the ongoing NIST light-weight competition [23], 24 out of 57 submis-
sions are based on cryptographic permutations, and out of 24, 16 permutation
based proposals have been qualified for the second round. This statistics, beyond
any doubt, clearly depicts the wide adoption of permutation based designs [7, 1,
3, 8, 12, 14] in the community. In another direction, a long line of research work
has been carried out in the study of designing block ciphers and tweakable block
ciphers out of public random permutations. Even Mansour (EM) [17] and Iter-
ated Even Mansour (IEM) cipher [6] are the notable approaches in this direction.

Nonce-based MAC build from Public Permutations. Nonce-based MACs
using public permutations are mostly designed with sponge type of construc-
tions. But the drawback of such designs are: (i) they do not use the full size of
the permutation for guarranting security and (ii) they attain only the birthday
bound security in the size of its capacity c, i.e., c/2 bit security (except Bet-
tle [7], whose security bound is roughly the size of its capacity). Now, it is an
admissible fact that the sponge type designs, which offer c/2-bit security, are
good in practice when they are instantiated with large size permutations such
as Keccak [2], whose state size is 1600 bits. But such large size permutations
are not suitable for use in resource constrained environment. In such scneario,
instead of using such large size permutations, one aims to use light-weight per-
mutations such as SPONGENT [5] and PHOTON [18], whose state size go as
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low as 88 and 100 bits respectively. If we use these light-weight permutations
as underlying primitives in birthday bound secure sponge type constructions,
then it practically offers inadequate security. As a result, sponge type construc-
tions instantiated with light-weight permutations are not suitable for deploying
in resource constrained environment. Thus, it is natural to ask

Can we design a public permutation-based nonce-based MAC that gives an
adequate security when instantiated with light-weight permutation ?

This question hinted us to think of designing a MAC whose security depends on
the entire size of the underlying permutation (unlike sponge type constructions
whose security depends on only a part of the entire size of the underlying permu-
tation) and the security must cross the birthday barrier. Coming up with such
a design is the goal of this paper. In this direction, Chen et al. [10] have shown
two instances of public permutation-based pseudo random functions that give
beyond the birthday bound security with respect to the size of the permutation.
We extend this line of research work by designing a public permutation-based
nonce-based MAC that gives beyond the birthday bound security with respect
to the size of the permutation.

Our Contribution. The sole contribution of this paper is to design a beyond
birthday bound secure nonce-based MAC using public random permutations.
To this end we propose nEHtMp, a nonce based MAC desiged using public per-
mutations. As depicted in Fig. 1.1, our construction structurally resembles to
the nEHtM MAC [16] where we replace its block cipher with a public random
permutation and an appropriate masking of the key.
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Fig. 1.1. (Left): nEHtM MAC based on block cipher Ek; (Middle): nEHtMp MAC based
on single public random permutation π; (Right): 2-round iterated even mansour cipher.

Note that, by instantiating the underlying block cipher of nEHtM MAC with 2-
round iterated Even-Mansour cipher (as shown in Fig 1.1), one can easily make
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the public permutation variant of nEHtM MAC, which becomes secure beyond
the birthday bound (in faulty nonce model). However such transformation re-
quires 4 permutation calls, 7 xor operations and one hash evaluation. Compared
to this, nEHtMp requires only 2 permutation calls, 3 xor operations and one
hash evaluation. We have shown that nEHtMp is secured roughly up to 22n/3

queries in the nonce-respecting setting. Moreover, this security bound degrades
in a graceful manner under the faulty nonce model [16]. We show the unforge-
ability of this construction through an extended distinguishing game and apply
the expectation method to bound its distinguishing advantage. We also show
that our proven security bound is tight by giving a matching attack on it with
roughly 22n/3 query complexity and 22n−4 time complexity 3.

2 Preliminaries

General Notations: For n ∈ N, we denote the set of all binary strings of
length n and the set of all binary strings of finite arbitrary length by {0, 1}n
and {0, 1}∗ respectively. We often refer the elements of {0, 1}n as block. For an
n-bit binary string x = (xn−1 . . . x0), msb(x) denotes the first bit of x in left

to right ordering, i.e. msb(x) = xn−1. Moreover, chopmsb(x)
∆
= (xn−2 . . . , x0),

i.e., chopmsb(x) returns the string x by dropping just its msb. For any element
x ∈ {0, 1}∗, |x| denotes the number of bits in x and for x, y ∈ {0, 1}∗, x‖y denotes
the concatenation of x followed by y. We denote the bitwise xor operation of
x, y ∈ {0, 1}n by x ⊕ y. We parse x ∈ {0, 1}∗ as x = x1‖x2‖ . . . ‖xl where
for each i = 1, . . . , l − 1, xi is a block and 1 ≤ |xl| ≤ n. For a sequence of
elements (x1, x2, . . . , xs) ∈ {0, 1}∗, xia denotes the a-th block of i-th element xi.
For a value s, we denote by t ← s the assignment of s to variable t. For any
natural number j ∈ N, 〈j〉s denotes the s bit binary representation of integer
j. For i ∈ {0, 1}n, leftk(i) represents the leftmost k bits of i. Similarly, rightk(i)
represents the rightmost k bits of i. For any finite set X , X ←$X denotes that
X is sampled uniformly at random from X and X1, . . . , Xs←$X denotes that
Xi’s are sampled uniformly and independently from X . FX (n) denotes the set
of all functions from X to {0, 1}n. We often write F(n) when the domain is clear
from the context. We denote the set of all permutations over {0, 1}n by P(n).
For integers 1 ≤ b ≤ a, (a)b denotes the product a(a − 1) . . . (a − b + 1), where
(a)0 = 1 by convention and for q ∈ N, [q] refers to the set {1, . . . , q}.

2.1 Public Permutation Based Nonce Based MAC

Let F : K×N ×M→ T be a keyed function where K,N ,M and T are the key
space, nonce space, message space and the tag space respectively. We assume that
F makes internal calls to the public random permutations π = (π1, . . . , πd) for
d ≥ 1, where all of the d permutations are independent and uniformly sampled

3 time complexity does not refer to the evaluation of permutations, but only refers to
the time required to find a suitable matching pair
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from P(n) for some n ∈ N. For simplicity, we write Fπk to denote F with uniform k
and uniform π. Based on Fπk , we define the nonce-based message authentication
code I = (I.KGen, I.Sign, I.Ver) build from public permutations as follows: For
k ∈ K, the signing algorithm I.Signk, takes as input (ν,m) ∈ N × M and
outputs t ← Fπk (ν,m) and the verification algorithm I.Verk, takes as input
(ν,m, t) ∈ N ×M× T and outputs 1 if Fπk (ν,m) = t; otherwise it outputs 0.

A signing query (ν,m) by an adversary A is called a faulty query if A has
already queried to the signing algorithm with the same nonce but with a different
message. Let A be a (η, qm, qv, p, t)-adversary against the unforgeability of I with
oracle access of the signing algorithm I.Signk, the verification algorithm I.Verk
and the d-tuple of permutations π and their inverses π−1 = (π−1

1 , . . . , π−1
d ) such

that it makes at most η faulty signing queries out of qm signing, qv verification
and p primitive queries with running time of A at most t. A is said to be nonce
respecting (resp. nonce misuse) if η = 0 (resp. η ≥ 1). However, A may repeats
nonces in its verification queries. Moreover, the primitive queries are interleaved
with the signing and the verification queries. A is said to forge I if for any
of its verification queries (not obtained through a previous signing query), the
verification algorithm returns 1. The advantage of A against the unforgeability
of the nonce based MAC I is defined as

AdvnMAC
I (A)

∆
= Pr

[
AI.Signk,I.Verk,π,π−1

forges
]
,

where the randomness is defined over k←$K, π1, . . . , πd←$P(n) and the ran-
domness of the adversary (if any). We write

AdvnMAC
I (η, qm, qv, p, t)

∆
= max

A
AdvnMAC

I (A),

where the maximum is taken over all (η, qm, qv, p, t)-adversaries A. In this paper,
we skip the time parameter of the adversary as we will assume throughout the
paper that the adversary is computationally unbounded. This will render us to
assume that the adversary is deterministic.

Upper bound on AdvnMAC
I (A) ([15]). To obtain an upper bound for AdvnMAC

I (A),
we consider a random oracle RF that samples the tag t independently and uni-
formly at random from {0, 1}n for every nonce message pair (ν,m) and the Rej
oracle always returns ⊥ for any (ν,m, t). Then, AdvnMAC

I (A) is upper bounded
by

max
A

∣∣∣∣Pr
[
AI.Signk,I.Verk,π,π−1

⇒ 1
]
− Pr

[
ARF,Rej,π,π−1

⇒ 1
] ∣∣∣∣, (1)

where AO ⇒ 1 denotes that adversary A outputs 1 after interacting with its
oracle O (which could be a multiple of oracles).

2.2 Almost Xor Universal and Almost Regular Hash Function

Let Kh and X be two non-empty finite sets and H be a keyed function H :
Kh×X → {0, 1}n. Then, H is said to be an εaxu-almost xor universal (axu) hash
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function, if for any distinct x, x′ ∈ X and for any ∆ ∈ {0, 1}n,

Pr [Kh←$Kh : HKh(x)⊕ HKh(x′) = ∆] ≤ εaxu.

Moreover, H is said to be an εreg-almost regular (ar) hash function, if for any
x ∈ X and for any ∆ ∈ {0, 1}n,

Pr [Kh←$Kh : HKh(x) = ∆] ≤ εreg.

2.3 Expectation Method

The Expectation Method of Hoang and Tessaro [19] was used to derive a tight
multi-user security bound of the key-alternating cipher. This technique has sub-
sequently been used in [20, 16]. Let A be a computationally unbounded deter-
ministic distinguisher that interacts with either of the two worlds: Ore or Oid,
where these oracles are possibly randomized stateful systems. After the inter-
action, A returns a single bit. This interaction between A and the system re-
sults in an ordered sequence of queries and responses which is summarized in
τ = ((x1, y1), (x2, y2), . . . , (xq, yq)), called a transcript, where xi is the i-th query
of A and yi is the corresponding response of the system to which A interacts with.
Let Dre (resp. Did) be the random variable that takes a transcript resulting from
the interaction between A and Ore (resp. Oid). A transcript τ is said to be
attainble if Pr[Did = τ ] > 0. Let Θ denotes the set of all attainable transcripts.

Let Φ : Θ → [0,∞) be a non-negative function which maps any attainable
transcript to a non-negative real value. Suppose there is a set of good transcripts
GoodT ⊆ Θ such that for any τ ∈ GoodT,

Pr [Dre = τ ]

Pr [Did = τ ]
≥ 1− Φ(τ). (2)

Then, the statistical distance between Dre and Did can be bounded as

∆(Dre,Did) ≤ E[Φ(Did)] + Pr[Did ∈ BadT], (3)

where BadT
∆
= Θ \ GoodT is the set of all bad transcripts. In other words, the

advantage of A in distinguishing Ore from Oid is bounded by E[Φ(Did)]+Pr[Did ∈
BadT]. In the rest of the paper, we write Θ, GoodT and BadT to denote the set
of attainable, set of good and set of bad transcripts respectively.

2.4 Sum-Capture Lemma

We use the sum capture lemma by Chen et al. [9]. Informally, the result states
that for a random subset S of {0, 1}n of size q and for any two arbitrary subsets
A and B of {0, 1}n, the size of the set {(s, a, b) ∈ S × A × B : s = a ⊕ b} is at
most q|A||B|/2n, except with negligible probabilty. In our setting, S is the set
of tag values ti, which are sampled with replacement from {0, 1}n.
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Lemma 1 (Sum-Capture Lemma). Let n, q ∈ N such that 9n ≤ q ≤ 2n−1.
Let S = {t1, . . . , tq} ⊆ {0, 1}n such that ti’s are with replacement sample of
{0, 1}n. Then, for any two subsets A and B of {0, 1}n, we have

Pr[|{(t, a, b) ∈ S ×A× B : t = a⊕ b}| ≥ q|A||B|/2n + 3
√
nq|A||B|] ≤ 2

2n
, (4)

where the randomness is defined over the set S.

3 Solving a System of Affine (Non)-Equations

In this section, we present a lower bound on the number of solutions of a system
of bi-variate affine equations and bi-variate affine non-equations over a finite
number of unknown variables which are without replacement samples of {0, 1}n.
This result will become handy for analysing the security of our proposed con-
struction.

Initial Setup: Consider an undirected edge-labelled acylic graph G = (V ∆
=

{Y1, . . . , Yα},F t F ′,L) with edge labelling function L : F t F ′ → {0, 1}n,
where the edge set is partitioned into two disjoint sets F and F ′. For an edge
{Yi, Yj} ∈ F , we write L({Yi, Yj}) = λij (and so λij = λji) and L({Yi, Yj}) = λ′ij

for all {Yi, Yj} ∈ F ′. Let G= ∆
= (V,F ,L|F ) denotes the subgraph of G, where

L|F is the function L restricted over the set F . We say G is good if it satisfies
the following two conditions: (i) for all paths Pst in graph G=, L(Pst) 6= 0. where

L(Pst)
∆
=
∑
e∈Pst L(e) = Ys ⊕ Yt and Pst is a path of G= between vertex s and

t and (ii) for all cycles C in G such that the edge set of C contains exactly one

non-equation edge e′ ∈ F ′, L(C) 6= 0, where L(C)
∆
=
∑
e∈C L(e). For such a

good graph G, the induced system of equations and non-equations is defined as:

EG =

{
Yi ⊕ Yj = λij ∀ {Yi, Yj} ∈ F ,
Yi ⊕ Yj 6= λ′ij ∀ {Yi, Yj} ∈ F ′,

The set of components in G is denoted by comp(G) = (C1, . . . ,Ck), µi denotes
the size of (i.e. the number of vertices in) the i-th component Ci and µmax =
max{µ1, . . . , µk} is the size of the largest component of G. ρi the total number
of vertices upto the i-th component with the convention that ρ0 = 0.

Definition 1 (Injective Solution). With respect to the system of equations
and non-equations EG (as defined above), an injective function Φ : V → R,
where R ⊆ {0, 1}n, is said to be an injective solution if Φ(Yi)⊕Φ(Yj) = λij for
all {Yi, Yj} ∈ F and Φ(Yi)⊕ Φ(Yj) 6= λ′ij for all {Yi, Yj} ∈ F ′.

Theorem 1. Let U = {u1, . . . , uσ} be a non-empty finite subset of {0, 1}n, for
some σ ≥ 0. Let G = (V,F t F ′,L) be a good graph with α vertices such
that |F| = qm, |F ′| = qv. Let comp(G=) = (C1, . . . ,Ck) and |Ci| = µi, ρi =
(µ1 + · · ·+ µi). Then the total number of injective solutions, chosen from a set
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Fig. 3.1. (Left): Graph is a tree of size 4; (Middle): Graph is a cycle of size 3; (Right):
Graph with equation edges and non-equation edge. Continuous red edge represents
equation edge and dashed blue edge represents non-equation edge.

Z = {0, 1}n \ U of size 2n − σ, for the induced system of equations and non-
equations EG is at least:

(2n − σ)α
2nqm

(
1−

k∑
i=1

6(ρ′i−1)2
(
µi
2

)
22n

− 2qv
2n

)
, (5)

provided ρ′kµmax ≤ 2n/4 where ρ′i = ρi + σ.

Proof. We proceed the proof by counting the number of solutions in each of the
k components. Let µ̃ij denotes the number of edges from F ′ connecting vertices
between i-th and j-th component of G= and µ′i to be the number of edges in F ′
incident on vi ∈ V \ G=(V). For the first component, the number of solutions
is at least exactly (2n − µ1σ). We fix such a solution and count the number of
solutions for the second component. which is (2n − µ1µ2 − µ̃1,2 − µ2σ). This is
because, let Yiµ1+1

be an arbitrary vertex of the second component and let yiµ1+1

be a solution of it. This solution is valid if the following conditions hold:

• yiµ1+1
/∈ U .

• yiµ1+1
does not take µ1 values (yi1 , . . . , yiµ1 ) from the first component.

• It must discard µ1(µ2−1) values (yi1⊕L(Pj), . . . , yiµ1⊕L(Pj)) for all possible
paths Pj from a fixed vertex to any other vertex in the second component.
• It must discard p(µ2−1) values as (yiµ1+1

⊕L(Pj)) /∈ Y for all possible paths
Pj from Yiµ1+1

to any other vertices in the second component.
• yiµ1+1

does not take µ̃12 values to compensate for the fact that the set of
values is no longer a group.

Summing up all the conditions, the number of solutions for the second component
is at least (2n − µ1µ2 − µ2σ− µ̃12). In general, the total number of solutions for

the i-th component is at least
k∏
i=1

(
2n − ρi−1µi − µiσ−

i−1∑
j=1

µ̃ij

)
. Suppose there

are k′ vertices that do not belong to the set of vertices of the subgraph G=. Fix
such a vertex Yρk+i and let us assume that µ′ρk+i blue dashed edges are incident
on it. If yρk+i is a valid solution to the variable Yρk+i, then we must have (a)
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yρk+i should be distinct from the previous ρk assigned values, (b) yρk+i should
be distinct from the (i − 1) values assigned to the variables that do not belong
to the set of vertices of the subgraph G=(V), (c) yρk+i should be distinct from
the values of U , and (d) yρk+i should not take those µ′ρk+i values. Therefore, the
total number of solutions is at least

hα ≥
k∏
i=1

(
2n− ρi−1µi− µiσ−

i−1∑
j=1

µ̃ij

)
·
∏
i∈[k′]

(2n− ρk − σ− i+ 1− µ′ρk+i). (6)

Let χi
∆
= (µ̃i1 + . . .+ µ̃i,i−1), q′′v

∆
= (µ′ρk+1 + . . .+ µ′ρk+k′) and ρ′i = ρi + σ. After

a simple algebraic calculation on Eqn. (6), we obtain

hα
2nqm

(2n − σ)α
≥

k∏
i=1

(2n − ρ′i−1µi − χi)2n(µi−1)

(2n − ρ′i−1)µi︸ ︷︷ ︸
D.1

k′∏
i=1

(2n − ρ′k − i+ 1− µ′ρk+i)

(2n − ρ′k − i+ 1)︸ ︷︷ ︸
D.2

.

By expanding (2n − ρ′i−1)µi we have (2n − ρ′i−1)µi ≤ 2nµi − 2n(µi−1)

(
ρ′i−1µi +(

µi
2

))
+2n(µi−2)Ai, whereAi =

((
µi
2

)
(ρ′i−1)2+

(
µi
2

)
(µi−1)ρ′i−1+

(
µi
2

) (µi−2)(3µi−1)
12

)
.

Bounding D.1. With a simplification on the expression of D.1, we have

D.1 ≥
k∏
i=1

(
1− Ai

22n − 2n(ρ′i−1µi +
(
µi
2

)
) +Ai

− 2nχi

22n − 2n(ρ′i−1µi +
(
µi
2

)
) +Ai

)

(4)

≥
k∏
i=1

(
1− 2Ai

22n
− 2χi

2n

)
(5)

≥
(

1−

k∑
i=1

6(ρ′i−1)2
(
µi
2

)
22n

− 2q′v
2n

)
,

where (4) follows from the fact that 2n(ρ′i−1µi+
(
µi
2

)
)−Ai ≤ 22n/2, which holds

true when ρ′kµmax ≤ 2n/4, (5) holds true due to the fact that Ai ≤ 3(ρ′i−1)2
(
µi
2

)
and (χ1 + . . . + χk) = q′v, the total number of blue dashed edges across the
components of G= and µ1 + . . .+ µk ≤ α.

Bounding D.2. For bounding D.2, we have

D.2 ≥
k′∏
i=1

(
1−

µ′ρk+i

(2n − ρ′k − i+ 1)

)
(6)

≥
(

1−

k′∑
i=1

2µ′ρk+i

2n

)
(7)

≥
(

1− 2q′′v
2n

)
,

where (6) follows due to the fact that (ρ′k + i − 1) ≤ 2n/2 and (7) follows as
we denote (µ′ρk+1 + . . . + µ′ρk+k′) = q′′v , the total number of blue dashed edges
incident on the vertices outside of the set G=(V).
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Combining D.1 and D.2. Finally, by combining the expression of D.1 and D.2,
we have

hα
2nqm

(2n − σ)α
≥
(

1−

k∑
i=1

6(ρ′i−1)2
(
µi
2

)
22n

− 2qv
2n

)
,

where qv = q′v + q′′v , the total number of non-equation edges in G. ut

4 Security of nEHtM in Public Permutation Model

In this section, we first state that nEHtMp achieves 2n/3-bit security in public
permutaion model in the faulty nonce model. Followed by this, we demonstrate
a matching attack in subsect. 4.2 to show the security bound is tight.

4.1 Security of nEHtMp

We show that nEHtMp is secure against all adversaries that makes roughly 22n/3

queries in the faulty nonce model. However, similar to nEHtM, the construction
posses a birthday bound forging attack when the number of faulty nonces reaches
to an order of 2n/2 [16].

Theorem 2. Let M and Kh be two finite and non-empty sets. Let π←$P(n) be
an n-bit public random permutation and H : Kh×M→ {0, 1}n−1 be an (n− 1)-
bit εaxu-almost xor universal and εreg-almost regular hash function. Moreover,
K ←$ {0, 1}n−1 be an n − 1 bit random key and η be a fixed parameter. Then
the forging advantage for any (η, qm, qv, 2p)-adversary against the construction
nEHtMp[π,H,K] that makes at most η faulty queries out of qm signing, qv verit-
ication and altogether 2p primitive queries, is given by

AdvMAC
nEHtMp

(η, qm, qv, 2p) ≤
12η2

22n

(
qm + 2p

)2

+

(
p+ qm

)(
192pqm

22n
+

48pq2
mεaxu

22n

)
+

48q3
m

22n
+

12q4
mεaxu

22n
+

2qv
2n

+
p2εreg

2n

(
3qm + 2qv

)
+
qm
2n

+ εaxu

(
4q3
m

2n
+ 2ηqm +

pq2
m

2n
+

q2
m

2n+1
+ (η + 1)qv

)
+ εreg(2ηp+ p

√
3nqm) +

2p2qm
22n

+
2 + 2η

2n
+

2p
√

3nqm
2n

.

By assuming εaxu ≈ 2/2n and εreg ≈ 2/2n, the above bound is simplified to

AdvMAC
nEHtMp

(η, qm, qv, 2p) ≤
80q3

m

22n
+

4(qm + qv)

2n
+

4p
√

3nqm
2n

+
12η2

22n

(
qm + 2p

)2

+ (p+ qm)

(
200pqm

22n
+

96pq2
m

23n
+

4η

2n

)
+

2ηqv
2n

+
4p2qv
22n

+
2

2n
+

2η

2n
.
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We defer the proof of this theorem in Sect. 5. The forging advantage of nEHtMp

for η ≤ 2n/3, qm ≤ 22n/3 and p ≤ 22n/3 is thus given by

AdvMAC
nEHtMp

(qm, qv, 2p) ≤
(

29qm
22n/3

+
6qv

22n/3
+

28p

22n/3

)
+

296p2qm
22n

+
296pq2

m

22n
+

4p2qv
22n

+
4

22n/3
.

4.2 Matching Attack on nEHtMp

In this section we show a matching attack on nEHtMp with 22n/3 signing queries
and total 22n/3 + 2 primitive queries. For carrying out the attack, we consider
the following version of Polyhash function, a specific instantiation of an axu and
ar hash function: for a message m, if the size of m is not a multiple of n, where
n is the key size of the hash function, then we first apply an injective padding
(e.g., 10∗) on it to generate a padded message m′. Then the output of the hash
function for m′ is computed as follows:

Polykh(m′) = kl+1
h ⊕ klh ·m′l ⊕ kl−1

h m′l−1 ⊕ . . .⊕ kh ·m′1,

where l denotes the number of message blocks of m′ and m′i denotes the i-th
message block of m′. Now, it is easy to see that the hash function is (lmax+1)/2n-
secure axu and ar hash function, where lmax is the maximum number of message
blocks allowed. With this instance of the hash function of nEHtMp, we mount the
following attack. To begin with, we exploit bad event B.1 to mount the attack on
the construction. We construct a deterministic adversary A that forges nEHtMp

by making 22n/3 signing queries and total 22n/3 + 2 many primitive queries to π
as follows:

Attack Algorithm:

1. A first chooses a single block message m consisting of all zeroes, i.e., m = 0n.

2. Then A makes 22n/3 signing queries with (νj ,m) and obtains the tag tj for
j ∈ [22n/3], where νj = 0n/3−1‖〈j〉2n/3.

3. A makes 22n/3−1 forward primitive queries to π with x1
j and obtains the

output y1
j for j ∈ [22n/3−1], where x1

j = 0‖〈j〉2n/3−1‖0n/3.

4. A makes again 22n/3−1 forward primitive queries to π with x2
j and obtains the

output y2
j for j ∈ [22n/3−1], where x2

j = 1‖leftn/3−1(〈j〉2n/3−1)‖0n/3‖rightn/3(〈j〉2n/3−1).

5. Then, A finds a tripet (i, j, l) ∈ [22n/3] × [22n/3−1] × [22n/3−1] such that
ti = y1

j ⊕ y1
l .

6. A makes two aditional forward primitive queries to π with x1
? = x1

j ⊕ 0‖1n−1

and x2
? = x2

k ⊕ 0‖1n−1. Let the received response be y1
? and y2

? respectively.

7. Finally, A forges with (νi ⊕ 1n−1,m, y1
? ⊕ y2

?).

Analysis of the Forging Advantage. We first note that the structure of
νj , x

1
j and x2

j are as follows:

ν =

{
0 0 . . . 0︸ ︷︷ ︸
n/3−1

‖ ? ? . . . ?︸ ︷︷ ︸
n/3

‖ ? ? . . . ?︸ ︷︷ ︸
n/3

}
, x1 =

{
0‖ ? ? . . . ?︸ ︷︷ ︸

n/3−1

‖ ? ? . . . ?︸ ︷︷ ︸
n/3

‖ 0 0 . . . 0︸ ︷︷ ︸
n/3

}
.



BBB Secure Nonce Based MAC Using Public Permutations 13

x2 =

{
1‖ ? ? . . . ?︸ ︷︷ ︸

n/3−1

‖ 0 0 . . . 0︸ ︷︷ ︸
n/3

‖ ? ? . . . ?︸ ︷︷ ︸
n/3

}
.

Note that, the number of elements (νi, x
1
j ) that satify the relation 0‖(νi⊕k) = x1

j

is exactly 2n/3. As a result, the expected number of triplets (i, j, `) that satisfy
0‖(νi⊕k) = x1

j and 1‖(νi⊕k2
h) = x2

` is exactly 1. For this particular triplet (i, j, `)
that satifies the relation, A makes two additional forward primitive queries to
π with x1

? = x1
j ⊕∆ and x2

? = x2
` ⊕∆, where ∆ = 0‖1n−1. Thus, if A makes a

forging query with νi⊕1n−1 (which is distinct from all other nonces that belong
to the signing queries) and with the same message m = 0n, then we have

π(0‖(νi ⊕ 1n−1 ⊕ k))⊕ π(1‖(νi ⊕ 1n−1 ⊕ k2
h))

= π((0‖(νi ⊕ k))⊕∆)⊕ π((1‖(νi ⊕ k2
h))⊕∆) = π(x1

?)⊕ π(x2
?) = y1

? ⊕ y2
?

which makes (νi ⊕ 1n−1,m, y1
? ⊕ y2

?) a valid and succesful forging attempt. Note
that, the number of signing queries required is 22n/3 and the total number of
primitive queries required is 22n/3 + 2. However, the time complexity of this
attack is 22n−2.

5 Proof of Theorem 2: MAC Security of nEHtMp

Due to Eqn. (1), we bound the distinguishing advantage instead of bounding
the forging advantage of nEHtMp. For this, we consider any information the-
oretic deterministic distinghisher A that has access to the following oracles in
either the real world or in the ideal world: in the real world it has access to
(nEHtMp.Sigπ(k,kh), nEHtMp.Verπ(k,kh), π, π

−1); in the ideal world it has access to

(RF,Rej, π, π−1). We summarize the interactions of the distinguisher with its

oracle in a transcript τm ∪ τv, where τm
∆
= {(ν1,m1, t1), . . . , (νqm ,mqm , tqm)} is

the MAC transcript and τv
∆
= {(ν′1,m′1, t′1, b′1), . . . , (ν′qv ,m

′
qv , t

′
qv , b

′
qv )} is the ver-

ification transcript. Primitives queries to π are summarized in two lists in the

form of τ
(1)
p

∆
= {(x1

1, y
1
1), . . . , (x1

p, y
1
p)} and τ

(2)
p

∆
= {(x2

1, y
2
1), . . . , (x2

p, y
2
p)}, where

msb(x1
i ) = 0 and msb(x2

i ) = 1. We assume that none of the transcripts contain
any duplicate elements and after the interaction, we reveal the keys k, kh to the
distinguisher (before it output its decision), which happens to be the keys used
in the construction for the real world and uniformly sampled dummy keys for

the ideal world. The complete view is denoted by τ ′ = (τm, τv, τ
(1)
p , τ

(2)
p , k, kh).

5.1 Definition and Probability of Bad Transcripts

For the notational simplicity, we denote Hkh(mi) = Hi. x̂
b
i denotes chopmsb(xbi )

for b = 1, 2. We also define three sets: (a) T ∆
= {ti : (νi,mi, ti) ∈ τm}, (b)

Y1
∆
= {y1

i : (x1
i , y

1
i ) ∈ τ (1)

p } and (c) Y2
∆
= {y2

i : (x2
i , y

2
i ) ∈ τ (2)

p }. The main idea
of identifying bad events is to avoid the input collision of the permutation with
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primitive queries as that will determine the corresponding tag; hence losing the
randomness of the tag, which in turn, will help the adversary to distinguish the
output from random.

Definition 2 (Bad Transcript for nEHtMp). Given a paramter ξ ∈ N, where

ξ ≥ η, an attainable transcript τ ′ = (τm, τv, τ
(1)
p , τ

(2)
p , k, kh) is called a bad

transcript if any one of the following holds:

- B.1 : ∃ i ∈ [qm], j, ` ∈ [p] such that νi ⊕ k = x̂1
j , νi ⊕ Hi = x̂2

` .
- B.2 : ∃ i, j, ` ∈ [qm], i 6= j, i 6= ` such that νi = νj and νi ⊕ Hi = ν` ⊕ H`.
- B.3 : ∃ i 6= j ∈ [qm], ` ∈ [p] such that νi ⊕ k = x̂1

` and νi ⊕ Hi = νj ⊕ Hj.
- B.4 : ∃ i 6= j ∈ [qm], ` ∈ [p] such that νi = νj and νi ⊕ Hi = x̂2

` .
- B.5 : ∃ i 6= j ∈ [qm] such that νi = νj and ti = tj.
- B.6 : ∃ i 6= j ∈ [qm] such that νi ⊕ Hi = νj ⊕ Hj and ti = tj.
- B.7 : #{(ti, y1

j , y
2
` ) ∈ T × Y1 × Y2 : ti = y1

j ⊕ y2
`} ≥ p2qm/2

n + p
√

3nqm.

- B.8 : ∃ i ∈ [qm], j, ` ∈ [p] such that νi ⊕ k = x̂1
j , y

1
j ⊕ ti = y2

` .

- B.9 : ∃ i ∈ [qm], j, ` ∈ [p] such that νi ⊕ Hi = x̂2
j , y

2
j ⊕ ti = y1

` .
- B.10 : {i1, . . . , iξ+1} ⊆ [qm] such that νi1 ⊕ Hi1 = νi2 ⊕ Hi2 = . . . = νiξ+1

⊕
Hiξ+1

(the optimal value of ξ shall be determined later in the proof).
- B.11 ∃ a ∈ [qv], ∃ i ∈ [qm] such that νi = ν′a, νi ⊕Hi = ν′a ⊕H′a and ti = t′a.
- B.12 ∃ a ∈ [qv], ∃ j, ` ∈ [p] such that ν′a ⊕ k = x̂1

j , ν
′
a ⊕ H′a = x̂2

` and

t′a = y1
j ⊕ y2

` .
- B.13 ∃ i ∈ [qm] such that ti = 0n.

Lemma 2. Let Did and BadT be defined as in Sect. 2.3. Then

Pr[Did ∈ BadT] ≤ p2εreg

2n
(3qm + 2qv) + εaxu

(
q2
m

2ξ
+ 2ηqm +

pq2
m

2n
+

q2
m

2n+1
+ (η + 1)qv

)
+ εreg(2ηp+ p

√
3nqm) +

2p2qm
22n

+
2 + 2η

2n
+

2p
√

3nqm
2n

+
qm
2n
.

Proof of the lemma can be found in Sect. 6.

5.2 Analysis of Good Transcripts

For a good transcript τ ′ = (τm, τv, τ
(1)
p , τ

(2)
p , kh, k), the ideal interpolation prob-

ability is

pid(τ ′)
∆
= Pr[Did = τ ′] =

1

|Kh|
· 1

2n−1
· 1

2nqm
· 1

(2n)2p
. (7)

Computing Real Interpolation Probability. To compute the real inter-

polation probability, we regroup the elements of τm, τ
(1)
p and τ

(2)
p into three new

transcripts τ̂m, τ̂
(1)
p and τ̂

(2)
p in the following way: initially the new transcripts

are set to the old one. Now, for each (νi,mi, ti) ∈ τm, if (a) νi ⊕ k = x̂1
j , then

τ̂m ← τm\{(νi,mi, ti)} and τ̂
(2)
p ← τ̂

(2)
p ∪{1‖(νi⊕Hi), ti⊕y1

j ); if (b) νi⊕Hi = x̂2
j ,
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then τ̂m ← τm \ {(νi,mi, ti)} and τ̂
(1)
p ← τ̂

(1)
p ∪ {0‖(νi ⊕ k), ti ⊕ y2

j ). Since τ ′ is
a good transcript, it does not meet any of the bad conditions listed in Defn. 2.
We know that if νi ⊕ k = x̂1

j , then νi ⊕ Hi cannot collide with x̂2
` (due to ¬B.1)

and y1
j ⊕ ti cannot collide with y2

` (due to ¬B.8). Similarly for τ̂
(2)
p . This way, we

will end up with soundly defined τ̂
(1)
p and τ̂

(2)
p and a set of signing queries τ̂m

that does not collide with any tuple in τ̂
(1)
p or τ̂

(2)
p .

Let s1, s2 ≤ p be the number of signing queries that collides with any element

of τ
(1)
p and τ

(2)
p respectively. Therefore, p1

∆
= |τ̂ (1)

p | = p+ s2, p2
∆
= |τ̂ (2)

p | = p+ s1

and q′m
∆
= |τ̂m| = qm − s1 − s2. We denote q′p = p1 + p2 = 2p + s1 + s2. We say

that a permutation π is compatible with τ̂
∆
= τ̂m ∪ τv ∪ τ̂ (1)

p ∪ τ̂ (2)
p if the following

holds:

• for all (νi,mi, ti) ∈ τ̂m, π(0‖(νi ⊕ k))⊕ π(1‖(νi ⊕ Hi)) = ti
• forall a ∈ [qv], π(0‖(ν′a ⊕ k))⊕ π(1‖(ν′a ⊕ H′a)) 6= t′a
• for all (x1

i , y
1
i ) ∈ τ̂ (1)

p , π(x1
i ) = y1

i

• for all (x2
i , y

2
i ) ∈ τ̂ (2)

p , π(x2
i ) = y2

i .

Therefore, the remaining part is to count the number of compatible permutations
π. As a result, we have

pre(τ ′)
∆
= Pr[Dre = τ̂ ] =

1

|Kh|
· 1

2n−1
· hα

(2n)p1+p2+α
, (8)

where hα denotes the number of injective solutions to the following system of
equations and non-equations (E= ∪ E 6=), with α many distinct variables. For
notational simplicity, we denote π(0‖νi ⊕ k) as Ui and π(1‖νi ⊕ Hi) as Vi.

E= =


U1 ⊕ V1 = t1

U2 ⊕ V2 = t2
...

Uq′m ⊕ Vq′m = tq′m

E 6= =


U ′1 ⊕ V ′1 6= t′1
U ′2 ⊕ V ′2 6= t′2

...

U ′qv ⊕ V
′
qv 6= t′qv

where q′m = qm − s1 − s2. It is to be noted here that E= ∪ E 6= is defined over
α many distinct variables. Therefore, some variables in E= ∪ E 6= may collide to
each other. Thus, from Eqn. (7) and Eqn. (8), we have,

pre(τ ′)

pid(τ ′)
=

2ns1

(2n − 2p)s1︸ ︷︷ ︸
A.1

· 2ns2

(2n − 2p− s1)s2︸ ︷︷ ︸
A.2

· hα · 2nq
′
m

(2n − 2p− s1 − s2)α︸ ︷︷ ︸
A.3

. (9)

Note that, A.1 ≥ 1 and A.2 ≥ 1. Therefore, we are left to bound A.3. Note that,
the induced graph G of E= ∪ E 6= has α many vertices. Moreover, |F| = qm and
|F ′| = qv. It is easy to verify that as τ ′ is a good transcript, G is a good graph.
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Therefore, by putting σ = q′p in Theorem 1, we have

hα ≥
(2n − 2p− s1 − s2)α

2nq
′
m

·
(

1−

k∑
i=1

6(ρ′i−1)2
(
µi
2

)
22n

− 2qv
2n

)
. (10)

From Eqn. (8) and Eqn. (10), we have

pre(τ ′)

pid(τ ′)
≥
(

1−

k∑
i=1

6(ρ′i−1)2
(
µi
2

)
22n

−2qv
2n

)
(1)

≥ 1−
( k∑

i=1

24(q′m + q′p)
2
(
µi
2

)
22n

+
2qv
2n︸ ︷︷ ︸

Φ(τ ′)

)
,

where the simplification for (1) follows from the fact ρ′i−1 = α+q′p ≤ 2(q′m+q′p).
Now, from Sect.6.2 of [16] we have

E


k∑

i=1

(
µi
2

) ≤ (q′m)2εaxu/2 + η2/2 + 2q′m. (11)

By applying the expectation method of Sect. 2.3 on Eqn. (11), we have

E[Φ(Did)] ≤
12(q′m + q′p)

2

22n

(
(q′m)2εaxu + η2 + 4q′m

)
+

2qv
2n

. (12)

By doing a simple algebra on Eqn. (12) and by assuming q′m ≤ qm, q
′
p ≤ 4p, we

have

E[Φ(Did)] ≤
(

12q4
mεaxu

22n
+

12η2q2
m

22n
+

48q3
m

22n
+

48pq3
mεaxu

22n
+

48η2pqm
22n

+
192pq2

m

22n

+
48p2q2

mεaxu

22n
+

48η2p2

22n
+

192p2qm
22n

+
2qv
2n

)
. (13)

Finalizing the proof. We have assumed that ξ ≥ η and from the condition
of Theorem 1, we have ξ ≤ 2n/(8q′m + 2q′p) ≤ 2n/8q′m. By assuming η ≤ 2n/8q′m
(otherwise the bound becomes vacuously true) we choose ξ = 2n/8q′m. Hence,
the result follows by applying Eqn. (3), Lemma 2, Eqn. (13) and ξ = 2n/8q′m.

6 Proof of Lemma 2

By the union bound,

Pr[Did ∈ BadT] ≤
7∑
i=1

Pr[B.i] + Pr[B.8 | B.7] + Pr[B.9 | B.7] +

13∑
i=10

Pr[B.i]. (14)
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In the following, we bound the probabilities of all the bad events individually.
The lemma will follow by adding the individual bounds.

Bounding B.1. For any possible signing query (νi,mi, ti) ∈ τm and a pair

of any possible primitive queries (x1
j , y

1
j ) ∈ τ

(1)
p and (x2

` , y
2
` ) ∈ τ

(2)
p , the only

randomness in the equation νi⊕k = x̂1
j is k and the randomness in the equation

νi ⊕ Hi = x̂2
` is kh, the hash key. In the ideal world, k and kh are dummy keys,

sampled uniformly and independently from their respective space. Therefore,
for a fixed choice of i, j and `, the probability of the event is εreg/2

n−1, where
εreg is the regular advantage of the underlying hash function. Summing over all
possible choices of i, j and ` we have

Pr[B.1] ≤ 2p2qmεreg

2n
. (15)

Bounding B.2. Let N be the set of all query indices i for which there is a j 6= i
such that νi = νj . It is easy to see that |N | ≤ 2η. Event B.2 occurs if for some
j ∈ N , νj⊕Hj = ν`⊕H` for some ` 6= j. For any such fixed i, j, `, the probability
of the event is at most εaxu, where εaxu is the almost xor universal advantage of
the underlying hash function. The number of such choices of (i, j, `) is at most
2ηqm. Hence,

Pr[B.2] ≤ 2ηqmεaxu. (16)

Bounding B.3. For any two signing queries (νi,mi, ti), (νj ,mj , tj) ∈ τm and a

primitive query (x1
` , y

1
` ) ∈ τ (1)

p , the only randomness in the equation νi⊕ k = x̂1
`

is k and the randomness in the equation Hi ⊕ Hj = νi ⊕ νj is kh. In the ideal
world, k and kh are dummy keys, sampled uniformly and independently from
their respective space. Therefore, for a fixed choice of i, j and `, the probability
of the event is εaxu/2

n−1, where εaxu is the almost xor universal advantage of
the underlying hash function. Summing over all possible choices of i, j and ` we
have

Pr[B.3] ≤ pq2
mεaxu

2n
. (17)

Bounding B.4. For any two signing queries (νi,mi, ti), (νj ,mj , tj) ∈ τm and a

primitive query (x2
` , y

2
` ) ∈ τ (2)

p , the only randomness in the equation νi⊕Hi = x̂2
`

is kh. In the ideal world, kh is sampled uniformly from Kh. Therefore, for a fixed
choice of i, j and `, the probability of the event is εreg. The number of choices of
i 6= j ∈ [qm] such that νi = νj is at most 2η and the number of choices of ` is at
most p. Summing over all possible choices of i, j and ` we have

Pr[B.4] ≤ 2ηpεreg. (18)

Bounding B.5. For a fixed choice of indices i and j, the probability of the event
is at most 1/2n. Number of choices of i and j such that νi = νj is at most 2η.
Summing over all possible choices of i and j we have

Pr[B.5] ≤ 2η

2n
. (19)
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Bounding B.6. Similar to B.5, for a fixed choice of indices i and j, the probabil-
ity of the event is at most εaxu/2

n, as the event νi⊕Hi = νj ⊕Hj is independent
over ti = tj . Summing over all possible choices of i and j we have

Pr[B.6] ≤ q2
mεaxu

2n+1
. (20)

Bounding B.7. Event B.7 is bounded by Lemma 1, where we take A = Y1 and
B = Y2.

Pr[B.7] ≤ 2

2n
. (21)

Bounding B.8 | B.7. Let C
∆
= p2qm/2

n + p
√

3nqm. As we are bounding the
event B.8 | B.7, number of i, j and ` that satifies ti = y1

j ⊕ y2
` is at most C. For a

fixed choice of indices i, j and `, the probability of the event is at most 1/2n−1.
Hence, by summing over all possible choices of i, j and `, we have

Pr[B.8 | B.7] ≤ 2p2qm
22n

+
2p
√

3nqm
2n

. (22)

Bounding B.9 | B.7. Bounding B.9 | B.7 is identical to that of B.8 | B.7. For
a fixed choice of indices i, j and `, the probability of the event is at most εreg.
Summing over all possible choices of i, j and ` we have

Pr[B.9 | B.7] ≤ p2qmεreg

2n
+ p
√

3nqmεreg. (23)

Bounding B.10. Event B.10 occurs if there exist ξ + 1 distinct signing query
indices {i1, . . . , iξ+1} ⊆ [qm] such that νi1⊕Hi1 = . . . = νiξ+1

⊕Hiξ+1
. This event

is thus a (ξ + 1)-multicollision on the εuniv-universal hash function 4 mapping
(ν,m) to ν ⊕Hkh(m) (as Hkh is an εaxu-almost-xor universal). Therefore, by ap-
plying the multicollision theorem of universal hash function (Theorem 1) of [16],
we have

Pr[B.10] ≤ q2
mεaxu/2ξ. (24)

Bounding B.11. For some a ∈ [qv] and i ∈ [qm], if νi = ν′a, νi⊕Hi = ν′a⊕H′a and
ti = t′a, then mi 6= m′a (as the distinguisher is non-trivial). Hence the probability
that νi ⊕ Hi = ν′a ⊕ H′a holds is at most εaxu, due to the axu probability of the
hash function. Now, for any choice of a ∈ [qv], there can be at most (η + 1)
indices i such that νi = ν′a. Hence, the required probability is bounded as

Pr[B.11] ≤ (η + 1)qvεaxu. (25)

Bounding B.12. For any possible verification query (ν′a,m
′
a, t
′
a) ∈ τv and a pair

of any possible primitive queries (x1
j , y

1
j ) ∈ τ

(1)
p and (x2

` , y
2
` ) ∈ τ

(2)
p , the only

randomness in the equation ν′a⊕k = x1
j is k and the randomness in the equation

4 A hash function Hkh is said to be an εuniv-universal hash function if for all x 6= x′,
Pr[Hkh(x) = Hkh(x′)] ≤ εuniv.
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ν′a ⊕ H′a = x2
` is kh. In the ideal world, k and kh are dummy keys, sampled

uniformly and independently from their respective spaces. Therefore, for a fixed
choice of a, j and `, the probability of the event is εreg/2

n−1. Summing over all
possible choices of a, j and ` we have

Pr[B.12] ≤ 2qvp
2εreg

2n
. (26)

Bounding B.13. For a fixed choice of i, the probability that ti = 0n is exactly
2−n. Summing over all possible choices of i we have

Pr[B.13] ≤ qm
2n
. (27)

The proof follows from Eqn. (14)-Eqn. (27). ut
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2. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak. In
Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Athens, Greece,
May 26-30, 2013. Proceedings, pages 313–314, 2013.

3. Tim Beyne, Yu Long Chen, Christoph Dobraunig, and Bart Mennink. Elephant.
NIST LWC, 2019.

4. Hanno Böck, Aaron Zauner, Sean Devlin, Juraj Somorovsky, and Philipp Jo-
vanovic. Nonce-disrespecting adversaries: Practical forgery attacks on GCM in
TLS. In 10th USENIX Workshop on Offensive Technologies, WOOT 16, Austin,
TX, USA, August 8-9, 2016., 2016.

5. Andrey Bogdanov, Miroslav Knezevic, Gregor Leander, Deniz Toz, Kerem Varici,
and Ingrid Verbauwhede. SPONGENT: the design space of lightweight crypto-
graphic hashing. IEEE Trans. Computers, 62(10):2041–2053, 2013.

6. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Francois-Xavier Standaert,
John Steinberger, and Elmar Tischhauser. Key-alternating ciphers in a provable
setting: Encryption using a small number of public permutations. In Advances in
Cryptology – EUROCRYPT 2012, pages 45–62, 2012.

7. Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle family
of lightweight and secure authenticated encryption ciphers. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(2):218–241, 2018.

8. Bishwajit Chakraborty and Mridul Nandi. Orange. NIST LWC, 2019.
9. Shan Chen, Rodolphe Lampe, Jooyoung Lee, Yannick Seurin, and John P. Stein-

berger. Minimizing the two-round even-mansour cipher. In Advances in Cryptology
- CRYPTO 2014,, pages 39–56, 2014.



20 Avijit Dutta and Mridul Nandi

10. Yu Long Chen, Eran Lambooij, and Bart Mennink. How to build pseudoran-
dom functions from public random permutations. In Advances in Cryptology -
CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 18-22, 2019, Proceedings, Part I, pages 266–293, 2019.
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