
Glimpses are Forever in RC4 amidst the Spectre
of Biases

Chandratop Chakraborty1, Pranab Chakraborty2, Subhamoy Maitra3

1 Department of Computer Science and Engineering, PES University, 100 Feet Ring Road, BSK
III Stage, Bangalore 560085, India. chandratop@protonmail.ch

2 Learning and Development, Human Resources, Wipro Limited, Doddakannelli, Sarjapur Road,
Bangalore 560035, India. kojagori@gmail.com

3 Applied Statistics Unit, Indian Statistical Institute, 203 B T Road, Kolkata 700108, India,
subho@isical.ac.in

Abstract. RC4 stream cipher uses two simple operations, swap for state evolution and
double indirection for producing the key-stream output byte. The non-randomness
produced by these RC4 operations are well known now. However, still there are many
important cryptanalytic issues that remain open in RC4. In this paper we first prove
the biases presented by Fluhrer and McGrew (FSE 2000) two decades ago. It is
surprising that though the biases have been published long back, and there are many
applications of them in cryptanalysis till recent days, the proof of the results have
not been considered in a disciplined manner. In this paper, we complete that task
and also show that any such bias immediately provides a glimpse of hidden variables
in RC4. Further, we take up the biases of two non-consecutive key-stream bytes
skipping one byte in between. We show the incompleteness of such a result presented
by SenGupta et al (JoC, 2013) and produce novel results in this direction related to
key-stream bytes and glimpses. Similarly, we show certain missed observation in the
famous Glimpse theorem presented by Jenkins in 1996. Our results point out how
biases of RC4 key-stream and the Glimpses of the RC4 hidden variables are related.
It is evident from our results that the biases and glimpses are everywhere in RC4 and
it needs further investigation. The new glimpses and biases that we identify in this
paper can be exploited in improving practical attacks in the protocols that use RC4.
Keywords: Biases, Cryptanalysis, Glimpses, Non-randomness, RC4, Stream Cipher.

1 Introduction
Until recently, RC4 was one of the most widely deployed stream ciphers, both in the
public domain as well as in the commercial software products. However, a number of
cryptanalytic attacks have proved that it is not secure enough and hence the usage of the
cipher has been deprecated across the board. While there is a possibility that it may still
be present in some legacy servers and software products, the Internet Engineering Task
Force (IETF) has prohibited its usage in TLS (Transport Layer Security) through RFC
7465 [12]. At the same time, replacing the most popular stream cipher from the existing
computational equipments will require more time. That is, RC4 is still in use in many
applications and thus the analysis of the cipher is indeed relevant in the present context.

For nearly three decades cryptologists have studied this cipher and uncovered its
various weaknesses in the form of short-term and long-term biases, as documented in
several papers [1, 2, 3, 4, 5, 8, 9, 10, 11, 13, 14, 15] and the references therein. The
short-term key dependent biases can generally be avoided in the truncated mode of RC4,
by throwing out the initial 768 or more key-stream bytes. However, some recent and most

mailto:chandratop@protonmail.ch
mailto:kojagori@gmail.com
mailto:subho@isical.ac.in

2 Glimpses are Forever in RC4 amidst the Spectre of Biases

prominent cryptanalysis, such as [1, 2, 15], have exploited the long-term biases in the
key-stream that are present even after such truncation. Since these attacks have utilized
robust statistical frameworks and have carried out “fine-grained analysis" of certain biases,
it is generally considered that the nature of anomalies present in the long-term key-stream
of RC4 have been well-understood by now. However, that is not correct as evident from
several missing proofs. In the process of revisiting, we also uncover surprising elements of
long-term biases in RC4 that so far remained undetected and unexplored. At this point, it
is essential to first describe the RC4 as we would be referring to the algorithm, its internal
elements and the output key-stream while summarizing the contributions of this paper.

In RC4, we have an N = 256 length array of n = 8 bit integers 0 to N − 1, that works
as a permutation. That is N = 2n. There is also an l length array of bytes K (the secret
key), where l may vary from 5 to 32, depending on the key length. There are also two bytes
i, j, where i is the deterministic index that increases by 1 in each step and j is updated in
a manner so that it behaves pseudo-randomly. The Key Scheduling Algorithm (KSA) of
RC4 is as follows:

• j = 0; for i = 0 to N − 1: S[i] = i;

• for i = 0 to N − 1:

j = j + S[i] + K[i mod l]; swap(S[i], S[j]);

Next, the pseudo-random bytes z are generated during the Pseudo Random Generator
Algorithm (PRGA) as follows:

• i = j = 0;

• for i = 0 to N − 1:

i = i + 1; j = j + S[i]; swap(S[i], S[j]); z = S[S[i] + S[j]];

All the additions here are modulo N . Note that the subscript r is used to identify the
round r and Sr[x] means the value at x-th location after the swap operation in the said
round. The index jr is the value of j after the updation j + S[i] in the round r.

1.1 Organization and Contribution
As in most of the previous efforts (see [13], and the references therein), we explore non-
randomness in the RC4 stream cipher in this paper. Here we first concentrate on the work
of Fluhrer and McGrew [3], two decades ago. These are biases relating to two consecutive
bytes zr, zr+1. The biases are still relevant as evident from the recent cryptanalytic
work [15]. In [3, Section 4], there was some effort towards providing theoretical justification
for the twelve identified biases in [3, Table 3]. However, that effort was incomplete in
terms of proofs and identifying the consequences. In Section 2, we explain these proofs in
detail and show how such biases of two consecutive bytes reveal state information.

Then we concentrate on the biases between two non-consecutive bytes zr, zr+2, for
r ≡ 0 mod N , leaving one key-stream byte between them. In [3], such a pair of key-
stream bytes is referred as “lag-one digraph". In Section 3, we study such biases. The
byte-wise correlation for non-consecutive key-stream pair zr = 0 and zr+2 = 0 has been
reported by Sen Gupta et. al. (in [13, Section 4.3, Theorem 16]). Subsequently, Vanhoef-
Piessens [15] experimentally identified the bias for key-stream pair zr = 128 and zr+2 = 0,
for r ≡ 0 mod N . However, Vanhoef et. al. [15] did not provide any theoretical explanation
to the source of the bias. Later in [6], a proof of this has been presented. In this paper,
we report two new non-consecutive double-byte biases in lag-one digraph. We present a
generic approach to theoretically prove all these biases. This approach is different and
more accurate than the proof of [13, Theorem 16]. In the technique followed by Sen Gupta

Chandratop Chakraborty1, Pranab Chakraborty2, Subhamoy Maitra3 3

et. al. (in [13]), the bias value is proved by assuming independence of two events. However,
those are closely dependent upon each other. Moreover, the proof of [13] was partial
and we present a sharper value for the bias corresponding to the lag-one digraph that
was reported in [13]. As we have pointed out several times, these biases also lead to the
glimpses of the pseudo-random index jr and of certain bytes of the state. We show that in
some cases, we can achieve a bias of the order of 4

N that could never be discovered earlier.
In fact, in [13, Section 4.2.1], the idea of “Guessing State Information Using the Bias in zr"
has been presented and we study that concept with far more insight in this work. In the
conclusion of [13], the following question has been posed: “How does one generalize the
concept of digraph biases to related bytes with arbitrary gaps in between? Are there more
long-term biases of this kind in the RC4 key-stream?" Our work advances the research in
this direction.

It is expected that any information about the state should not be revealed from the
key-stream of the stream cipher. It is well known that this is not the case for RC4. Robert
J. Jenkins Jr., around quarter century ago, first mentioned about correlations that exist
among certain permutation array bytes, index values and the key-stream byte in his
web-site ([5]). This can be clearly mentioned as follows. We have the complete knowledge
about the public index i and the key-stream byte z at any round of RC4. From these
two bytes, is it possible to obtain additional information regarding the hidden variables
j, S[i] or S[j] other than the random association? Following [5], the well known Glimpse
of RC4 has been presented (for more details see Theorem 1 in Section 4). This glimpse is
dependent upon the way the output key-stream byte, zr = Sr[Sr[ir] + Sr[jr]], is formed
based on the two indices and are independent of the swap step. In this regard, let us
reiterate that the source of this bias and explain that this bias is not dependent on the
way RC4 permutation array evolves; instead it is only dependent upon the way key-stream
byte is derived in the last step of the algorithm (which is z = S[S[i] + S[j]]).

In Section 4, we explore several results related to Glimpse that are generated due to
the output function z = S[S[i] + S[j]]. In Section 4.1, we embark upon a fine-grained
analysis of the Glimpse theorem (as in Theorem 1) and show that although the results are
approximately valid at an aggregate level, there can be deviations when we constrain the
values of indices (i and j). For example, if i = j = 3, the probability that Sr[3] = (3− zr)
is around 1

N instead of the expected value of 2
N (ignoring order 1

N2 terms) as given in
Theorem 1. Similarly, if i = j = 4, the probability that Sr[4] = (4−zr) is almost 3

N instead
of 2

N . In fact, we prove that under specific conditions (e.g., when zr = 2 ∗ ir), one can get
a glimpse of the pseudo-random index j and this bias is also independent of the way the
RC4 permutation array evolves. Similar kinds of new glimpses are presented in Section 4.2
too. In Section 4.3, we note that the swap operation is also involved in addition to the
output function format of RC4 in providing glimpses. We can show that it is possible
to obtain glimpses of the order of 5

N exist, which is the best known so far. Our results
substantially improve the work of [7] that could only provide an example of order 3

N .
In summary, we analyse several non-randomness results of RC4 that remained unclear

for several decades. In the process we provide new biases and glimpses that were never
known earlier. These new non-randomness results can be exploited to improve the practical
attacks as explored in [1, 4, 11, 14, 15]. Section 5 concludes this paper summarizing all
these details and providing future directions.

2 Glimpses corresponding to Fluhrer-McGrew biases
Fluhrer-McGrew digraph biases are widely referred in RC4 literature and these have
been utilized in a number of cryptanalytic attacks. Surprisingly, the root causes behind
these biases do not appear to have been studied in a methodical manner. Vanhoef and
Piessens [15], while combining Fluhrer-McGrew biases [3] with Mantin’s ABT AB biases [9],

4 Glimpses are Forever in RC4 amidst the Spectre of Biases

to cryptanalyze RC4 in WPA-TKIP and TLS, have observed the following.

“We will combine multiple types of biases by multiplying their individual
likelihood estimates An open problem is determining which biases can be
combined under a single likelihood estimation . . ."

That is, there is a scope to uncover the underlying mechanisms that cause Fluhrer-McGrew
biases [3] and that can eventually lead to a better understanding of how one can combine
different types of biases in a single framework of likelihood estimation. In another work [2,
Section 3.3], Bricout et. al. have commented the following on “Double-byte bias correction".

“Hence, based on the Fluhrer-McGrew biases alone, and assuming that oc-
currences of these biases are pair-wise independent, we would expect the
pattern 00S00 (for any size of S) to occur with probability 2−32(1 + 2−8)2 ≈
2−32(1 + 2−7)."

The above justification is based on the assumption that the occurrences of the Fluhrer-
McGrew biases [3] are pair-wise independent. This is not exactly correct. In fact, by
experimenting on the pattern 01S01 for different lengths of S, one can see that the
occurrence probability reduces with the reduction of length of S which establishes the fact
that Fluhrer-McGrew biases are not pair-wise independent and hence when S is small
(e.g., empty), the source mechanism of one double-byte (01) would adversely affect the
source mechanism of the other one. As per the fine-grained analysis of Bricout et. al.[2], it
has been proved that for a pattern like 01S01, Mantin biases [9] would not be present and
hence the variation of probability of occurrence of the pattern due to the length of S can’t
be attributed to Mantin biases.

Fluhrer and McGrew [3, Section 4] provided a direction of analysis to understand the
mechanisms behind the digraph biases. They have specifically considered the positive
biases for (0, 1) and (0, 0) digraphs and the negative bias for (N − 1, N − 1) digraph.
However, the reasoning given in their paper do not adequately substantiate the increase of
probability for (0, 0) digraph when ir = 1 and the decrease of probability for (N −1, N −1).
In fact, to the best of our knowledge, after two decades of the results presented in [3],
there is no disciplined effort towards proving these biases. In this section we illustrate the
source configurations corresponding to all Fluhrer-McGrew digraph scenarios, present the
approach to calculate the probabilities and explain how these source configurations lead
to a series of glimpse results. We make the following two key observations based on the
results of this section.

1. Biases and glimpses are the two sides of the same coin. Both are either based upon
non-randomness in the way key-streams are formed or due to non-randomness in
the underlying data structure (e.g., in the permutation array). So biases are like the
spectre behind the glimpses and presence of biases would surely reveal glimpses.

2. Glimpses can be detected for individual events as well as for joint events. Since the
joint events can be formed in a variety of ways by combining the source configurations
corresponding to different types biases, it appears that within the construct of RC4,
glimpses are forever!

In Table 1, we explicitly show the source configurations of Fluhrer-McGrew digraph biases.
These source configurations are the root causes behind the Fluhrer-McGrew biases [3]. We
now demonstrate how the source configurations lead to the biases for each of the scenarios.

Scenario 1: Let us first consider the following set of source configurations (corresponding
to Scenario 1):

(1) Sr[1] = (2− jr), Sr[2] = 0 and Sr[jr] = jr where ir = 1

Chandratop Chakraborty1, Pranab Chakraborty2, Subhamoy Maitra3 5

Table 1: The source configurations for Fluhrer-McGrew Biases [3]
Scenario (zr , zr+1) ir Source configuration(s)

1. (0, 0) ir = 1 Sr [1] = (2 − jr), Sr [2] = 0, (Sr [jr] = jr or jr = 1)
2. (0, 0) ir 6∈ {1, 255} Sr [ir] = (ir + 1 − jr), Sr [ir + 1] = 0, Sr [jr] = jr
3. (0, 1) ir 6∈ {0, 1} Sr [ir] = 1, Sr [ir + 1] = 0, Sr [jr] = ir
4. (ir + 1, 255) ir 6= 254 Sr [ir] = ir + 1, jr = (ir + 1), Sr [jr] = 255
5. (255, ir + 1) ir 6∈ {1, 254} Sr [ir] = 255, Sr [jr] = (ir + 1), Sr [ir + 1] = 0
6. (255, ir + 2) ir 6∈ {0, 253, 254, 255} Sr [ir] = (ir + 2), Sr [jr] = 255, jr = (ir + 1)
7. (255, 0) ir = 254 Sr [254] = 0, Sr [255] = 255, jr = 255
8. (255, 1) ir = 255 Sr [255] = 1, Sr [0] = 255, jr = 0
9. (255, 2) ir = 0 Sr [0] = 2, Sr [1] = 255, jr = 1

10. (129, 129) ir = 2 Sr [2] = 129, Sr [3] = 1, jr = 2
11. (255, 255) ir 6= 254 Sr [ir + 1] = 0 is an impossible event
12. (0, ir + 1) ir 6∈ {0, 255} Sr+1[ir+1] = ir+1 is an impossible event

In round r: zr = Sr[2− jr + jr] = Sr[2] = 0
In round r + 1: jr+1 = jr as Sr[2] = 0 and after the swap step Sr[2] = jr and Sr[jr] = 0.
Hence, zr+1 = Sr+1[jr + 0] = Sr+1[jr] = 0.

Let us next consider the other set of source configurations (corresponding to Scenario
1):

(2) Sr[1] = (2− jr), Sr[2] = 0 and jr = 1 where ir = 1

In round r: zr = Sr[2− 1 + 1] = Sr[2] = 0
In round r + 1: jr+1 = jr as Sr[2] = 0 and after the swap step Sr[2] = 1 and Sr[1] = 0.
Hence, zr+1 = Sr+1[1 + 0] = Sr+1[1] = 0.

Therefore both the source configurations corresponding to Scenario 1, lead to the desired
digraph (0, 0). Since in each set, we assume three separate conditions, by considering
independence of these configurations, we get the probability Pr((zr, zr+1) = (0, 0)|ir =
1) = 2

N3 + (1 − 2
N3) · 1

N2 ≈ 1
N2 + 2

N3 . It must be pointed out here that in [3, Section
4], Fluhrer and McGrew talked about one of these two source configurations (namely,
configuration (1)) and hence the justification was incomplete for for the Scenario 1 where
ir = 1.

These source configurations immediately lead to the following glimpse result as well.

Corollary 1. Pr((Sr[1] = (2− jr)) ∧ (Sr[2] = 0) ∧ (Sr[jr] = jr)|(zr, zr+1) = (0, 0), ir =
1) ≈ 1

N .

Proof. By referring to the proof of (0,0) bias (as given above), we find Pr((Sr[1] =
(2− jr))∧ (Sr[2] = 0)∧ (Sr[jr] = jr)|(zr, zr+1) = (0, 0), ir = 1) ≈ 1

N3 /[1
N2 + 2

N3] ≈ 1
N .

The other source configuration (for Scenario 1) would also have the same glimpse value.
For each of the scenarios, the source configurations given in the table, reveal glimpses
of permutation array bytes as well as the pseudo-random index jr. We have observed
that many of these glimpse results (taken either as a joint probability or separately on
independent array byte values or the jr value) are much sharper than their corresponding
fair chance probabilities. Towards the end of this section, we have presented a table to
capture the glimpses for the sub-events under each source configuration.

Scenario 2: The source configuration is as follows.

• Sr[ir] = (ir + 1− jr),Sr[ir + 1] = 0 and Sr[jr] = jr where ir 6∈ {1, 255}

In round r: zr = Sr[ir + 1− jr + jr] = Sr[ir + 1] = 0
In round r + 1: jr+1 = jr as Sr[ir + 1] = 0 and after the swap step Sr[ir + 1] = jr and
Sr[jr] = 0. Hence, zr+1 = Sr+1[jr + 0] = Sr+1[jr] = 0.

Since we assume three separate conditions, by considering independence of these
configurations, we get the probability Pr((zr, zr+1) = (0, 0)|ir 6∈ {1, 255}) = 1

N3 + (1 −
2

N3) · 1
N2 ≈ 1

N2 + 1
N3 .

6 Glimpses are Forever in RC4 amidst the Spectre of Biases

Scenario 3 to Scenario 10 are all similar to Scenario 2 and the approach that we followed
to prove Scenario 2, can be used to derive the source configurations for Scenario 3–10 as
well, including the way the we have calculated the bias. In each of those Scenarios, we
can come up with a glimpse result (e.g., see Corollary 1) for the joint event corresponding
to the source configuration set as well as separately for each of the sub-parts of a source
configuration (presented in a table towards the end of this section).

Scenario 11: In this scenario a negative bias is observed. Hence the interpretation of the
term “source configuration" is different here and it signifies an “impossible event". The
source configuration is as follows.

• Sr[ir + 1] = 0 where ir 6= 254

To demonstrate why this is an “impossible event", let us assume Sr[ir] = p and
Sr[jr] = q, where p and q are two arbitrary byte values. Hence, zr = Sr[p + q] = (N − 2).
In case jr coincides with ir, p = q. Based on the given condition Sr[ir + 1] = 0, it’s evident
that p 6= 0. We now investigate what happens in round r + 1.

• Before swap: Since Sr[ir +1] = 0, jr+1 = jr. So Sr+1[ir+1] = 0 and Sr+1[jr+1] = q.

• After swap: Sr+1[ir+1] = q and Sr+1[jr+1] = 0.

Therefore, zr+1 = Sr+1[q + 0] = Sr+1[q]. As p 6= 0, (p + q) 6= q. So (p + q) and
q must point to two different array byte positions of S. The expected condition of
zr = zr+1 = (N − 2) can be achieved only if zr(= Sr[p + q]) gets swapped in round r + 1
and moves to a new position pointed to by q.

We now identify the three events that lead to the desired condition of zr = zr+1. For
no other configuration the desired condition would hold.

Event ir Event conditions zr = Sr[p + q] zr+1 = Sr+1[q]
1 All ir+1 = (p + q) and jr+1 = q 0 0
2 All ir+1 = q and jr+1 = (p + q) q q
3 1 jr = ir and p = q = 1 0 0

In Event 1 and Event 3 zr = zr+1 = 0 instead of the desired value of 255. In Event
2, zr = zr+1 = q, however it’s not possible to have the value of q as 255 since the event
condition demands ir+1 = q and the given condition for Scenario 11 excludes that possibility.
Hence, with Sr[ir + 1] = 0, we can’t satisfy (zr, zr+1) = (255, 255) for ir 6= 254. Therefore,
we get the probability Pr((zr, zr+1) = (255, 255)|ir 6= 254) ≈ 1

N ·(0)+(1− 1
N)· 1

N2 = 1
N2− 1

N3

which matches with experimentally observed bias value for this digraph.
We would like to mention here that in [3, Section 4], Fluhrer and McGrew talked

about the absence of an event where Sr[ir + 1] = (N − 1) and jr = ir + 1 to be the root
cause behind the negative bias of (N − 1, N − 1). However, since that event includes two
sub-events (with a probability of occurrence of 1

N2 considering their independence) - that
would have led to a probability value for Scenario 11 as 1

N2 · (0) + (1− 1
N2) · 1

N2 = 1
N2 − 1

N4

which is higher than the experimentally observed value of 1
N2 − 1

N3 . Hence, the justification
given was incomplete which we have now solved.

The source configuration for this Scenario immediately lead to the following glimpse
result as well.

Corollary 2. Pr(Sr[ir + 1] = 0|(zr, zr+1) = (255, 255), ir 6= 254) = 0

Chandratop Chakraborty1, Pranab Chakraborty2, Subhamoy Maitra3 7

Proof. This proof directly follows from the discussion above where we have shown that
under the condition of Sr[ir + 1] = 0, we can’t have the digraph (zr, zr+1) = (255, 255) for
ir 6= 254.

Scenario 12: The negative bias and glimpse result corresponding to Scenario 12 can be
shown in the same fashion as we have demonstrated it for Scenario 11. The fundamental
observation in this Scenario is that if Sr+1[ir+1] happens to be ir+1 then to get zr+1 = ir +1,
one must have Sr+1[jr+1] = 0 which can happen only if Sr[ir + 1] = 0 implying jr = jr+1.
But in that case zr can never be 0. If one would like to interpret this in terms of source
configuration in round r, we would require to have Sr[jr + Sr[ir + 1]] = ir+1 in order to
prevent a digraph of (0, ir + 1) in the key-stream corresponding to the positions (ir, ir+1).
Since here we assume only one event, the reduction in probability for the configuration
would be equal to 1

N3 as desired.
We now present the probabilities for the sub-events under each of the source con-

figurations corresponding to the Fluhrer-McGrew digraph scenarios. Let us take one
example to explain what we mean by the sub-events. In Scenario 1 corresponding to
digraph (0, 0), source configuration (1) has three sub-events: Sr[1] = (2 − jr),Sr[2] = 0
and Sr[jr] = jr. Let us call these events as e1, e2 and e3 respectively. The following table
shows the probabilities for these three events individually and by taking two at a time
under the given condition that (0, 0) has occurred in the key-stream at the position pair of
(ir = 1, ir+1 = 2). These probability values are approximate to the extent that any term of
the order of O(1

N2) or smaller have been ignored for the sake of simplicity. One should also
note that strictly speaking, Pr(e1) should be written as Pr(e1|(zr, zr+1) = (0, 0)). However,
we omit the condition in the following tables for brevity.

Scenario Configuration P r(e1) P r(e2) P r(e3) P r(e1 ∧ e2) P r(e2 ∧ e3) P r(e3 ∧ e1)
1. (1) 2.5/N 2/N 2.5/N 2/N 2/N 2/N

Similarly, in Scenario 1 corresponding to digraph (0, 0), source configuration (2) has
three sub-events: Sr[1] = (2 − jr),Sr[2] = 0 and jr = 1. The following table shows
the probabilities for these three events individually and by taking two at a time under
the given condition that (0, 0) has occurred in the key-stream at the position pair of
(ir = 1, ir+1 = 2).

Scenario Configuration P r(e1) P r(e2) P r(e3) P r(e1 ∧ e2) P r(e2 ∧ e3) P r(e3 ∧ e1)
1. (2) 2.5/N 2/N 2/N 2/N 1/N 1/N

The next table shows the probabilities for the sub-events corresponding to Scenario
2–10. For Scenario 11 and Scenario 12, the source condition has only one impossible event
and therefore we have not mentioned probabilities for sub-events.

Scenario Pr(e1) Pr(e2) Pr(e3) Pr(e1 ∧ e2) Pr(e2 ∧ e3) Pr(e3 ∧ e1)
2. 2/N 1/N 2/N 1/N 1/N 1/N
3. 2/N 2/N 3/N 1/N 1/N 1/N
4. 2/N 2/N 3/N 1/N 1/N 2/N
5. 2/N 4/N 3/N 2/N 2/N 1/N
6. 2/N 2/N 2/N 1/N 1/N 1/N
7. 2/N 3/N 2/N 1/N 1/N 1/N
8. 2/N 3/N 2/N 1/N 1/N 1/N
9. 2/N 3/N 2/N 1/N 1/N 1/N
10. 2/N 2/N 3/N 1/N 1/N 2/N

8 Glimpses are Forever in RC4 amidst the Spectre of Biases

To illustrate the mechanism behind the probabilities of the sub-events, let us take
the example of Scenario 2. We start by assuming that (zr, zr+1) = (0, 0) is given for
ir 6∈ {1, (N − 1)}. Now, for some arbitrarily chosen positions of indices (ir, jr), once we fix
the source configuration of event e1, two different possibilities may exist:

(1) we fix events e2 and e3 as well - leading to (N − 3) degree of freedom for rest of the
permutation array bytes that result in (N − 3)! possibilities (let us call this value as
X).

(2) we allow arbitrary value for Sr[jr] which fixes the position of 0 in the permutation
array. Also we allow arbitrary value for Sr[ir + 1] and thus fix the value of Sr[jr+1]
to ensure that zr+1 = 0. This would also have (N − 3)! possibilities.

Now the total number of permutations that satisfy the given condition of (zr, zr+1) =
(0, 0) can be shown to be approximately equal to (N − 2)! = (N − 2) · (N − 3)!. By taking
the ratio of total number of events that satisfy the desired condition of e1 event to the
total number of possible events, we find Pr(e1) = 2X/[(N − 2)X] ≈ 2

N . In an identical
way, we can also prove that Pr(e3) = 2

N . However, once we assume event e2 to be true, e3
must be true to ensure zr+1 = 0 and this leads to the validity of e1 as well so that we get
zr = 0. Thus Pr(e2) = 1

N . The combined probabilities of Pr(e1 ∧ e2) and Pr(e2 ∧ e3) as
a result of derivation above, become 1

N . Pr(e1 ∧ e3) = 1
N because once we fix the events

e1 and e3, e2 gets fixed automatically.
It is important to note that the events e1, e2 and e3 could have been defined with

respect to round r + 1 instead of round r and there could be different probability values
corresponding to such events as observed in round r+1. This shows that for any key-stream
bias one can always examine a variety of glimpses in the form of individual events as well
as joint events and hence it is virtually impossible to list down all possible glimpse results
associated with the long-term evolution of RC4 PRGA.

3 Lag-one digraph biases and glimpses
The well-known Fluhrer-McGrew biases (also referred as digraph probabilities in [3])
represent the most dominant ones that have been identified for consecutive key-stream
pairs at different index (i) values (modulo N) in the long-term evolution of RC4. To
the best of our knowledge, no such systematic study has so far been reported for non-
consecutive alternate key-stream pairs. The first byte-wise correlation for non-consecutive
key-stream pair zr = 0 and zr+2 = 0 (corresponding to the indices ir = 0 and ir+2 = 2
respectively) was reported by Sen Gupta et. al. (in [13, Theorem 16]). Subsequently,
Vanhoef-Piessens (in [15]) experimentally identified the bias for key-stream pair zr = 128
and zr+2 = 0 (corresponding to the indices ir = 0 and ir+2 = 2 respectively). However,
Vanhoef et. al. [15] did not provide any theoretical explanation to the source of the bias.

In this paper, we report two new non-consecutive double-byte biases (one as positive
and the other one as negative). By following the terminology of Fluhrer-McGrew ([3]), we
would henceforth call these pairs - “lag-one digraphs". We also present a generic approach
to theoretically prove all these biases. This approach is different and more accurate as
compared to the method followed by Sen Gupta et. al. (in [13, Theorem 16]) where the bias
value is proved by assuming independence of two events that are actually closely dependent
upon each other. Also, here we prove a sharper value for the bias corresponding to the
lag-one digraph that was first reported in [13, Theorem 16]. In addition, we show how
these biases lead to the glimpses of the pseudo-random index jr and of certain key-stream
bytes.

The following table captures all the four known lag-one digraphs and their corresponding
probabilities. Apart from these four pairs, we have not come across any other dominant

Chandratop Chakraborty1, Pranab Chakraborty2, Subhamoy Maitra3 9

lag-one digraph bias during experimentation. In each of the following results, we will use
the value N or 2n interchangeably, i.e., N = 2n.

Lag-one digraph Value of ir Probability
(zr, zr+2)=(0, 0) ir = 0 2−2n(1 + 2−n+1)
(zr, zr+2)=(2n−1, 0) ir = 0 2−2n(1 + 2−n)
(zr, zr+2)=(2n − 2, 0) ir = (2n − 2) 2−2n(1 + 2−n)
(zr, zr+2)=(0, 0) ir = (2n − 2) 2−2n(1− 2−n)

The approach taken for proving these biases is as follows. We present the scenario(s)
that ensure presence or absence of one of the desired lag-one digraphs in the RC4 key-
stream in most of the circumstances. Each of the scenarios correspond to a partially
specified state of RC4 by fixing the values of pseudo-random index jr together with certain
permutation array bytes. The probability of occurrence of a scenario is dependent upon
the number of specific values assigned in that process. In all other scenarios we assume
that the target digraph appears in RC4 key-stream with a fair chance probability.

The scenarios corresponding the results (Lemma 1 – 4) are as follows.

Scenario Result Value of ir Source condition(s)
1 Lemma 1 ir = 0 jr = 0, Sr[0] = 1 and Sr[2] = 0
2 Lemma 1 ir = 0 jr = 0, Sr[0] = (2n−1 + 1) and Sr[2] = 0
3 Lemma 2 ir = 0 jr = 0, Sr[0] = 2n−1 and Sr[2] = 0
4 Lemma 3 ir = (2n − 2) jr = 0, Sr[2n−2] = 2n−2 and Sr[0] = 0
5 Lemma 4 ir = (2n − 2) Sr[0] = 0

Lemma 1. During RC4 PRGA, if zr and zr+2 are the key-stream bytes for rounds r and
r + 2 respectively, then Pr(zr = 0 ∧ zr+2 = 0|ir = 0) ≈ 1

N2 + 2
N3 .

Proof. We prove this result by referring to the two scenarios (Scenario 1 and Scenario 2)
given in the table above.

[Scenario 1:] The conditions corresponding to this scenario are Sr[0] = 1, Sr[2] = 0 and
jr = 0. Since ir = jr = 0 and Sr[0] = 1, zr = Sr[1 + 1] = Sr[2] = 0. Similarly, using the
result of Mantin-Shamir (Theorem 1 in [8]) we know that unless Sr[1] = 2, zr+2 equals 0
(since ir = jr = 0 and Sr[2] = 0). Therefore, the probability associated with this scenario
corresponding to the desired lag-one digraph is 1

N3 · (1− 2
N−2) ≈ 1

N3 .

[Scenario 2:] The conditions corresponding to this scenario are Sr[0] = (N
2 + 1), Sr[2] = 0

and jr = 0. Since ir = jr = 0 and Sr[0] = (N
2 + 1), zr = Sr[N

2 + 1 + N
2 + 1] = Sr[2] = 0.

Again, using the result of Mantin-Shamir (Theorem 1 in [8]) we know that unless Sr[1] = 2,
zr+2 equals 0. Therefore, the probability associated with this scenario corresponding to
the desired lag-one digraph is 1

N3 · (1− 2
N−2) ≈ 1

N3 .

In rest of the configurations, zr and zr+2 can have the values of (0, 0) with equal chance
as of any other value pair. Hence, the probability for each of these configurations would be

1
N2 . Therefore, the probability associated with the complimentary cases is (1− 2

N3) · 1
N2 .

By combining the probabilities for Scenario 1, Scenario 2 and the rest of the cases, we
get the desired result Pr(zr = 0 ∧ zr+2 = 0|ir = 0) ≈ (1

N2 + 2
N3 − 2

N5) ≈ (1
N2 + 2

N3).

The following result was also proved in [6, Section 4.4, Theorem 13, Page 319], but we
present an independent proof here according to our path of analysis.

10 Glimpses are Forever in RC4 amidst the Spectre of Biases

Lemma 2. During RC4 PRGA, if zr and zr+2 are the key-stream bytes for rounds r and
r + 2 respectively, then Pr(zr = N

2 ∧ zr+2 = 0|ir = 0) ≈ 1
N2 + 1

N3 .

Proof. We prove this result by referring to the Scenario 3.

[Scenario 3:] The conditions corresponding to this scenario are Sr[0] = N
2 , Sr[2] = 0 and

jr = 0. Since ir = jr = 0 and Sr[0] = N
2 , zr = Sr[N

2 + N
2] = Sr[N] = N

2 . Similarly, using
the result of Mantin-Shamir (Theorem 1 in [8]) we know that unless Sr[1] = 2, zr+2 equals
0. Therefore, the probability associated with this scenario corresponding to the desired
lag-one digraph is 1

N3 · (1− 2
N−2) ≈ 1

N3 .

In rest of the configurations, zr and zr+2 can have the values of (N
2 , 0) with equal chance

as of any other value pair. Hence, the probability for each of these configurations would be
1

N2 . Therefore, the probability associated with the complimentary cases is (1− 1
N3) · 1

N2 .

By combining the probabilities for Scenario 3 and rest of the cases, we get the desired
result Pr(zr = N

2 ∧ zr+2 = 0|ir = 0) ≈ (1
N2 + 1

N3 − 1
N5) ≈ (1

N2 + 1
N3).

Lemma 3. During RC4 PRGA, if zr and zr+2 are the key-stream bytes for rounds r and
r + 2 respectively, then Pr((zr = (N − 2)) ∧ (zr+2 = 0)|ir = (N − 2)) ≈ 1

N2 + 1
N3 .

Proof. We prove this result by referring to the Scenario 4.

[Scenario 4:] The conditions corresponding to this scenario are Sr[N − 2] = (N − 2),
Sr[0] = 0 and jr = 0. Since ir = (N − 2), jr = 0 and Sr[N − 2] = (N − 2),
zr = Sr[N − 2 + 0] = Sr[N − 2] = (N − 2). Again, using the result of Mantin-Shamir
(Theorem 1 in [8]) we know that unless Sr[N − 1] = 2, zr+2 equals 0. Therefore, the
probability associated with this scenario corresponding to the desired lag-one digraph is

1
N3 · (1− 2

N−2) ≈ 1
N3 .

In rest of the configurations, zr and zr+2 can have the values of (N − 2, 0) with equal
chance as of any other value pair. Hence, the probability for each of these configurations
would be 1

N2 . Therefore, the probability associated with the complimentary cases is
(1− 1

N3) · 1
N2 .

By combining the probabilities for Scenario 4 and rest of the cases, we get the desired
result Pr(zr = (N − 2) ∧ zr+2 = 0|ir = (N − 2)) ≈ (1

N2 + 1
N3 − 1

N5) ≈ (1
N2 + 1

N3).

Lemma 4. During RC4 PRGA, if zr and zr+2 are the key-stream bytes for rounds r and
r + 2 respectively, then Pr((zr = 0) ∧ (zr+2 = 0)|ir = (N − 2)) ≈ 1

N2 − 1
N3 .

Proof. We prove this result by referring to the Scenario 5.

[Scenario 5:] In this scenario, the given condition is Sr[0] = 0 which can occur with a
probability of 1

N . We now investigate this scenario under two cases - one for jr = 0 and
the other one for jr 6= 0.

When jr = 0, Sr[ir] can’t be 0 as ir = (N − 2) and hence Sr[Sr[ir] + Sr[jr]] =
Sr[Sr[ir]] 6= 0. So zr 6= 0. On the other hand, when jr 6= 0 and Sr[0] = 0 (assumed
condition for this scenario), by using the converse of Mantin-Shamir result (Theorem 1
in [8]), we know that zr+2 can’t be 0. Therefore, in Scenario 5, the desired lag-one digraph
corresponding to zr = 0 and zr+2 = 0 can’t appear in RC4 key-stream.

In rest of the configurations, zr and zr+2 can have the values of (0, 0) with equal chance
as of any other value pair. Hence, the probability for each of these configurations would be

Chandratop Chakraborty1, Pranab Chakraborty2, Subhamoy Maitra3 11

1
N2 . Therefore, the probability associated with the complimentary cases is (1− 1

N) · 1
N2 .

By combining the probabilities for Scenario 5 and rest of the configurations, we get the
desired result Pr(zr = 0 ∧ zr+2 = 0|ir = (N − 2)) ≈ (0 + 1

N2 − 1
N3) = (1

N2 − 1
N3).

Based on these results (Lemma 1 – Lemma 4), we derive the following corollaries. The
corollaries reveal conditional biases on the pseudo-random index j and that of certain
permutation array bytes. These results demonstrate that it’s possible to get sharper
glimpse correlations for the pseudo-random index and the permutation array bytes, by
selecting appropriate conditions on key-stream values.

Corollary 3. During RC4 PRGA, if zr and zr+2 are the key-stream bytes for rounds r
and r + 2 respectively, then Pr(jr = 0|zr = 0, zr+2 = 0, ir = 0) ≈ 4

N .

Proof. We prove this result by analyzing the following three cases.

[Case 1:] We first consider the case of Sr[0] = 0. Since ir = 0 and zr = 0 (as per the
given conditions), jr = 0. So, the desired condition is met by choosing Sr[0] = 0. Let us
now consider the number of permutations that can be freely chosen under this case to
ensure the given conditions (zr = 0 and zr+2 = 0 for ir = 0).

In round (r + 1), there is no constraint on the values of Sr+1[ir+1] and Sr+1[jr+1].
Hence these two values can be chosen in (N −1) and (N −2) ways (since 0 is already taken
in place of Sr[0]) in any order. In round (r + 2), depending on the value of Sr+2[jr+2] and
the position of 0 in the permutation array (in that round), the value of Sr+1[jr+2] (which
is same as Sr+2[ir+2] after the swap step) gets constrained to ensure zr+2 = 0. Hence, the
number of ways one may select the permutation array bytes to satisfy the given conditions
(zr = 0 and zr+2 = 0 for ir = 0) is (N − 1)(N − 2)(N − 3)(N − 5)! ≈ (N − 2)! assuming
(N − 1) ≈ (N − 4) for large N. Since in this case two array byte-values got constrained
(Sr[0] and Sr+2[ir+2]), we may conceptually view it as a (N − 2) “degree-of-freedom" array
that has (N − 2)! number of possible permutations to ensure the given conditions. We
would use this approach in rest of the cases as well as in other corollaries. Let us designate
the count (N − 2)! as X .

[Case 2:] Let us next consider the case of Sr[2] = 0. Since ir = 0 and zr+2 = 0, we must
have jr = 0. Let us now consider the number of permutations that can be freely chosen
under this constraint to ensure the given configuration of zr = 0 and zr+2 = 0 with ir = 0.

In round r, in order to ensure zr = 0, the value of Sr[0] can be either 1 or (N
2 + 1). In

each of these two cases, there are (N − 2) array bytes that can be freely chosen with a
total number of (N − 2)! permutations. Hence, the permissible count of permutations for
this case would be 2X .

[Case 3:] In each of the remaining cases, array byte value 0 is present in a location other
than Sr[0] and Sr[2]. In this configuration jr = 0 would constrain the byte position of 0
and depending on the value of Sr+2[jr+2], the value of Sr+2[ir+2] gets constrained to ensure
zr+2 = 0. Therefore, the array has (N − 2) degrees of freedom leading to (N − 2)! = X
number of permutations.

In general, the configuration of zr = 0 for ir = 0 does not impose any constraint on the
array byte values as jr can be freely chosen for any random permutation. However, once a
random permutation is chosen the position of 0 at round (r + 2) also gets pre-determined
imposing a constraint on the value of Sr+2[ir+2]. This implies the total number of allowed

12 Glimpses are Forever in RC4 amidst the Spectre of Biases

permutations would be (N − 1)! = (N − 1).X .

Considering all three cases and the total number of possible permutations we arrive at
the desired result Pr(jr = 0|zr = 0, zr+2 = 0, ir = 0) ≈ 4X

(N−1)·X ≈
4
N .

Corollary 4. During RC4 PRGA, if zr and zr+2 are the key-stream bytes for rounds r
and r + 2 respectively, then Pr((jr = 0 ∧ Sr[0] = 0|zr = 0, zr+2 = 0, ir = 0) ≈ 1

N .

Proof. This directly follows from the Case-1 of the Corollary 3 in which the number of
allowed permutations is X and hence Pr((jr = 0 ∧ Sr[0] = 0|zr = 0, zr+2 = 0, ir = 0) ≈
X

(N−1)·X ≈
1
N .

Next corollary is similar to Corollary 3 and is related to Lemma 2.

Corollary 5. During RC4 PRGA, if zr and zr+2 are the key-stream bytes for rounds r
and r + 2 respectively, then Pr(jr = 0|zr = N

2 , zr+2 = 0, ir = 0) ≈ 4
N .

Proof. We prove this result by analyzing the following three cases.

[Case 1:] We first consider the case of Sr[0] = N
2 . Since ir = 0 and zr = N

2 , we must have
jr = 0.

Let us now consider a sub-case where Sr[2] = 0. Using the result of Mantin & Shamir
we know that this configuration ensures zr+2 = 0 since jr = 0. Hence, the number of
permutations that can be freely chosen under this constraint where Sr[0] and Sr[2] has
been assigned to ensure the given configuration of zr = N

2 and zr+2 = 0 with ir = 0, is
(N − 2)!. Borrowing the terminology as per Corollary 3, we designate this count as X .

We now consider the sub-case where Sr[2] 6= 0. In this case to ensure zr+2 = 0, the
permutation array byte Sr+2[ir+2] gets constrained so that Sr+2[ir+2] + Sr+2[jr+2] points
to the position corresponding to the byte-value of 0. Hence, in this sub-case the “degree
of freedom" being (N − 2), the number of permutation bytes that can be freely chosen is
around (N − 2)! = X .

[Case 2:] Let us next consider the case of Sr[0] 6= N
2 and Sr[2] = 0. Since ir = 0 and

zr+2 = 0, we must have jr = 0. Depending upon the value of Sr[0], the position of array
byte-value of N

2 gets constrained. Hence, the number of permutations that can be freely
chosen under this constraint to ensure the given configuration of zr = N

2 and zr+2 = 0
with ir = 0 is X .

[Case 3:] In each of the remaining cases, Sr[0] 6= N
2 and Sr[2] 6= 0. Therefore jr = 0

would constrain the byte position of N
2 and depending on the value of Sr+2[jr+2], the

value of Sr+2[ir+2] gets constrained to ensure zr+2 = 0. Therefore, there would be (N − 2)
array byte locations which can be freely chosen giving rise to (N − 2)! = X permutations.

In general, the configuration of zr = N
2 for ir = 0 does not impose any constraint on

the array byte values as jr can be freely chosen for any random permutation. However,
once a random permutation is chosen, the position of byte-value 0 at round (r + 2) also
gets fixed thereby imposing a constraint on Sr+2[ir+2]. This implies the total number of
allowed permutations would be (N − 1)! = (N − 1).X .

Considering all three cases and the total number of possible permutations we arrive at
the desired result Pr(jr = 0|zr = N

2 , zr+2 = 0, ir = 0) ≈ 4X
(N−1)·X ≈

4
N .

Chandratop Chakraborty1, Pranab Chakraborty2, Subhamoy Maitra3 13

Corollary 6. During RC4 PRGA, if zr and zr+2 are the key-stream bytes for rounds r
and r + 2 respectively, then Pr((jr = 0 ∧ Sr[0] = N

2 |zr = N
2 , zr+2 = 0, ir = 0) ≈ 2

N .

Proof. This directly follows from the Case-1 of the Corollary 5 in which the number of
allowed permutations is 2 · X and hence Pr((jr = 0 ∧ Sr[0] = N

2 |zr = N
2 , zr+2 = 0, ir =

0) ≈ 2·X
(N−1)·X ≈

2
N .

Next corollary is similar to Corollary 3 and Corollary 5 and is related to Lemma 3.

Corollary 7. During RC4 PRGA, if zr and zr+2 are the key-stream bytes for rounds r
and r + 2 respectively, then Pr((jr = 0|zr = (N − 2), zr+2 = 0, ir = (N − 2)) ≈ 4

N .

Proof. We prove this result by analyzing the following three cases.

[Case 1:] We first consider the case of Sr[0] = 0. Since ir = (N − 2) and zr+2 = 0, using
the result of Mantin & Shamir we know that jr = 0.

Let us now consider a sub-case where Sr[N−2] = (N−2). Since Sr[0] = 0, ir = (N−2)
and jr = 0, zr must be 0 which means this configuration satisfies the given and desired
conditions. Hence, the number of permutations that can be freely chosen under this
constraint where two permutation array bytes (Sr[N − 2] and Sr[0]) have been fixed is
(N − 2)!. Borrowing the terminology as per Corollary 3, we designate this count as X .

We now consider the sub-case where Sr[N − 2] 6= (N − 2). In this case to ensure
zr = (N−2), the permutation array byte Sr[ir] gets constrained so that Sr[N−2]+Sr[0] =
Sr[N − 2] points to the position corresponding to the byte-value of (N − 2). Hence, in this
sub-case the “degree of freedom" being (N − 2), the number of permutation bytes that can
be freely chosen is around (N − 2)! = X .

[Case 2:] Let us next consider the case of Sr[N − 1] = 0. Since ir = (N − 2) and
Sr[N − 1] = 0, then jr = 0 would guarantee jr+1 = jr+2 = jr which would in turn
ensure the given condition of zr+2 = Sr+2[0 + 0] = 0. Depending upon the position of
array byte-value of (N − 2) one of the values among Sr[ir] or Sr[jr] gets constrained.
Hence, the number of permutations that can be freely chosen under this constraint to en-
sure the given configuration of zr = (N−2) and zr+2 = 0 with ir = (N−2) and jr = 0 is X .

[Case 3:] In each of the remaining cases, Sr[0] 6= 0 and Sr[N − 1] 6= 0. Therefore jr = 0
would constrain the byte position of (N − 2) and depending on the value of Sr+2[jr+2], the
value of Sr+2[ir+2] gets constrained to ensure zr+2 = 0. Therefore, there would be (N − 2)
array byte locations which can be freely chosen giving rise to (N − 2)! = X permutations.

In general, the configuration of zr = (N − 2) for ir = 0 does not impose any con-
straint on the array byte values as jr can be freely chosen for any random permutation.
However, once a random permutation is chosen, the position of byte-value 0 imposes a
constraint on Sr+2[ir+2]. This implies the total number of allowed permutations would be
(N − 1)! = (N − 1).X .

Considering all three cases and the total number of possible permutations we arrive at
the desired result Pr(jr = 0|zr = (N − 2), zr+2 = 0, ir = (N − 2)) ≈ 4X

(N−1)·X ≈
4
N .

Corollary 8. During RC4 PRGA, if zr and zr+2 are the key-stream bytes for rounds r and
r + 2 respectively, then Pr((jr = 0 ∧ Sr[0] = 0|zr = (N − 2), zr+2 = 0, ir = (N − 2)) ≈ 2

N .

14 Glimpses are Forever in RC4 amidst the Spectre of Biases

Proof. This directly follows from the Case-1 of the Corollary 7 in which the number of
allowed permutations is 2 ·X and hence Pr((jr = 0∧Sr[0] = 0|zr = (N −2), zr+2 = 0, ir =
(N − 2)) ≈ 2·X

(N−1)·X ≈
2
N .

4 Further exploration of Glimpses
As we have already discussed, certain information about hidden state variables of RC4 can
be exposed due to the choice of the output function z = S[S[i] + S[j]].

Theorem 1 (Glimpse theorem). [5] During RC4 PRGA, for any arbitrary round r,
Pr(Sr[ir] = jr − zr) = 2

N −
1

N2 and Pr(Sr[jr] = ir − zr) = 2
N −

1
N2 .

Proof. This result follows from the fact that if Sr[jr] (respectively Sr[ir]) happens to be
same as zr, then (Sr[ir] + Sr[jr]) which is the location of the output key-stream byte,
must be same as jr (resp. ir). Therefore, Sr[jr] = zr (resp. Sr[ir] = zr) configuration
guarantees the desired condition of Sr[ir] = jr − zr (resp. Sr[jr] = jr − zr). Under the
assumption of uniform random distribution, if we consider Pr(Sr[jr] = zr) = 1

N and
for the complimentary condition of Sr[ir] 6= zr, if we assume a fair chance of 1

N for the
desired event of Sr[ir] = jr − zr, the overall probability calculation comes out to be
Pr(Sr[ir] = jr − zr) = 1

N · 1 + (1− 1
N) 1

N = 2
N −

1
N2 . In the same way, one can also prove

the other result, i.e., Pr(Sr[jr] = ir − zr) = 2
N −

1
N2 .

In this regard, let us first explain the limitation of the existing Glimpse theorem
presented in [5] and as explained above in Theorem 1.

4.1 Deeper analysis of the Glimpse theorem [5]
This result needs to be studied in a more disciplined manner, and in that direction,
we concentrate on the case when i = j. This is the case where the Glimpse is not
uniform. If (ir = jr), then Sr[ir] = Sr[jr] and hence the conditions Sr[ir] = (jr − zr) and
Sr[jr] = (ir − zr) essentially merge to one and the same condition. Interestingly, in this
situation we lose the flexibility of choosing one of the permutation bytes (say Sr[ir]) in
accordance with the other byte (Sr[jr]) to guarantee either Sr[ir] = zr or Sr[jr] = zr.
Thus the method of proving the Glimpse theorem fails in the case when ir = jr.

Lemma 5. During RC4 PRGA, for any arbitrary round r,

1. Pr(Sr[ir] = Sr[jr] = ir − zr = jr − zr|ir = jr ≡ 1 mod 2) = 1
N−1 ≈

1
N and

2. Pr(Sr[ir] = Sr[jr] = ir − zr = jr − zr|ir = jr ≡ 0 mod 2) = 3
N −

1
N(N−1) ≈

3
N .

Proof. For the first case, we observe that when ir = jr = (2∗m+1), m ∈ N, it’s impossible
for Sr[ir] + Sr[jr], which is an even number, to be equal to ir (or jr). So whatever may
be the value of Sr[ir], it can’t be same as zr. Hence the possible number of values that
zr can take is (N − 1) and not N . Now, for every value of Sr[ir], there can be exactly
one possible value of zr, so that the Glimpse condition holds. Hence, the probability that
Sr[ir] = (ir − zr) = 1

N−1 .
Now we prove the second part. We observe that when ir = jr = 2 ∗m, m ∈ N, if the

value of Sr[ir] happens to be m, zr equals Sr[ir]. Similarly, if Sr[ir] = m + N
2 , then also

zr = Sr[ir]. Hence in these two cases, the Glimpse conditions holds. In rest of the (N − 2)
cases, Sr[ir] + Sr[jr] would have a value different from ir (or jr). Hence, the probability

Chandratop Chakraborty1, Pranab Chakraborty2, Subhamoy Maitra3 15

that Sr[ir] = (ir − zr) = 1
N−1 . The overall probability can be computed as

Pr(Sr[ir] = Sr[jr] = ir − zr = jr − zr|ir = jr = 2 ∗m, m ∈ N)

= N − 2
N

· 1
N − 1 + 2

N
· 1

= N − 2
N(N − 1) + 2

N
= 3N − 4

N(N − 1) = 3
N
− 1

N(N − 1)

From Lemma 5, it becomes apparent that if we combine the even and odd cases and
consider the overall i = j event, the probability of the Glimpse condition would converge
towards 2

N for i = j. However, the cases for i even and odd are actually different and that
we will show in Theorem 2. Before that, let us now consider the i 6= j scenario in detail.

Lemma 6. During RC4 PRGA, for any arbitrary round r,

1. Pr(Sr[jr] = ir − zr|ir odd, ir 6= jr) ≈ 2
N + 1

N(N−1) −
2

N(N−1)(N−2)

2. Pr(Sr[jr] = ir − zr|ir even, ir 6= jr) ≈ 2
N −

1
N(N−1)

3. Pr(Sr[ir] = jr − zr|ir odd, ir 6= jr) ≈ 2
N −

1
N(N−1)(N−2)

4. Pr(Sr[ir] = jr − zr|ir even, ir 6= jr) ≈ 2
N −

1
N(N−1)(N−2)

Proof. In RC4 PRGA, for any arbitrary round r, we assume the permutation array bytes
are arranged in a uniform random distribution. Let us first prove the item 1. We consider
the following three cases [(a)–(c)].

Case (a): In this case, the permutation array bytes are chosen in such a way that zr

becomes equal to Sr[ir]. To achieve that, let us first arbitrarily choose Sr[ir] = x and this
can be done in N ways. Next, we assign Sr[jr] = ir − x (since ir is an odd number, ir − x
can’t be equal to x). Rest of the (N − 2) bytes can be chosen in (N − 2)! ways. Hence,
the total number of ways in which we can satisfy the desired condition for this case is
N(N − 2)!.

Case (b): We now investigate the possibility of zr = Sr[jr]. To satisfy the desired
condition, this would imply ir = 2 · zr. However, this is impossible since ir is an odd
number.

Case (c): Next, we consider the case where zr 6= Sr[ir] and zr 6= Sr[jr]. Let us first
choose Sr[ir] = x which can be done in N possible ways. Next, we choose Sr[jr] = y. Now
y can’t be equal to x (as ir 6= jr) or ir − x (as that’s already included in Case (a)) or
jr − x (as that’s improbable as per Case (b)). Once, Sr[ir] and Sr[jr] are chosen, zr gets
defined to satisfy the desired condition and the position of zr also gets decided as x + y.
Rest of the (N − 3) bytes can be chosen in (N − 3)! ways. Hence, the total number of
ways in which we can satisfy the desired condition for this case is N(N − 3)(N − 3)!.
Since the total number of ways the permutation byte array can be chosen is N !, the desired
probability can be derived from the above three cases as Pr(Sr[jr] = ir − zr|ir odd, ir 6=
jr) ≈ [N(N − 2)! + 0 + N(N − 3)(N − 3)!]/N ! ≈ 2

N + 1
N(N−1) −

2
N(N−1)(N−2) .

Let us next prove the item 2. We consider the following four cases [(a)–(d)] here.
Case (a): In this case, the permutation array bytes are chosen in such a way that zr

becomes equal to Sr[ir]. To achieve that, let us first arbitrarily choose Sr[ir] = x and this
can be done in (N − 2) ways by excluding the two values ir

2 and (ir+N)
2 (which are handled

in Case (b)). Next, we assign Sr[jr] = ir − x (since ir 6= 2x, (ir − x) can’t be equal to x).
Rest of the (N − 2) bytes can be chosen in (N − 2)! ways. Hence, the total number of
ways in which we can satisfy the desired condition for this case is (N − 2)(N − 2)!.

16 Glimpses are Forever in RC4 amidst the Spectre of Biases

Case (b): In this case we consider the two sub-cases Sr[ir] = ir

2 and Sr[ir] = (ir+N)
2 .

For each of these sub-cases Sr[jr] can be chosen in (N − 2) ways as Sr[jr] = y can’t take
any of these two values. Once, Sr[ir] and Sr[jr] are chosen, zr gets defined to satisfy the
desired condition and the position of zr also gets decided as x + y. Rest of the (N − 3)
bytes can be chosen in (N − 3)! ways. Hence, the total number of ways in which we can
satisfy the desired condition for this case is 2(N − 2)(N − 3)!.

Case (c): We now consider the two sub-cases corresponding to Sr[jr] = ir

2 and
Sr[jr] = (ir+N)

2 . These conditions lead to zr = Sr[jr] as well. Hence, for each of these
sub-cases Sr[ir] gets defined to ensure (Sr[ir] + Sr[jr]) = jr. Rest of the (N − 2) bytes
can be chosen in (N − 2)! ways. Hence, the total number of ways in which we can satisfy
the desired condition for this case is 2(N − 2)!.

Case (d): Next, we consider the case where zr 6= Sr[ir] and zr 6= Sr[jr]. Let us first
choose Sr[ir] = x which can be done in (N − 2) possible ways (excluding the sub-cases
under Case (b)). Next, we choose Sr[jr] = y. Now y can’t be equal to x (as ir 6= jr) or
(ir − x) (as that’s already included in Case (a)) or the two sub-cases considered in Case (c)
or the value (jr −x) (as that doesn’t satisfy the desired condition unless already subsumed
by Case (c)). Once, Sr[ir] and Sr[jr] are chosen, zr gets defined to satisfy the desired
condition and the position of zr also gets decided as x + y. Rest of the (N − 3) bytes can
be chosen in (N − 3)! ways. Hence, the total number of ways in which we can satisfy the
desired condition for this case is (N − 2)(N − 5)(N − 3)!.

Since the total number of ways the permutation byte array can be chosen is N !,
the desired probability can be derived from the above three cases as Pr(Sr[jr] = ir −
zr|ir even, ir 6= jr) ≈ [(N − 2)(N − 2)! + 2(N − 2)(N − 3)! + 2(N − 2)! + (N − 2)(N −
5)(N − 3)!]/N ! ≈ 2

N −
1

N(N−1) .
We now prove the rest of the two results together as the proof would be identical for

each of those. We make an observation here that while proving either of the two results
[(1) or (2)], we didn’t require to differentiate whether jr is even or odd. Moreover, the
result (3) is a dual of result (1) where ir and jr have interchanged their positions in the
desired condition’s expression. Similarly, result (4) is a dual of result (2). However, as
no constraint has been put on jr, we can consider jr to have equal probability to be
even or odd. Therefore, result 3 (as well as result 4) can be derived by considering equal
probability on both result 1 and result 2. Hence, we get Pr(Sr[ir] = jr − zr|ir odd, ir 6=
jr) ≈ 1

2 · [
2
N + 1

N(N−1) −
2

N(N−1)(N−2)] + 1
2 · [

2
N −

1
N(N−1)] = 2

N −
1

N(N−1)(N−2) . Result 4
can be proved in a similar manner.

With this understanding, the revised Glimpse theorem works out to be as followed.

Theorem 2 (Revised Glimpse Theorem). During RC4 PRGA, for any arbitrary round r,

1. Pr(Sr[ir] = jr − zr|ir even) ≈ 2
N + 1

N2

2. Pr(Sr[ir] = jr − zr|ir odd) ≈ 2
N −

1
N2

3. Pr(Sr[jr] = ir − zr|ir even) ≈ 2
N

4. Pr(Sr[jr] = ir − zr|ir odd) ≈ 2
N

Proof. While proving this theorem, we use Lemma 5 and Lemma 6. Let us prove the
first item. Pr(Sr[ir] = jr − zr|ir even) = Pr(ir = jr) · Pr(Sr[ir] = jr − zr|ir even, ir =
jr) + Pr(ir 6= jr) · Pr(Sr[ir] = jr − zr|ir even, ir 6= jr) = 1

N [3
N −

1
N(N−1)] + (N−1)

N [2
N −

1
N(N−1)(N−2)] ≈ 2

N + 1
N2 .

Next, we prove the second one. Pr(Sr[ir] = jr − zr|ir odd) = Pr(ir = jr) · Pr(Sr[ir] =
jr − zr|ir odd, ir = jr) + Pr(ir 6= jr) · Pr(Sr[ir] = jr − zr|ir odd, ir 6= jr) = 1

N [1
(N−1)] +

(N−1)
N [2

N −
1

N(N−1)(N−2)] ≈ 2
N −

1
N2 .

Chandratop Chakraborty1, Pranab Chakraborty2, Subhamoy Maitra3 17

For the third one, Pr(Sr[jr] = ir − zr|ir even) = Pr(ir = jr) · Pr(Sr[jr] = ir −
zr|ir even, ir = jr) +Pr(ir 6= jr) ·Pr(Sr[jr] = ir−zr|ir even, ir 6= jr) = 1

N [3
N −

1
N(N−1)] +

(N−1)
N [2

N −
1

N(N−1)] ≈ 2
N .

Finally, Pr(Sr[jr] = ir − zr|ir odd) = Pr(ir = jr) · Pr(Sr[jr] = ir − zr|ir odd, ir =
jr)+Pr(ir 6= jr)·Pr(Sr[jr] = ir−zr|ir odd, ir 6= jr) = 1

N [1
(N−1)]+ (N−1)

N [2
N + 1

N(N−1)] ≈ 2
N .

Please note that in the above results we have ignored any term of the order of 1
N3) or

smaller.

4.2 Further Glimpses based on the output function
Here we start with a conditional glimpse on the pseudo-random hidden index jr and this
result remains valid irrespective of the way the RC4 permutation array evolves. This
means that such a glimpse is generated due to the output function only and even if the
evolution of jr happens in a different fashion or the permutation array is shuffled in each
step in an arbitrary way, the following non-randomness can still be observed.
Lemma 7. During the RC4 PRGA, for any arbitrary round r, Pr(jr = ir|ir = 2 · zr) =
2
N −

1
N2 , under the usual assumptions.

Proof. We prove this considering two cases. First we consider zr < N
2 . If Sr[ir] = zr, then

under the given condition of ir = 2 · zr, it is imperative for jr to be same as ir. Thus, we
have the following result.

Pr(jr = ir|ir = 2 · zr)
= Pr(jr = ir, Sr[ir] = zr|ir = 2 · zr) + Pr(jr = ir, Sr[ir] 6= zr|ir = 2 · zr)
= Pr(jr = ir|Sr[ir] = zr, ir = 2 · zr) · Pr(Sr[ir] = zr)
+ Pr(jr = ir|Sr[ir] 6= zr, ir = 2 · zr) · Pr(Sr[ir] 6= zr)

= 1
N

+ 1
N
· (1− 1

N
) = 2

N
− 1

N2

Here we consider Pr(jr = ir|Sr[ir] 6= zr, ir = 2 · zr) = 1
N under the usual randomness

assumption. Further, considering S as a random permutation, we get Pr(Sr[ir] = zr) = 1
N

as well. These have also been checked experimentally.
Now let us consider zr ≥ N

2 . In this case, if Sr[ir] = zr, then under the given condition
of ir = 2 · zr mod N , we can deduce that ir = 2 · (zr − N

2) (without modulo N). Hence, jr

must be same as ir. The probabilistic result can be deduced in an identical fashion as has
been done in the earlier case. This completes the proof.

Lemma 7, in addition to providing a glimpse of j, also provides a glimpse to the
permutation array byte Sr[ir] or Sr[jr]. This is shown in the following result.
Corollary 9. Pr((jr = ir) ∧ (jr−1 = zr)|(ir = 2 · zr)) ≈ 1

N .
Proof. We observe that when Sr[ir] = zr, then under the given condition of (ir = 2 · zr),
we get jr = ir and jr−1 = jr − Sr[ir] = jr − zr = 2 · zr − zr = zr. On the other hand, if
Sr[ir] 6= zr, it’s not possible to simultaneously have (jr = ir) and (jr−1 = zr), because if
(jr = ir), the (jr−1 = jr − Sr[ir] = 2 · zr − Sr[ir]) can’t be equal to zr.

Pr((jr = ir) ∧ (jr−1 = zr)|(ir = 2 · zr))
= Pr((jr = ir) ∧ (jr−1 = zr) ∧ Sr[ir] = zr|(ir = 2 · zr))
+ Pr((jr = ir) ∧ (jr−1 = zr) ∧ Sr[ir] 6= zr|(ir = 2 · zr))
= Pr((jr = ir) ∧ (jr−1 = zr)|(ir = 2 · zr) ∧ Sr[ir] = zr) · Pr(Sr[ir] = zr)
+ Pr((jr = ir) ∧ (jr−1 = zr)|(ir = 2 · zr) ∧ Sr[ir] 6= zr) · Pr(Sr[ir] 6= zr)

= 1
N

+ 0 = 1
N

18 Glimpses are Forever in RC4 amidst the Spectre of Biases

Corollary 9 demonstrates that Lemma 6 can be used to predict consecutive two j values
with a probability ≈ 1

N instead of the random probability of 1
N2 based on a relationship

between the index i and the output key-stream byte z.

4.3 Glimpses based on swap as well as the output function
Maitra and SenGupta [7] had proved a new long-term conditional bias of the order of
3
N for a permutation array-byte that can also be referred as a new glimpse result. Here
we note that it is only a single results and we can have many results like this. Already
in Section 3, we have shown such results of the order of 4

N in Corollaries 3, 5, 7. In the
same spirit, we prove a set of new results that reveal glimpses of permutation array bytes
and/or that of pseudo-random index given a specific pair of values of key-stream bytes.
We obtain a bias of the order of 5

N in this initiative.
Let us now start with some technical results. The kinds of proofs are sometimes similar

and thus the detailed proofs are presented in Appendix A.

Lemma 8. During RC4 PRGA, if zr−1 and zr are the key-stream bytes for two consecutive
rounds r − 1 and r respectively, then Pr((Sr[ir] = N − 1) ∧ (Sr[ir − 1] = 0)|zr = zr−1 =
N − 1) ≈ 2

N2 + 1
N3 .

The proof is available in Section 6.1 in Appendix A. The lemma also leads to the
following corollary that provides a glimpse of j in round r − 1. It is interesting to observe
that while in case of three independent events the expected joint probability would have
been of the order of 1

N3 , the bias observed is one order higher (around 1
N2).

Corollary 10. During RC4 PRGA, if zr−1 and zr are the key-stream bytes for two consec-
utive rounds r− 1 and r respectively, then Pr((Sr[ir] = N − 1)∧ (Sr[ir − 1] = 0)∧ (ir−1 =
jr−1)|zr = zr−1 = N − 1) ≈ 1

N2 + 2
N3 .

Proof. From the proof of Lemma 8, it is apparent that the first two cases correspond to
the configuration of ir−1 = jr−1 in addition to the desired values of two permutation bytes
in round r. Hence, the probability associated with the combined event is approximately

1
N2 + 2

N3 .

We now present another lemma that demonstrates glimpse of two consecutive permuta-
tion array bytes.

Lemma 9. During RC4 PRGA, if zr−1 and zr are the key-stream bytes for two consecutive
rounds r − 1 and r respectively, then Pr((Sr[ir] = 1) ∧ (Sr[ir − 1] = (N

2 + 1))|zr = zr−1 =
(N

2 + 1)) ≈ 2
N2 .

The proof is available in Section 6.2 in Appendix A. Similar to Lemma 8, this lemma
also leads to a corollary that provides a glimpse of j in round r − 1.

Corollary 11. During RC4 PRGA, if zr−1 and zr are the key-stream bytes for two
consecutive rounds r− 1 and r respectively, then Pr((Sr[ir] = 1)∧ (Sr[ir − 1] = (N

2 + 1))∧
(jr−1 = 2)|zr = zr−1 = (N

2 + 1)) ≈ 1
N2 .

Proof. From the proof of Lemma 9, it is evident that Case 1 corresponds to the desired
configuration of (Sr[ir] = 1) ∧ (Sr[ir − 1] = (N

2 + 1)) ∧ (jr−1 = 2) in addition to satisfying
the given condition on two successive key-stream bytes. Hence, the probability associated
with the combined event is approximately 1

N2 . Interestingly the probability would remain
the same even when we associate the additional conditions of (ir−1 = 2) ∧ (jr = 3).

Chandratop Chakraborty1, Pranab Chakraborty2, Subhamoy Maitra3 19

We now present a significant result that provides a glimpse of a permutation array
byte with a probability of around 5

N based on a specific condition for two consecutive
key-stream byte values. The next lemma demonstrates the glimpse of two consecutive
permutation array bytes based on another condition on the values of successive key-stream
bytes.

Lemma 10. During RC4 PRGA, if zr−1 and zr are the key-stream bytes for two consec-
utive rounds r − 1 and r respectively, then Pr((Sr[ir] = 0) ∧ (Sr[ir − 1] = (N − 1))|zr =
0, zr−1 = (N − 1)) ≈ 3

N2 .

The proof is available in Section 6.3 in Appendix A. Similar to Lemma 8 and Lemma 9,
this lemma also leads to the following corollaries that provide glimpses of j.

Corollary 12. During RC4 PRGA, if zr−1 and zr are the key-stream bytes for two
consecutive rounds r− 1 and r respectively, then Pr((Sr[ir] = 0)∧ (Sr[ir − 1] = (N − 1))∧
(jr−1 = jr = 0)|zr = 0, zr−1 = (N − 1)) ≈ 1

N2 .

Proof. From the proof of Lemma 10, it is evident that Case 1 corresponds to the desired
configuration of (Sr[ir] = 0) ∧ (Sr[ir − 1] = (N − 1)) ∧ (jr−1 = jr = 0) in addition to
satisfying the given condition on two successive key-stream bytes. Hence, the probability
associated with the combined event is approximately 1

N2 .

Corollary 13. During RC4 PRGA, if zr−1 and zr are the key-stream bytes for two
consecutive rounds r− 1 and r respectively, then Pr((Sr[ir] = 0)∧ (Sr[ir − 1] = (N − 1))∧
(jr−1 = (N − 1)) ∧ (jr = (N − 2))|zr = 0, zr−1 = (N − 1)) ≈ 1

N2 .

Proof. From the proof of Lemma 10, it is evident that Case 4 corresponds to the desired
configuration of (Sr[ir] = 0) ∧ (Sr[ir − 1] = (N − 1)) ∧ (jr−1 = (N − 1)) ∧ (jr = (N − 2))
in addition to satisfying the given condition on two successive key-stream bytes. Hence,
the probability associated with the combined event is approximately 1

N2 .

The following lemma is a straightforward application of the Glimpse correlation to
derive a conditional bias of the pseudo-random index j across two rounds.

Lemma 11. During RC4 PRGA, if jr−1 and jr are the pseudo-random indices for two
consecutive rounds r − 1 and r respectively, then Pr(jr = (ir − zr)|jr = 0) ≈ 2

N .

Proof. Based on Jenkins’ Glimpse correlation, it is known that Pr(Sr[jr] = (ir− zr)) ≈ 2
N .

If in round (r − 1), the value of pseudo-random index jr−1 = 0 and Sr−1[ir−1 + 1] = p,
then the new value of jr = p and after the swap operation Sr[jr] = p as well. In other
words, Sr[jr] = jr. The desired result immediately follows from this observation. Hence,
Pr(jr = (ir − zr)|jr = 0) ≈ 2

N .

Lemma 12. During RC4 PRGA, if zr−1 and zr are the key-stream bytes for two consec-
utive rounds r − 1 and r respectively, then Pr((Sr[jr−1] = 0)|zr−1 = (N − 1), zr = 0, ir =
0) ≈ (5

N+2).

The proof is available in Section 6.4 in Appendix A. While the above result provides
the glimpse of an array byte with a probability that is significantly biased (in the order of
5
N), the position of the array byte is not immediately available since it is connected to the
pseudo-random index j which is unknown. However, we have utilized the same result to
uncover the bias on a joint event that provide the glimpse on the position as well as the
value of the array byte.

We derive the following results based on Lemma 10 which illustrates that under the
given condition, the probability of a joint event connecting the permutation array byte
value and its position is much higher than the usual expected value in the range of 1

N2 .
The corollaries are presented in this regard, skipping the proof in a few cases.

20 Glimpses are Forever in RC4 amidst the Spectre of Biases

Corollary 14. During RC4 PRGA, if zr−1 and zr are the key-stream bytes for two
consecutive rounds r− 1 and r respectively, then Pr(Sr[jr−1] = 0|zr−1 = (r− 1), zr = r) ≈
(4

N).

Corollary 15. During RC4 PRGA, if zr−1 and zr are the key-stream bytes for two
consecutive rounds r−1 and r respectively, then Pr(Sr−1[ir−1 + 1] = 0|zr−1 = (r−1), zr =
r, ir = 0) ≈ (3

N). In this situation, Pr(Sr[0] = 0|zr−1 = (r − 1), zr = r, ir = 0) ≈ (2
N) and

Pr(Sr[N − 1] = (N − 1)|zr−1 = (r − 1), zr = r, ir = 0) ≈ (2
N)

Corollary 16. During RC4 PRGA, if zr−1 and zr are the key-stream bytes for two
consecutive rounds r − 1 and r respectively, then Pr((Sr[jr−1] = 0) ∧ (jr−1 = 0)|zr−1 =
(N − 1), zr = 0, ir = 0) ≈ (2

N).

Proof. From the proof of Lemma 10, it is apparent that Case 1 and its two sub-cases 1(a)
and 1(b) correspond to the desired configuration of (Sr[ir−1] = 0) ∧ (jr−1 = 0). Hence,
the probability associated with the combined event is approximately 2

N .

From the proof of the above mentioned corollary it’s evident that the value of the
probability would remain unchanged even when we add a third condition resulting in a
desired configuration of (Sr[jr−1] = 0) ∧ (jr−1 = 0) ∧ (jr = 0).

5 Conclusion
In this paper, we have investigated the close relationship between the key-stream biases
and the glimpses of certain permutation array bytes as well as that of the pseudo-random
index, in the long term evolution of RC4 PRGA. We have used three different lenses. First,
we have thoroughly analyzed the Fluhrer-McGrew digraph biases [3] to identify the source
configurations that are the root causes behind the observed positive and negative biases.
Perhaps surprisingly, in spite of these biases being used in some of the celebrated attacks,
the fundamental mechanisms were not studied in a structured manner so far, apart from
the high level reasoning provided by Fluhrer and McGrew for only three scenarios in their
original paper [3, Section 4]. We have also pointed out and solved the gaps that were
present in their reasoning. Further, we establish a series of glimpse correlations based on
the digraph biases.

In the second lens, we have theoretically proved four dominant “lag-one digraph" biases
(i.e., biases of alternate key-stream bytes) out of which two are reported in this paper for
the first time. For one of the “lag-one digraph" biases that was first reported by Sen Gupta
et. al. [13], we have proved a sharper bias value and have given a proof that uncovers the
underlying source configuration in a more accurate manner. Subsequently, we have proved
a number of glimpse correlations based on the source configurations of these “lag-one
digraph" biases.

Finally, our third lens focuses on two sub-areas. The first sub-area is about the original
Glimpse correlations, discovered by Jenkins [5], in which we carry out a fine-grained
analysis of the result to demonstrate that the results need significant revision for cases
where the two indices are same (i = j) and present a Revised Glimpse Theorem that more
accurately describes the variations of the result for even and odd values of the sequential
index i. Further, we also prove new glimpse results pertaining to the pseudo-random index
j under certain given conditions. In the second sub-area, we derive a set of new glimpse
results based on consecutive key-stream byte-values and for the first time prove a glimpse
result on permutation array byte with a value of the order of 5

N , which is to the best of
our knowledge, sharper than any glimpse correlation that have been reported so far in
RC4 literature.

Essentially, in our view, these three lenses now convincingly establish that the biases
and glimpses are two sides of the same coin. While biases are like the spectre behind the

Chandratop Chakraborty1, Pranab Chakraborty2, Subhamoy Maitra3 21

glimpses, the omni-presence of glimpse correlations in the long-term evolution of RC4,
make them appear as if the glimpses are forever. It is evident that these biases can be
exploited to improve the practical attacks as mentioned in the works like [1, 4, 11, 14, 15].
Some of the areas that may be investigated further in the future include - creating a
single statistical framework where multiple glimpses and biases can be combined together
without introducing significant error, improving the existing cryptanalytic attacks by
optimally utilizing the information from a known set of key-stream bytes and finally come
up with a generic mathematical framework connecting the biases and glimpses based on
the operations performed in each step of RC4 PRGA.

References
[1] N. AlFardan, D. Bernstein, K. Paterson, B. Poettering and J. Schuldt. On the security

of RC4 in TLS. USENIX 2013. Published online at: http://www.isg.rhul.ac.uk/
tls/, pp. 305–320, 2013.

[2] R. Bricout, S. Murphy, K. G. Paterson, T. van der Merwe. Analysing and exploiting
the Mantin biases in RC4. Designs Codes and Cryptography, 86:743-770, 2018.

[3] S. R. Fluhrer and D. A. McGrew. Statistical Analysis of the Alleged RC4 Keystream
Generator. FSE 2000. LNCS, pp. 19-30, Vol. 1978, 2000.

[4] T. Isobe, T. Ohigashi, Y. Watanabe and M. Morii. Full plaintext recovery attack on
broadcast RC4. FSE 2013. LNCS 8424, pp. 179–202.

[5] R. J. Jenkins Jr. ISAAC and RC4. Published online at: https://burtleburtle.net/
bob/rand/isaac.html, 1993-1996.

[6] S. Jha, S. Banik, T. Isobe and T. Ohigashi. Some Proofs of Joint Distributions of
Keystream Biases in RC4. INDOCRYPT 2016, LNCS 10095, pp. 305-321.

[7] S. Maitra and S. SenGupta. New Long-Term Glimpse of RC4 Stream Cipher. ICISS
2013, LNCS 8303, pp. 230-238, Springer-Verlag, 2013.

[8] I. Mantin and A. Shamir. A Practical Attack on Broadcast RC4. In proceedings of
FSE 2001, Lecture Notes in Computer Science, Springer, Vol. 2355, pp. 152–164, 2001.

[9] I. Mantin. Predicting and Distinguishing Attacks on RC4 Keystream Generator.
EUROCRYPT 2005, pages 491–506, vol. 3494, Lecture Notes in Computer Science,
Springer.

[10] K. G. Paterson, B. Poettering and J. C. N. Schuldt. Big Bias Hunting in Amazonia:
Large-scale Computation and Exploitation of RC4 Biases. ASIACRYPT 2014. LNCS,
Part 1, pp. 398–419, Vol. 8873, 2014.

[11] K. G. Paterson, J. Schuldt and B. Poettering. Plaintext Recovery Attacks Against
WPA/TKIP. FSE 2014, LNCS 8540, pp. 325–349, 2014.

[12] A. Popov. Prohibiting RC4 Cipher Suites. Request for Comments: 7465. ISSN: 2070-
1721. 2015. Available at https://tools.ietf.org/html/rfc7465.

[13] S. SenGupta, S. Maitra, G. Paul, S. Sarkar. (Non–)Random Sequences from (Non–
)Random Permutations – Analysis of RC4 stream cipher. Journal of Cryptology,
27(1):67–108, 2014

[14] P. Sepehrdad, S. Vaudenay, and M. Vuagnoux. Statistical Attack on RC4 - Distin-
guishing WPA. EUROCRYPT 2011. LNCS pp. 343–363, Vol. 6632, 2011.

http://www.isg.rhul.ac.uk/tls/
http://www.isg.rhul.ac.uk/tls/
https://burtleburtle.net/bob/rand/isaac.html
https://burtleburtle.net/bob/rand/isaac.html
https://tools.ietf.org/html/rfc7465

22 Glimpses are Forever in RC4 amidst the Spectre of Biases

[15] M. Vanhoef and F. Piessens. All Your Biases Belong to Us: Breaking RC4 in WPA-
TKIP and TLS. USENIX 2016, pp. 1–16, 2016. Available at https://www.rc4nomore.
com/vanhoef-usenix2015.pdf

6 Appendix A
6.1 Proof of Lemma 8
Proof. To prove this lemma, let us consider the following four possible alternative cases:

Case 1: ir−1 = jr−1 and Sr−1[ir−1 + 1] = 0

Case 2: ir−1 = jr−1 and Sr−1[ir−1 + 1] 6= 0

Case 3: ir−1 6= jr−1 and Sr−1[ir−1 + 1] = 0

Case 4: ir−1 6= jr−1 and Sr−1[ir−1 + 1] 6= 0

(Case 1) In this case we first prove that Sr−1[ir−1] = N − 1. Once that is proved, it is
easy to observe that in round r the two permutation array bytes would get swapped to
reach the desired state of Sr[ir] = N − 1 and Sr[ir − 1] = 0.

Let us assume Sr−1[ir−1] = x and x 6= N − 1 (clearly x 6= 0 as Sr−1[ir−1 + 1] = 0).
Since zr−1 = N − 1 and ir−1 = jr−1 then Sr−1[2x] must be N − 1. In round r, after the
swap operation Sr[ir] = x and Sr[jr] = 0. Hence zr must come from the permutation
array byte Sr[x]. Since it was assumed that x 6= N − 1, neither x nor 2x can overlap with
any of the array positions that got swapped in round r. As zr−1 = zr = N − 1, x must
be same as 2x implying x = 0. But that’s impossible. Hence our assumption must be
wrong. That implies x = N − 1. In that case, to satisfy the condition that zr−1 = N − 1,
it is imperative to have ir−1 = jr−1 = N − 2. Such a configuration would also satisfy the
zr = N − 1 in round r and post-swap the desired state of Sr[ir] = N − 1 and Sr[ir − 1] = 0
can be reached. Therefore, in this case the expected combination of states is reached by
assuming two conditions ir−1 = jr−1 and Sr−1[ir−1 + 1] = 0 with a probability of 1

N2 .

(Case 2) In this case we set a configuration of Sr−1[ir−1] = 0 and Sr−1[0] = N − 1. Since
ir−1 = jr−1, this satisfies the given key-stream value of zr−1 = N−1. As Sr−1[ir−1+1] 6= 0,
it is evident that the permutation array byte Sr−1[ir−1] = 0 remains unaffected even in
round r and hence Sr[ir − 1] = 0. Therefore by fixing two values Sr−1[ir−1] = 0 and
Sr−1[0] = N − 1, we get Sr[ir − 1] = 0 with a probability of 1

N2 .
However, we have proved only one part of the desired pair of permutation array bytes

and we still need to prove the condition under which Sr[ir] = N − 1.
The only way we can arrive at that configuration is to have jr = 0 so that the

permutation array byte from that position gets swapped to the position indexed by ir

satisfying the desired state of Sr[ir] = N − 1. Let us assume that Sr−1[ir] = p. Hence,
jr−1 + p = 0 implying p = N − jr−1 = N − ir + 1. Since zr = N − 1, it is required to have
p + (N − 1) = ir which means N − ir + 1 + N − 1 = ir resulting in ir = N

2 and p = N
2 + 1.

Since Sr[jr] = p = N
2 +1 and ir−zr also equates to the same value p, the desired condition

can be achieved with approximately 2
N probability as per the Glimpse theorem.

To sum up, if we set a configuration of Sr−1[ir−1] = 0 and Sr−1[0] = N − 1, we get the
desired pair of permutations Sr[ir] = N − 1 and Sr[ir − 1] = 0 with a probability of 2

N3 .

(Case 3) In this case Sr−1[ir−1 + 1] = 0 implying jr−1 = jr. Hence the value of Sr−1[ir−1]
remains unchanged in round r. Since Sr−1[ir−1] 6= 0 the desired pair of permutations can’t
be achieved in this case. This condition corresponds to the probability of 1

N · (1−
1
N).

https://www.rc4nomore.com/vanhoef-usenix2015.pdf
https://www.rc4nomore.com/vanhoef-usenix2015.pdf

Chandratop Chakraborty1, Pranab Chakraborty2, Subhamoy Maitra3 23

(Case 4) This is the case that remains after eliminating all the combinations that fall
under rest of the three cases discussed above (Case 1-3). The probability of arriving at
any of these cases would therefore be equal to (1− 1

N2 − 2
N3 − (1

N −
1

N2)) = (1− 1
N −

2
N3).

For each of these cases the probability of getting the desired pair of permutation bytes
Sr−1[ir−1] = 0 and Sr−1[0] = N −1 would be 1

N2 due to random choice. Hence, the overall
probability for this case would be approximately equal to (1

N2 − 1
N3).

We can now combine all four cases and declare the probability for the desired event as
1

N2 + 2
N3 + 0 + (1

N2 − 1
N3) = 2

N2 + 1
N3 .

6.2 Proof of Lemma 9
Proof. We prove this lemma by first demonstrating two special cases and then by handling
rest of the cases.

[Case 1:] Let us consider the configuration of the permutation array along with the indices
such that ir−1 = jr−1 and Sr−1[ir−1 + 1] = 1.

Based on this configuration, ir must be equal to jr. Since zr = (N
2 + 1), we can

deduce that zr = Sr[2] = (N
2 + 1). As zr−1 is also equal to (N

2 + 1) and ir−1 = jr−1, it
is imperative to have Sr−1[ir−1] = (N

2 + 1) which also means ir−1 = 2. Clearly in round
r, there is no change of the byte values in the array positions at ir−1 and ir. Hence in
this case the desired condition of Sr[ir] = 1 and Sr[ir − 1] = (N

2 + 1) are satisfied and the
probability associated with this case would be 1

N2 .

[Case 2:] We now consider the configuration ir−1 = jr−1 and Sr−1[ir−1 + 1] 6= 1.

Based on this configuration, to satisfy the given conditions of zr = zr−1 = (N
2 + 1) and

one of the desired conditions of (Sr[ir − 1] = (N
2 + 1)), one must have ir−1 = 2. With

that value of ir−1, the only possible choice for Sr−1[ir−1 + 1] is 1 else in round r there
is no other way to satisfy the target position of the key-stream byte which is given by
Sr[ir] + Sr[jr]. Hence, the probability associated with this case corresponding to the given
and desired conditions is 1

N (1− 1
N) · (0) = 0.

[Case 3:] Let us next consider all the remaining configurations given by ir−1 6= jr−1.

In this case, irrespective of the value of Sr−1[ir−1 + 1], the given condition of zr =
zr−1 = (N

2 + 1) can be satisfied with or without meeting the desired condition of (Sr[ir] =
1)∧ (Sr[ir − 1] = (N

2 + 1)). Hence, there is a fair chance of satisfying the desired condition
with the probability of 1

N2 within the probability corresponding to this case, which is
(1− 1

N2 − 1
N + 1

N2).
Combining the probability of all the three cases we get Pr((Sr[ir] = 1) ∧ (Sr[ir − 1] =

(N
2 + 1))|zr = zr−1 = (N

2 + 1)) ≈ (2
N2 − 1

N3) ≈ 2
N2 .

6.3 Proof of Lemma 10
Proof. We prove this lemma by first demonstrating two special cases and then by handling
rest of the cases.

[Case 1:] Let us consider the configuration of the permutation array bytes as Sr−1[ir−1] =
(N − 1) and Sr−1[ir−1 + 1] = 0.

24 Glimpses are Forever in RC4 amidst the Spectre of Biases

We now prove that in this configuration jr−1 must be equal to (ir−1 + 1) by con-
tradiction. If that’s not true then Sr−1[jr−1] = p where p is an arbitrary byte value
(6= 0). Since zr−1 = (N − 1) which is in the byte position of ir−1, p must be equal to
(ir−1 −N + 1). Since Sr−1[ir−1 + 1] = 0, jr must be same as jr−1. As zr = 0, Sr−1[jr−1]
must have the value of jr−1. So p = jr−1. This is not possible if jr−1 6= (ir−1 + 1).
Hence, we must have jr−1 = (ir−1 + 1) which would satisfy the desired condition of
(Sr[ir] = 0) ∧ (Sr[ir − 1] = (N − 1)) and the probability associated with this event would
be 1

N2 .

[Case 2:] Let us now consider the configuration of the permutation array bytes as
Sr−1[ir−1] 6= (N − 1) and Sr−1[ir−1 + 1] = 0.

In this configuration, since Sr−1[ir−1 + 1] = 0, in order to satisfy the given condition of
zr = 0 as well as the expected condition of Sr[ir] = 0, the only possible choice is to have
jr = jr−1 = ir−1 + 1 = 0 which also means ir−1 must be equal to (N − 1). Hence, the
value at Sr−1[ir−1] remains unaltered in round r making it impossible to satisfy one of the
desired conditions, i.e., Sr[ir − 1] = (N − 1). Hence the probability associated with this
case would be (1− 1

N) 1
N · (0) = 0.

[Case 3:] Let us now consider the configuration of the permutation array bytes as
Sr−1[ir−1] = (N − 1) and Sr−1[ir−1 + 1] 6= 0.

In this configuration, since Sr−1[ir−1 + 1] 6= 0, in order to satisfy the given condition of
zr = 0 as well as the expected condition of Sr[ir] = 0, the only possible choice is to have
Sr−1[jr] = 0 so that the swap operation ensures Sr[ir] = 0. Hence, the value at Sr−1[ir−1]
remains unaltered in round r, i.e., Sr[ir − 1] = (N − 1). Hence the probability associated
with this case would also be 1

N2 .

[Case 4:] We now consider a special configuration of the permutation array bytes as
Sr−1[ir−1] = 0 and Sr−1[ir−1 + 1] = (N − 1).

In this configuration, the only way to satisfy the desired condition of (Sr[ir] =
0)∧ (Sr[ir− 1] = (N − 1)) is to swap the permutation array bytes in round r. That implies
ir−1 = (N − 2) and jr−1 = (N − 1) which would satisfy the given as well as the desired
conditions. Clearly, the probability associated with this case would be 1

N2 . From this case
it is also evident that in the rest of cases corresponding to Sr−1[ir−1] 6∈ {0, (N − 1)} and
Sr−1[ir−1 + 1] 6∈ {0, (N − 1)}, it is impossible to satisfy the desired conditions.

By combining all the 4 cases we arrive at the result that Pr((Sr[ir] = 0)∧ (Sr[ir − 1] =
(N − 1))|zr = 0, zr−1 = (N − 1)) ≈ 3

N2 .

6.4 Proof of Lemma 12
Proof. The events that lead to the condition connecting two consecutive key-stream bytes
and the index i, have complex inter-dependencies. Due to that reason, the usual assumption
of independence of Glimpse correlations arising out of the two events does not hold good.
Hence, we prove this result from the first principle by counting events that satisfy the
given conditions.

[Case 1:] Let us first consider jr−1 = 0 and Sr−1[ir−1 + 1] = 0.

In this case two sub-cases may arise:

Chandratop Chakraborty1, Pranab Chakraborty2, Subhamoy Maitra3 25

(a) Sr−1[ir−1] = (N − 1)

(b) Sr−1[ir−1] 6= (N − 1)

In sub-case 1(a), the configuration is sufficient to guarantee the given condition of
zr−1 = (N − 1), zr = 0 and ir = 0. In addition, the expected configuration of Sr[jr−1] = 0
is satisfied because Sr−1[ir−1 + 1] = 0 and therefore jr = jr−1 as well. Clearly, the possible
number of events satisfying Case 1(a) can be derived uniformly from all possible (N − 2)!
choices. Let us denote this number by X .

In sub-case 1(b), let us assume Sr−1[ir−1] = p where p is any possible byte value for that
array position other than (N−1) and 0. If Sr−1[p] = (N−1), the configuration is sufficient
to guarantee the given condition of zr−1 = (N − 1), zr = 0, ir = 0 and the expected
configuration of Sr[jr−1] = 0. In this case, the possible number of events satisfying Case
1(b) for an arbitrary byte value p can be derived uniformly from all possible (N − 3)!
choices. Since p can be chosen in (N − 2) different ways, the possible number of choices is
(N − 2)! = X .

[Case 2:] Let us now consider jr−1 = 0 and Sr−1[ir−1 + 1] 6= 0. We consider three
sub-cases.

(a) Sr−1[ir−1 + 1] = 1

(b) Sr−1[ir−1 + 1] = (N − 1) and

(c) Sr−1[ir−1 + 1] = p, where p 6∈ {0, 1, (N − 1)} is any array byte.

Sub-case 2(a) can’t happen as Finney cycles are excluded. Sub-case 2(b) can’t satisfy
the given condition of zr−1 = (N − 1), zr = 0 and ir = 0, since to satisfy zr−1 = (N − 1),
Sr−1[ir−1] must be 1 which forces zr to be equal to 1.

In sub-case 2(c), for any randomly chosen permutation of array bytes, depending on
the position of output array byte zr−1 = (N − 1), Sr−1[ir−1] gets constrained. Similarly,
depending on the position of output array byte zr = 0, Sr[jr] gets fixed. This implies
3 array byte positions and values can’t be chosen freely. Hence, the possible number of
options can be at most (N − 3)!. We already know that p can’t have any of the 3 values
{0, 1, (N − 1)}. In addition, there would be two more values that p must avoid to satisfy
the given condition of zr−1 = (N − 1), zr = 0 and ir = 0. For example, p must not have
the value for which Sr[jr−1 + p] is either 0 or (N − 1) just before the swap operation.
So total number of possible choices available in the case to satisfy the given condition is
(N − 5) · (N − 3)! = N−5

N−2 · X ≈ X .
It’s important to note that the desired condition of Sr[jr−1] = 0 can’t be satisfied in

this case as Sr[jr] 6= 0 before the swap and ir = jr−1.

[Case 3:] Let us next consider jr−1 6= 0.
Let us first fix the position of jr−1 to an arbitrary position t 6= 0. In addition, let

us assume Sr−1[t] = p where p is one of the possible array byte values. The rest of the
analysis of this case is similar to that of sub-case 2(c).

For any randomly chosen permutation of array bytes, depending on the position of
output array byte zr−1 = (N − 1) and the assumed value of p, Sr−1[ir−1] gets constrained.
Similarly, depending on the position of output array byte zr = 0, Sr−1[jr] gets fixed. This
implies 3 array byte positions and values can’t be chosen freely. Hence, the possible number
of options can be (N − 3)!. So total number of possible choices available in the case to
satisfy the given condition is N · (N − 3)! = N

N−2 · X ≈ X . Since t 6= 0, it can assume in
total (N − 1) values, resulting in approximately (N − 1) · X possible choices.

To investigate the number possible choices that satisfy the desired condition (i.e.,
Sr[jr−1]) in Case 3 we observe the following 2 configurations.

26 Glimpses are Forever in RC4 amidst the Spectre of Biases

(1) Sr−1[ir−1 + 1] = 0 and

(2) Sr−1[ir−1 + 1] 6= 0 and Sr−1[jr−1] = 0

In configuration (1), Sr[jr] becomes 0 after the swap operation and since jr−1 = jr, the
desired condition is satisfied. In configuration (2), the position of the index j changes from
round r − 1 to r. Hence, the desired condition gets satisfied in this configuration as well.

In this configuration, to satisfy the condition zr = 0, Sr[jr] must have the value of
jr which is also same as jr−1. Also, depending on the position of output array byte
zr−1 = (N − 1) and the required value of jr−1 for Sr−1[jr−1], the value of Sr−1[ir−1]
gets constrained. This implies 3 array byte positions and values can’t be chosen freely.
Hence, the possible number of options can be at most (N − 3)!. Clearly jr can’t be 0
as per Case 3. It is also evident that jr = (N − 1) can’t satisfy the given condition of
zr−1 = (N − 1), zr = 0 and ir = 0. Hence there can be (N − 2) possible values of jr

resulting in (N − 2) · (N − 3)! = X possible choices that satisfy the desired condition of
Sr[jr−1] = 0 in configuration (1).

We now investigate configuration (2). Let us first consider the situation where
Sr−1[ir−1] = (N − 1). Clearly the given condition of zr−1 = (N − 1) is readily sat-
isfied and to satisfy the other condition zr = 0, one needs to constrain an additional byte
value resulting in (N − 3)! options and since jr may assume (N − 2) feasible values, the
possible number of choices is around X . On the other hand if Sr−1[ir−1] 6= (N − 1), then
also we can use identical argument to arrive at an additional X choices.

The analysis of 3 possible cases can be now summarized as follows.

Case 1 Possible number of choices that ensure the given condition is 2 · X all of which satisfy
the expected condition.

Case 2 Possible number of choices that meet the given condition is X out of which none
satisfies the expected condition.

Case 3 Possible number of choices that ensure the given condition is (N −1) ·X out of which
the number of choices that satisfy the expected condition is 3 · X .

Therefore, the Pr((Sr[jr−1] = 0)|zr−1 = (N − 1), zr = 0, ir = 0) ≈ 5X
(N+2)X = (5

N+2).

	Introduction
	Organization and Contribution

	Glimpses corresponding to Fluhrer-McGrew biases
	Lag-one digraph biases and glimpses
	Further exploration of Glimpses
	Deeper analysis of the Glimpse theorem jenkins
	Further Glimpses based on the output function
	Glimpses based on swap as well as the output function

	Conclusion
	Appendix A
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Lemma 10
	Proof of Lemma 12

