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Abstract

Randomizable encryption lets anyone randomize a ciphertext so it is distributed
like a fresh encryption of the same plaintext. Signatures on randomizable ciphertexts
(SoRC), introduced by Blazy et al. (PKC’11), let one adapt a signature on a ciphertext
to a randomization of the latter. Since signatures can only be adapted to ciphertexts
that encrypt the same message as the signed ciphertext, signatures thus obliviously
authenticate plaintexts. SoRC have been used as a building block in e-voting, blind
signatures, and (delegatable) anonymous credentials.

We observe that SoRC can be seen as signatures on equivalence classes (JoC’19),
another primitive with many applications to anonymous authentication, and that
SoRC provide better anonymity guarantees. We first strengthen the unforgeability
notion for SoRC and then give a scheme that provably achieves it in the generic group
model. Signatures in our scheme consist of only 4 bilinear-group elements, which is
considerably more efficient than prior schemes.

1 Introduction

A standard approach for anonymous authentication is to combine signatures, which yield authentica-
tion, with zero-knowledge proofs, which allow to prove possession of a signature without revealing
information about the latter and thus provides anonymity. This approach has been followed for
(multi-show) anonymous credentials schemes, for which several showings of the same credential
cannot be linked (in contrast to one-show credentials, e.g. [Bra00, BL13]).

The zero-knowledge proofs for these schemes are either instantiated using Σ-protocols [CL03,
CL04] (and are thus interactive or in the random oracle model) or in the standard model [BCKL08]
using Groth-Sahai proofs [GS08]. As this proof system only supports very specific types of state-
ments in bilinear (“pairing-friendly”) groups, signature schemes whose verification is of this type
have been introduced: structure-preserving signatures [AFG+10] sign messages from a group G and
are verified by checking equivalences of products of pairings of group elements from the verification
key, the message and the signature.

Equivalence-class signatures. Hanser and Slamanig [HS14] extended this concept to structure-
preserving signatures on equivalence classes (later improved in [FHS19]) for messages from G2, by
adding a functionality called signature adaptation: given a signature on a message m ∈ G2 and a
scalar r, anyone can “adapt” the signature so it verifies for the message r ·m. A signature thus
authenticates the equivalence class of all multiples of the signed message.

Equivalence-class signatures (ECS) enable anonymous authentication that completely forgoes
the layer of zero-knowledge proofs and thus yields considerable efficiency gains. Consider anonymous
credentials. A credential is a signature on a message m (which typically contains a commitment to
the user’s attributes). In previous schemes, when authenticating, the user proves in zero knowledge
that she knows a message m (and an opening of the contained commitment to the attributes she
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wants to show) as well as a signature on m; several authentications with the same credential are thus
unlinkable. Using ECS, this is possible without using any proof system [FHS19]: the user simply
shows r ·m for a fresh random r together with an adapted signature. Anonymity is implied by the
following property of ECS: to someone that is given m and a signature on m, the pair m′ := r ·m
for a random r and the signature adapted to m′ is indistinguishable from a random element m′′

from G2 together with a fresh signature on m′′.
Besides the first attribute-based anonymous credential scheme whose showings are independent

of the number of attributes [FHS19], ECS have been used to build very efficient blind signatures with
minimal interaction between the signer and the user asking for the signature [FHS15], revocable
anonymous credentials [DHS15], as well as very efficient constructions [FGKO17, DS18] of both
access-control encryption [DHO16] and dynamic group signatures [BSZ05].

The most efficient construction of ECS is the one from [FHS19], which was proven secure in
the generic group model [Sho97]. A signature consist of 3 elements from a bilinear group, which
the authors show to be optimal by relying on a result by Abe et al. [AGHO11]. Moreover, there
is strong evidence that structure-preserving signatures of this size cannot be proved secure by a
reduction to non-interactive assumptions [AGO11], meaning a proof in the generic group model is
the best we can hope for. Less efficient constructions of EQS from standard assumptions have since
then been given in the standard model by weakening the security guarantees [FG18] and in the
common-reference string model [KSD19] (with signatures 6 times longer than [FHS19]).

Signatures with flexible public key [BHKS18] and mercurials signatures [?] are extensions of ECS
that allow signatures to be adapted not only to multiples of the signed message, but also to multiples
of the verification key. This has been used to build delegatable anonymous credentials [BCC+09] in
[?]. Delegatable credentials allow for hierarchical structures, in which users can delegate obtained
credentials to users at lower levels.

Shortcomings of ECS. While schemes based on ECS offer (near-)optimal efficiency, a drawback
is their weak form of anonymity. Consider a user who asks for a signature on m = (m0G,m1G)
(where G is the generator of the group (G,+)). If the user later sees a randomization (M ′0,M

′
1) of

this message, she can easily identify it as hers by checking whether m1M
′
0 = m0M

′
1. The notion of

anonymity (which is called class-hiding in ECS) that can be achieved for these equivalence classes is
thus akin to what has been called selfless anonymity [CG05] in the context of group signatures: in
contrast to full anonymity [BMW03], signatures are only anonymous to those that do not know the
secret values used to construct them (the signing key for group signatures; the values m0 and m1

in our example above).
This weakness can have concrete repercussions on the anonymity guarantees provided by schemes

built from ECS, for example delegatable credentials. In previous instantiations [BCC+09, Fuc11]
of the latter, the showing of a credential is anonymous to anyone, in particular to a user that has
delegated said credential to the one showing it. However, in the construction from the ECS variant
mercurial signatures [?], if Alice delegates a credential to Bob, she can identify Bob whenever he
uses the credential to authenticate, which represents a serious infringement to Bob’s privacy. In
fact, anonymity towards the authority issuing (or delegating) credentials has been considered a
fundamental property of anonymous credential schemes.

In [?], when Alice delegates a credential to Bob, she uses her secret key (x0, x1) ∈ (Z|G|∗ )2

to sign Bob’s pseudonym under her own pseudonym (P0, P1) = (rx0G, rx1G) for a random r,
which becomes part of Bobs credential. When Bob shows it, he randomizes Alice’s pseudonym to
(P ′0, P

′
1) := (r′P0, r

′P1) for a random r′, which Alice can recognize by checking whether x1P
′
0 = x0P

′
1.

Signatures on randomizable ciphertexts. To overcome this weakness in anonymity in ECS,
we use a different type of equivalence class. Consider an ElGamal [ElG85] encryption (C0, C1) =
(rG,M + rP ) of a message M under an encryption key P . Such ciphertexts can be randomized by
anyone, that is, without knowing the underlying message, a fresh encryption of the same message can
be computed by choosing r′ and setting (C ′0, C

′
1) := (C0+r′G, C1+r′P ) = ((r+r′)G, M+(r+r′)P ).

All possible encryptions of a message form an equivalence class, which, in contrast to multiples
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of pairs of group elements, satisfy a “full” anonymity notion: after randomization, the resulting
ciphertext looks random even to the one that created the original ciphertext (see Proposition 1).

If such equivalence classes yield better anonymity guarantees, the question is whether we can
have adaptable signatures on them, that is, signatures on ciphertexts that can be adapted to ran-
domizations of the signed ciphertext. It turns out that this concept exists and even predates that of
ECS and is called signatures on randomizable ciphertexts (SoRC) [BFPV11]. Since their introduc-
tion, SoRC have been extensively used in e-voting [CCFG16, CFL19, CGG19, HPP20] and other
primitives, such as blind signatures and extensions thereof [BFPV13]. Blazy et al. [BFPV11] prove
their instantiation of SoRC unforgeable under standard assumptions in bilinear groups. Its biggest
drawback is that it only allows for efficiently signing messages that consist of a few bits.

Our contribution. Our aim was to construct a scheme of signatures on randomizable ciphertexts
with a large message space and short signatures. But first we strengthen the notion of signature
unforgeability. In SoRC, signatures are produced (and verified) on pairs of encryption keys and
ciphertexts (ek, c). In the original unforgeability notion [BFPV11] the adversary is given a signa-
ture verification key and a set of encryption keys ek1, . . . , ekn and can then make queries (i, c) to
get a signature for (eki, c). Its goal is to return (i∗, c∗) and a signature for (eki∗ , c

∗), so that c∗

encrypts a message of which no encryption has been submitted to the signing oracle. Signatures
thus authenticate plaintexts irrespective of the encryption key.

In more detail, once a query (1,Enc(ek1,m)) was made, a signature for (ek2,Enc(ek2,m)) is not
considered a forgery. In contrast, in our new definition (Def. 6), this is considered a forgery, since
we view a signature as (obliviously) authenticating a message for a particular encryption key. That
is, if from a signature on an encryption of a message for one key one can forge a signature on the
same message for another key, this is considered a break of the scheme. A further difference is that,
while in [BFPV11] encryption keys are generated by the challenger, we let the adversary choose (in
any, possibly malicious, way) the encryption keys (in addition to the ciphertexts) on which it wishes
to see a signature, as well as the key for its forgery.

We then construct a scheme which signs ElGamal ciphertexts and whose signatures consist of 4
elements of an (asymmetric) bilinear group (3 elements from G1 and 1 from G2). Our scheme (given
in Fig. 3) is inspired by the original equivalence-class signature scheme [FHS19], whose equivalence
classes only provide “selfless” anonymity. We show that signatures adapted to a randomization of
a ciphertext are equivalently distributed to fresh signatures on the new ciphertext (Proposition 2).
We then prove that our scheme satisfies our strengthened unforgeability notion in the generic group
model (Theorem 1).

Comparison with Blazy et al. Apart from the stronger unforgeability notion we achieve, the
main improvement of our scheme over [BFPV11] concerns its efficiency. The Blazy et al. scheme
builds on (a new variant of) Waters signatures [Wat05] and Groth-Sahai proofs [GS08], which allows
them to prove unforgeability from standard assumptions. However, encrypting and signing a k-bit
message yields a ciphertext/signature pair consisting of 12 + 12k group elements of an asymmetric
bilinear group. In our scheme, a message is a group element (as for ElGamal encryption), which
lets us encode 128-bit messages (or messages of unbounded length by hashing into the group). A
ciphertext/signature pair consists of 6 group elements. We also propose a generalization to messages
of n group elements for which a ciphertext/signature pair consists of n+ 5 group elements.

The price we pay for this length reduction by a factor of over 250 (for 128-bit messages or longer)
is an unforgeability proof in the generic group model. But, as we argue next, this is to be expected.
Since we sign group elements and verification consists in checking pairing-product equations, our
scheme is structure-preserving [AFG+10]. Signatures for such schemes must at least contain 3 group
elements [AGHO11] and schemes with such short signatures cannot be proved from non-interactive
(let alone standard) assumptions [AGO11]. Our 4-element signatures, which provide additional
functionalities, and its unforgeability proof are therefore close to being optimal.
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2 Premilinaries

A function ε : N → R is called negligible if for all c > 0 there is a k0 such that ε(k) < 1
kc for all

k > k0. By a $← S, we denote that a is picked uniformly at random from a set S. By y $← A(x)
we denote running a probabilistic algorithm A on input x and assigning the output to y. We write
A(x; r) to make the randomness r explicit.

Bilinear groups. We assume the existence of a probabilistic polynomial-time (p.p.t.) algorithm
BGGen that takes as input an integer λ in unary and outputs a description of an (asymmetric)
bilinear group (p,G, G, Ĝ, Ĝ,GT , e) consisting of groups (G,+) and (Ĝ,+), generated by G and
Ĝ, resp., and (GT , ·), all of cardinality a prime number p ∈ {2λ, . . . , 2λ+1}, and a bilinear map
e : G× Ĝ→ GT , such that e(G, Ĝ) generates GT , called pairing.

The decisional Diffie-Hellman assumption for BGGen states that no p.p.t. adversary A can
distinguish a triple (dG, rG, drG) for d, r $← Zp from a random triple from G3 with better than
negligible advantage (see also Fig. 4).

Rational fractions. In our main proof (Theorem 1), we make extensive use of multivariate rational
fractions from Zp(X1, . . . , Xm) and argue using their degrees, for which we will use the “French”
definition [AW98]: For (P,Q) ∈ Zp[X1, . . . , Xm]×

(
Zp[X1, . . . , Xm] \ {0}

)
, we define

deg
P

Q
:= degP − degQ .

We recall some properties of this definition:

− The degree does not depend of the choice of the representative.

− The definition generalizes the one for polynomials.

− As for polynomials, we have deg(F1 · F2) = degF1 + degF2 and

deg(F1 + F2) ≤ max{degF1, degF2} .

We use subscripts for degrees in a specific indeterminate, e.g., degxi denotes the degree in variable xi.

3 Signatures on randomizable ciphertexts

We start with the definition of a signatures on randomizable ciphertexts scheme, which consists of a
randomizable public-key encryption scheme and a signature scheme, whose signatures are computed
and verified on pairs (encryption key, ciphertext). In addition, there is an algorithm Adapt, which
lets one adapt a signature on a ciphertext to any randomization of the latter.

3.1 Syntax

Definition 1. We denote by PP the set of public parameters, and for pp ∈ PP we let Mpp be the
set of messages, DKpp the set of decryption keys, EKpp, the set of encryption keys, Cpp the set of
ciphertexts, Rpp the set of ciphertext randomness, SKpp the set of signature keys, VKpp the set of
verification keys and Spp the set of signatures.

A scheme of signatures on randomizable ciphertexts SRC consists of the following probabilistic
algorithms, of which all except Setup are implicitly parametrized by an element pp ∈ PP.

Setup : N→ PP
KeyGen : ∅ → DKpp × EKpp SKeyGen : ∅ → SKpp × VKpp

Enc : EKpp ×Mpp ×Rpp → Cpp Sign : SKpp × EKpp × Cpp → Spp
Rndmz : EKpp × Cpp ×Rpp → Cpp Verify : VKpp × EKpp × Cpp × Spp → {0, 1}

Dec : DKpp × Cpp →Mpp Adapt : Spp ×Rpp → Spp

We define the equivalence class [c]ek of a ciphertext c under encryption key ek as all randomizations
of c, that is, [c]ek := {c′ | ∃ r ∈ Rpp : c′ = Rndmz(ek, c, r)}.
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IND-CPAASRC(λ, b) :
01 pp $← Setup(1λ)
02 (dk, ek) $← KeyGen(pp)
03 (m0,m1, st)

$← A(ek)
04 r $← Rpp

05 c := Enc(ek,mb, r)
06 b′ $← A(st, c)
07 Return b′

CL-HIDASRC(λ, b) :
01 pp $← Setup(λ)
02 (dk, ek) $← KeyGen(pp)
03 (c, st) $← A(ek)
04 c0

$← Cpp
05 r $← Rpp ; c1 := Rndmz(ek, c, r)
06 b′ $← A(st, cb)
07 Return b′

Figure 1: Games for ciphertext-indistinguishability and class-hiding

3.2 Correctness and security definitions

Correctness of SoRC requires that the encryption scheme and the signature scheme are correct.

Definition 2. A SoRC scheme is correct if for all pp ∈ PP, for all pairs (ek,dk) and (sk, vk) in
the range of KeyGen(pp) and SKeyGen(pp), respectively, and all m ∈Mpp, r ∈ Rpp and c ∈ Cpp:

Dec
(
dk,Enc(ek,m, r)

)
= m and Pr

[
Verify

(
vk, ek, c,Sign(sk, ek, c)

)
= 1
]

= 1 .

Note that together with signature-adaptation (Def. 5 below), this implies that adapted signatures
verify as well. We also require that the encryption scheme satisfies the standard security notion.

Definition 3. Let game IND-CPA be as defined in Fig. 1. A SoRC scheme is IND-CPA secure
if for all p.p.t. adversary A the following function is negligible in λ:∣∣Pr

[
IND-CPAASRC(λ, 1) = 1

]
− Pr

[
IND-CPAASRC(λ, 0) = 1

∣∣ .
Class-hiding is a property of equivalence-class signatures that states that given a representative of
an equivalence class, then a random member of that class is indistinguishable from a random element
of the whole space. We give a stronger definition, which we call fully class-hiding (analogously to
full anonymity). Whereas in the original notion [FHS19, Def. 18], the representative is uniformly
picked by the experiment, in our notion it is chosen by the adversary.

Definition 4. Let game CL-HID be as defined in Fig. 1. A SoRC scheme is fully class-hiding if
for all p.p.t. adversary A, the following function is negligible in λ:∣∣Pr

[
CL-HIDASRC(λ, 1) = 1

]
− Pr

[
CL-HIDASRC(λ, 0) = 1

]∣∣ .
Signature-adaptation requires that signatures that have been adapted to a randomization of the
signed ciphertext are distributed like fresh signatures on the randomized ciphertext. A strengthening
is the following variant, which also holds for maliciously generated verification keys [FHS19, Def. 20].

Definition 5. A SoRC scheme is signature-adaptable (under malicious keys) if for all pp ∈ PP,
all (vk, ek, c, sig) ∈ VKpp × EKpp × Cpp × Spp that satisfy Verify(vk, ek, c, sig) = 1, and all r ∈ Rpp,
the output of Adapt(sig, r) is uniformly distributed over the set{

sig′ ∈ Spp
∣∣ Verify(vk, ek,Rndmz(ek, c, r), sig′

)
= 1
}
.

Note that if Sign outputs a uniform element in the set of valid signatures (which is the case in
the ECS scheme from [FHS19] and our scheme) then Def. 5 implies that for all honestly generated
(sk, vk) and all ek, c and r the outputs of the following two procedures are distributed equivalently:

Adapt
(
Sign(sk, ek, c), r′

)
and Sign

(
sk, ek,Rndmz(ek, c, r′)

)
.

Together, full class-hiding and signature-adaptability under malicious keys imply that for an
adversary that creates a signature verification key as well as a ciphertext and a signature on it, a
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EUFASRC(λ) :
01 Q := ∅ ; pp $← Setup(1λ)
02 (sk, vk) $← SKeyGen(pp)

03
(
(ek∗, c∗), sig∗

)
$← ASign(sk,·,·)

2 (vk)

04 Return
(
Verify(vk, ek∗, c∗, sig∗) = 1 ∧ (ek∗, c∗) 6∈ Q

)
Sign(sk, ek, c)
01 Q := Q ∪ {ek}×[c]ek
02 Return Sign(sk, ek, c)

Figure 2: Unforgeability game

randomization of this ciphertext together with an adapted signature looks like a random ciphertext
with a fresh signature on it. (In contrast, for equivalence-class signatures, this was only true if the
signed message was not chosen by the adversary [FHS19].)

Unforgeability. Finally, we present our strengthened notion of unforgeability, which is defined
w.r.t. keys and equivalence classes. That is, after the adversary queries a signature for (ek, c), all
tuples (ek, c′) with c′ ∈ [c]ek (that is, c′ encrypts the same message as c under ek) are added to a
set Q of signed objects. The adversary’s goal is to produce a signature on a pair (ek∗, c∗) that is
not contained in Q. (In the original definition [BFPV11], Q would contain the equivalence classes
of c under all encryption keys, i.e., all encryptions of the plaintext of c under all keys.)

Definition 6. Let EUF be the game defined in Fig. 2. A SoRC scheme is unforgeable is for all
p.p.t. adversary A the following function is negligible in λ:

Pr
[
EUFASRC(λ) = 1

]
.

Setup(1λ): Return pp = (p,G, G, Ĝ, Ĝ,GT , e) $← BGGen(1λ), which define Mpp := G, Cpp := G2,

Rpp := Zp, SKpp := (Z∗p)2, VKpp := (Ĝ∗)2, EKpp := G∗, DKpp := Z∗p and Spp := G×G∗×Ĝ∗×G.

KeyGen(pp): Parse pp as (p,G, G, Ĝ, Ĝ,GT , e)
sk := d $← Z∗p ; ek = P = dG ; return (dk, ek)

Enc(P,M, r): Return (rG,M + rP )

Dec(d, (C0, C1)): Return M := C1 − dC0

Rndmz(P, (C0, C1), r′): Return (C0 + r′G,C1 + r′P )

SKeyGen(pp): Parse pp as (p,G, G, Ĝ, Ĝ,GT , e)
sk := (x0, x1) $← (Z∗p)2 ; vk := (X̂0 = x0Ĝ, X̂1 = x1Ĝ) ; return (sk, vk)

Sign((x0, x1), P, (C0, C1)): s $← Z∗p ; return (Z, S, Ŝ, T ) with

Z :=
1

s

(
G+ x0C0 + x1C1

)
S := sG Ŝ := sĜ T :=

1

s

(
x0G+ x1P

)
Adapt

(
(Z, S, Ŝ, T ), r′

)
: s′ $← Z∗p ; return (Z ′, S′, Ŝ′, T ′) with

Z ′ :=
1

s′
(
Z + r′T

)
S′ := s′S Ŝ′ := s′Ŝ T ′ :=

1

s′
T

Verify((X̂0, X̂1), P, (C0, C1), (Z, S, Ŝ, T )): Return 0 if P = 0 or S = 0. Return 1 if the following
equations hold and 0 otherwise:

e(Z, Ŝ) = e(G, Ĝ)e(C0, X̂0)e(C1, X̂1) e(G, Ŝ) = e(S, Ĝ)

e(T, Ŝ) = e(G, X̂0)e(P, X̂1)

Figure 3: Our instantiation SRC of SoRC
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4 Instantiation

Our instantiation of SoRC is given in Fig. 3. Its signatures sign ElGamal ciphertexts (C0, C1), and
the signature elements (Z, S, Ŝ) constitute a structure-preserving signature on (C0, C1) similar to
the optimal scheme from [AGHO11]. (And removing G from the definition of Z would yield the
equivalence-class scheme from [FHS19]: note that, without G, multiplying Z by r yields a signature
on the message r ·(C0, C1).) The new element T in our scheme allows for adaptation of signatures to
randomizations of the signed ciphertext. Randomization implicitly defines the following equivalence
classes: for P ∈ EKpp and (C0, C1), (C

′
0, C

′
1) ∈ Cpp:

(C ′0, C
′
1) ∈

[
(C0, C1)

]
P
⇐⇒ ∃ r ∈ Zp : (C ′0, C

′
1) = (C0 + rG, C1 + rP ) .

5 Security of our scheme

Correctness of our scheme follows by inspection. Moreover, ElGamal encryption [ElG85] satisfies
IND-CPA if the decisional Diffie-Hellman (DDH) assumption holds for BGGen.

Proposition 1. If DDH holds for BGGen then the scheme in Fig. 3 is fully class-hiding (Def. 4).

Proof. We first recall the game DDH, which formalizes the DDH assumption in Fig. 4 (left). Next,
we instantiate CL-HID with our scheme from Fig. 3 and rewrite it in Fig. 4 (right). In particular,
instead of choosing c0

$← G2, we compute it as c+ c′0 for a uniform c′0
$← G2.

Let A be an adversary against CL-HID. We define an adversary B against DDH, which upon
receiving a challenge (P,R, S), sends P to A to get c and then sends c + (R,S) to A. Finally, B
returns A’s output b′.

Since for all λ and b we have that DDHB
A
SRC(λ, b) and CL-HIDASRC(λ, b) follow the same distribu-

tion, B’s advantage in breaking DDH is the same as A’s advantage in breaking full class-hiding.

Proposition 2. The SoRC scheme in Fig. 3 is signature-adaptable under malicious keys (Def. 5).

Proof. Let pp = (p,G, G, Ĝ, Ĝ,GT , e) ∈ PP, let vk = (x0Ĝ, x1Ĝ), ek = dG, C0 = c0G, C1 = c1G
and sig = (Z=zG, S=sG, Ŝ= ŝĜ, T = tG) be such that Verify(vk, ek, (C0, C1), sig) = 1. Taking the
logarithms in basis e(G, Ĝ) of the verification equations yields ŝ = s and, using this,

zs = zŝ = 1 + c0x0 + c1x1 (1)

ts = tŝ = x0 + dx1 (2)

Let us now consider a uniform random element sig′ = (Z ′= z′G,S′= s′G, Ŝ′= ŝ′Ĝ, T ′= t′G) from
the set

{
sig′ ∈ Spp

∣∣ Verify(vk, ek,Rndmz(ek, c, r), sig′
)

= 1
}

. Again considering logarithms of the
verification equation yields ŝ′ = s′ and

z′s′ = 1 + (c0 + r)x0 + (c1 + rd)x1 = 1 + c0x0 + c1x1 + r(x0 + dx1)
(1),(2)

= zs+ rts

t′s′ = x0 + dx1
(2)
= ts

DDHBBGGen(λ, b) :

01 (p,G, G, Ĝ, Ĝ,GT , e) $← BGGen(λ)
02 P $← G
03 r $← Zp
04 S1 := rP
05 S0

$← G
06 b′ $← B(pp, (P, rG, Sb)) ; Return b′

CL-HIDASRC(λ, b) :
01 pp $← Setup(λ)
02 (d, P ) $← KeyGen(pp)
03 (c, st) $← A(P )
04 c′0

$← G×G
05 r $← Rpp ; c′1 := (rG, rP )
06 b′ $← A(st, c+ c′b) ; Return b′

Figure 4: Games for decisional Diffie-Hellman and class-hiding instantiated with SRC from Fig. 3
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Moreover, by signature validity, we have s 6= 0 and s′ 6= 0. We thus have Z ′ = s
s′ (Z + rT ) and

T ′ = s
s′T , as well as S′ = s′

s S, and Ŝ′ = s′

s Ŝ (since ŝ = s and ŝ′ = s′). In other words, sig′ is a

uniform element from the set
{(

1
s∗ (Z + rT ), s∗S, s∗Ŝ, T ′ = 1

s∗T
)
| s∗ ∈ Z∗p

}
. Since Adapt(sig, r)

outputs a uniform random element from that set, this concludes the proof.

Proof of unforgeability

Our main technical result is to prove that our scheme satisfies unforgeability (Def. 6) in the generic
group model [Sho97] for asymmetric (“Type-3”) bilinear groups (for which there are no efficiently
computable homomorphisms between G and Ĝ). In this model, the adversary is only given handles
of group elements, which are just uniform random strings. To perform group operations, it uses an
oracle to which it can submit handles and is given back the handle of the sum, inversion, etc of the
group elements for which it submitted handles.

Theorem 1. A generic adversary A that computes at most q group operations and makes up to
k queries to its signature oracle cannot win the game EUFASRC(λ) from Fig. 2 for SRC defined in
Fig. 3 with probability greater than 2−λ+1 k (q + 3k + 3)2.

Proof. We consider an adversary that only uses generic group operations on the group elements it

receives. After getting a verification key
(
X̂0 = x0Ĝ, X̂1 = x1Ĝ

)
and signatures

(
Zi, Si, Ŝi, Ti

)k
i=1

computed with randomness si on queries
((
P (i), (C

(i)
0 , C

(i)
1 )
))k
i=1

, the adversary outputs an encryp-

tion key P (k+1), a ciphertext
(
(C

(k+1)
0 , C

(k+1)
1 )

)
and a signature

(
Z∗, S∗, Ŝ∗, T ∗

)
for them. As it must

compute any new group element by combining received group elements, it must choose coefficients

ψ(i), ψ
(i)
z,1, . . . , ψ

(i)
z,i−1, ψ

(i)
s,1, . . . , ψ

(i)
s,i−1, ψ

(i)
t,1, . . . , ψ

(i)
t,i−1, γ

(i), γ
(i)
z,1, . . . , γ

(i)
z,i−1, γ

(i)
s,1, . . . , γ

(i)
s,i−1, γ

(i)
t,1 , . . . , γ

(i)
t,i−1,

κ(i), κ
(i)
z,1, . . . , κ

(i)
z,i−1, κ

(i)
s,1, . . . , κ

(i)
s,i−1, κ

(i)
t,1, . . . , κ

(i)
t,i−1 for all i ∈ {1, . . . , k + 1}, as well as σ, σz,1, . . . ,

σz,k, σs,1, . . . , σs,k, σt,1, . . . , σt,k, τ, τz,1, . . . , τz,k, τs,1, . . . , τs,k, τt,1, . . . , τt,k, ζ, ζz,1, . . . , ζz,k, ζs,1, . . . ,
ζs,k, ζt,1, . . . , ζt,k, φ, φ0, φ1, φs,1, . . . , φs,k, which define

P (i) = ψ(i)G+
i−1∑
j=1

(
ψ
(i)
z,jZj + ψ

(i)
s,jSj + ψ

(i)
t,jTj

)
Z∗ = ζG+

k∑
j=1

(
ζz,jZj + ζs,jSj + ζt,jTj

)
C

(i)
0 = γ(i)G+

i−1∑
j=1

(
γ
(i)
z,jZj + γ

(i)
s,jSj + γ

(i)
t,jTj

)
S∗ = σG+

k∑
j=1

(
σz,jZj + σs,jSj + σt,jTj

)
C

(i)
1 = κ(i)G+

i−1∑
j=1

(
κ
(i)
z,jZj + κ

(i)
s,jSj + κ

(i)
t,jTj

)
T ∗ = τG+

k∑
j=1

(
τz,jZj + τs,jSj + τt,jTj

)
Ŝ∗ = φĜ+ φ0X̂0 + φ1X̂1 +

k∑
j=1

φs,jŜj

Using this, we can write, for all 1 ≤ i ≤ k, the discrete logarithms zi and ti in basis G of the

elements Zi = 1
si

(
G+ x0C

(i)
0 + x1C

(i)
1

)
and Ti = 1

si

(
x0G+ x1P

(i)
)

from the oracle answers.

zi =
1

si

(
1 + x0

(
γ(i) +

i−1∑
j=1

(
γ
(i)
z,jzj + γ

(i)
s,jsj + γ

(i)
t,j tj

))
+ x1

(
κ(i)+

i−1∑
j=1

(
κ
(i)
z,jzj+κ

(i)
s,jsj+κ

(i)
t,jtj

)))
(3)

ti =
1

si

(
x0 + x1

(
ψ(i) +

i−1∑
j=1

(
ψ
(i)
z,jzj + ψ

(i)
s,jsj + ψ

(i)
t,j tj

)))
(4)

We interpret these values as multivariate rational functions in variables x0, x1, s1, . . . , sk. A suc-

cessful forgery (Z∗, S∗, Ŝ∗, T ∗) on
(
P (k+1), (C

(k+1)
0 , C

(k+1)
1 )

)
satisfies the verification equations

e(Z∗, Ŝ∗) = e(G, Ĝ)e(C
(k+1)
0 , X̂0)e(C

(k+1)
1 , X̂1) e(G, Ŝ∗) = e(S∗, Ĝ)

e(T ∗, Ŝ∗) = e(G, X̂0)e(P
(k+1), X̂1)
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Using the coefficients defined above and considering the logarithms in base e(G, Ĝ) we obtain:(
ζ +

k∑
j=1

(
ζz,jzj + ζs,jsj + ζt,jtj

))(
φ+ φ0x0 + φ1x1 +

k∑
i=1

φs,isi

)
= 1 + x0c

(k+1)
0 + x1c

(k+1)
1 (5)

φ+ φ0x0 + φ1x1 +

k∑
i=1

φs,isi = σ +

k∑
j=1

(
σz,jzj + σs,jsj + σt,jtj

)
(6)

(
τ +

k∑
j=1

(
τz,jzj + τs,jsj + τt,jtj

))(
φ+ φ0x0 + φ1x1 +

k∑
i=1

φs,isi

)
= x0 + x1d

(k+1) (7)

where for all i ∈ {1, . . . , k + 1} : c
(i)
0 = logC

(i)
0 = γ(i) +

i−1∑
j=1

(
γ
(i)
z,jzj + γ

(i)
s,jsj + γ

(i)
t,j tj

)
, (8)

c
(i)
1 = κ(i) +

i−1∑
j=1

(
κ
(i)
z,jzj + κ

(i)
s,jsj + κ

(i)
t,jtj

)
and d(i) = logP (i) = ψ(i) +

i−1∑
j=1

(
ψ
(i)
z,jzj + ψ

(i)
s,jsj + ψ

(i)
t,j tj

)
.

We follow the standard proof technique for results in the generic group model and now consider
an “ideal” game in which the challenger treats all the (handles of) group elements as elements of
Zp(s1, . . . , sk, x0, x1), that is, rational functions whose variables represent the secret values chosen
by the challenger.

We first show that in the ideal game if the adversary’s output satisfies the verification equa-

tions, then the second winning condition,
(
P (k+1), (C

(k+1)
0 , C

(k+1)
1 )

)
6∈ Q, is not satisfied, which

demonstrates that the ideal game cannot be won. We then compute the statistical distance from
the adversary’s point of view between the real and the ideal game at the end of the proof.

In the ideal game we thus interpret the three equalities (5), (6) and (7) as polynomial equal-
ities over the field Zp(s1, . . . , sk, x0, x1). More precisely, we consider the equalities in the ring
Zp(s1, . . . , sk)[x0, x1], that is, the polynomial ring with x0 and x1 as indeterminates over the field
Zp(s1, . . . , sk). (Note that this interpretation is possible because x0 and x1 never appear in the de-
nominators of any expressions.) As one of our proof techniques, we will also consider the equalities
over the ring factored by (x0, x1), the ideal generated by x0 and x1:

1

Zp(s1, . . . , sk)[x0, x1]/(x0, x1) ∼= Zp(s1, . . . , sk) .

From (3) and (4), over this quotient we have zi = 1
si

and ti = 0 and thus (5)–(7) become

(
ζ +

k∑
j=1

(
ζz,j

1

sj
+ ζs,jsj

))(
φ+

k∑
i=1

φs,isi

)
= 1 (9)

φ+
k∑
i=1

φs,isi = σ +
k∑
i=1

(
σz,i

1

si
+ σs,isi

)
(10)(

τ +

k∑
i=1

(
τz,i

1

si
+ τs,isi

))(
φ+

k∑
i=1

φs,isi

)
= 0 (11)

We first consider (10). By equating coefficients, we deduce:

φ = σ ∀i ∈ {1, . . . , k} : φs,i = σs,i and σz,i = 0 (12)

We now turn to (9) and first notice that(
φ+

k∑
i=1

φs,isi

)
6= 0 , (13)

1 Considering an equation of rational functions over this quotient can also be seen as simply setting x0 = x1 = 0.
Everything we infer about the coefficients from these modified equations is also valid for the original equation, since
these must hold for all values (x0, x1, s1, . . . , sk), and so in particular for (0, 0, s1, . . . , sk).

Yet another interpretation when equating coefficients in equations modulo (x0, x1) is that one equates coefficients
only of monomials that do not contain x0 or x1.
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because it is a factor of a non-zero product in (9). We next consider the degrees of the factors in (9),
using the fact that the degree of a product is the sum of the degrees of the factors. Let i ∈ {1, . . . , k}.

Since degsi(1) = 0 and degsi(φ +
k∑
i=1

φs,isi) ≥ 0, we have degsi(ζ +
k∑
j=1

(ζz,j
1
sj

+ ζs,jsj)) ≤ 0, from

which we get

∀ i ∈ {1, . . . , k} : ζs,i = 0 . (14)

(Note that degsi
(
1
si

+ si
)

= degsi
(1+s2i

si

)
= 1.) We next show that there is at most one φs,i that is

non-zero. Suppose there exist i1 6= i2 ∈ {1, . . . , k} such that φs,i1 6= 0 and φs,i2 6= 0. This implies

that degsi1

(
φ+

k∑
i=1

φs,isi
)

= degsi2

(
φ+

k∑
i=1

φs,isi
)

= 1. By considering these degrees in (9), the left

factor must be of degree −1, that is (recall that that ζs,i = 0 for all i by (14)):

degsi1

(
ζ +

k∑
j=1

ζz,j
1

sj

)
= −1 and degsi2

(
ζ +

k∑
j=1

ζz,j
1

sj

)
= −1 . (15)

This is a contradiction since the former implies that ζz,i1 6= 0, while the latter implies that ζz,i1 = 0,

as we show next. Consider the expression degsi2

((
ζ +

k∑
j=1,j 6=i2

ζz,j
1
sj

)
si2 + ζz,i2

)
= degsi2

((
ζ +

k∑
j=1

ζz,j
1
sj

)
si2
)

= −1 + degsi2
(si2) = 0 , by using (15). This implies

(
ζ +

k∑
j=1,j 6=i2

ζz,j
1
sj

)
= 0 and thus

ζz,i1 = 0, which was our goal.
Therefore, there exists i0 such that, for all i 6= i0, φs,i = 0 and by (12):

∀ i ∈ {1, . . . , k} \ {i0} : σs,i = φs,i = 0 . (16)

Together with (14), this means that we can rewrite (9) as
(
ζ +

k∑
j=1

ζz,j
1
sj

)
(φ + φs,i0si0) = 1. Since

for all i 6= i0, si does not appear in 1, we have

∀ i ∈ {1, . . . , k} \ {i0} : ζz,i = 0 . (17)

We now consider equation (6) modulo (x1). Since, by (12), φ = σ and φs,i = σs,i for all i, two terms
cancel on both sides. Moreover, by (12), σz,i = 0 for all i and thus, using ti mod (x1) = x0

si
for all

i, yields

φ0x0 =

k∑
i=1

σt,i
x0
si

. (18)

By identifying coefficients, we deduce that

∀ i ∈ {1, . . . , k} : σt,i = φ0 = 0 . (19)

Using all of this in the original equation (6) (that is, “putting back” x1 in (18) and applying (19))
yields φ1x1 = 0 and thus

φ1 = 0 . (20)

We now turn to (11), in which by (13) we have
(
τ +

k∑
i=1

(τz,i
1
si

+ τs,isi)
)

= 0. From this we get by

equating coefficients:
∀ i ∈ {1, . . . , k} : τz,i = τs,i = τ = 0 .

Going back to equation (7) and applying the latter, as well as (19), (20) and (16) yields

( k∑
i=1

τt,iti

)
(φ+ φs,i0si0) = x0 + x1

(
ψ(k+1) +

k∑
j=1

(
ψ
(k+1)
z,j zj + ψ

(k+1)
s,j sj + ψ

(k+1)
t,j tj

))
. (21)
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Computing this modulo (x1) and recalling ti mod (x1) = x0
si

yields
( k∑
i=1

τt,i
x0
si

)
(φ + φs,i0si0) = x0,

and thus

k∑
i=1

φτt,i
x0
si

+

k∑
i=1,i 6=i0

φs,i0τt,isi0
x0
si

+ φs,i0τt,i0x0 = x0 .

By equating the coefficients for x0, we deduce that

φs,i0τt,i0 = 1 (and thus φs,i0 6= 0 and τt,i0 6= 0) . (22)

Moreover, for all i ∈ {1, . . . , k} \ {i0}, we deduce φs,i0τt,i = 0 and φτt,i0 = 0, which by applying (22)
to both yields

∀ i ∈ {1, . . . , k} \ {i0} : τt,i = 0 and φ = 0 . (23)

Using this, the left-hand side of (21) becomes φs,i0τt,i0ti0si0 , which, applying (22) and (4), becomes
1
si0

(x0 + x1d
(i0))si0 . This means that (21) becomes x0 + x1d

(i0) = x0 + x1d
(k+1), which implies

x1(d
(i0) − d(k+1)) = 0. Since a polynomial ring over a integral domain such as Zp(s1, . . . , sk) is an

integral domain, and x1 6= 0, the last equality implies d(i0) = d(k+1). This means

P (i0) = P (k+1) , (24)

that is, the encryption key of the forgery is the same as used in the i0-th query. We next show that

the ciphertext
(
C

(k+1)
0 , C

(k+1)
1

)
of the forgery is a randomization of the one from the i0-th query.

Consider equation (9). Since ζz,i = 0 for i 6= i0 (by (17)), all ζs,i = 0 (by (14)), φ = 0 (by (23))
and φs,i = 0 for i 6= i0 (by (16)), it simplifies to(

ζ + ζz,i0
1

si0

)
φs,i0si0 = ζφs,i0si0 + ζz,i0φs,i0 = 1 , (25)

from which we deduce

ζz,i0φs,i0 = 1 and ζ = 0 . (26)

We now consider (5) modulo (x1) and apply what we have deduced so far, that is ζ = 0 by (26),
the coefficients previously mentioned above (25) and φ0 = 0 by (19). The left-hand side of (5)

modulo (x1) becomes thus
(
ζz,i0zi0 +

k∑
j=1

ζt,jtj

)
φs,i0si0 mod (x1). Using moreover (26), we get that

(5) modulo (x1) becomes

zi0si0 +
( k∑
j=1

ζt,jtj

)
φs,i0si0 mod (x1)

= 1 + x0

(
γ(k+1) +

k∑
j=1

(
γ
(k+1)
z,j zj + γ

(k+1)
s,j sj + γ

(k+1)
t,j tj

))
mod (x1) , (27)

and using zi mod (x1) =
1+c

(i)
0 x0
si

mod (x1) and ti mod (x1) = x0
si

for all i (cf. (3) and (4)) we get

(1 + c
(i0)
0 )x0 +

( k∑
j=1

ζt,j
x0
sj

)
φs,i0si0 mod (x1)

= 1 + x0

(
γ(k+1) +

k∑
j=1

(
γ
(k+1)
z,j

1 + c
(j)
0 x0
sj

+ γ
(k+1)
s,j sj + γ

(k+1)
t,j

x0
sj

))
mod (x1) . (28)

Let i > i0 and let us consider the monomials of degree −1 in si and degree 0 in sj , for all j > i.

Note that all monomials of c
(j)
0 = γ(j) +

j−1∑̀
=1

(
γ
(j)
z,`z` + γ

(j)
s,` s` + γ

(j)
t,` t`

)
are of degree 0 in s`, for ` ≥ j.
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Therefore, we do not consider any
c
(j)
0
sj

for j < i (because they do not contain the term si) nor
c
(j)
0
sj

for j > i (since the contained monomials are of degree −1 in sj for j > i). For the monomials of
degree −1 in si and degree 0 in sj for j > i in (28) we thus have

∀ i > i0 :
ζt,ix0φs,i0si0

si
= x0

(
γ
(k+1)
z,i

1 + c
(i)
0 x0
si

+ γ
(k+1)
t,i

x0
si

)
mod (x1) = 0 .

Multiplying by si yields ζt,ix0φs,i0si0 − x0
(
γ
(k+1)
z,i (1 + x0c

(i)
0 ) + γ

(k+1)
t,i x0

)
mod (x1) = 0 and after

reordering the monomials according to their degree in x0 we get

∀ i > i0 : −x20
(
γ
(k+1)
z,i c

(i)
0 + γ

(k+1)
t,i

)
+ x0

(
ζt,iφs,i0si0 − γ

(k+1)
z,i

)
mod (x1) = 0 . (29)

Considering the linear coefficient in x0, and recalling that φs,i0 6= 0 by (22), we deduce

∀ i > i0 : γ
(k+1)
z,i = ζt,i = 0 . (30)

Applying this to equation (29) yields x20 γ
(k+1)
t,i mod (x1) = 0 for all i > i0, and therefore

∀ i > i0 : γ
(k+1)
t,i = 0 . (31)

Since by (30) and (31) for all i > i0 : ζt,i = γ
(k+1)
z,i = γ

(k+1)
t,i = 0, we can rewrite (27) as

zi0si0 +
( i0∑
i=1

ζt,iti

)
φs,i0si0 mod (x1)

= 1 + x0

(
γ(k+1) +

i0∑
i=1

(
γ
(k+1)
z,i zi + γ

(k+1)
t,i ti

)
+

k∑
i=1

γ
(k+1)
s,i si

)
mod (x1) . (32)

For i > i0, from the coefficients of x0si we get γ
(k+1)
s,i = 0. Applying this, (30) and (31) to (8) yields

c
(k+1)
0 = γ(k+1) +

i0∑
i=1

(
γ
(k+1)
z,i zi + γ

(k+1)
s,i si + γ

(k+1)
t,i ti

)
; (33)

and the right-hand side of (32) becomes 1+x0

(
γ(k+1)+

i0∑
i=1

(
γ
(k+1)
z,i zi+γ

(k+1)
s,i si+γ

(k+1)
t,i

x0
si

))
mod (x1).

Since zi mod (x1) =
1+x0c

(i)
0

si
mod (x1) and ti mod (x1) = x0

si
, for all i, (32) becomes

1 + x0c
(i0)
0 +

( i0∑
i=1

ζt,i
x0
si

)
φs,i0si0 mod (x1)

= 1 + x0

(
γ(k+1) +

i0∑
i=1

(
γ
(k+1)
z,i

1 + x0c
(i)
0

si
+ γ

(k+1)
s,i si + γ

(k+1)
t,i

x0
si

))
mod (x1) .

We will now look at the coefficients of si0 and of 1
si0

. For this, we first note that for j ≥ i no sj

appears in c
(i)
0 (cf. (8)) and therefore for all i ≤ i0 : c

(i)
0 is constant in si0 . From the coefficients of

si0 and of 1
si0

we thus get, respectively:

φs,i0

i0−1∑
i=1

ζt,i
x0
si

= x0γ
(k+1)
s,i0

(34)

0 = x0
(
γ
(k+1)
z,i0

(1 + x0c
(i0)
0 ) + γ

(k+1)
t,i0

x0
)

mod (x1) (35)
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From (34) we get γ
(k+1)
s,i0

= 0 and, since φs,i0 6= 0 by (22),

∀i < i0 : ζt,i = 0 , (36)

and from (35) we get γ
(k+1)
z,i0

= 0 (from the coefficient of x0) and therefore γ
(k+1)
t,i0

= 0. Together,
this lets us rewrite (33) as

c
(k+1)
0 = γ(k+1) +

i0−1∑
i=1

(
γ
(k+1)
z,i zi + γ

(k+1)
s,i si + γ

(k+1)
t,i ti)

)
. (37)

Recall that Ŝ∗ = φĜ + φ0X̂0 + φ1X̂1 +
k∑
j=1

φs,jŜj and Z∗ = ζG +
k∑
j=1

(
ζz,jZj + ζs,jSj + ζt,jTj

)
. By

(23), (19), (20) and (16) we have Ŝ∗ = φs,i0Ŝi0 Moreover, by (26), (17), (14), (30) and (36) we have
Z∗ = ζz,i0Zi0 + ζt,i0Ti0 . We can now rewrite (5) as:

(ζz,i0zi0 + ζt,i0ti0)(φs,i0si0) = 1 + x0c
(k+1)
0 + x1c

(k+1)
1 .

Since, by (26), ζz,i0φs,i0 = 1 and plugging in the definitions of zi0 and ti0 , this yields

1 + x0c
(i0)
0 + x1c

(i0)
1 + ζt,i0φs,i0

(
x0 + x1d

(i0)
)

= 1 + x0c
(k+1)
0 + x1c

(k+1)
1 , and thus

x0
(
c
(i0)
0 + ζt,i0φs,i0 − c

(k+1)
0

)
= −x1

(
c
(i0)
1 + ζt,i0φs,i0d

(i0) − c(k+1)
1

)
. (38)

By considering the above modulo (x1), plugging in the definition of c
(i)
0 from (8) and using (37), we get

0 = ζt,i0φs,i0 + c
(i0)
0 − c(k+1)

0 mod (x1)

= ζt,i0φs,i0 + γ(i0) − γ(k+1) +

i0−1∑
j=1

(
(γ

(i0)
z,j − γ

(k+1)
z,j )zj + (γ

(i0)
s,j − γ

(k+1)
s,j )sj + (γ

(i0)
t,j − γ

(k+1)
t,j )tj

)
mod (x1)

= ζt,i0φs,i0 + γ(i0) − γ(k+1)

+

i0−1∑
j=1

(
(γ

(i0)
z,j − γ

(k+1)
z,j )

(1 + x0c
(j)
0 )

sj
+ (γ

(i0)
s,j − γ

(k+1)
s,j )sj + (γ

(i0)
t,j − γ

(k+1)
t,j )

x0
sj

)
mod (x1) . (39)

Taking the above modulo (x0) we get

ζt,i0φs,i0 + γ(i0) − γ(k+1) +

i0−1∑
j=1

((γ
(i0)
z,j − γ

(k+1)
z,j )

1

sj
+ (γ

(i0)
s,j − γ

(k+1)
s,j )sj) mod (x0, x1) = 0 .

By looking at the coefficients of the constant monomial and of 1
si

and si for all i < i0, we deduce
the following:

ζt,i0φs,i0 + γ(i0) − γ(k+1) = 0 (40)

∀i < i0 : γ
(i0)
z,i − γ

(k+1)
z,i = 0 and γ

(i0)
s,i − γ

(k+1)
s,i = 0 (41)

This lets us rewrite (39) as
i0−1∑
j=1

(γ
(i0)
t,j − γ

(k+1)
t,j )x0sj mod (x1) = 0, and equating the coefficients of x0

sj

for all j < i0 yields

∀i < i0 : γ
(i0)
t,i = γ

(k+1)
t,i . (42)

Applying (40), (41) and (42) to (37) yields

c
(k+1)
0 = ζt,i0φs,i0 + γ(i0) +

i0−1∑
i=1

(
γ
(i0)
z,i zi + γ

(i0)
s,i si + γ

(i0)
t,i ti)

)
.
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Recalling the definition of c
(i0)
0 form (8), we can conclude that:

c
(k+1)
0 = ζt,i0φs,i0 + c

(i0)
0 .

Therefore (38) becomes 0 = −x1
(
c
(i0)
1 + ζt,i0φs,i0d

(i0) − c(k+1)
1

)
, in other words

c
(k+1)
1 = ζt,i0φs,i0d

(i0) + c
(i0)
1 .

The last two equations mean that
(
C

(k+1)
0 , C

(k+1)
1

)
=
(
C

(i0)
0 + rG, C

(i0)
1 + rP (i0)

)
, for r = ζt,i0φs,i0 ,

which together with (24) means that(
P (k+1), (C

(k+1)
0 , C

(k+1)
1 )

)
∈
{
P (i0)

}
×
[
(C

(i0)
0 , C

(i0)
1 )

]
P (i0)

⊂ Q .

We have thus shown that in the “ideal” model, the attacker cannot win the game. It remains to
upper-bound the statistical distance from the adversary point of view between these two models.

Difference between ideal and real game. We start with upper-bounding the degree of the
denominators and numerators of the rational functions that can be generated by the adversary.

We first show that by induction on the number of queries k, that all the elements returned by
the challenger in the ideal game are divisors of

∏k
i=1 si. In the base case, when no queries are made,

no si appears and the elements returned by the adversary are polynomials. For the induction step,
assume the statement holds for ` queries. Consider the reply to the (` + 1)-th query: S`+1 and
Ŝ`+1 are monomials; Z`+1 and T`+1 are sums of polynomials and elements output by the adversary
divided by s`+1. Using the induction hypothesis on the adversary’s outputs, we deduce that the
denominators divide

∏`+1
i=1 si.

Similarly, we can show that the numerators of each element output by the challenger can be
written as a sum of divisors of xk0 x

k
1

∏k
i=1 si.

The “ideal” model and the generic group model differ if and only if two elements are distinct as
rational functions but identical as (handle of a) group element. That is, if we evaluate two different
rational functions at scalar values x0, x1, s1, . . . , sk and obtain the same result.

Any such equality of rational functions generated during the game can be rewritten as a poly-
nomial equation of degree 3k + k (3k upper-bounding the degree of the numerator and k that of
the denominator). Because the values x0, x1, s1, . . . , sk are uniformly random (and hidden from the
adversary), the Schwartz-Zippel lemma [Sch80] yields that the probability of this equality holding
is at most 4k

p−1 .
If the adversary computes at most q group operations, then there are at most q + 3 + 3k group

elements, where 3 comes from the generator and the verification key, and 3k corresponds to the
answers to the signing queries (note that Ŝ and S correspond to the same monomial). There are
therefore

1
2(q + 3k + 3)(q + 3k + 2)

pairs of rational functions. Using the union bound, we conclude that the adversary can distinguish
the two models with probability at most 4k

2(p−1)(q + 3k + 3)(q + 3k + 2) < 2k
2λ

(q + 3k + 3)2, since

p− 1 > 2λ, which is the bound claimed by the theorem.

Generalization of our scheme. We conclude by mentioning that our scheme easily generalizes
to ElGamal encryptions of vectors of group elements without increasing the size of signatures: for
an encryption key (P1, . . . , Pn) and a signing key (x0, . . . , xn), a ciphertext consisting of C0 = rG
and Ci = Mi + rPi for 1 ≤ i ≤ n, a signature on randomizable ciphertexts is defined as:

Z :=
1

s

(
G+

n∑
i=0

xiCi

)
S := sG Ŝ := sĜ T :=

1

s

(
x0G+

n∑
i=1

xiPi

)
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