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ABSTRACT. In this paper, we investigate the security of the Learning With Error (LWE) problem

with small secrets by refining and improving the so-called dual lattice attack. More precisely, we

use the dual attack on a projected sublattice, which allows generating instances of the LWE problem

with a slightly bigger noise that correspond to a fraction of the secret key. Then, we search for the

fraction of the secret key by computing the corresponding noise for each candidate using the newly

constructed LWE samples. As secrets are small, we can perform the search step very efficiently by

exploiting the recursive structure of the search space. This approach offers a trade-off between the

cost of lattice reduction and the complexity of the search part which allows to speed up the attack.

Besides, we aim at providing a sound and non-asymptotic analysis of the techniques to enable its use

for practical selection of security parameters. As an application, we revisit the security estimates of

some fully homomorphic encryption schemes, including the Fast Fully Homomorphic Encryption

scheme over the Torus (TFHE) which is one of the fastest homomorphic encryption schemes based

on the (Ring-)LWE problem. We provide an estimate of the complexity of our method for various

parameters under three different cost models for lattice reduction and show that the security level

of the TFHE scheme should be re-evaluated according to the proposed improvement (for at least 7

bits for the most recent update of the parameters that are used in the implementation).

1. INTRODUCTION

The Learning With Errors (LWE) problem was introduced by Regev [Reg05] in 2005. A key

advantage of LWE is that it is provably as hard as certain lattice approximation problems in the

worst-case [BLP+13], which are believed to be hard even on a quantum computer. The LWE

problem has been a rich source of cryptographic constructions. As a first construction, Regev
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proposed an encryption scheme, but the flexibility of this security assumption proved to be

extremely appealing to construct feature-rich cryptography [GPV08, BV11].

Among these constructions, Fully homomorphic encryption (FHE) is a very interesting prim-

itive, as it allows performing arbitrary operations on encrypted data without decrypting it. A

first FHE scheme relying on the so-called ideal lattices was proposed in a breakthrough work

of Gentry [G+09]. After several tweaks and improvements through the years, the nowadays

popular approaches to FHE rely on the LWE problem or its variants (e.g. [FV12,GSW13,BGV14,

CS15, DM15]).

Informally, when given several samples of the form (a, 〈a, s〉 + e mod q) where s is secret,

a ∈ Znq is uniform and e is some noise vector, the LWE problem is to recover s.

In its original formulation, the secret vector is sampled uniformly at random from Znq , but

more recent LWE-based constructions choose to use distribution with small entropy for the

secret key to increase efficiency. For example, some FHE schemes use binary [DM15, CGGI16],

ternary [CLP17], or even ternary sparse secrets [HS15]. Theoretical results are supporting these

choices, which show that the LWE remains hard even with small secrets [BLP+13]. In practice,

however, such distributions can lead to more efficient attacks [BG14, SC19, CHHS19].

The security of a cryptosystem, of course, depends on the complexity of the most efficient

known attack against it. In particular, to estimate the security of an LWE-based construction, it

is important to know which attack is the best for the parameters used in the construction. It can

be a difficult issue; indeed, the survey of existing attacks against LWE given in [APS15] shows

that no known attack would be the best for all sets of LWE parameters.

In this article, we are interested in evaluating the practical security of the LWE problem with

such small secrets. As an application, we consider the bit-security of several very competitive

FHE proposals, such as the Fast Fully Homomorphic Encryption scheme over the Torus [CGGI16,

CGGI17, CGGI20], FHEW [DM15], SEAL [LP16], and HElib [HS15]. The security of these con-

structions relies on the hardness of variants of the LWE problem which can all be encompassed

in a scale-invariant version named Torus-LWE. This “learning a character” problem, captures

both the celebrated LWE and Ring-LWE problems.

In the case of TFHE, in [CGGI17], the authors adapted and used the dual distinguishing lat-

tice attack from [Alb17] to evaluate the security of their scheme. Recently, in [CGGI20, Remark

9], the authors propose an updated set of the parameters for their scheme and estimate the se-

curity of the new parameters using the LWE estimator from [ACD+18]. It turns out that this

approach falls into the caveat we described above: the estimator relies on attacks that are not
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fine-tailored to capture the peculiar choice of distributions. According to the LWE estimator, the

best attack against the current TFHE parameters is the unique-SVP attack [BG14].

1.1. Contributions and overview of the techniques. We present our work in the generic con-

text of the so-called scale-invariant LWE problem or Torus-LWE, which appears to give a more

flexible mathematical framework to perform the analysis of the attacks. We aim at extending

the use-case of the dual lattice attack which is currently one of the two main techniques used

to tackle the LWE problem. Given Torus-LWE samples collected in matrix form At~s + ~e = ~b

mod 1, the vanilla dual attack consists in finding a vector ~v such that ~At = 0 mod 1, yielding

the equation ~vt~e = ~vt~b mod 1. Since ~vt~e should be small, we can then distinguish it from a

random vector in the torus.

1.1.1. A refined analysis of the dual attack. First, we introduce a complete non-asymptotic analysis

of the standard dual lattice attack1 on LWE. In particular, we prove non-asymptotic bounds on

the number of samples and the corresponding bit-complexity of the method, allowing precise

instantiations for parameter selection2. To do so, we we highlight new tools based on the Berry-

Esseen inequality and introduce an unbiased estimator of the Levy transform for real random

variables, allowing us to sharpen the analysis of the attack.

The intuition behind these techniques is as follows. The crux of the dual attack is to dis-

tinguish a Gaussian distribution modulo 1 from a uniform distribution. Since we are working

modulo 1, a natural approach is to try to tackle the estimations problem by harmonic analysis

techniques. Moving to the Fourier space is done by the so-called Levy transform (which corre-

sponds essentially to look of a real variable X through the kernel x 7→ e2iπx). In this space, the

Levy transform of the Gaussian distribution mod 1 and the full Gaussian distribution coincides,

so that we somehow get rid of the action of the modulo. We then rely on Berry-Esseen inequal-

ity to get a fined grained control on distances to a normal distribution and derive sharp bounds.

We hope these techniques may find other interests for the community.

1.1.2. An hybrid enumeration/dual attack. In a second step, we show that applying the dual attack

to a projected sublattice and combining it with the search for a fraction of the key can yield a

more efficient attack. It can be thought of a dimension reduction technique, trading the enu-

meration time with the dimension of the lattice attack. More precisely we obtain a trade-off

1We point out that this attack is slightly more subtle than the vanilla dual technique, as it encompasses a continuous

relaxation of the lazy modulus switching technique of [Alb17].
2Up to our knowledge previous analyses rely on instantiation of asymptotic inequalities and overlook the practical

applicability.
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between the quality of lattice reduction in the dual attack part and the time subsequently spent

in the exhaustive search Additionally, for the lattice reduction algorithms using sieving as an

SVP-oracle, we demonstrate how to leverage the pool of short vectors obtained by the sieving

process to enhance the attack by amortizing the cost of the reduction part. This achieves better

efficiency compared to enumeration-based approaches. We also discuss possible improvements

based on so-called ”combinatorial” techniques, where we perform a random guess of the zero

positions of the secret if it is sparse enough.

In a word, our attack starts by applying lattice reduction to a projected sublattice in the same

way as it is applied to the whole lattice in the dual attack. This way, we generate LWE instances

with bigger noise but in smaller dimension, corresponding to a fraction of the secret key. Then,

the freshly obtained instances are used to recover the remaining fraction of the secret key. For

each candidate for this missing fraction, we compute the noise vector corresponding to the LWE

instances obtained at the previous step. This allows us to perform a majority voting procedure

to detect the most likely candidates. For small secrets, this step boils down to computing a

product of a matrix of the LWE samples with the matrix composed of all the possible parts

of the secret key that we are searching for. We show that this computation can be performed

efficiently thanks to the recursive structure of the corresponding search space.

1.1.3. Applications and practical implications. In the last part, we estimate the complexity of our

attack under three different models of lattice reduction and compare the complexity of our at-

tack with the standard dual attack and with the primal unique-SVP attack for a wide range of

LWE parameters in the case of small non-sparse secrets. Concerning the comparison with the

primal unique-SVP attack, both attack give quite close results. As we can expect, our attack is

better than uSVP when the dimension and the noise parameter are big, the uSVP attack is better

when the dimension is big and the noise parameter is small (see Figure 2). We then provide

experiments in small dimension, supporting the whole analysis.

To evaluate the practicality of our approach, we apply our attack to the security analysis

of competitive FHE schemes, namely TFHE [CGGI20], FHEW [DM15], SEAL [LP16], and HE-

lib [HS15]. We show that our hybrid dual attack gives improvement compared to the unique-

SVP or dual technique of [ACD+18] for the latest TFHE’s, FHEW’s an SEAL’s parameters. In

case of sparse secrets in HElib scheme our attack doesn’t provide improvements over the dual

attack from [Alb17], but gives very comparable results.
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More precisely, the TFHE scheme uses two keys: the switching key and the bootstrapping

key. Thus, the security of the scheme is measured by the security of the weakest of the two keys
3.

We describe all the choices in Table 1 and showcase the corresponding estimated security

within our attack framework. We observe that our hybrid technique is giving the best attack

against the concrete instantiation of TFHE, being better than the primal uSVP attack.

parameters (n, α) dual [ACD+18, Alb17] this work uSVP [ACD+18]

Old param.

switching key

n = 500, α = 2.43 · 10−5
113 94 101

bootstrapping key

n = 1024, α = 3.73 · 10−9
125 112 116

New param.

switching key

n = 612, α = 2−15
140 118 123

bootstrapping key

n = 1024, α = 2−26
134 120 124

Implem. param.

switching key

n = 630, α = 2−15
144 121 127

bootstrapping key

n = 1024, α = 2−25
140 125 129

TABLE 1. Security estimates of the parameters of TFHE from [CGGI20, Table 3,

Table 4] and from the public implementation [G+16]. n denotes the dimension,

α is the parameter of the modular Gaussian distribution. The bold numbers

denote the overall security of the scheme for a given set of parameters. The

“uSVP” column corresponds to the estimates obtained using the LWE Estima-

tor [ACD+18] for the primal uSVP attack. For the lattice reduction algorithm,

in all the cases, the sieving BKZ cost model is used.

3We point out that the parameters of the scheme have been re-evaluated between the initial publication and the

final journal version. The latest version of the paper [CGGI20] contains both the old and the new parameters. The

security level for the old parameters (given by [CGGI20, Table 3]) are given by plain dual attack. The new parameters

are introduced by [CGGI20, Remark 9] and described in [CGGI20, Table 4] are evaluated using the LWE estimator

from [ACD+18]. For completeness, we re-evaluated the security of all available sets of the parameters.
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1.2. Related work. The survey [APS15] outlines three strategies for attacks against LWE: ex-

haustive search, BKW algorithm [BKW03,ACF+15], and lattice reduction. Lattice attacks against

LWE can be separated into three categories depending on the lattice used: distinguishing dual

attacks [Alb17], decoding (primal) attacks [LP11, LN13], and solving LWE by reducing it to the

unique Shortest Vector Problem (uSVP) [AFG13].

The idea of a hybrid lattice reduction attack was introduced by Howgrave–Graham in [HG07].

He proposed to combine a meet-in-the-middle attack with lattice reduction to attack NTRUEn-

crypt. Then, Buchmann et al. adapted Howgrave–Graham’s attack to the settings of LWE with

binary error [BGPW16] and showed that the hybrid attack outperforms existing algorithms for

some sets of parameters. This attack uses the decoding (primal) strategy for the lattice reduction

part. Following these two works, Wunderer has provided an improved analysis of the hybrid

decoding lattice attack and meet-in-the-middle attack and re-estimated security of several LWE

and NTRU based cryptosystems in [Wun16]. Also, very recently, a similar combination of pri-

mal lattice attack and meet-in-the-middle attack was applied to LWE with ternary and sparse

secret [SC19]. This last reference shows that the hybrid attack can also outperform other attacks

in the case of ternary and sparse secrets for parameters typical for FHE schemes.

A combination of the dual lattice attack with guessing for a part of the secret key was consid-

ered in [Alb17, Section 5], in the context of sparse secret keys. Also, recently, a similar approach

was adapted to the case of ternary and sparse keys in [CHHS19]. Both of these articles can be

seen as dimension reduction techniques as they both rely on a guess of the part of the secret to

perform the attack in smaller dimension. They gain in this trade-off by exploiting the sparsity of

the secret: guessing the position of zero bits will trade positively with the dimension reduction

as soon as the secret is sparse enough. However, the main difference of this work compared

to [CHHS19, Alb17] is that the secret is not required to be sparse, and thus can be considered to

be slightly more general. We positively trade-off with the dimension gain by exploiting the re-

cursive structure of the small secret space. However, all these techniques are not incompatible!

In Section 4.4, we propose a combination of the guessing technique with our approach, allowing

to leverage at the same time the sparsity and the structure of small secrets.

Overall we can consider this work as providing a proper dual analog of enumeration-hybrid

technique existing for primal attacks.

Outline. This paper is organized as follows. In Section 2, we provide the necessary back-

ground on lattice reduction and probability. In Section 3, we revisit the dual lattice attack and

provide a novel and sharper analysis of this method. In Section 4, we describe our hybrid dual
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lattice attack and discuss its extension to sparse secrets. In Section 5, we compare the complex-

ities of different attacks, revisit the security estimate of TFHE, and several other FHE schemes

and provide some experimental evidence supporting our analysis.

2. BACKGROUND

We use column notation for vectors and denote them using bold lower-case letters (e.g. x).

Matrices are denoted using bold upper-case letters (e.g. A). For a vector x, xt denotes the

transpose of x, i.e., the corresponding row-vector. Base-2 logarithm is denoted as log, natural

logarithm is denoted as ln. We denote the set of real numbers modulo 1 as the torus T. For a

finite set S, we denote by |S| its cardinality and by U(S) the discrete uniform distribution on its

elements. For any compact set S ⊂ Rn, the uniform distribution over S is also denoted by U(S).

When S is not specified, U denotes uniform distribution over (−0.5; 0.5).

2.1. LWE problem. Abstractly, all operations of the TFHE scheme are defined on the real torus T

and to estimate the security of the scheme it is convenient to consider a scale-invariant version

of LWE problem.

Definition 2.1 (Learning with Errors, [BLP+13, Definition 2.11]). Let n > 1, s ∈ Zn, ξ be a

distribution over R and S be a distribution over Zn.

We define the LWEs,ξ distribution as the distribution over Tn×T obtained by sampling a from

U(Tn), sampling e from ξ and returning (a,ats + e).

Given access to outputs from this distribution, we can consider the two following problems:

• Decision-LWE. Distinguish, given arbitrarily many samples, between U(Tn × T) and

LWEs,ξ distribution for a fixed s sampled from S.

• Search-LWE. Given arbitrarily many samples from LWEs,ξ distribution with fixed s ←
S, recover the vector s.

To complete the description of the LWE problem we need to choose the error distribution ξ

and the distribution of the secret key S. Given a finite set of integers B, we define S to be U(Bn)

and ξ to be a centered continuous Gaussian distribution, i.e., we consider the LWE problem

with binary secret. This definition captures the binary and ternary variants of LWE by choosing

B to be respectively {0, 1} and {−1, 0, 1}. In [BLP+13], it is shown that this variation of LWE

with small secrets remains hard. Finally, we use the notation LWEs,σ as a shorthand for LWEs,ξ,

when ξ is the Gaussian distribution centered at 0 and with standard deviation σ.
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2.2. Lattices. A lattice Λ is a discrete subgroup of Rd. As such, a lattice Λ of rank n can be

described as a set of all integer linear combinations of n 6 d linearly independent vectors B =

{b1, . . . ,bd} ⊂ Rd:

Λ = L(B) := Zb1 ⊕ · · · ⊕ Zbd,

called a basis. Bases are not unique, one lattice basis may be transformed into another one by

applying an arbitrary unimodular transformation. The volume of the lattice vol(Λ) is equal to the

square root of the determinant of the Gram matrix BtB: vol(Λ) =
√

det(BtB). For every lattice

Λ we denote the length of its shortest non-zero vector as λ1(Λ). Minkowski’s theorem states

that λ1(Λ) 6
√
γn · vol(Λ)1/n for any d-dimensional lattice Λ, where γd < d is d-dimensional

Hermite’s constant. The problem of finding the shortest non-zero lattice vector is called the

Shortest Vector Problem(SVP). It is known to be NP-hard under randomized reduction [Ajt98].

2.3. Lattice reduction. A lattice reduction algorithm is an algorithm which, given as input

some basis of the lattice, finds a basis that consists of relatively short and relatively pairwise-

orthogonal vectors. The quality of the basis produced by lattice reduction algorithms is of-

ten measured by the Hermite factor δ =
‖b1‖

det(Λ)1/d
, where b1 is the first vector of the output

basis. Hermite factors bigger than
(

4
3

)n/4
can be reached in polynomial time using the LLL

algorithm [LLL82]. In order to obtain smaller Hermite factors, blockwise lattice reduction al-

gorithms, like BKZ-2.0 [CN11] or S-DBKZ [MW16], can be used. The BKZ algorithm takes as

input a basis of dimension d and proceeds by solving SVP on lattices of dimension β < d using

sieving [BDGL16] or enumeration [GNR10]. The quality of the output of BKZ depends on the

blocksize β. In [HPS11] it is shown that after a polynomial number of calls to SVP oracle, the

BKZ algorithm with blocksize β produces a basis B that achieves the following bound:

‖b1‖ 6 2γ
d−1

2(β−1)
+ 3

2

β · vol(B)1/d.

However, up to our knowledge, there is no closed formula that tightly connects the quality

and complexity of the BKZ algorithm. In this work, we use experimental models proposed

in [ACF+15, ACD+18] in order to estimate the running time and quality of the output of lattice

reduction. They are based on the following two assumptions on the quality and shape of the

output of BKZ. The first assumption states that the BKZ algorithm outputs vectors with bal-

anced coordinates, while the second assumption connects the Hermite factor δ with the chosen

blocksize β.

Assumption 1. Given as input, a basis B of a d-dimensional lattice Λ, BKZ outputs a vector of

norm close to δd · det(Λ)1/d with balanced coordinates. Each coordinate of this vector follows
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a distribution that can be approximated by a Gaussian with mean 0 and standard deviation

δd det(Λ)1/d/
√
d.

Assumption 2. BKZ with blocksize β achieves Hermite factor

δ =
( β

2πe
(πβ)

1
β

) 1
2(β−1)

.

This assumption is experimentally verified in [Che13].

BKZ cost models. To estimate the running time of BKZ, we use three different models. The

first model is an extrapolation by Albrecht [ACF+15] et al. of the Liu–Nguyen datasets [LN13].

According to that model, the logarithm of the running time of BKZ-2.0 (expressed in bit opera-

tions) is a quadratic function of log(δ)−1:

log(T (BKZδ)) =
0.009

log(δ)2
− 27.

We further refer to this model as the delta-squared model. The model was used in [CGGI17] to

estimate the security of TFHE.

Another cost model [ACD+18] assumes that the running time of BKZ with blocksize β for

d-dimensional basis is T (BKZβ,d) = 8d ·T (SVPβ), where T (SVPβ) is the running time of an SVP

oracle in dimension β. For the SVP oracle, we use the following two widely used models:

Sieving model: T (SVPβ) ≈ 20.292β+16.4,

Enumeration model: T (SVPβ) ≈ 20.187β log(β)−1.019β+16.1.

Analysing the proof of the sieving algorithm [BDGL16] reveals that around
(

4
3

)n
2

short vec-

tors while solving SVP on an n-dimensional lattice. Therefore, when using the sieving model,

we shall assume that one run of the BKZ routine produces
(

4
3

) β
2

short lattice vectors, where β

is the chosen blocksize. As such, we shall provide the following heuristic, which generalizes the

repartition given in Assumption 1 when the number of output vectors is small with regards to

the number of possible vectors of desired length:

Assumption 3. Let R � δd
2

Vd and R 6 (4/3)β/2 where Vd is the volume of the `2 unit ball in

dimension d. Given as input, a basis B of a d-dimensional lattice Λ, BKZβ with a sieving oracle

as SVP oracle outputs a set ofR vectors of norm close to δd ·det(Λ)1/d with balanced coordinates.

Each coordinate of these vector follows a distribution that can be approximated by a Gaussian

with mean 0 and standard deviation δd det(Λ)1/d/
√
d.
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In practice, for the dimension involved in cryptography and for the parameters yields by

our techniques, this assumption can be easily experimentally verified. In particular, for the pa-

rameters tackled in this work, the number of vectors used by the attack is way lower than the

number of potential candidates. In a general setting (where we need to look at all the vectors of

the sieving pool), one might see this exploitation as a slight underestimate of the resulting secu-

rity parameters. An interesting open problem, that we leave for future work as it is unrelated to

the attacks mounted here, would be to quantify precisely the distribution of the sieved vectors

when we desire to keep all of them, which is an extreme case of our approach.

A related idea seems quite folklore in the lattice reduction community and appears in par-

ticular in [Alb17], consists in rerandomizing the output basis of the reduction with slight enu-

meration and a pass of LLL for instance. This approach is slightly more costly as just extracting

the sieved vectors but is comparable for its effect as an amortization technique when a batch

reduction is needed.

2.4. Modular Gaussian distribution. Let σ > 0. For all x ∈ R, the density of the centered

Gaussian distribution with standard deviation σ is defined as ρσ(x) = 1√
2πσ

exp
(
− x2

2σ2

)
. We

define the distribution that is obtained by sampling a centered Gaussian distribution of standard

deviation σ and reducing it modulo 1 as the modular Gaussian distribution of parameter σ and

denote it as Gσ .

The support of the distribution is
(
− 1

2 ; 1
2

)
. The probability density function is given by the

absolutely convergent series:

gσ(x) =
∑
k∈Z

ρσ(x+ k).

For large values of σ, the sum that defines the density of a modular Gaussian can be closely

approximated.

Lemma 2.2. As σ →∞, gσ(x) = 1 + 2e−2π
2σ2

cos(2πx) +O(e−8π
2σ2

).

Proof. The Fourier transform of the Gaussian function ρσ,m(x) = 1√
2πσ

e−
(x+m)2

2σ2 is given by

ρ̂σ,m(y) = e−2π
2σ2m2+2πimx. Then, using the Poisson summation formula, we obtain:

(1)
gσ(x) =

1√
2πσ

∑
k∈Z

e−
(k+x)2

2σ2 = 1 + 2
∑
k>0

e−2π
2σ2k2 cos(2πkx) =

1 + 2e−2π
2σ2

cos(2πx) +O(e−8π
2σ2

).

�

2.5. Probability background.
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Berry-Esseen inequality. The Berry-Esseen inequality shows how closely the distribution of the

sum of independent random variables can be approximated by a Gaussian distribution.

Theorem 2.3. Let X1, . . . , Xn be independent random variables such that for all i ∈ {1, . . . , n}

E{Xi} = 0, E{X2
i } = σ2

i > 0, and E{|Xi|3} = ρi <∞. Denote the normalized sum
(

n∑
i=1

Xi

)−1√ n∑
i=1

σ2
i

as Sn. Also denote by Fn the cumulative distribution function of Sn, and by Φ the cumulative

distribution function of the standard normal distribution. Then, there exists a constant C0 such

that

sup
x∈R
|Fn(x)− Φ(x)| 6 C0

n∑
i=1

ρi( n∑
i=1

σ2
i

)3/2 .
We use the Berry-Esseen inequality in order to estimate how closely the distribution that

we obtain after the lattice reduction step of the dual attack can be approximated by a discrete

Gaussian distribution (see Theorem 3.1). The Berry-Esseen inequality requires a finite third

absolute moment of the random variables. In the proof of Theorem 3.1, we need the expression

of third absolute moment of a Gaussian distribution. It can be obtained from the following

lemma.

Lemma 2.4. Let σ > 0. Let X be a random variable of a Gaussian distribution with mean 0 and

standard deviation σ2. Then, E{|X|3} = 2
√

2
πσ

3.

Proof. Classically we have: E{|X|3} = 2 · 1√
2πσ

∞∫
0

x3e−
x2

2σ2 dx = 2
√

2
πσ

3. �

Hoeffding’s inequality. Hoeffding’s inequality gives an exponentially decreasing upper bound on

the probability that the sum of bounded independent random variables deviates from its expec-

tation by a certain amount.

Theorem 2.5. Let X1, . . . , XN be independent random variables such that ai 6 Xi 6 bi for all

i ∈ {1, . . . , N}. Denote the average 1
N

N∑
i=1

Xi as X̄ . Then, for t > 0, we have

P{
∣∣X̄ − E{X̄}

∣∣ > t} 6 2 exp

(
− 2N2t2

n∑
i=1

(bi − ai)2

)
(2)

In this paper, we use Hoeffding’s inequality to construct a distinguisher for the uniform and

the modular Gaussian distributions (see Section 3.2).
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3. DUAL DISTINGUISHING ATTACK AGAINST LWE.

In this first section, we revisit the distinguishing dual attack against LWE (or more precisely

for the generic corresponding scale-invariant problem described in [BLP+13,CGGI20]), provid-

ing complete proofs and introducing finer tools as a novel distinguisher for the uniform distri-

bution and the modular Gaussian. In particular, all the results are non-asymptotic and can be

used for practical instantiations of the parameters. Note that it also naturally encompasses a

continuous relaxation of the lazy modulus switching technique of [Alb17], as the mathematical

framework used makes it appear very naturally in the proof technique.

Setting. In all of the following, we denote byB a finite set of integers (typically {0, 1} or {−1, 0, 1}).
Let s ∈ Bn be a secret vector and let α > 0 be a fixed constant. The attack takes as input m sam-

ples (a1, b1), . . . , (am, bm) ∈ Tn+1 × T which are either all from LWEs,α distribution or all from

U(Tn × T), and guesses the input distribution.

We can write input samples in a matrix form:

A := (a1, . . . ,am) ∈ Tn×m, b = (b1, . . . , bm)t ∈ Tm,

if input samples are from the LWEs,α distribution: b = Ats + e mod 1.

Distinguisher reduction using a small trapdoor. To distinguish between the two distributions, the

attack searches for a short vector v = (v1, . . . , vm)t ∈ Zm such that the linear combination of the

left parts of the inputs samples defined by v, i.e.:

x :=

m∑
i=1

viai = Av mod 1

is also a short vector. If the input was from the LWE distribution, then the corresponding linear

combination of the right parts of the input samples is also small as a sum of two relatively small

numbers:

(3) vtb = vt(Ats + e) = xts + vte mod 1.

On the other hand, if the input is uniformly distributed, then independently of the choice of

the non-zero vector v, the product v·b mod 1 has uniform distribution on (−1/2; 1/2). Recover-

ing a suitable v thus turns the decisional-LWE problem into an easier problem of distinguishing

two distributions on T.

This remaining part of this section is organized in the following way. First, in Section 3.1

we describe how such a suitable vector v can be discovered by lattice reduction and analyze
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the distribution of vtb. Then, in Section 3.2, we estimate the complexity of distinguishing two

distributions on T that we obtain after this first part. Eventually Section 3.3 estimates the time

complexity of the whole attack.

3.1. Trapdoor construction by lattice reduction. Finding a vector v such that both parts of the

sum (3) are small when the input has LWE distribution is equivalent to finding a short vector in

the following (m+ n)-dimensional lattice:

L(A) =

{Av mod 1

v

 ∈ Rm+n

∣∣∣∣∣∀v ∈ Zm
}
.

The lattice L(A) can be generated by the columns of the following matrix:

B =

 In A

0m×n Im

 ∈ R(m+n)×(m+n)

A short vector in L(A) can be found by applying a lattice reduction algorithm to the basis

B. Using Assumption 1, we expect that the lattice reduction process produces a vector w =

(x||v)t ∈ Zn+m with equidistributed coordinates. Our goal is to minimize the product vtb =

xts + vte. The vectors e and s come from different distributions and have different expected

norms. For practical schemes, the variance of e is much smaller than the variance of s. To take

this imbalance into account, one introduces an additional rescaling parameter q ∈ R>0. The first

n rows of the matrix B are multiplied by q, the last m rows are multiplied by q−n/m. Obviously,

this transformation doesn’t change the determinant of the matrix. A basis Bq of the transformed

lattice is given by

Bq =

 qIn qA

0m×n q−n/mIm

 ∈ R(m+n)×(m+n).

We apply a lattice reduction algorithm to Bq . Denote the first vector of the reduced basis as

wq . By taking last m coordinates of wq and multiplying them by qn/m we recover the desired

vector v. This technique can be thought of as a continuous relaxation of the modulus switching

technique. That part of the attack is summarized in Algorithm 1.

The following lemma describes the distribution of the output of Algorithm 1 under Assump-

tion 1 that BKZ outputs vectors with balanced coordinates.

Lemma 3.1. Let α > 0 be a fixed constant, B a finite set of integers of variance S2 = 1
|B|
∑
b∈B b

2

and n ∈ Z>0. Let s be a vector such that of its coefficients are sampled independently and uni-

formly in B. Suppose that Assumption 1 holds and let δ > 0 be the quality of the output of the
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Algorithm 1: Transform m LWE samples to one sample from modular Gaussian distri-

bution
input : A ∈ Tn×m, b ∈ Tm, S > 0, α > 0, δ ∈ (1; 1.1)

output: x ∈ T

1 computeV(A, S, α, δ):

2 q :=
(
S
α

) m
n+m

3 Bq :=

 qIn qA

0m×n q−n/mIm

 ∈ R(m+n)×(m+n)

4 wq ← BKZδ(Bq)

5 v := qn/m · (wqn+1, . . . wqn+m)t

6 return (v)

7 LWEtoModGaussian(A, b, S, α, δ):

8 v← COMPUTEV(A, S, α, δ)

9 return vtb mod 1

BKZ algorithm. Then, given as input m =
√
n · ln(S/α)ln(δ) − n samples from the LWEs,α distribu-

tion, Algorithm 1 outputs a random variable x with distribution that can be approximated by a

Gaussian distribution with mean 0 and standard deviation σ

σ = α · exp
(

2
√
n ln(S/α) ln(δ)

)
.

Denote as Fx the cumulative distribution function of x and denote as Φσ the cumulative distri-

bution function of the Gaussian distribution with mean 0 and standard deviation σ. Then, the

distance between the two distributions can be bounded: sup
t∈R
|Fx(t) − Φσ(t)| = O

(
1√

S2(m+n)

)
,

as n→∞.

The crux proof of Theorem 3.1 relies on the Berry-Esseen theorem. We provide the complete

details in Appendix A.

3.2. Exponential kernel distinguisher for the uniform and the modular Gaussian distribu-

tions. We now describe a novel distinguisher for the uniform and the modular Gaussian dis-

tributions. Formally, we construct a procedure which takes as input N samples which are all

sampled independently from one of the two distributions and guesses this distribution.

The crux of our method relies on the use of an empirical estimator of the Levy transform of

the distributions, to essentially cancel the effect of the modulus 1 on the Gaussian. Namely, from
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the N samples X1, . . . , XN , we construct the estimator Ȳ = 1
N ·

N∑
i=1

e2πiXi . As N is growing to

infinity, this estimator converges to the Levy transform at 0 of the underlying distribution, that

is to say:

• to 0 for the uniform distribution

• to e−2π
2σ2

for the modular Gaussian.

Hence, to distinguish the distribution used to draw the samples, we now only need to deter-

mine whether the empirical estimator Ȳ is closer to 0 or to e−2π
2σ2

.

Remark 3.2. The optimal value for the corresponding threshold can be obtained as a log-likelihood

estimator. However, this optimization is not giving a close formula. It appears that the gains ob-

tained from a numerical optimization of this value are negligible compared to taking the natural

threshold of 1/2e−2π
2σ2

.

Algorithm 2: Distinguish U and Gσ
input : X1, . . . , XN ∈

(
− 1

2 ; 1
2

)
, σ > 0, sampled independently from U or Gσ

output: A guess: G if the samples are drawn under Gσ or U otherwise

1 DistinguishGU(X1, . . . , XN , σ):

2 Ȳ = 1
N ·

N∑
i=1

exp(2πiXi)

3 if (Ȳ 6 1
2 · e

−2π2σ2

) then

4 return U

5 else

6 return G

Lemma 3.3. Let σ > 0 be a fixed constant. Assume that Algorithm 2 is given as input N points

that are sampled independently from the uniform distribution U or from the modular Gaussian

distribution Gσ . Then, Algorithm 2 guesses the distribution of the input points correctly with

probability at least pσ = 1 − exp
(
− e−4π2σ2

8 · N
)

. The time complexity of the algorithm is

polynomial in the size of the input.

Proof. For all i ∈ {1, . . . , N}, denote e2πiXi as Yi. As Xi ∈
(
− 1

2 ,
1
2

)
, <(Yi) ∈ (−1; 1]. First, we

compute the expectation of Ȳ = 1
N ·

N∑
i=1

Yi in the two possible cases where Xis are sampled from

the uniform distribution, and whereXis are sampled from the modular Gaussian with standard
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deviation σ. Note that, in both cases, as Xis are sampled independently and identically from

the same distribution, E{Ȳ } = E{Yi}.

In case of the uniform distribution, the expectation of the real part of Ȳ is equal to zero,

because the function <(e2πix) is symmetric around the origin:

(4) EU{<(Ȳ )} =

1/2∫
−1/2

e2πixdx = 0.

Now in case of the modular Gaussian distribution, we exploit the 1-periodicity of t 7→ e2iπt

to cancel out the modulus 1:

EG{Ȳ } =

+1/2∫
−1/2

e2πix
∑
k∈Z

1√
2πσ

· e−
(x+k)2

2σ2 dx(5)

=
∑
k∈Z

+1/2∫
−1/2

e2πix√
2πσ

· e−
(x+k)2

2σ2 dx(6)

=

+∞∫
−∞

e2πix√
2πσ

· e−
x2

2σ2 dx =
e−2π

2σ2

√
2πσ

+∞∫
−∞

e−
(x−2iπσ)2

2σ2 dx = e−2π
2σ2

,(7)

the sum-integral exchange being justified by uniform convergence of the sum.

Now, using the expectations of Ȳ and the Hoeffding’s inequality, we can estimate the proba-

bility of getting a correct guess.

First, consider the probability wrongly guessing when the distribution of the input is uni-

form. By Line 3 of Algorithm 2, it is given by:

P{G|U} = PU{Ȳ >
1

2
· e−2π

2σ2

}.

Since Yis are bounded, i.e., for all i ∈ {1, . . . , N}, Yi ∈ (−1; 1], we can use Hoeffding’s inequality

(see Theorem 2.5) to bound the probability P{G|U}:

(8) P{G|U} 6 exp
(
− e−4π

2σ2

8
·N
)
.

Similarly, we get the same bound on the probability of the wrong guess when the distribution

of the input is the modular Gaussian:

P{U |G} 6 exp
(
− e−4π2σ2

8 ·N
)
. Together with Equation (8), we get the bound on the probability

of the successful guess.

Since Algorithm 2 consists of computing the average of the input sample and performing one

comparison, it is polynomial in the size of the input. �
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Theorem 3.3 implies that to distinguish the uniform distribution and the modular Gaussian

distribution with the parameter σ with a non-negligible probability, we need to take a sample

of size N = O(e4π
2σ2

).

Remark 3.4. The dual attack proposed in [CGGI20], does not specify, which algorithm is used

for distinguishing the uniform and the modular Gaussian distributions. Instead, to estimate the

size of the sample, needed to distinguish the distributions, they estimate the statistical distance

ε (see [CGGI20, Section 7, Equation(6)] and use O(1/ε2) as an estimate for the required size of

the sample. However, such an estimate does not allow a practical instantiation in the security

analysis since it hides the content of the O.

It turns out that the exponential kernel distinguisher, described in Algorithm 2, (ignoring

some constant factors), has the same complexity as the statistical distance estimate from [CGGI20]

suggests, while enjoying a sufficiently precise analysis to provide non-asymptotic parameter es-

timation.

3.3. Complexity of the dual attack. The distinguishing attack is summarized in Algorithm 3.

It takes as input m × N samples from an unknown distribution, then transforms them into N

samples which have the uniform distribution if the input of the attack was uniform and the

modular Gaussian distribution if the input was from the LWE distribution. Then, the attack

guesses the distribution ofN samples using Algorithm 2 and outputs the corresponding answer.

Algorithm 3: Dual distinguishing attack

input : {(Ai,bi)}Ni=1, where ∀iAi ∈ Tn×m, bi ∈ Tm, α > 0, S > 0, δ ∈ (1; 1.1)

output: guess for the distribution of the input: Uniform or LWE distribution

1 DistinguishingAttack({Ai,bi}Ni=0, α, S, δ):

2 X := ∅

3 σ := α · exp
(
2
√
n ln(S/α) ln(δ)

)
4 for i ∈ {1, . . . , N} do

5 x← LWEtoModGaussian(Ai,bi, S, α, δ)

6 X ← X ∪ x

7 if (DistinguishGU(X,σ) = G) then

8 return LWE distribution

9 else

10 return Uniform
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The following theorem states that the cost of the distinguishing attack can be estimated by

solving a minimization problem. The proof is deferred to Appendix A.

Theorem 3.5. Letα > 0 be a fixed constant,B a finite set of integers of variance S2 = 1
|B|
∑
b∈B b

2

and n ∈ Z>0. Let s be a vector with all coefficients sampled independently and uniformly in B.

Suppose that Assumption 1 holds. Then, the time complexity of solving Decision-LWEs,α with

probability of success p by the distinguishing attack described in Algorithm 3 is

(9) TDualAttack = min
δ

(
N(σ, p) · T (BKZδ)

)
,

where σ = α · exp
(
2
√
n ln(S/α) ln(δ)

)
, N(σ, p) = 8 ln( 1

1−p ) · e4π2σ2

.

4. TOWARDS A HYBRID DUAL KEY RECOVERY ATTACK

In this section, we show how the dual distinguishing attack recalled in Section 3 can be hy-

bridized with exhaustive search on a fraction of the secret vector to obtain a continuum of more

efficient key recovery attacks on the underlying LWE problem. Recall that B is a finite set of in-

tegers from which the coefficient of the secret are drawn. Let then s ∈ Bn be a secret vector and

let α > 0 be a fixed constant. Our approach takes as input samples from the LWE distribution

of form

(10) (A,b = Ats + e mod 1) ∈ (Tn×m,Tm),

where e ∈ Rm has centered Gaussian distribution with standard deviation α. The attack divides

the secret vector into two fractions:

s = (s1||s2)t, s1 ∈ Bn1 , s2 ∈ Bn2 , n = n1 + n2.

The matrix A is also fractionned into two parts corresponding to the separation of the secret

s:

(11) A =



a1,1 . . . a1,m
...

...

an1,1 . . . an1,m

an1+1,1 . . . an1+1,m

... . . .
...

an,1 . . . an,m


=

A1

A2



Then, Equation (10) can be rewritten as

At
1s1 + At

2s2 + e = b mod 1.
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By applying lattice reduction to matrix A1 as described in Algorithm 1, we recover a vector

v such that vt(At
1s1 + e) is small and it allows us to transforms m input LWE samples (A,b) ∈

(Tn×m,Tm) into one new LWE sample (â, b̂) ∈ (Tn2 ,T) of smaller dimension and bigger noise:

(12) vtAt
2︸ ︷︷ ︸

a

s2 + vt(At
1s1 + e)︸ ︷︷ ︸
ê

= vtb︸︷︷︸
b̂

mod 1.

The resulting LWE sample in smaller dimension can be used to find s2. Let x ∈ Bn2 be a

guess for s2. If the guess is correct, then the difference

(13) b̂− âtx = b̂− âts2 = (ê mod 1) ∼ Gσ

is small.

If the guess is not correct and x 6= s2, then there exist some y 6= 0 such that x = s2 − y. Then,

we rewrite b̂− âtx in the following way:

b̂− âtx = (b̂− âts2) + âty = âty + ê.

We can consider (â, âty + ê) as a sample from the LWE distribution that corresponds to the

secret y. Therefore, we may assume that if x 6= s2, the distribution of b̂− âtx mod 1 is close to

uniform, unless the decision-LWE is easy to solve.

In order to recover s2, the attack generates many LWE samples with reduced dimension.

Denote by R the number of generated samples and put them into matrix form as (Â, b̂) ∈
Tn2×R × TR. There are |B|n2 possible candidates for s2. For each candidate x ∈ Bn2 , the attack

computes an R-dimensional vector ex = b − Ats. The complexity of this computation for all

the candidates is essentially the complexity of multiplying the matrices Â and S2, where S2 is

a matrix whose columns are all vectors of (the projection of) the secret space in dimension n2.

Naively, the matrix multiplication requires O(n · |B|n2 · R) operations. However, by exploiting

the recursive structure of S2, it can be done in time O(R · |B|n2).

Then, for each candidate x for s2 the attack checks whether the corresponding vector ex

is uniform or concentrated around zero distribution. The attack returns the only candidate x

whose corresponding vector ex has concentrated around zero distribution.

The rest of this section is organized as follows. First, we describe the auxiliary algorithm for

multiplying a matrix by the matrix of all vectors of the secret space that let us speed up the

search for the second fraction of the secret key. Then, we evaluate the complexity of our attack.

4.1. Algorithm for computing the product of a matrix with the matrix of all vectors in a prod-

uct of finite set. Let B = {b1, . . . , bk} ⊂ Z be a finite set of integer numbers such that bi < bi+1
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for all i ∈ {1, . . . , k − 1}. For any positive integer d, denote by S(d) the matrix whose columns

are all vectors from {b1, . . . , bk}d written in the lexicographical order. These matrices can be

constructed recursively. For d = 1 the matrix is a single row, i.e., S(1) =
(
b1 . . . bk

)
, and for

any d > 1 the matrix S(d) ∈ Zd×kd can be constructed by concatenating k copies of the matrix

S(d−1) and adding a row which consists of kd−1 copies of b1 followed by kd−1 copies of b2 and

so on:

(14) S(d) =

b1 . . . b1 b2 . . . b2 . . . bk . . . bk

S(d−1) S(d−1) . . . S(d−1)

 .

Let a = (a1, . . . , ad)
t be a d-dimensional vector. Our goal is to compute the scalar products of

a with each column of S(d). We can do it by using the recursive structure of S(d). Assume that we

know the desired scalar products for a(d−1) = (a2, . . . , ad)
t and S(d−1) Then, using Equation (14),

we get

(15)

atS(d) =
(
a1 at(d−1)

)
·

b1 . . . b1 . . . bk . . . bk

S(d−1) . . . S(d−1)


=
(
(a1 · b1, . . . , a1 · b1)t + at(d−1)S(d−1)

∣∣∣∣∣∣ . . . ∣∣∣∣∣∣
(a1 · bk, . . . , a1 · bk)t + at(d−1)S(d−1)

)
that is, the resulting vector is the sum of the vector at(d−1)S(d−1) concatenated with itself k times

with the vector consisting of kd−1 copies of a1 · b1 concatenated with kd−1 copies of a1 · b2 and

so on. The approach is summarized in Algorithm 4.

Lemma 4.1. Let d be a positive integer number and B = {b1, . . . , bk} be a set of k integer num-

bers. Algorithm 4, given as input a d-dimensional vector a, outputs the vector x of dimension

kd such that for all x = atS(d). The time complexity of the algorithm is O(kd).

Proof. The correctness of the algorithm follows from the recursive structure of the matrix S(d)

(see Equations (14) and (15)). At the i-th iteration of the cycle (3-8) the algorithm performs k

multiplications and ki+1 additions. Number of iterations is (d− 1). Then, the overall number of

multiplications is (d−1)·k and the overall number of additions is k+k2+· · ·+kd = kd+1−1
k−1 −1 =

O(kd). �

Corollary 4.2. Let A be a matrix with R rows and d columns. The product of A and S(d) can be

computed in time O(R · kd).
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Algorithm 4: Compute a scalar product of a matrix of all vectors from {b1, . . . , bk}d.

input : a = (a1, . . . , ad)
t, B = {b1, . . . , bk} ⊂ Z such that b1 < b2 < · · · < bk.

output: atS(d), where S(d) ∈ {b1, . . . , bk}k
d×d is the matrix whose columns are all the

vectors from the set {b1, . . . , bk}d written in the lexicographical order

1 computeScalarProductWithAllVectors(a, B):

2 x← (ad · b1, . . . , ad · bk)t; y1 ← ∅, y2 ← ∅

3 for i ∈ {d− 1, . . . , 1} do

4 for j ∈ {1, . . . , k} do

5 y1 ← y1 ∪ x

6 y2 ← y2 ∪ (ai · bj , . . . , ai · bj)t

7 x← y1 + y2

8 y1 ← ∅, y2 ← ∅

9 return x

Proof. In order to compute A · S(d) we need to compute the product of each of the R rows

of A with Sd. By Theorem 4.1 it can be done in time O(kd). Then the overall complexity of

multiplying the matrices is O(R · kd). �

4.2. Complexity of the attack. The pseudo-code corresponding to the full attack is given in Al-

gorithm 5.

Theorem 4.3. Let α > 0, p ∈ (0; 1), S ∈ (0; 1), and n ∈ Z>0 be fixed constants. Let s ∈ Bn

and σ > 0. Suppose that Assumption 1 holds. Then, the time complexity of solving the Search-

LWEs,α problem with probability of success p by the attack described in Algorithm 5 is

(16) Tdual hybrid = min
δ,n2

((
|B|n2 + T (BKZδ)

)
·R(n2, σ, p)

)
,

where R(n2, σ, p) = 8 · e4π2σ2

(n2 ln(2)− ln(ln(1/p))).

Proof. The attack can be divided in two steps: the lattice reduction step and the exhaustive

search for the second fraction of the secret key. The first step of the attack takes R ×m LWEs,α

samples and transforms them into R LWEs2,σ samples such that s2 is the second fraction of the

secret key s and the noise parameter σ is bigger than the noise parameter α of the input. It takes

time R · T (BKZδ). Denote the matrix form of obtained LWE samples as (Â, b̂) ∈ (Tn2×R,TR).

At the search step, the goal is to recover s2 using the obtained LWE samples. For each of

the candidates for s2 the attack computes the error vector that corresponds to R LWE samples



22 ON A DUAL/HYBRID APPROACH TO SMALL SECRET LWE

Algorithm 5: Hybrid key recovery attack

input : {(Ai,bi)}Ri=1, where ∀iAi ∈ Tn×m, bi ∈ Tm, α > 0, S > 0, δ > 1,

n1 ∈ {2, . . . , n− 1}
output: s2 ∈ Bn−n1

1 recoverS({(Ai,bi)}Ri=1,α, S, δ, n1):

2 n2 ← (n− n1)

3 σ ← α · exp
(
2
√
n1 ln(S/α) ln(δ)

)
4 Â← ∅ , b̂← ∅

/* lattice reduction part */

5 for i ∈ {1, . . . , R} do

6 A← Ai, b← bi

7 (A1,A2)← SPLITMATRIX(A, n1) . see Equation (11)

8 v← COMPUTEV(A1, S, α, δ) . Algorithm 1

9 Â← Â ∪ {A2v}, b̂← b̂ ∪ {vtb}
/* search for s2 */

10 S(n2) ←
matrix of all vectors in the secret space of dimension n2 in lexicographical order

11 B̂← (b̂, . . . , b̂) ∈ TR×|B|n2

12 Ê← B̂− ÂtS(n2) mod 1 . see Theorem 4.2 and Algorithm 4

13 for i ∈ {1, . . . , |B|n2} do

14 ê← Ê[i]

/* guess the distribution of e (see Algorithm 2) */

15 if (DISTINGUISHGU(ê, σ) = G) then

16 return S(n2)[i]

obtained at the previous step. It is equivalent to computing the following matrix expression:

Ê = B̂− ÂtS(n2) mod 1,

where S(n2) is the matrix composed of all vectors of the secret space of length n2 written in

lexicographic order and B̂ ∈ TR×|B|n2 is the matrix formed of |B|n2 repetition of the vector

b̂. The complexity of computing that expression is dominated by the complexity of computing

the product of Ât ∈ TR×n2 and S(n2). By Theorem 4.2, it can be computed in O(R · |B|n2)

operations. Once the attack obtain an error vector for each of the candidates, it guesses the
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distribution of each error vector using Algorithm 2 and returns the candidate whose error vector

has concentrated around zero modular Gaussian distribution.

The time complexity of the attack is the sum of the complexities of the two steps:

(17) Tattack = R ·
(
|B|n2 + T (BKZδ)

)
.

Now the goal is to evaluate the number of samples R needed to recover s2 with probability

p. By Theorem 3.3, using Algorithm 2, we can guess correctly the distribution of a sample of

size R with probability at least pσ = 1 − exp
(
− e−4π2σ2

8 · R
)
. In order to recover s2, we need

successfully guess the distribution for each of |B|n2 candidates. Assume that the distributions,

produced by the candidates are independent. Then, the probability to correctly recover s2 is at

least p|B|
n2

σ . Thus, to recover s2 we need to choose the size of the sample R that satisfies:

(18) p|B|
n2

σ =

(
1− exp

(
− e−4π

2σ2

8
·R
))|B|n2

> p.

Let R be given by the following expression:

(19) R = 8 · e4π
2σ2

(n2 ln(2)− ln(ln(1/p))).

Combining Equations (18) and (19), we obtain:

(20) p|B|
n2

σ =
(

1− ln(1/p)

|B|n2

)|B|n2

.

Then, when n2 → ∞, p|B|
n2

σ → p. Thus, the sample size R, given by Equation (19) is sufficient

to recover s2 with the probability p.

By combining Equations (17) and (19) we obtain the time complexity of the attack. �

4.3. Using sieving in the hybrid attack. Assume that the BKZ algorithm uses the sieving algo-

rithm (see for instance [BDGL16]) as an SVP oracle. At its penultimate step, the sieving algo-

rithm produces many short vectors, so that by storing this pool of vectors, we may suppose that

BKZ produces many short vectors in one run. Thus, if we need N short lattice vectors, we need

to run the lattice reduction only
⌈
N
m

⌉
times, where m is the number of short vectors, returned by

the lattice reduction.

In the following corollary from Theorem 4.3, we use this property of the sieving algorithm to

revisit the time complexity of our attack under the sieving BKZ cost model.

Corollary 4.4. Let α, p, n, σ and s ∈ {0; 1}n be as in Theorem 4.3. Assume that the lattice re-

duction algorithm, used by Algorithm 3, uses the sieving algorithm from [BDGL16] as an oracle
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for solving SVP. Suppose that Assumption 3 holds. Then, the time complexity of solving the

Search-LWEs,α problem with probability of success p by the attack described in Algorithm 5 is

(21) Thybrid+sieving = min
δ,n2

(
|B|n2 ·R(n1, σ, p) + T (BKZδ) ·

⌈R(n2, σ, p)

(4/3)β/2

⌉)
,

where β is the smallest blocksize such that the lattice reduction with the blocksize β achieves

the Hermite factor δ; R(n2, σ, p) is as defined in Theorem 4.3.

Proof. See Appendix A. �

4.4. The sparse case: size estimation and guessing few bits. When the secret is sparse we can

use so-called combinatorial techniques [Alb17] to leverage this sparsity. Assume that only h

components of the secret are non-zero. Then, we guess k zero components of the secret ~s and

then run the full attack in dimension (n − k). If the guess was incorrect, we restart with a new

and independent guess for the positions of zeroes. For sparse enough secrets, the running time

of the attack in smaller dimension trade-offs positively with the failure probability.

Also, the variance of the scalar product ~vt~s is smaller in the sparse case because the variance

of the key contains many zeros. Combining these observations, we obtain the following result

for sparse secrets:

Theorem 4.5. Let α > 0, n > 0 and fix s ∈ Bn. Suppose that s has exactly 0 6 h < n non-zero

components. Suppose that Assumption 1 holds. Assume that the lattice reduction algorithm,

used by Algorithm 3, uses the sieving algorithm from [BDGL16] as an oracle for solving SVP.

Then, the time complexity of solving Decision-LWEs,α with probability of success p by the dis-

tinguishing attack described in Algorithm 3 is given by

(22) Tsparse = min
06k6h

((
n− h
k

)−1(
n

k

)
· Thybrid(n− k, α)

)
where β is the smallest blocksize such that the lattice reduction with the blocksize β achieves

the Hermite factor δ; σ and N(σ, p) are as defined in Theorem 3.5.

Proof. Please refer to Appendix A �

5. BIT-SECURITY ESTIMATION AND EXPERIMENTAL VERIFICATION

We implement an estimator script for the attack that, given parameters of an LWE problem

and a BKZ cost model as an input, finds optimal parameters for the dual attack (see Section 3)
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and our hybrid attack (see Section 4). Using this script, we evaluate the computational costs

for a wide range of small-secret LWE parameters. In this section, we report the results of our

numerical estimation and show that the security level of the TFHE scheme should be updated

with regards to the hybrid attack. We also apply our attack to the parameters of FHEW, SEAL,

and HElib and provide a comparison with the primal unique-SVP technique. Eventually, we

support our argument by an implementation working on a small example.

5.1. Bit-security of LWE parameters. We numerically estimate the cost of solving LWE problem

by the dual attack (as described in Section 3) and by our attacks for all pairs of parameters the

(n, α) from the following set: (n,− log(α)) ∈ {100, 125, . . . , 1050}×{5, 6.25, . . . , 38.5}. We create

a heatmap representing the cost of our attack as a function of parameters n and α.

In Figure 1 we present an estimation of the bit-security of the LWE parameters according to

the combination of our attack and the collision attack, with time complexity 2n/2. Thus, Figure 1

represents the function min(TourAttack(n, α), 2n/2), where TourAttack(n, α) is the cost of our attack

for the parameters n and α. Figure 1 is obtained under the sieving BKZ cost model.

We also created similar heatmaps for our hybrid dual attack and the dual attack described

in Section 3 under three BKZ cost models: enumeration, sieving, and delta-squared. For com-

pleteness, these heatmaps are presented in Appendix D.

5.2. Application to FHE schemes.

5.2.1. Non-sparse small secrets.

TFHE.. The TFHE scheme uses two sets of parameters: for the switching key and for the boot-

strapping key. The security of the scheme is defined by the security of the switching key, which

is the weaker link.

The parameters of the TFHE scheme were updated several times. In Table 2, we presents

the results of our estimates for the recently updated parameters from the public implementa-

tion [G+16, v1.1]. For completeness, we also re-evaluate the security all the previous sets of

TFHE parameters. The results for the previous parameters of TFHE can be found in Appen-

dix B.

FHEW.. The fully homomorphic encryption scheme FHEW [DM15], as TFHE, uses binary se-

crets. Its parameters are given as n = 500, σ = 217, q = 232. The bit-security of these parameters

under our hybrid dual attack in the sieving model is 96 bits, which is slightly better than the

primal or dual attack estimated with [ACD+18] giving respectively 101 and 115 bits of security.
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FIGURE 1. Bit-security as a function of the LWE parameters n and α assum-

ing the sieving BKZ cost model. Here, n denotes the dimension, α denotes the

standard deviation of the noise, the secret key is chosen from the uniform dis-

tribution on {0, 1}n. The picture represents the security level λ of LWE samples,

λ = log(min(TourAttack(n, α), 2n/2)). The numbered lines on the picture represent

security levels. The star symbol denotes the old TFHE key switching parame-

ters from [CGGI17], the diamond symbol denotes the key switching parameters

recommended in [CGGI20, Table 4].

SEAL.. The SEAL v2.0 homomorphic library [LP16] uses ternary non-sparse secrets. We target

these parameters directly with our hybrid approach and compare the (best) results with the

dual attack of [Alb17]. The results are compiled in Table 7 of Appendix C. The results are very

slightly better for our techniques, although being very comparable.

Sparse secrets: HElib. The HElib homomorphic library [HS15] uses ternary sparse secrets which

have exactly 64 non-zero components. We can then target these parameters using the combina-

tion of our hybrid attack with guessing. The results are compiled in Table 8 and Table 9, both

given in Appendix C. The results are very slightly worse for our techniques, although are still

very comparable. A reason might be that the exploitation of the sparsity in our case is more

naive than the range of techniques used in [Alb17]. An interesting open question would be
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TABLE 2. Security of the parameters of the TFHE scheme from the public im-

plementation [G+16] (parameter’s update of February 21, 2020) against dual

attack (as described in Section 3) and hybrid dual attack (as described in Sec-

tion 4). λ denotes security in bits, δ and n1 are the optimal parameters for the

attacks. “-” means that the distinguishing attack doesn’t have the parameter

n1.

BKZ model
switching key

n = 630, α = 2−15

bootstrapping key

n = 1024, α = 2−25

delta-squared

attack λ δ n1

dual 270 1.0042 -

new attack 176 1.005 485

attack λ δ n1

dual 256 1.0042 -

new attack 190 1.0048 862

sieving
dual 131 1.0044 -

new attack 121 1.0047 576

dual 131 1.0044 -

new attack 125 1.0046 967

enumeration
dual 292 1.0042 -

new attack 192 1.0052 469

dual 280 1.0041 -

new attack 209 1.0049 842

to merge the best of these two worlds to get even stronger attacks. We leave this question for

future work as it is slightly out of the scope of the present paper.

5.3. Comparison with primal uSVP attack. The security of the recent parameters from TFHE’s

implementation is evaluated using the LWE estimator from [APS15,ACD+18]. As the results of

this estimation suggest, under the sieving BKZ cost model, the best attack against the current

parameters of the TFHE scheme among the attacks presented in the LWE estimator is the primal

uSVP attack [BG14] (see also [APS15, Section 6.3] for the description of the attack). Therefore, it

is interesting to compare our hybrid dual attack with the primal uSVP attack on a wider range

of parameters.

In order to compare our attack with the primal uSVP attack, we estimate the time complexity

of both attacks for each pair of the parameters (n, α) from the following set: (n,− log(α)) ∈
{200, 250, . . . , 1450} × {10, 12, . . . , 48}. We evaluate the cost of the primal uSVP attack using

the LWE estimator [APS15, ACD+18]. For this comparison, we consider two BKZ cost models:

sieving and enumeration. The results of our estimation are presented in Figures 2 and 3.
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Figures 2 and 3 show that under both BKZ cost models, it is not so that one attack is better

than another for all the sets of the parameters. Under both BKZ cost models, the primal uSVP

attack outperforms the hybrid dual attack when the dimension is high (i.e., n > 800) and the

noise parameter is small (i.e., α < 2−35 ). For the rest of the parameters that we consider, the

hybrid dual attack outperforms the primal uSVP attack. The difference in the cost of the attacks

depends on the chosen BKZ cost model; for the enumeration BKZ cost model the difference

between attacks in more significant than for the sieving model.

In particular, as reported in Table 1, for the practical security parameters of TFHE, the hybrid

dual attack we propose in this work is slightly better than the primal attack technique.

5.4. Experimental verification. In order to verify the correctness of our attack, we have im-

plemented it on small examples. Our implementation recovers 5 bits of a secret key for LWE

problems with the following two sets of parameters: (n, α) = (30, 2−8) and (n, α) = (50, 2−8).

For implementation purposes, we rescaled all the elements defined over torus T to integers

modulo 232. For both examples, we use BKZ with blocksize 20, which yields the quality of

the lattice reduction around δ . 1.013. We computed the values of parameters of the attack

required to guess correctly 5 bits of the key with probability 0.99 assuming that quality of the

output of BKZ. The required parameters for both experiments are summarized in Table 3. The

first experiment was repeated 20 times, the second was repeated 10 times. For both experi-

ments, the last five bits of the key were successfully recovered at all attempts. The correctness

of both attacks rely on assumptions made in Theorem 3.1 for approximating the distribution of

vt(Ats + e) mod 1 by modular Gaussian distribution Gσ . In order to verify these assumptions,

while running both experiments we have collected samples to check the distribution: each time

when the attack found correctly the last bits of the secret key s2, we collected the correspond-

ing ẽ = b̃ − ãts2 = vt(Ats1 + e). For the first experiment, the size of the collected sample is

20 × R1 = 640, for the second experiment, it is 10 × R2 = 740. The collected data is presented

in Figure 4. In Table 4, we compare theoretical predictions and estimations obtained from the

experiments for the parameters of modular Gaussian distribution Gσ . Experimental estimations

of mean and variance in both cases match closely theoretical predictions.
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FIGURE 2. Comparison of the costs of the hybrid dual attack and primal uSVP

attack from [BG14] under the enumeration BKZ cost model. Here, n and α

denote the dimension and the standard deviation of the noise of LWE samples,

TP denotes the time complexity of the primal uSVP attack, THD denotes the

time complexity of our hybrid dual attack, λP − λHD := log(TP )− log(THD).
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[Che13] Yuanmi Chen. Réduction de réseau et sécurité concrete du chiffrement completement homomorphe. PhD thesis, Paris

7, 2013.

[CHHS19] Jung Hee Cheon, Minki Hhan, Seungwan Hong, and Yongha Son. A hybrid of dual and meet-in-the-middle

attack on sparse and ternary secret lwe. IEEE Access, 7:89497–89506, 2019.

[CLP17] Hao Chen, Kim Laine, and Rachel Player. Simple encrypted arithmetic library-seal v2. 1. In International

Conference on Financial Cryptography and Data Security, pages 3–18. Springer, 2017.

[CN11] Yuanmi Chen and Phong Q Nguyen. BKZ 2.0: Better lattice security estimates. In International Conference on

the Theory and Application of Cryptology and Information Security, pages 1–20. Springer, 2011.
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APPENDIX A. OMITTED PROOFS

of Theorem 3.1. Under Assumption 1, the coordinates of wq are independent and distributed ac-

cording to the Gaussian distribution with expectation 0 and standard deviation δn+m/
√
n+m.

Since wq = (q · x || q−n/m · v)t, the coordinates of vectors x and v also have centered Gaussian

distribution, but with different standard deviations. Let

σx =
1

q
· δm+n

√
m+ n

and σv = qn/m · δm+n

√
m+ n

be the standard deviation of coordinates of x and of v correspondingly. Consider the distribu-

tion of

vtb = xts + vte =

n∑
i=1

xi · si +

m∑
i=1

vi · ei.

vtb is a sum of m + n independent random variables and, therefore, its distribution can be

approximated by a Gaussian distribution according to the Central Limit Theorem. In order to

learn the parameters of the Gaussian, we need to obtain the expectations and variances of xi · si
and vi · ei.

First, consider the distribution of xi · si. As si is drawn uniformly in B, xisi is a random

variable from the distribution that can be obtained by sampling b ∈ B with probability B−1

and then sampling from a Gaussian distribution with mean 0 and variance b2σ2
x. Therefore,

E(xi · si) = 0 and Var(xi · si) = S2σ2
x for S2 being Var(B) = 1

|B|
∑
b∈B b

2.

Then, consider v1e1. As v and e are independent and E(v1) = E(e1) = 0, E(v1e1) = E(v1)E(e1) =

0 and Var(v1e1) = Var(v1) ·Var(e1) = α2σ2
v.

Thus, the distribution of vtb is close to the Gaussian distribution with expectation 0 and

variance

(23) σ2 = nVar(x1s1) +mVar(v1e1) = nS2σ2
x +mα2σ2

v =
δ2(m+n)

m+ n

(nS2

q2
+mα2q2n/m

)
.

Our goal is to obtain a distribution that is as concentrated around zero as possible. Hence we

choose parameters m and q in order to minimize variance of vtb.

First, we find the optimal value of q by differentiation of Equation (23) :

∂σ2

∂q
=
δ2(m+n)

m+ n
·
(
− 2nS2

q3
+

2n

m
·mα2q

2n
m −1

)
= 0 → qopt =

(S
α

) m
m+n

.

After replacing q by qopt in Equation (23) we obtain:

(24) σ2 =

(
Sδm+n

(α
S

) m
m+n

)2

.
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Also, for σx and σv we obtain the following relation

(25)
σx
σv

=
q−n/m

q
=
α

S
.

Then, we find the optimal value of m by differentiating ln(σ):

(26) ∂ ln(σ)

∂m
= ln(δ) + n ln

(α
S

)
· 1

(m+ n)2
= 0 → mopt =

√
n · ln(S/α)

ln(δ)
− n

Now, replacing m by mopt in Equation (24), we find:

σ(δ, n, S, α) = σ(m̂, δ, n, S, α) = α · exp
(
2
√
n ln(S/α) ln(δ)

)
.

The distance between the distribution of vtb and the Gaussian distribution with mean 0 and

variance σ2 can be estimated by the Berry-Esseen inequality (see Theorem 2.3). To use this

inequality, we need to compute the third absolute moments of x1s1 and v1e1.

We start with x1s1. As x1 and s1 are independent,

E{|x1s1|3} = E{|x1|3}E{|s1|3}.

By Theorem 2.4, E{|x1|3} = 2
√

2/πσ3
x. As s1 has the Bernoulli distribution with parameter S2,

E{|s1|3} = E{s1} = S2. Putting two parts together, we get

(27) ρx1s1 = E{|x1s1|3} = 2
√

2/πS2σ3
x.

In the same way, we obtain

(28) ρv1e1E{|v1e1|3} =
8

π
α3σ3

v.

Denote the cumulative distribution function of vtb by Fvtb, and denote the cumulative dis-

tribution function of the Gaussian distribution with mean 0 and variance σ2 by Φσ . By the

Berry-Esseen inequality, there exists a constant C0 such that

(29) sup
x∈R
|Fvtb(x)− Φσ(x)| 6 C0 ·

nρx1s1 +mρv1e1
(nS2σ2

x +mα2σ2
v)3/2.

Then, using Equations (25) and (27) to (29), for the distance between the distributions we get:

(30) sup
x∈R
|Fvtb(x)− Φσ(x)| 6 C0

√
8

S2π
·
n+mS

√
8/π

(m+ n)3/2
6 C0 ·

8

πS
· 1√

m+ n
.

�
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of Theorem 3.5. The cost of the attack is the cost of the lattice reduction multiplied by the num-

ber of samples N needed to distinguish the uniform distribution and the modular Gaussian

distribution with the parameter σ:

(31) T = N · T (BKZδ).

By Theorem 3.3, Algorithm 2, given as an input a sample of size N , guesses its distribution

correctly with the probability at least 1 − exp
(
− N · e

−4π2σ2

8

)
. Thus, in order to achieve the

probability p, we need to produce a sample of size N(σ, p) = 8 ln( 1
1−p ) · e4π2σ2

.

The parameter σ of the discrete Gaussian distribution as a function of δ can be estimated

using Theorem 3.1. Then, the time complexity can be obtained by optimizing the expression,

given by Equation (31), as a function of δ. �

of Theorem 4.4. By Theorem 4.3, the time complexity of Algorithm 5 can be seen as the sum of

complexities of the two parts of the algorithm. The first part is producing R short lattice vectors

and the second part is evaluating R scalar products for each of |B|n2 candidates for the secret

key. As in the sieving model one run of the lattice reduction produces (4/3)β/2 short vectors,

the first part of Algorithm 5 attack takes time T (BKZδ) ·
⌈
R(n2,σ,p)
(4/3)β/2

⌉
, which implies that the

complexity of Algorithm 5 in the sieving BKZ cost model is given by Equation (21). �

of Theorem 4.5. Asserting that only h coefficients are non-zero yields that the probability of guess-

ing correctly k zero positions in the secret ~s is exactly:
(
n−h
k

)(
n
k

)−1. Hence the number of the

fresh restarts required to get a constant probability of success is
(
n−h
k

)−1(n
k

)
The end of the

proof scheme is the same as for Theorem 4.3, with the only difference that the variance of the

vector ẽ of Equation (13) is now equal to: σ(δ, n, S, α) = α · exp
(
2
√
n ln(S/α) ln(δ)

)
, for

(32) S =

√
n− h
n

1

|B| − 1

∑
b∈B\{0}

b2,

instead of being 1
|B|
∑
b∈B b

2. �
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APPENDIX B. SECURITY OF TFHE PARAMETERS FROM THE PAPERS [CGGI16, CGGI20]

In Table 5 we present the results of our estimates for the parameters from [CGGI16]; in Table 6,

we present the security estimates for more recent parameters from [CGGI20].

TABLE 5. Security of the parameters of the TFHE scheme from [CGGI20, Ta-

ble 3] (coincide with the parameters from [CGGI16]) against dual attack (as

described in Section 3) and hybrid dual attack (as described in Section 4). λ

denotes security in bits, δ and n1 are the optimal parameters for the attacks. “-”

means that the distinguishing attack doesn’t have the parameter n1.

BKZ model
switching key

n = 500, α = 2.43 · 10−5

bootstrapping key

n = 1024, α = 3.73 · 10−9

delta-squared

attack λ δ n1

dual 169 1.0052 -

new attack 119 1.0059 406

attack λ δ n1

dual 204 1.0046 -

new attack 160 1.0051 889

sieving
dual 102 1.0054 -

new attack 94 1.0058 455

dual 117 1.0048 -

new attack 112 1.005 972

enumeration
dual 195 1.0052 -

new attack 137 1.0062 388

dual 230 1.0046 -

new attack 180 1.0052 868
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TABLE 6. Security of the parameters of the TFHE scheme from [CGGI20, Table

4] against dual attack (as described in Section 3) and hybrid dual attack (as

described in Section 4). λ denotes security in bits, δ and n1 are the optimal

parameters for the attacks. “-” means that the distinguishing attack doesn’t

have the parameter n1.

BKZ model
switching key

n = 612, α = 2−15

bootstrapping key

n = 1024, α = 2−26

delta-squared

attack λ δ n1

dual 194 1.0045 -

primal 198 1.0042 -

this work 169 1.0051 474

attack λ δ n1

dual 191 1.0045 -

primal 203 1.0043 -

this work 179 1.0049 871

sieving

dual 144 1.0043 -

primal 127 1.0045 -

this work 118 1.0048 559

dual 134 1.0043 -

primal 123 1.0043 -

new attack 120 1.0047 970

enumeration

dual 239 1.0043 -

primal 219 1.0045 -

new attack 185 1.0053 457

dual 222 1.0045 -

primal 210 1.0043 -

new attack 179 1.0049 871

APPENDIX C. ATTACK RESULTS ON FHE SCHEMES

In this appendix we present the various practical results obtained on the schemes SEAL and

HElib.

APPENDIX D. HEATMAPS FOR COMPARING OUR HYBRID DUAL ATTACK AND THE DUAL

ATTACK AS DESCRIBED IN SECTION 3

In this section, we present the results of comparison of our hybrid dual attack with the dual

attack described in Section 3 under three different BKZ cost models. In Figure 5, the left heatmap

represents the logarithm of the time complexity of the dual attack while the right heatmap rep-

resents the logarithm of the time complexity of our attack. Figure 5 shows that for the same
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TABLE 7. Security of the SEAL v2.0 library parameters against the dual attack

from [Alb17] and against our hybrid dual attack. n denotes the dimension, q is the

modulus, the standard deviation is given by σ = 3.2 for sets of parameters.

SEAL params. dual attack from [Alb17] our attack

n = 1024, q = 247.5 68 67

n = 2048, q = 295.4 69 68

n = 4096, q = 2192 68 67

TABLE 8. Security of the HElib library parameters (80-bit) against the dual attack

from [Alb17] and against our hybrid dual attack. n denotes the dimension, q is the

modulus, the standard deviation is given by σ = 3.2 for sets of parameters.

HElib params. dual attack from [Alb17] our attack

n = 1024, q = 285.2 61 64

n = 2048, q = 285.2 65 65

n = 4096, q = 285.3 67 69

TABLE 9. Security of the HElib library parameters (120-bit) against the dual

attack from [Alb17] and against our hybrid dual attack. Notation is as in Table 8

HElib params. dual attack from [Alb17] our attack

n = 1024, q = 238 73 77

n = 2048, q = 270 77 79

n = 4096, q = 2134 81 85
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sets of parameters the cost of our attack is always less than or equal to the cost of the dual dis-

tinguishing attack and that the difference between the costs of the attacks is bigger when the

dimension n and the noise parameter α is bigger.
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FIGURE 5. Comparison of the costs of the attacks under the sieving BKZ cost

model. Here, n and α denote the dimension and the standard deviation of the

noise of LWE samples, TD denotes the time complexity of the dual distinguish-

ing attack, TK denotes the time complexity of our key recovery attack.

Figures 6 and 7 represent the similar results for the enumeration and delta-squared BKZ cost

models.

Figure 8 presents results similar to Figure 1, but under the enumeration and delta-squared

BKZ cost models.
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FIGURE 6. Comparison of the costs of the attacks under the enumeration BKZ

cost model.
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FIGURE 7. Comparison of the costs of the attacks under the delta-squared BKZ

cost model.
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FIGURE 8. Bit-security as a function of the LWE parameters n and α under the

enumeration and delta-squared BKZ cost models.
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