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ABSTRACT. In this paper, we investigate the security of binary secret Learning With Error (LWE).

To do so, we improve the classical dual lattice attack. More precisely, we use the dual attack on a

projected sublattice, which allows to generate instances of the LWE problem with a slightly bigger

noise that correspond to a fraction of the secret key. Then, we search for the fraction of the secret

key by computing the corresponding noise for each candidate using the constructed LWE samples.

As secrets are binary vectors, we can perform the search step very efficiently by exploiting the re-

cursive structure of the search space. This approach offers a trade-off between the cost of lattice

reduction and the complexity of the search part which allows to speed up the attack. As an ap-

plication we revisit the security estimates of the Fast Fully Homomorphic Encryption scheme over

the Torus (TFHE) which is one of the fastest homomorphic encryption schemes based on the LWE

problem. We provide an estimate of the complexity of our method for various parameters under

three different cost models for lattice reduction and show that security level of the TFHE scheme

should be re-evaluated according to the proposed improvement. Our estimates show that the cur-

rent security level of the TFHE scheme should be reduced by 10 bits for the parameters proposed in

the latest version of the scheme and by 7 bits for the recent update of the parameters that are used

in the implementation, available online.

1. INTRODUCTION

The Learning With Errors (LWE) problem was introduced by Regev [Reg05] in 2005. A key

advantage of LWE is that it is provably as hard as certain lattice approximation problems in the

worst-case [BLP+13]. Since its introduction, the LWE problem has been a rich source of crypto-

graphic constructions. The original Regev’s work presents a LWE-based public-key encryption
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scheme, but besides public key encryption, this problem can be used to build other primitives

such as identity-based encryption [GPV08] or even fully homomorphic encryption [BV11].

Fully homomorphic encryption (FHE) allows to perform arbitrary operations on encrypted

data without decrypting it. The first fully homomorphic encryption scheme was introduced

by Gentry in 2009 [G+09]. Since that time many FHE schemes were proposed, each offering

new improvements (e.g. [FV12, GSW13, BGV14, CS15, DM15]). Security of many existing FHE

constructions is based on the hardness of the LWE problem and its variations.

In the original formulation of the LWE problem, the secret vector is sampled uniformly at

random from Znq , but more recent LWE-based constructions choose to use a more restricted

distribution of the secret key in order to be more efficient. For example, some FHE schemes

use binary [DM15, CGGI16], ternary [?], or even ternary sparse secrets [?]. There are theoret-

ical results supporting these choices which show that the LWE remains hard even with small

secrets [BLP+13]. In practice, however, more restricted distributions of the secret key can lead

into more efficient attacks [?, SC19, CHHS19].

In this paper, we are interesting in evaluating the practical security of the LWE-based con-

structions with binary secrets. As an application, we consider the bit-security of the Fast Fully

Homomorphic Encryption scheme over the Torus [CGGI16, CGGI17, CGGI20], which is cur-

rently one of the fastest FHE schemes. In TFHE, the gate bootstrapping can be performed in

time about 10-20 ms. The security of the TFHE scheme relies on the hardness of a Learning

with Errors (LWE) problem variant, named Torus-LWE. As a “learning a character” problem, it

encompasses both the celebrated LWE and ring-LWE problems.

The security of a cryptosystem, of course, depends on the complexity of the most efficient

known attack against it. In particular, to estimate the security of a LWE-based construction, it is

important to know which attack is the best for the parameters used in the construction. It can

be a difficult issue; indeed, the survey of existing attacks against LWE given in [APS15] shows

that no known attack would be the best for all sets of LWE parameters.

In the case of TFHE, in [CGGI17], the authors adapted and used the dual distinguishing lat-

tice attack from [Alb17] to evaluate the security of their scheme. Recently, in [CGGI20, Remark

9], the authors propose an updated set of the parameters for their scheme and estimate the se-

curity of the new parameters using the LWE estimator from [ACD+18]. As it turns out, for both

sets of the parameters, this leads to an overestimate of the security level.

1.1. Our contribution. In this work, we generalize the dual lattice attack which is currently

used to evaluate the security of the TFHE scheme. First, we present a complete and detailed
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analysis of the standard dual lattice attack1 on LWE from [CGGI20]. Then, we show that apply-

ing the dual attack to a projected sublattice and combining it with the search for a fraction of the

key can yield a more efficient attack.

More precisely, our attack starts by applying lattice reduction to a projected sublattice in the

same way it is applied to the whole lattice in the dual attack with lazy modulus switching. This

way we generate LWE instances with bigger noise but in smaller dimension, corresponding to a

fraction of the secret key. Then, the freshly obtained instances are used to recover the remaining

fraction of the secret key. For each candidate for this missing fraction, we compute the noise

vector corresponding to the LWE instances obtained at the previous step. This allows us to per-

form a majority voting procedure to detect the most likely candidates. As the TFHE scheme

uses binary vectors for keys, this step boils down to computing a product of a matrix composed

of the LWE samples with the matrix composed of all binary strings of length equal to the di-

mension of the part of the secret key that we are searching for. We show that this computation

can be performed efficiently thanks to the recursive structure of the corresponding search space.

The number of bits of the secret key that the attack aims to guess gives an additional parameter

for tuning the complexity of the attack. Hence, this hybrid approach offers a trade-off between

the quality of lattice reduction in the dual attack part and the time subsequently spent in the

exhaustive search part. Together with the efficient computation of the noise for each candi-

date, the optimal parameters for this trade-off gives an asymptotic improvement of the whole

complexity.

We evaluate the complexity of the standard dual attack and of our attack for a wide range

of LWE parameters. We estimate the complexities of both attacks under three different models

of the lattice reduction. For all the models, our estimates show that our attack outperforms the

standard dual attack.

In particular, we estimate the complexity of our attack for the parameters used in the TFHE

scheme. The TFHE scheme uses two keys: the switching key and the bootstrapping key. Thus,

the security of the scheme is measured by the security of the weakest of the two keys.

We shall point out that the parameters of the scheme have been re-evaluated between the

initial publication and the final journal version. The latest version of the paper [CGGI20] con-

tains both the old and the new parameters. The security level for the old parameters (given

1We shall remark that this attack is slightly more subtle than the classical dual lattice attack, as it encompasses a

continuous relaxation of the lazy modulus switching technique of [Alb17].
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by [CGGI20, Table 3]) of the scheme is evaluated according to the dual attack, which the au-

thors adapt to the settings of the TFHE scheme in [CGGI20, Section 7]. The new parameters

are introduced by [CGGI20, Remark 9] and described in [CGGI20, Table 4]. Their security is

evaluated using the LWE estimator from [ACD+18]. Also, recently, the on-line implementa-

tion of the scheme was updated and another set of the parameters appeared with the update

(see [G+16, v1.1 – updated security parameters release, date : 2020.02.21]). For completeness,

we re-evaluated the security of all available sets of the parameters. We describe all the choices

in Table 1 and showcase the corresponding estimated security within our attack framework.

parameters (n, α) λ from [CGGI20]
λ: our attack

(sieving model)

Old param.

switching key

n = 500, α = 2.43 · 10−5
159 94

bootstrapping key

n = 1024, α = 3.73 · 10−9
198 112

New param.

switching key

n = 612, α = 2−15
128 118

bootstrapping key

n = 1024, α = 2−26
129 120

Implementation param.

switching key

n = 630, α = 2−15
128 121

bootstrapping key

n = 1024, α = 2−25
130 125

TABLE 1. Security of the parameters of TFHE scheme from [CGGI20, Table 3,

Table 4] and from the public implementation [G+16]. n denotes the dimension,

α is the parameter of the modular Gaussian distribution, λ denotes bit-security.

The bold numbers denote the overall security of the scheme for a given set of

parameters.

1.2. Related work. The survey [APS15] outlines three strategies for attacks against LWE: ex-

haustive search, BKW algorithm [BKW03,ACF+15] and lattice reduction. Lattice attacks against

LWE can be separated into three categories depending on the lattice used: distinguishing dual

attacks [Alb17], decoding (primal) attacks [LP11, LN13], and solving LWE by reducing it to

unique-SVP: the unique Shortest Vector Problem [AFG13].
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The idea of hybrid lattice reduction attack was introduced by Howgrave–Graham in [HG07].

He proposed to combine a meet-in-the-middle attack with lattice reduction to attack NTRUEn-

crypt. Then, Buchmann et al. adapted Howgrave–Graham’s attack to the settings of LWE with

binary error [BGPW16] and showed that the hybrid attack outperforms existing algorithms for

some sets of parameters. This attack uses the decoding (primal) strategy for the lattice reduction

part. Following these two works, Wunderer has provided an improved analysis of the hybrid

decoding lattice attack and meet-in-the-middle attack and re-estimated security of several LWE

and NTRU based cryptosystems in [Wun16]. Also, very recently, a similar combination of pri-

mal lattice attack and meet-in-the-middle attack was applied to LWE with ternary and sparse

secret [SC19]. This last reference shows that the hybrid attack can also outperform other attacks

in the case of ternary and sparse secrets for parameters typical for FHE schemes.

A combination of dual lattice attack and exhaustive search for a part of the secret key was

considered in [Alb17, Section 5]. This work considers a hybrid dual attack in context of sparse

secret keys. Also, recently, a similar approach was adapted to the case of ternary and sparse keys

in [CHHS19]. The main difference of this work compared to [CHHS19, Alb17] is that the secret

is non-sparse and binary in case of TFHE, thus, the search part of the hybrid attack requires a

different approach.

Outline. This paper is organized as follows. In Section 2, we provide background. In Sec-

tion 3, we revisit the dual lattice attack which was originally used to estimate the security level

of TFHE. In Section 4, we describe our hybrid dual lattice attack. In Section 5, we compare the

complexities of two attacks, revisit the security estimate of the TFHE scheme and provide some

experimental evidence supporting our analysis.

2. BACKGROUND

We use column notation for vectors and denote them using bold lower-case letters (e.g. x).

Matrices are denoted using bold upper-case letters (e.g. A). For a vector x, xt denotes the

transpose of x, i.e., the corresponding row-vector. Base-2 logarithm is denoted as log, natural

logarithm is denoted as ln. We denote the set of real numbers modulo 1 as the torus T. For

a finite set S, we denote by U(S) the discrete uniform distribution on S. For any compact set

S ⊂ Rn, the uniform distribution over S is also denoted by U(S). When S is not specified, U
denotes uniform distribution over (−0.5; 0.5).
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2.1. LWE problem. Abstractly, all operations of the TFHE scheme are defined on the real torus T

and to estimate the security of the scheme it is convenient to consider a scale-invariant version

of LWE problem.

Definition 2.1 (Learning with Errors, [BLP+13, Definition 2.11]). Let n > 1, s ∈ Zn, ξ be a

distribution over R and S be a distribution over Zn.

We define the LWEs,ξ distribution as the distribution over Tn×T obtained by sampling a from

U(Tn), sampling e from ξ and returning (a,ats + e).

Given access to outputs from this distribution, we can consider the two following problems:

• Decision-LWE. Distinguish, given arbitrarily many samples, between U(Tn × T) and

LWEs,ξ distribution for a fixed s sampled from S.

• Search-LWE. Given arbitrarily many samples from LWEs,ξ distribution with fixed s ←
S, recover the vector s.

To complete the description of the LWE problem we need to choose the error distribution

ξ and the distribution of the secret key S. Following the description of the TFHE scheme, we

choose S to be U({0, 1}n) and ξ to be a centered continuous Gaussian distribution, i.e. , we

consider the LWE problem with binary secret. In [BLP+13], it is shown that this variation of

LWE with binary secret remains hard. Finally, we use the notation LWEs,σ as a shorthand for

LWEs,ξ, when ξ is the Gaussian distribution centered at 0 and with standard deviation σ.

2.2. Lattices. A lattice Λ is a discrete subgroup of Rd. As such, a lattice Λ of rank n can be

described as a set of all integer linear combinations of n 6 d linearly independent vectors B =

{b1, . . . ,bd} ⊂ Rd:

Λ = L(B) := Zb1 ⊕ · · · ⊕ Zbd,

called a basis. Bases are not unique, one lattice basis may be transformed into another one by

applying an arbitrary unimodular transformation. The volume of the lattice vol(Λ) is equal to the

square root of the determinant of the Gram matrix BtB: vol(Λ) =
√

det(BtB). For every lattice

Λ we denote the length of its shortest non-zero vector as λ1(Λ). Minkowski’s theorem states

that λ1(Λ) 6
√
γn · vol(Λ)1/n for any d-dimensional lattice Λ, where γd < d is d-dimensional

Hermite’s constant. The problem of finding the shortest non-zero lattice vector is called the

Shortest Vector Problem(SVP). It is known to be NP-hard under randomized reduction [Ajt98].
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2.3. Lattice reduction. A lattice reduction algorithm is an algorithm which, given as input

some basis of the lattice, finds a basis that consists of relatively short and relatively pairwise-

orthogonal vectors. The quality of the basis produced by lattice reduction algorithms is of-

ten measured by the Hermite factor δ =
‖b1‖

det(Λ)1/d
, where b1 is the first vector of the output

basis. Hermite factors bigger than
(

4
3

)n/4
can be reached in polynomial time using the LLL

algorithm [LLL82]. In order to obtain smaller Hermite factors, blockwise lattice reduction al-

gorithms, like BKZ-2.0 [CN11] or S-DBKZ [MW16], can be used. The BKZ algorithm takes as

input a basis of dimension d and proceeds by solving SVP on lattices of dimension β < d using

sieving [BDGL16] or enumeration [GNR10]. The quality of the output of BKZ depends on the

blocksize β. In [HPS11] it is shown that after a polynomial number of calls to SVP oracle, the

BKZ algorithm with blocksize β produces a basis B that achieves the following bound:

‖b1‖ 6 2γ
d−1

2(β−1)
+ 3

2

β · vol(B)1/d.

However, up to our knowledge, there is no closed formula that tightly connects the quality

and complexity of the BKZ algorithm. In this work, we use experimental models proposed

in [ACF+15, ACD+18] in order to estimate the running time and quality of the output of lattice

reduction. They are based on the following two assumptions on the quality and shape of the

output of BKZ. The first assumption states that the BKZ algorithm outputs vectors with bal-

anced coordinates, while the second assumption connects the Hermite factor δ with the chosen

blocksize β.

Assumption 1. Given as input, a basis B of a d-dimensional lattice Λ, BKZ outputs a vector of

norm close to δd · det(Λ)1/d with balanced coordinates. Each coordinate of this vector follows

a distribution that can be approximated by a Gaussian with mean 0 and standard deviation

δd det(Λ)1/d/
√
d.

Assumption 2. BKZ with blocksize β achieves Hermite factor

δ =
( β

2πe
(πβ)

1
β

) 1
2(β−1)

.

This assumption is experimentally verified in [Che13].

BKZ cost models. To estimate the running time of BKZ, we use three different models. The

first model is an extrapolation by Albrecht [ACF+15] et al. of the Liu–Nguyen datasets [LN13].
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According to that model, the logarithm of the running time of BKZ-2.0 (expressed in bit opera-

tions) is a quadratic function of log(δ)−1:

log(T (BKZδ)) =
0.009

log(δ)2
− 27.

We further refer to this model as the delta-squared model. The model was used in [CGGI17] to

estimate the security of TFHE.

Another cost model [ACD+18] assumes that the running time of BKZ with blocksize β for

d-dimensional basis is T (BKZβ,d) = 8d ·T (SVPβ), where T (SVPβ) is the running time of an SVP

oracle in dimension β. For the SVP oracle, we use the following two widely used models:

Sieving model: T (SVPβ) ≈ 20.292β+16.4,

Enumeration model: T (SVPβ) ≈ 20.187β log(β)−1.019β+16.1.

The sieving algorithm [BDGL16] yields around
(

4
3

)n
2

short vectors while solving SVP on an

n-dimensional lattice. Therefore, when using the sieving model, we shall assume that one run

of the BKZ routine produces
(

4
3

) β
2

short lattice vectors, where β is the chosen blocksize. As

such, we shall provide the following heuristic, which generalizes the repartition given in As-

sumption 1 when the number of output vectors is small with regards to the number of possible

vectors of desired length:

Assumption 3. Let R � δd
2

Vd and R 6 (4/3)β/2 where Vd is the volume of the `2 unit ball in

dimension d. Given as input, a basis B of a d-dimensional lattice Λ, BKZβ with a sieving oracle

as SVP oracle outputs a set ofR vectors of norm close to δd ·det(Λ)1/d with balanced coordinates.

Each coordinate of these vector follows a distribution that can be approximated by a Gaussian

with mean 0 and standard deviation δd det(Λ)1/d/
√
d.

In practice, for the dimension involved in cryptography and for the parameters yields by our

techniques, this assumption can be experimentally verified. In a general setting, one might see

it as an slight underestimate of the resulting security parameters.

2.4. Modular Gaussian distribution. Let σ > 0. For all x ∈ R, the density of the centered

Gaussian distribution with standard deviation σ is defined as ρσ(x) = 1√
2πσ

exp
(
− x2

2σ2

)
. We

define the distribution that is obtained by sampling a centered Gaussian distribution of standard

deviation σ and reducing it modulo 1 as the modular Gaussian distribution of parameter σ and

denote it as Gσ .
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The support of the distribution is
(
− 1

2 ; 1
2

)
. The probability density function is given by the

absolutely convergent series:

gσ(x) =
∑
k∈Z

ρσ(x+ k).

For large values of σ, the sum that defines the density of a modular Gaussian can be closely

approximated.

Lemma 2.2. As σ →∞, gσ(x) = 1 + 2e−2π
2σ2

cos(2πx) +O(e−8π
2σ2

).

Proof. The Fourier transform of the Gaussian function ρσ,m(x) = 1√
2πσ

e−
(x+m)2

2σ2 is given by

ρ̂σ,m(y) = e−2π
2σ2m2+2πimx. Then, using the Poisson summation formula, we obtain:

(1)
gσ(x) =

1√
2πσ

∑
k∈Z

e−
(k+x)2

2σ2 = 1 + 2
∑
k>0

e−2π
2σ2k2 cos(2πkx) =

1 + 2e−2π
2σ2

cos(2πx) +O(e−8π
2σ2

).

�

2.5. Probability background.

Berry-Esseen inequality. The Berry-Esseen inequality shows how closely the distribution of the

sum of independent random variables can be approximated by a Gaussian distribution.

Theorem 2.3. Let X1, . . . , Xn be independent random variables such that for all i ∈ {1, . . . , n}
E{Xi} = 0, E{X2

i } = σ2
i > 0, and E{|Xi|3} = ρi <∞. Denote the normalized sum

n∑
i=1

Xi√
n∑
i=1

σ2
i

as Sn. Also denote by Fn the cumulative distribution function of Sn, and by Φ the cumulative

distribution function of the standard normal distribution. Then, there exists a constant C0 such

that

sup
x∈R
|Fn(x)− Φ(x)| 6 C0

n∑
i=1

ρi( n∑
i=1

σ2
i

)3/2 .
We use the Berry-Esseen inequality in order to estimate how closely the distribution that

we obtain after the lattice reduction step of the dual attack can be approximated by a discrete

Gaussian distribution (see Theorem 3.1). The Berry-Esseen inequality requires a finite third

absolute moment of the random variables. In the proof of Theorem 3.1, we need the expression
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of third absolute moment of a Gaussian distribution. It can be obtained from the following

lemma.

Lemma 2.4. Let σ > 0. Let X be a random variable of a Gaussian distribution with mean 0 and

standard deviation σ2. Then, E{|X|3} = 2
√

2
πσ

3.

Proof. Classically we have:

E{|X|3} = 2 · 1√
2πσ

∞∫
0

x3e−
x2

2σ2 dx = 2

√
2

π
σ3.

�

Hoeffding’s inequality. Hoeffding’s inequality gives an exponentially decreasing upper bound on

the probability that the sum of bounded independent random variables deviates from its expec-

tation by a certain amount.

Theorem 2.5. Let X1, . . . , XN be independent random variables such that ai 6 Xi 6 bi for all

i ∈ {1, . . . , N}. Denote the average 1
N

N∑
i=1

Xi as X̄ . Then, for t > 0, we have

P{X̄ − E{X̄} > t} 6 exp

(
− 2N2t2

n∑
i=1

(bi − ai)2

)
,(2)

P{X̄ − E{X̄} 6 −t} 6 exp

(
− 2N2t2

n∑
i=1

(bi − ai)2

)
.(3)

In this paper, we use Hoeffding’s inequality to construct a distinguisher for the uniform and

the modular Gaussian distributions (see Section 3.2).

3. DUAL DISTINGUISHING ATTACK AGAINST LWE.

In this section, we revisit the distinguishing dual attack against LWE described in [CGGI20]),

providing complete proofs and introducing finer tools as a novel distinguisher for the uniform

distribution and the modular Gaussian.

Setting. Let s ∈ {0, 1}n be a secret vector and let α > 0 be a fixed constant. The attack takes as

input m samples (a1, b1), . . . , (am, bm) ∈ Tn+1×T which are either all from LWEs,α distribution

or all from U(Tn × T), and guesses the input distribution.
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We can write input samples in a matrix form:

A := (a1, . . . ,am) ∈ Tn×m, b = (b1, . . . , bm)t ∈ Tm,

if input samples are from the LWEs,α distribution:

b = Ats + e mod 1.

Distinguisher reduction using a small trapdoor. In order to distinguish between the two distribu-

tions, the attack searches for a short vector v = (v1, . . . , vm)t ∈ Zm such that the linear combi-

nation of the left parts of the inputs samples defined by v, i.e.:

x :=

m∑
i=1

viai = Av mod 1

is also a short vector. If the input was from the LWE distribution, then the corresponding linear

combination of the right parts of the input samples is also small as a sum of two relatively small

numbers:

(4) vtb = vt(Ats + e) = xts + vte mod 1.

On the other hand, if the input is uniformly distributed, then independently of the choice of

the non-zero vector v, the product v·b mod 1 has uniform distribution on (−1/2; 1/2). Recover-

ing a suitable v thus turns the decisional-LWE problem into an easier problem of distinguishing

two distributions on T.

This remaining of section is organized in the following way. First, in Section 3.1 we describe

how such a suitable vector v can be discovered by lattice reduction and analyze the distribution

of vtb. Then, in Section 3.2, we estimate the complexity of distinguishing two distributions on

T that we obtain after this first part. Eventually Section 3.3 estimates the time complexity of the

whole attack.

3.1. Trapdoor construction by lattice reduction. Finding a vector v such that both parts of the

sum (4) are small when the input has LWE distribution is equivalent to finding a short vector in

the following (m+ n)-dimensional lattice:

L(A) =

{Av mod 1

v

 ∈ Rm+n

∣∣∣∣∣∀v ∈ Zm
}
.

The lattice L(A) can be generated by the columns of the following matrix:

B =

 In A

0m×n Im

 ∈ R(m+n)×(m+n)



12 ON A HYBRID APPROACH TO SOLVE BINARY-LWE

A short vector in L(A) can be found by applying a lattice reduction algorithm to the basis

B. Using Assumption 1, we expect that the lattice reduction process produces a vector w =

(x||v)t ∈ Zn+m with equidistributed coordinates. Our goal is to minimize the product vtb =

xts + vte. The vectors e and s come from different distributions and have different expected

norms. For the TFHE scheme, the variance of e is much smaller than the variance of s. To take

this imbalance into account, one introduces an additional rescaling parameter q ∈ R>0. The first

n rows of the matrix B are multiplied by q, the last m rows are multiplied by q−n/m. Obviously,

this transformation doesn’t change the determinant of the matrix. A basis Bq of the transformed

lattice is given by

Bq =

 qIn qA

0m×n q−n/mIm

 ∈ R(m+n)×(m+n).

We apply a lattice reduction algorithm to Bq . Denote the first vector of the reduced basis as

wq . By taking last m coordinates of wq and multiplying them by qn/m we recover the desired

vector v. This technique can be thought as a continuous relaxation of the modulus switching

technique. That part of the attack is summarized in Algorithm 1.

Algorithm 1: Transform m LWE samples to one sample from modular Gaussian distri-

bution
input : A ∈ Tn×m, b ∈ Tm, S > 0, α > 0, δ ∈ (1; 1.1)

output: x ∈ T

1 computeV(A, S, α, δ):

2 q :=
(
S
α

) m
n+m

3 Bq :=

 qIn qA

0m×n q−n/mIm

 ∈ R(m+n)×(m+n)

4 wq ← BKZδ(Bq)

5 v := qn/m · (wqn+1, . . . wqn+m)t

6 return (v)

7 LWEtoModGaussian(A, b, S, α, δ):

8 v← COMPUTEV(A, S, α, δ)

9 return vtb mod 1

The following lemma describes the distribution of the output of Algorithm 1 under Assump-

tion 1 that BKZ outputs vectors with balanced coordinates.
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Lemma 3.1 (see [CGGI20, Section 7]). Let α > 0 and S ∈ (0; 1) be fixed constants, n ∈ Z>0. Let

s ∈ {0, 1}n be a binary vector such that all bits of s are sampled independently from the Bernoulli

distribution with parameter S2: 2 for all i ∈ {1, . . . , n}: P{si = 1} = S2, P{si = 0} = 1−S2. Sup-

pose that Assumption 1 holds and let δ > 0 be the quality of the output of the BKZ algorithm.

Then, given as input m =
√
n · ln(S/α)ln(δ) − n samples from the LWEs,α distribution, Algorithm 1

outputs a random variable x with distribution that can be approximated by a Gaussian distri-

bution with mean 0 and standard deviation σ

σ = α · exp
(

2
√
n ln(S/α) ln(δ)

)
.

Denote as Fx the cumulative distribution function of x and denote as Φσ the cumulative distri-

bution function of the Gaussian distribution with mean 0 and standard deviation σ. Then, the

distance between the two distributions can be bounded:

sup
t∈R
|Fx(t)− Φσ(t)| = O

( 1√
S2(m+ n)

)
,

as n→∞.

Theorem 3.1 can be proved using the Berry-Esseen theorem. We give a proof in Appendix A

for completeness.

3.2. Exponential kernel distinguisher for the uniform and the modular Gaussian distribu-

tions. We now describe a novel distinguisher for the uniform and the modular Gaussian dis-

tributions. Formally, we construct a procedure which takes as input N samples which are all

sampled independently from one of the two distributions and guesses this distribution.

The crux of our method relies on the use of an empirical estimator of the Levy transform of

the distributions, to essentially cancel the effect of the modulus 1 on the Gaussian. Namely, from

the N samples X1, . . . , XN , we construct the estimator Ȳ = 1
N ·

N∑
i=1

e2πiXi . As N is growing to

infinity, this estimator converges to the Levy transform at 0 of the underlying distribution, that

is to say:

• to 0 for the uniform distribution

• to e−2π
2σ2

for the modular Gaussian.

Hence, in order to distinguish the distribution used to draw the samples, we now only need

to determine whether the empirical estimator Ȳ is closer to 0 or to e−2π
2σ2

.

2In TFHE, the parameter of the key distribution S is equal 1√
2

.
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Remark 3.2. The optimal value for the corresponding threshold can be obtained as a log-likelihood

estimator. However, this optimization is not giving a close formula. It appears that the gains ob-

tained from a numerical optimization of this value are negligible compared to taking the natural

threshold of 1/2e−2π
2σ2

.

Algorithm 2: Distinguish U and Gσ
input : X1, . . . , XN ∈

(
− 1

2 ; 1
2

)
, σ > 0, sampled independently from U or Gσ

output: A guess: G if the samples are drawn under Gσ or U otherwise

1 DistinguishGU(X1, . . . , XN , σ):

2 Ȳ = 1
N ·

N∑
i=1

exp(2πiXi)

3 if (Ȳ 6 1
2 · e

−2π2σ2

) then

4 return U

5 else

6 return G

Lemma 3.3. Let σ > 0 be a fixed constant. Assume that Algorithm 2 is given as input N points

that are sampled independently from the uniform distribution U or from the modular Gaussian

distribution Gσ . Then, Algorithm 2 guesses the distribution of the input points correctly with

probability at least

(5) pσ = 1− exp
(
− e−4π

2σ2

8
·N
)
.

The time complexity of the algorithm is polynomial in the size of the input.

Proof. For all i ∈ {1, . . . , N}, denote e2πiXi as Yi. As Xi ∈
(
− 1

2 ,
1
2

)
, <(Yi) ∈ (−1; 1].

First, we compute the expectation of Ȳ = 1
N ·

N∑
i=1

Yi in the two possible cases where Xis are

sampled from the uniform distribution, and whereXis are sampled from the modular Gaussian

with standard deviation σ. Note that, in both cases, as Xis are sampled independently and

identically from the same distribution, E{Ȳ } = E{Yi}.

In case of the uniform distribution, the expectation of the real part of Ȳ is equal to zero,

because the function <(e2πix) is symmetric around the origin:

(6) EU{<(Ȳ )} =

1/2∫
−1/2

e2πixdx = 0.
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Now in case of the modular Gaussian distribution, we exploit the 1-periodicity of t 7→ e2iπt

to cancel out the modulus 1:

EG{Ȳ } =

+1/2∫
−1/2

e2πix
∑
k∈Z

1√
2πσ

· e−
(x+k)2

2σ2 dx(7)

=
∑
k∈Z

+1/2∫
−1/2

e2πix
1√
2πσ

· e−
(x+k)2

2σ2 dx(8)

=

+∞∫
−∞

e2πix · 1√
2πσ

· e−
x2

2σ2 dx(9)

= e−2π
2σ2

· 1√
2πσ

+∞∫
−∞

e−
(x−2iπσ)2

2σ2 dx = e−2π
2σ2

,(10)

the sum-integral exchange being justified by uniform convergence of the sum.

Now, using the expectations of Ȳ and the Hoeffding’s inequality, we can estimate the proba-

bility of getting a correct guess.

First, consider the probability wrongly guessing when the distribution of the input is uni-

form. By Line 3 of Algorithm 2, it is given by:

P{G|U} = PU{Ȳ >
1

2
· e−2π

2σ2

}.

Since Yis are bounded, i.e., for all i ∈ {1, . . . , N}, Yi ∈ (−1; 1], we can use Hoeffding’s inequality

(see Theorem 2.5) to bound the probability P{G|U}:

(11) P{G|U} 6 exp
(
− e−4π

2σ2

8
·N
)
.

Similarly, we get the same bound on the probability of the wrong guess when the distribution

of the input is the modular Gaussian:

P{U |G} 6 exp
(
− e−4π2σ2

8 ·N
)
. Together with Equation (11), we get the bound on the probability

of the successful guess, given by Equation (5).

Since Algorithm 2 consists of computing the average of the input sample and performing one

comparison, it is polynomial in the size of the input. �

Theorem 3.3 implies that in order to distinguish the uniform distribution and the modular

Gaussian distribution with the parameter σ with a non-negligible probability, we need to take a

sample of size N = O(e4π
2σ2

).
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Remark 3.4. The original dual attack, proposed in [CGGI20], does not specify, which algorithm

is used for distinguishing the uniform and the modular Gaussian distributions. Instead, to esti-

mate the size of the sample, needed to distinguish the distributions, they estimate the statistical

distance ε (see [CGGI20, Section 7, Equation(6)]; for an upper bound on the statistical distance

between the modular Gaussian and the uniform distributions, see [BGMRT17, Appendix B])

between the distributions U and Gσ and use O(1/ε2) as an estimate for the required size of

the sample. However, such an estimate does not allow a practical instantiation in the security

analysis.

It turns out that the exponential kernel distinguisher, described in Algorithm 2, (ignoring

some constant factors), has the same complexity as the statistical distance estimate from [CGGI20]

suggests, while enjoying a sufficiently precise analysis to provide non-asymptotic parameters

estimation.

3.3. Complexity of the dual attack from TFHE article. The distinguishing attack is summa-

rized in Algorithm 3. It takes as input m × N samples from an unknown distribution, then

transforms them into N samples which have the uniform distribution if the input of the attack

was uniform and the modular Gaussian distribution if the input was from the LWE distribu-

tion. Then, the attack guesses the distribution of N samples using Algorithm 2 and outputs the

corresponding answer.

Algorithm 3: Dual distinguishing attack (adapted from [CGGI20, Section 7])

input : {(Ai,bi)}Ni=1, where ∀iAi ∈ Tn×m, bi ∈ Tm, α > 0, S > 0, δ ∈ (1; 1.1)

output: guess for the distribution of the input: Uniform or LWE distribution

1 DistinguishingAttack({Ai,bi}Ni=0, α, S, δ):

2 X := ∅

3 σ := α · exp
(
2
√
n ln(S/α) ln(δ)

)
4 for i ∈ {1, . . . , N} do

5 x← LWEtoModGaussian(Ai,bi, S, α, δ)

6 X ← X ∪ x

7 if (DistinguishGU(X,σ) = G) then

8 return LWE distribution

9 else

10 return Uniform
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The following theorem states that the cost of the distinguishing attack can be estimated by

solving a minimization problem. It revisits the estimate given in [CGGI20, Section 7].

Theorem 3.5. Let α > 0 and S ∈ (0; 1) be some fixed constants, n ∈ Z>0. Let s ∈ {0, 1}n be a

binary vector such that all bits of s are sampled independently from a Bernoulli distribution with

parameter S2. Suppose that Assumption 1 holds. Then, the time complexity of solving Decision-

LWEs,α with probability of success p by the distinguishing attack described in Algorithm 3 is

(12) TTFHEattack = min
δ

(
N(σ, p) · T (BKZδ)

)
,

where σ = α · exp
(
2
√
n ln(S/α) ln(δ)

)
, N(σ, p) = 8 ln( 1

1−p ) · e4π2σ2

.

Proof. The cost of the attack is the cost of the lattice reduction multiplied by the number of sam-

ples N needed to distinguish the uniform distribution and the modular Gaussian distribution

with the parameter σ:

(13) T = N · T (BKZδ).

By Theorem 3.3, Algorithm 2, given as an input a sample of size N , guesses its distribution

correctly with the probability at least 1 − exp
(
− N · e

−4π2σ2

8

)
. Thus, in order to achieve the

probability p, we need to produce a sample of size N(σ, p) = 8 ln( 1
1−p ) · e4π2σ2

.

The parameter σ of the discrete Gaussian distribution as a function of δ can be estimated

using Theorem 3.1. Then, the time complexity can be obtained by optimizing the expression,

given by Equation (13), as a function of δ. �

4. OUR HYBRID KEY RECOVERY ATTACK

In this section, we show how the dual distinguishing attack recalled in Section 3 can be hy-

bridized with exhaustive search on a fraction of the secret vector to obtain a continuum of more

efficient key recovery attacks on the underlying LWE problem. Let s ∈ {0, 1}n be a secret vector

and let α > 0 be a fixed constant. Our attack takes as input samples from the LWE distribution

of form

(14) (A,b = Ats + e mod 1) ∈ (Tn×m,Tm),

where e ∈ Rm has centered Gaussian distribution with standard deviation α. The attack divides

the secret vector into two fractions:

s = (s1||s2)t, s1 ∈ {0, 1}n1 , s2 ∈ {0, 1}n2 , n = n1 + n2.
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The matrix A is also fractionned into two parts corresponding to the separation of the secret

s:

(15) A =



a1,1 . . . a1,m
...

...

an1,1 . . . an1,m

an1+1,1 . . . an1+1,m

... . . .
...

an,1 . . . an,m


=

A1

A2



Then, Equation (14) can be rewritten as

At
1s1 + At

2s2 + e = b mod 1.

By applying lattice reduction to matrix A1 as described in Algorithm 1, we recover a vector

v such that vt(At
1s1 + e) is small and it allows us to transforms m input LWE samples (A,b) ∈

(Tn×m,Tm) into one new LWE sample (â, b̂) ∈ (Tn2 ,T) of smaller dimension and bigger noise:

(16) vtAt
2︸ ︷︷ ︸

a

s2 + vt(At
1s1 + e)︸ ︷︷ ︸
ê

= vtb︸︷︷︸
b̂

mod 1.

The resulting LWE sample in smaller dimension can be used to find s2. Let x ∈ {0, 1}n2 be a

guess for s2. If the guess is correct, then the difference

(17) b̂− âtx = b̂− âts2 = (ê mod 1) ∼ Gσ

is small.

If the guess is not correct and x 6= s2, then there exist some y 6= 0 such that x = s2 − y. Then,

we rewrite b̂− âtx in the following way:

b̂− âtx = (b̂− âts2) + âty = âty + ê.

We can consider (â, âty + ê) as a sample from the LWE distribution that corresponds to the

secret y. Therefore, we may assume that if x 6= s2, the distribution of b̂− âtx mod 1 is close to

uniform, unless the decision-LWE is easy to solve.

In order to recover s2, the attack generates many LWE samples with reduced dimension.

Denote by R the number of generated samples and put them into matrix form as (Â, b̂) ∈
Tn2×R×TR. There are 2n2 possible candidates for s2. For each candidate x ∈ {0, 1}n2 , the attack

computes an R-dimensional vector ex = b − Ats. The complexity of this computation for all

the candidates is essentially the complexity of multiplying the matrices Â and S2, where S2 is a
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matrix whose columns are all binary vectors of dimension n2. Naively, the matrix multiplication

requires O(n · 2n2 ·R) operations. However, by exploiting the recursive structure of S2, it can be

done in time O(R · 2n2).

Then, for each candidate x for s2 the attack checks whether the corresponding vector ex

is uniform or concentrated around zero distribution. The attack returns the only candidate x

whose corresponding vector ex has concentrated around zero distribution.

The rest of this section is organized as follows. First, we describe the auxiliary algorithm for

multiplying a matrix by the matrix of all binary vectors that let us speed up the search for the

second fraction of the secret key. Then, we evaluate the complexity of our attack.

4.1. Algorithm for computing the product of a matrix with the matrix of all binary vectors.

For any d ∈ Z>0, define the function bind : Z ∩ [0; 2d] → {0, 1}d that maps any positive integer

k 6 2d to bind(k) the d-dimensional binary vector obtained from the binary representation of k.

For any positive integer d, denote by S(d) the matrix of all binary vectors of dimension d, in

lexicographic order. Thus, the i-th column of S(d) is equal to bind(i). These matrices can be

constructed recursively. For d = 1 it is given by S(1) =
(

0 1
)

, and for any d > 1 the matrix S(d)

can be constructed by concatenating two copies of the matrix S(d−1) and adding a row which

consists of 2d−1 zeros followed by 2d−1 ones as the first row to the resulting matrix:

(18) S(d) =

0 . . . 0 1 . . . 1

S(d−1) S(d−1)

 .

Let a = (a1, . . . , ad)
t be a d-dimensional vector. Our goal is to compute the scalar products of

a with every column of S(d). We can do it by using the recursive structure of S(d). Assume that

we know the desired scalar products for a(d−1) = (a2, . . . , ad)
t and S(d−1) Then, using Equa-

tion (18), we get

(19) atS(d) =
(
a1 at(d−1)

)
·

0 . . . 0 1 . . . 1

S(d−1) S(d−1)

 =

 at(d−1)S(d−1)(
a1 . . . a1

)t
+ at(d−1)S(d−1)

 ,

that is, the resulting vector is the sum of the vector at(d−1)S(d−1) concatenated with itself with

the vector whose first 2d−1 coordinates are zeros and the last 2d−1 coordinates are all equal to

a1. The approach is summarized in Algorithm 4.

Lemma 4.1. Let d be a positive integer number. Algorithm 4, given as input a d-dimensional

vector a, outputs the vector x of dimension 2d such that for all i ∈ {1, . . . , 2d} xi = atbind(i).

The time complexity of the algorithm is O(2d).
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Algorithm 4: Compute a scalar product of a vector with all binary vectors

input : a = (a1, . . . , ad)
t

output: atS(d), where S(d) ∈ {0, 1}2
d×d is the matrix whose columns are all binary

vectors of dimension d written in the lexicographical order

1 computeScalarProductWithBinaryVectors(a):

2 x← (0, ad)
t

3 for i ∈ {d− 1, . . . , 1} do

4 y← x

5 for j ∈ {1, . . . , 2d−i} do

6 yj ← yj + ai

7 x′ ← x ∪ y

8 x← x′

9 return x

Proof. The correctness of the algorithm follows from the recursive structure of the matrix S(d)

(see Equations (18) and (19)). The algorithm performs only additions of some coordinates of the

vector a. At the i-th iteration of the cycle (3-8) the algorithm performs 2d−i additions. Number

of iterations is (d− 1). The overall number of additions is 2 + 22 + · · ·+ 2d−1 = 2d − 2. �

Corollary 4.2. Let A be a matrix with R rows and d columns. The product of A and S(d) can be

computed in time O(R · 2d).

Proof. In order to compute A · S(d) we need to compute the product of each of the R rows

of A with Sd. By Theorem 4.1 it can be done in time O(2d). Then the overall complexity of

multiplying the matrices is O(R · 2d). �

4.2. Complexity of the attack. The pseudo-code corresponding to the full attack is given in Al-

gorithm 5.

Theorem 4.3. Let α > 0, p ∈ (0; 1), S ∈ (0; 1), and n ∈ Z>0 be fixed constants. Let s ∈ {0, 1}n

and σ > 0. Suppose that Assumption 1 holds. Then, the time complexity of solving the Search-

LWEs,α problem with probability of success p by the attack described in Algorithm 5 is

(20) Tattack = min
δ,n2

((
2n2 + T (BKZδ)

)
·R(n2, σ, p)

)
,

where R(n2, σ, p) = 8 · e4π2σ2

(n2 ln(2)− ln(ln(1/p))).
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Algorithm 5: Hybrid key recovery attack

input : {(Ai,bi)}Ri=1, where ∀iAi ∈ Tn×m, bi ∈ Tm, α > 0, S > 0, δ > 1,

n1 ∈ {2, . . . , n− 1}
output: s2 ∈ {0, 1}n−n1

1 recoverS({(Ai,bi)}Ri=1,α, S, δ, n1):

2 n2 ← (n− n1)

3 σ ← α · exp
(
2
√
n1 ln(S/α) ln(δ)

)
4 Â← ∅ , b̂← ∅

/* lattice reduction part */

5 for i ∈ {1, . . . , R} do

6 A← Ai, b← bi

7 (A1,A2)← SPLITMATRIX(A, n1) . see Equation (15)

8 v← COMPUTEV(A1, S, α, δ) . Algorithm 1

9 Â← Â ∪ {A2v}, b̂← b̂ ∪ {vtb}
/* search for s2 */

10 S(n2) ← matrix of all binary vectors of dimension n2 in lexicographical order

11 B̂← (b̂, . . . , b̂) ∈ TR×2n2

12 Ê← B̂− ÂtS(n2) mod 1 . see Theorem 4.2 and Algorithm 4

13 for i ∈ {1, . . . , 2n2} do

14 ê← Ê[i]

/* guess the distribution of e (see Algorithm 2) */

15 if (DISTINGUISHGU(ê, σ) = G) then

16 return S(n2)[i]

Proof. The attack can be divided in two steps: the lattice reduction step and the exhaustive

search for the second fraction of the secret key. The first step of the attack takes R ×m LWEs,α

samples and transforms them into R LWEs2,σ samples such that s2 is the second fraction of the

secret key s and the noise parameter σ is bigger than the noise parameter α of the input. It takes

time R · T (BKZδ). Denote the matrix form of obtained LWE samples as (Â, b̂) ∈ (Tn2×R,TR).

At the search step, the goal is to recover s2 using the obtained LWE samples. For each of

the candidates for s2 the attack computes the error vector that corresponds to R LWE samples

obtained at the previous step. It is equivalent to computing the following matrix expression:

Ê = B̂− ÂtS(n2) mod 1,
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where S(n2) is the matrix composed of all binary vectors of length n2 written in lexicographic

order and B̂ ∈ TR×2n2 is the matrix formed of 2n2 repetition of the vector b̂. The complexity of

computing that expression is dominated by the complexity of computing the product of Ât ∈
TR×n2 and S(n2). By Theorem 4.2, it can be computed in O(R · 2n2) operations. Once the attack

obtain an error vector for each of the candidates, it guesses the distribution of each error vector

using Algorithm 2 and returns the candidate whose error vector has concentrated around zero

modular Gaussian distribution.

The time complexity of the attack is the sum of the complexities of the two steps:

(21) Tattack = R ·
(
2n2 + T (BKZδ)

)
.

Now the goal is to evaluate the number of samples R needed to recover s2 with probability

p. By Theorem 3.3, using Algorithm 2, we can guess correctly the distribution of a sample of

size R with probability at least pσ = 1 − exp
(
− e−4π2σ2

8 · R
)
. In order to recover s2, we need

successfully guess the distribution for each of 2n2 candidates. Assume that the distributions,

produced by the candidates are independent. Then, the probability to correctly recover s2 is at

least p2
n2

σ . Thus, to recover s2 we need to choose the size of the sample R that satisfies:

(22) p2
n2

σ =

(
1− exp

(
− e−4π

2σ2

8
·R
))2n2

> p.

Let R be given by the following expression:

(23) R = 8 · e4π
2σ2

(n2 ln(2)− ln(ln(1/p))).

Combining Equations (22) and (23), we obtain:

(24) p2
n2

σ =
(

1− ln(1/p)

2n2

)2n2

.

Then, when n2 → ∞, p2
n2

σ → p. Thus, the sample size R, given by Equation (23) is sufficient to

recover s2 with the probability p.

By combining Equations (21) and (23) we obtain the time complexity of the attack. �

4.3. Using sieving in the hybrid attack. Assume that the BKZ algorithm uses the sieving algo-

rithm (see for instance [BDGL16]) as an SVP oracle. At its penultimate step, the sieving algo-

rithm produces many short vectors, so that by storing this pool of vectors, we may suppose that

BKZ produces many short vectors in one run. Thus, if we need N short lattice vectors, we need

to run the lattice reduction only
⌈
N
m

⌉
times, where m is the number of short vectors, returned by

the lattice reduction.
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In the following corollary from Theorem 4.3, we use this property of the sieving algorithm to

revisit the time complexity of our attack under the sieving BKZ cost model.

Corollary 4.4. Let α, p, n, σ and s ∈ {0; 1}n be as in Theorem 4.3. Assume that the lattice re-

duction algorithm, used by Algorithm 3, uses the sieving algorithm from [BDGL16] as an oracle

for solving SVP. Suppose that Assumption 3 holds. Then, the time complexity of solving the

Search-LWEs,α problem with probability of success p by the attack described in Algorithm 5 is

(25) Tattack = min
δ,n2

(
2n2 ·R(n1, σ, p) + T (BKZδ) ·

⌈R(n2, σ, p)

(4/3)β/2

⌉)
,

where β is the smallest blocksize such that the lattice reduction with the blocksize β achieves

the Hermite factor δ; R(n2, σ, p) is as defined in Theorem 4.3.

Proof. By Theorem 4.3, the time complexity of Algorithm 5 can be seen as the sum of complex-

ities of the two parts of the algorithm. The first part is producing R short lattice vectors and

the second part is evaluating R scalar products for each of 2n2 candidates for the secret key. As

in the sieving model one run of the lattice reduction produces (4/3)β/2 short vectors, the first

part of Algorithm 5 attack takes time T (BKZδ) ·
⌈
R(n2,σ,p)
(4/3)β/2

⌉
, which implies that the complexity

of Algorithm 5 in the sieving BKZ cost model is given by Equation (25). �

Remark on using the sieving model with the attack from Section 3. As the dual attack

from [CGGI20] consists in running the BKZ algorithm many times, it can also benefit from using

all the vectors, produced by the sieving subroutine. Then, the complexity of the dual attack

from [CGGI20] in the sieving model is essentially divided by the number of vectors, produced

by the sieving subroutine. See Theorem 4.5 for the complexity of the dual attack under the

sieving BKZ cost model.

Corollary 4.5. Let α, S and s ∈ {0, 1} be as in Theorem 3.5. Suppose that Assumption 1 holds.

Assume that the lattice reduction algorithm, used by Algorithm 3, uses the sieving algorithm

from [BDGL16] as an oracle for solving SVP. Then, the time complexity of solving Decision-

LWEs,α with probability of success p by the distinguishing attack described in Algorithm 3 is

given by

(26) TTFHEattack = min
δ

(⌈ N(σ, p)

(4/3)β/2

⌉
· T (BKZδ)

)
,

where β is the smallest blocksize such that the lattice reduction with the blocksize β achieves

the Hermite factor δ; σ and N(σ, p) are as defined in Theorem 3.5.
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5. BIT-SECURITY ESTIMATION AND EXPERIMENTAL VERIFICATION

We implement a Python script that, given parameters of an LWE problem and a BKZ cost

model as an input, finds optimal parameters for the dual attack (see Section 3) and for our

attack (see Section 4). Using this script, we evaluate the computational cost of the dual attack

and our attacks for a wide range of LWE parameters and in particular for the parameters used

in the TFHE scheme. In this section, we report the results of our numerical estimation and show

that the security level of the TFHE scheme should be updated with regard to the hybrid attack.

We support our argument by an implementation working on a small example.

5.1. Bit-security of LWE parameters. We numerically estimate the cost of solving LWE prob-

lem by the dual attack and by our attack for all pairs of parameters (n, α) from the following

set: (n,− log(α)) ∈ {100, 125, . . . , 1050} × {5, 6.25, . . . , 38.5}. In all cases, we take S2 = 1/2,

which corresponds to choosing the secret key uniformly at random from {0, 1}n as done in the

TFHE scheme. For each attack, we consider three BKZ cost models. For each case, we create a

heatmap representing the cost of the attack as a function of parameters n and α. The results ob-

tained using the sieving BKZ cost model are presented in Figure 1. The left heatmap in Figure 1

represents the logarithm of the time complexity of the dual attack, the right heatmap represents

the logarithm of the time complexity of our attack. Figure 1 shows that for the same sets of pa-

rameters the cost of our attack is always less then or equal to the cost of the dual distinguishing

attack and that the difference between the costs of the attacks grows with the hardness of the

problem. We obtain similar pictures for the two other considered models. For completeness, we

present the heatmaps for the other models in Appendix B.

5.2. Application to the TFHE scheme. The TFHE scheme uses two sets of parameters: for the

switching key and for the bootstrapping key. The security of the scheme is, in fact, defined by

the security of the switching key, which is the weaker link.

In [CGGI20], the authors of the TFHE scheme describe two sets of parameters for each of

the keys. The first set of the parameters is given by [CGGI20, Table 3] and coincides with the

parameters given in the previous papers on TFHE [CGGI16, CGGI17]. The bit-security for the

parameters from [CGGI20, Table 3] is estimated according to the dual attack, described in Sec-

tion 3.

Another set of the parameters is introduced by [CGGI20, Remark 9] and specified in [CGGI20,

Table 4]. The security of the updated parameters is evaluated according to the LWE estimator

from [ACD+18].
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FIGURE 1. Comparison of the costs of the attacks under the enumeration BKZ

cost model. Here, n and α denote the dimension and the standard deviation of

the noise of LWE samples, TD denotes the time complexity of the dual distin-

guishing attack, TK denotes the time complexity of our key recovery attack.

Also, recently, an update of TFHE’s implementation have appeared, introducing a new set

of the parameters [G+16, v1.1 – updated security parameters release, date : 2020.02.21]. The

security of the parameters from the implementation is also estimated using the LWE estimator

from [ACD+18].

For completeness, we re-evaluate the security all the three sets of the parameters under the

dual attack as it is described in Section 3 and under our hybrid attack. In Table 2, we we present

the results of our estimates for the old parameters (given by [CGGI20, Table 3]), in Table 3,
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we present the bit-security of the new parameters from [CGGI20, Table 4], and in Table 4, we

present the estimates for the updated parameters from the public implementation [G+16].

TABLE 2. Security of the parameters of the TFHE scheme from [CGGI20, Table

3] against dual attack (as described in Section 3) and hybrid dual attack (as

described in Section 4). λ denotes security in bits, δ and n1 are the optimal

parameters for the attacks. “-” means that the distinguishing attack doesn’t

have the parameter n1.

BKZ model
switching key

n = 500, α = 2.43 · 10−5

bootstrapping key

n = 1024, α = 3.73 · 10−9

delta-squared

attack λ δ n1

dual 169 1.0052 -

new attack 119 1.0059 406

attack λ δ n1

dual 204 1.0046 -

new attack 160 1.0051 889

sieving
dual 102 1.0054 -

new attack 94 1.0058 455

dual 117 1.0048 -

new attack 112 1.005 972

enumeration
dual 195 1.0052 -

new attack 137 1.0062 388

dual 230 1.0046 -

new attack 180 1.0052 868

In all cases, the cost of our attack is lower than the cost of the dual attack. In addition, the

lattice reduction part is always easier for our attack than for the dual attack, because the required

quality parameter of lattice reduction δ is always bigger for our attack than for the dual attack.

However, the difference of the costs depends on the choice of the model: it is bigger for models

that predict higher complexity of BKZ. For example, for the old switching key parameters, the

difference under the sieving model is 8 bits while under enumeration model it is 58 bits.

In Figure 8 we present an estimation of the bit-security of the revisited LWE parameters

according to the combination of our attack and the collision attack, with time complexity 2n/2.

Thus, Figure 8 represents the function min(TourAttack(n, α), 2n/2), where TourAttack(n, α) is the cost

of our attack for parameters n and α. Figure 8 is obtained under the enumeration BKZ cost

model. See Appendix B for other models.
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TABLE 3. Security of the parameters of the TFHE scheme from [CGGI20, Table

4] against dual attack (as described in Section 3) and hybrid dual attack (as

described in Section 4). λ denotes security in bits, δ and n1 are the optimal

parameters for the attacks. “-” means that the distinguishing attack doesn’t

have the parameter n1.

BKZ model
switching key

n = 612, α = 2−15

bootstrapping key

n = 1024, α = 2−26

delta-squared

attack λ δ n1

dual 256 1.0043 -

new attack 169 1.0051 474

attack λ δ n1

dual 237 1.0043 -

new attack 179 1.0049 871

sieving
dual 127 1.0045 -

new attack 118 1.0048 559

dual 126 1.0045 -

new attack 120 1.0047 970

enumeration
dual 279 1.0043 -

new attack 185 1.0053 457

dual 261 1.0043 -

new attack 179 1.0049 871

Remark 5.1. The hybrid dual attack presented in Section 4 can be used to estimate security of

any LWE-based cryptosystem with binary secrets. For example, it can be applied to get a con-

crete security estimate for the fully homomorphic encryption scheme FHEW [DM15] which also

uses binary secrets. The parameters of the binary-LWE part in FHEW are the following: the di-

mension n = 500, the Gaussian parameter σ = 217, and the modulus q = 232. Translating

these parameters into TLWE setting, we get n = 500 and α = 2−15. The bit-security of these

parameters under our hybrid dual attack in the sieving model is 96 bits.

5.3. Comparison with primal uSVP attack. The security of the recent parameters from TFHE’s

implementation is evaluated using the LWE estimator from [APS15,ACD+18]. As the results of

this estimation suggest, under the sieving BKZ cost model, the best attack against the current

parameters of the TFHE scheme among the attacks presented in the LWE estimator is the primal

uSVP attack [?] (see also [APS15, Section 6.3] for the description of the attack). Therefore, it is

interesting to compare our hybrid dual attack with the primal uSVP attack on a wider range of

parameters.
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TABLE 4. Security of the parameters of the TFHE scheme from the public im-

plementation [G+16] (parameter’s update of February 21, 2020) against dual

attack (as described in Section 3) and hybrid dual attack (as described in Sec-

tion 4). λ denotes security in bits, δ and n1 are the optimal parameters for the

attacks. “-” means that the distinguishing attack doesn’t have the parameter

n1.

BKZ model
switching key

n = 630, α = 2−15

bootstrapping key

n = 1024, α = 2−25

delta-squared

attack λ δ n1

dual 270 1.0042 -

new attack 176 1.005 485

attack λ δ n1

dual 256 1.0042 -

new attack 190 1.0048 862

sieving
dual 131 1.0044 -

new attack 121 1.0047 576

dual 131 1.0044 -

new attack 125 1.0046 967

enumeration
dual 292 1.0042 -

new attack 192 1.0052 469

dual 280 1.0041 -

new attack 209 1.0049 842

In order to compare our attack with the primal uSVP attack, we estimate the time complexity

of both attacks for each pair of the parameters (n, α) from the following set: (n,− log(α)) ∈
{200, 250, . . . , 1450} × {10, 12, . . . , 48}. We evaluate the cost of the primal uSVP attack using

the LWE estimator [APS15, ACD+18]. For this comparison, we consider two BKZ cost models:

sieving and enumeration. The results of our estimation are presented in Figures 3 and 4.

Figures 3 and 4 show that under both BKZ cost models, it is not so that one attack is better

than another for all the sets of the parameters. Under both BKZ cost models, the primal uSVP

attack outperforms the hybrid dual attack when dimension is high (i.e., n > 800) and the noise

parameter is small (i.e., α < 2−35 ). For the rest of the parameters that we consider, the hy-

brid dual attack outperforms the primal uSVP attack. The difference in the cost of the attacks

depends on the chosen BKZ cost model; for the enumeration BKZ cost model the difference

between attacks in more significant than for the sieving model.
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FIGURE 2. Bit-security as a function of the LWE parameters n and α assuming

the sieving BKZ cost model. Here, n denotes the dimension, α denotes the

standard deviation of the noise. The picture represents the security level λ of

LWE samples, λ = log(min(TourAttack(n, α), 2n/2)). The numbered lines on the

picture represent security levels. The star symbol denotes the key switching

parameters from the implementation of the TFHE scheme, the diamond symbol

denotes the key switching parameters recommended in [CGGI20, Table 4].

5.4. Experimental verification. In order to verify the correctness of our attack, we have im-

plemented it on small examples. Our implementation recovers 5 bits of a secret key for LWE

problems with the following two sets of parameters: (n, α) = (30, 2−8) and (n, α) = (50, 2−8).

For implementation purposes, we rescaled all the elements defined over torus T to integers

modulo 232. For both examples, we use BKZ with blocksize 20, which yields the quality of the

lattice reduction around δ . 1.013. We computed the values of parameters of the attack required

to guess correctly 5 bits of the key with probability 0.99 assuming that quality of the output of

BKZ. The required parameters for both experiments are summarized in Table 5.

The first experiment was repeated 20 times, the second was repeated 10 times. For both

experiments, the last five bits of the key were successfully recovered at all attempts.

The correctness of both attacks rely on assumptions made in Theorem 3.1 for approximating

the distribution of vt(Ats + e) mod 1 by modular Gaussian distribution Gσ . In order to verify
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FIGURE 3. Comparison of the costs of the hybrid dual attack and primal uSVP

attack from [?] under the enumeration BKZ cost model. Here, n and α denote

the dimension and the standard deviation of the noise of LWE samples, TP
denotes the time complexity of the primal uSVP attack, THD denotes the time

complexity of our hybrid dual attack, λP − λHD := log(TP )− log(THD).

these assumptions, while running both experiments we have collected samples to check the

distribution: each time when the attack found correctly the last bits of the secret key s2, we

collected the corresponding ẽ = b̃− ãts2 = vt(Ats1 +e). For the first experiment, the size of the

collected sample is 20×R1 = 640, for the second experiment, it is 10×R2 = 740. The collected

data is presented in Figure 5.
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FIGURE 4. Comparison of the costs of the hybrid dual attack and primal uSVP

attack from [?] under the sieving BKZ cost model. Here, n and α denote the

dimension and the standard deviation of the noise of LWE samples, TP denotes

the time complexity of the primal uSVP attack, THD denotes the time complex-

ity of our hybrid dual attack, λP − λHD := log(TP )− log(THD).

In Table 6, we compare theoretical predictions and estimations obtained from the experiments

for the parameters of modular Gaussian distribution Gσ . Experimental estimations of mean and

variance in both cases match closely theoretical predictions.

6. CONCLUSION

In this work, we demonstrated that the dual lattice attack used to estimate the security of the

TFHE scheme can be improved by applying a hybrid approach consisting in a dual attack on a
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(n,− log(α)) m σ R

(30,8) 76 0.0521 32

(50,8) 90 0.126 74

TABLE 5. Parameters required for guessing 5 bits of the key with δ = 1.013. m is

the number of samples needed for one lattice reduction (30), σ is the parameter

of modular Gaussian distribution Gσ ( Theorem 3.1),R is the number of samples

needed to distinguish distributions Gσ and U (23).
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FIGURE 5. Distribution of ẽ = vt(Ats1 + e) mod 1.

Figure 3a represents data from the experiment with parameters (n, α) = (30, 2−8), figure

3b – from the experiment with parameters (n, α) = (50, 2−8). Blue histograms denote

observed data, orange lines – theoretical predictions of the distribution.

projected sublattice, lazy modulus switching, and an efficient batch computation of the leaves

of the enumeration tree, performed using a fast matrix multiplication that exploits the recursive

structure of the space that we are searching in. This techniques offer an asymptotic speed up

and allow to re-evaluate the actual security level of the TFHE scheme, using the most recent

estimates and models for lattice reduction costs. Besides, we also show that we can generically

leverage the pool of vectors produced by sieving in BKZ-type algorithms to reduce the global

complexity of the attack.
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TABLE 6. Estimated mean and variance. σ is the parameter of the modular

Gaussian distribution Gσ , Var(Gσ) is variance of G

(n, α) sample size σ Var(Gσ) estimated variance average of sample

(30, 2−8) 640 0.0521 0.002714 0.002619 -0.00207

(50, 2−8) 740 0.126 0.1587 0.14515 0.0064

The obtained asymptotic speed-up is used to re-evaluate the actual security level of the TFHE

scheme. We estimated the complexity of the proposed attack under several widely used BKZ

cost models. Even if it is still an open question to determine which model gives the most accu-

rate predictions of the behavior of lattice reduction, our results show that the security claim of

TFHE is overestimated.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for valuable comments on this work, as well as Paul

Kirchner for interesting discussions related to the LWE problem.

REFERENCES

[ACD+18] Martin R Albrecht, Benjamin R Curtis, Amit Deo, Alex Davidson, Rachel Player, Eamonn W Postlethwaite,

Fernando Virdia, and Thomas Wunderer. Estimate all the {LWE, NTRU} schemes! In International Confer-

ence on Security and Cryptography for Networks, pages 351–367. Springer, 2018.

[ACF+15] Martin R Albrecht, Carlos Cid, Jean-Charles Faugere, Robert Fitzpatrick, and Ludovic Perret. On the com-

plexity of the BKW algorithm on LWE. Designs, Codes and Cryptography, 74(2):325–354, 2015.

[AFG13] Martin R Albrecht, Robert Fitzpatrick, and Florian Göpfert. On the efficacy of solving lwe by reduction
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APPENDIX A. PROOF OF THEOREM 3.1.

Proof. Under Assumption 1, the coordinates of wq are independent and distributed according to

the Gaussian distribution with expectation 0 and standard deviation δn+m/
√
n+m. Since wq =

(q · x || q−n/m · v)t, the coordinates of vectors x and v also have centered Gaussian distribution,

but with different standard deviations. Let

σx =
1

q
· δm+n

√
m+ n

and σv = qn/m · δm+n

√
m+ n

https://github.com/tfhe/tfhe
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be the standard deviation of coordinates of x and of v correspondingly. Consider the distribu-

tion of

vtb = xts + vte =

n∑
i=1

xi · si +

m∑
i=1

vi · ei.

vtb is a sum of m + n independent random variables and, therefore, its distribution can be

approximated by a Gaussian distribution according to the Central Limit Theorem. In order to

learn the parameters of the Gaussian, we need to obtain the expectations and variances of x1 ·s1
and v1 · e1.

First, consider the distribution of x1 · s1. As s1 has a Bernoulli distribution with parameter

S2, x1s1 is a random variable from the distribution that can be obtained by sampling 0 with

probability S2 and sampling from a Gaussian distribution with mean 0 and variance σ2
x with

probability 1− S2. Therefore, E(x1 · s1) = 0 and Var(xi · si) = S2σ2
x.

Then, consider v1e1. As v and e are independent and E(v1) = E(e1) = 0, E(v1e1) = E(v1)E(e1) =

0 and Var(v1e1) = Var(v1) ·Var(e1) = α2σ2
v.

Thus, the distribution of vtb is close to the Gaussian distribution with expectation 0 and

variance

(27) σ2 = nVar(x1s1) +mVar(v1e1) = nS2σ2
x +mα2σ2

v =
δ2(m+n)

m+ n

(nS2

q2
+mα2q2n/m

)
.

Our goal is to obtain a distribution that is as concentrated around zero as possible. Hence we

choose parameters m and q in order to minimize variance of vtb.

First, we find the optimal value of q by differentiation of Equation (27) :

∂σ2

∂q
=
δ2(m+n)

m+ n
·
(
− 2nS2

q3
+

2n

m
·mα2q

2n
m −1

)
= 0 → qopt =

(S
α

) m
m+n

.

After replacing q by qopt in Equation (27) we obtain:

(28) σ2 =

(
Sδm+n

(α
S

) m
m+n

)2

.

Also, for σx and σv we obtain the following relation

(29)
σx
σv

=
q−n/m

q
=
α

S
.

Then, we find the optimal value of m by differentiating ln(σ):

(30) ∂ ln(σ)

∂m
= ln(δ) + n ln

(α
S

)
· 1

(m+ n)2
= 0 → mopt =

√
n · ln(S/α)

ln(δ)
− n



ON A HYBRID APPROACH TO SOLVE BINARY-LWE 37

Now, replacing m by mopt in Equation (28), we find:

σ(δ, n, S, α) = σ(m̂, δ, n, S, α) = α · exp
(
2
√
n ln(S/α) ln(δ)

)
.

The distance between the distribution of vtb and the Gaussian distribution with mean 0 and

variance σ2 can be estimated by the Berry-Esseen inequality (see Theorem 2.3). To use this

inequality, we need to compute the third absolute moments of x1s1 and v1e1.

We start with x1s1. As x1 and s1 are independent,

E{|x1s1|3} = E{|x1|3}E{|s1|3}.

By Theorem 2.4, E{|x1|3} = 2
√

2/πσ3
x. As s1 has the Bernoulli distribution with parameter S2,

E{|s1|3} = E{s1} = S2. Putting two parts together, we get

(31) ρx1s1 = E{|x1s1|3} = 2
√

2/πS2σ3
x.

In the same way, we obtain

(32) ρv1e1E{|v1e1|3} =
8

π
α3σ3

v.

Denote the cumulative distribution function of vtb by Fvtb, and denote the cumulative dis-

tribution function of the Gaussian distribution with mean 0 and variance σ2 by Φσ . By the

Berry-Esseen inequality, there exists a constant C0 such that

(33) sup
x∈R
|Fvtb(x)− Φσ(x)| 6 C0 ·

nρx1s1 +mρv1e1
(nS2σ2

x +mα2σ2
v)3/2.

Then, using Equations (29) and (31) to (33), for the distance between the distributions we get:

(34) sup
x∈R
|Fvtb(x)− Φσ(x)| 6 C0

√
8

S2π
·
n+mS

√
8/π

(m+ n)3/2
6 C0 ·

8

πS
· 1√

m+ n
.

�

APPENDIX B. HEATMAPS FOR THE ENUMERATION AND DELTA-SQUARED BKZ COST MODELS
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FIGURE 6. Comparison of the costs of the attacks under the enumeration BKZ

cost model.

200 400 600 800 1000
n

5

10

15

20

25

30

35

40

lo
g(

1/
)

60

120

200

350

650

1000

log(TD)

0

500

1000

1500

2000

2500

(A) dual attack

200 400 600 800 1000
n

5

10

15

20

25

30

35

40

lo
g(

1/
)

60 120
200

300
400

600

log(TK)

0

500

1000

1500

2000

2500

(B) our attack

FIGURE 7. Comparison of the costs of the attacks under the delta-squared BKZ

cost model.
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FIGURE 8. Bit-security as a function of LWE parameters n and α under the

sieving and delta-squared BKZ cost models.
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