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Abstract. The COVID-19 pandemic created a noticeable challenge to the cryptographic community
with the development of contact tracing applications. The media reported a dispute between designers
proposing a centralized or a decentralized solution (namely, the PEPP-PT and the DP3T projects).
Perhaps, the time constraints to develop and deploy efficient solutions led to non-optimal (in terms
of privacy) solutions. Moreover, arguments have been severely biased and the scientific debate did
not really happen until recently. In this paper, we show the vulnerabilities and the advantages of
both solutions systematically. We believe that none offers any sufficient level of privacy protection
and the decision to use one or another is as hard as using automated contact tracing at the first
place. A third way could be explored. We list here a few possible directions.

1 Introduction

The 2020 pandemic of COVID-19 resulted in the Great Lockdown. The freedom of people
and the economy have been the hostages of a virus. As a result, authorities expressed their
need for an automated tool to monitor the spread of the virus more precisely and to improve
and support human labor. After all, such a tool would let people move freely resulting to
end the lock-down, restoring economies and liberty. Many academics and researchers from
various domains offered to develop such a tool in the form of contact tracing application
running on smartphones.

The goal of contact tracing is to make people aware if they have ever been in contact
with positively diagnosed people so that they should self-isolate, and possibly have an
infection test. For pandemic diseases, reporting a positive diagnosis is mandatory and
(human) contact tracers should investigate who could have been contaminated by the
person and try to alert them. Of course, this investigation is done with appropriate ethics
and psychological training. When transformed into an automated tool such as an app, it is
not clear how this operation should proceed nor how ethics and psychology would translate.
Because moving from human to automated processing creates new threats, designing such
a tool came with significant questions for security and privacy researchers. Namely, the
challenge is to ensure the privacy of millions of people as much as possible and to make
clear statements about the implication of these tools to people’s privacy.

A fundamental principle is that the contact tracing must not be used for other purpose
(including the abuse of the app by both users and authorities) than alerting people at risk.
The system should minimize the process over private data and make sure that no malicious
participant could learn more private information than what it inevitably reveals.



1.1 A Rather Brief History of Automated Contact Tracing

On April 1st, the Pan-European Privacy-Preserving Proximity Tracing (PEPP-PT) was
announced (as being “an organization that will be incorporated as a non-profit in Switzer-
land”1). PEPP-PT was offering several solutions which are called “centralized” and “decen-
tralized”. As a decentralized solution, one project named “Decentralized Privacy-Preserving
Proximity Tracing (DP3T)” was created on GitHub. It is run by an international consor-
tium with a team of identified experts led by Carmela Troncoso.2 As its name indicates,
DP3T claims to offer a solution which is decentralized and privacy-preserving. Since then,
DP3T has been quite active in releasing documents, implementations, and showing activ-
ities to the media. All teams were happily working on their favored solution under the
umbrella of PEPP-PT.

However, after a while, DP3T team members left the PEPP-PT project with surprising
media coverage, arguing that PEPP-PT was not transparent. The DP3T members then
started to criticize centralized systems and run an aggressive communication and lobbying
campaign on social networks. This was reported as a dispute by journalists.3 The goal
was clearly to influence policymakers on-time. However, no real academic discussion about
centralized versus decentralized systems occurred.

Upon the pressure by DP3T people and followers on social media, teams which remained
in the PEPP-PT consortium finally released the specifications of ROBERT4 on April 18,
and of NTK5 the day after. Since then, DP3T people have been actively propagating over-
stated claims such as centralized systems will be a more intrusive massive surveillance
instrument for governments. At the same time, DP3T has been dismissing or minimizing
the importance of existing design flaws and attacks on their own protocol.

At this time, it is utterly confusing for a non-expert to see hard discussions about
centralized versus non-centralized systems, because both solutions normally require only
local storage (i.e. non-central ones), and both solutions require a central server for alerts.
It also looks paradoxical to call a “contact tracing” system as “privacy preserving”.6 Even
for experts, it is disturbing to qualify either system as privacy-preserving while many
papers [4, 17, 29] showed they are not. This did not prevent hundreds of academic experts
to sign a letter7 assessing that four (decentralized) proposals are privacy-preserving while
they are obviously not. Moreover, to our surprise, privacy experts are now praising Apple
and Google. To add more confusion, a “centralized” system like ROBERT which has been
claimed not to protect privacy by hundreds of academic experts was validated by CNIL, the

1 https://www.pepp-pt.org/
2 https://github.com/DP-3T/documents
3 https://www.golem.de/news/pepp-pt-streit-beim-corona-app-projekt-2004-147925.html
4 https://github.com/ROBERT-proximity-tracing/
5 https://github.com/pepp-pt/
6 The French title of Bonnetain et al. [4] translates into “Anonymous Tracing: a Dangerous Oxymoron”.
7 https://www.esat.kuleuven.be/cosic/sites/contact-tracing-joint-statement/
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powerful8 French authority for privacy regulation.9 A cryptographer who was hibernating
in the winter and waking up in April 2020 would have been confused.

In this paper, we analyze two categories of Bluetooth-based contact tracing solutions.
The decentralized systems include DP3T [19], Canetti-Trachtenberg-Varia [6], PACT-
East [25], PACT-West [7]10, TCN Coalition11, or the Apple-Google solution12.13 In cen-
tralized systems, we studied TraceTogether, ROBERT [23], and NTK14. All of them (cen-
tralized and decentralized) share lots of similarities.

Our objectives are to compare centralized and decentralized systems. We do not dis-
cuss all possible attacks. Specially, we assume that a contact tracing should be based on
Bluetooth and we do not discuss risks related to this technology. The reader could refer,
e.g. to Gvili [17]. Several other risks are not covered. More precisely, we concentrate on the
risks which allow a comparison between centralized and decentralized systems.

We believe that the precipitation to develop and deploy such solutions has bypassed
the academic debate on contact tracing. A fair debate on which system to deploy would
require transparency and clear communication in the risks that the system brings on en-
tire population. We strongly believe that the academics have the scientific duty to report
objective facts about risks of the systems.

1.2 A Joint Statement

The joint statement which was signed by hundreds of researchers concludes with four
imperative requirements that contact tracing must fulfill. As taken from the letter itself:

“The following principles should be at least adopted going forward:
– Contact tracing Apps must only be used to support public health measures for

the containment of COVID-19. The system must not be capable of collecting,
processing, or transmitting any more data than what is necessary to achieve this
purpose.

– Any considered solution must be fully transparent. The protocols and their im-
plementations, including any sub-components provided by companies, must be
available for public analysis. The processed data and if, how, where, and for how
long they are stored must be documented unambiguously. Such data collected
should be minimal for the given purpose.

– When multiple possible options to implement a certain component or function-
ality of the app exist, then the most privacy-preserving option must be chosen.
Deviations from this principle are only permissible if this is necessary to achieve

8 “The CNIL has an advisory power, an onsite and offsite investigatory power as well as an administrative
sanctioning power.” https://www.cnil.fr/en/cnils-facts-and-figures

9
https://www.cnil.fr/sites/default/files/atoms/files/deliberation du 24 avril 2020 portant avis sur un projet dapplication mobile stopcovid.pdf

10 https://covidsafe.cs.washington.edu/
11 https://tcn-coalition.org/
12 https://www.apple.com/covid19/contacttracing
13 “PACT-East” and “PACT-West” may not be a stable denomination of the schemes. Both collided in using the

“PACT” acronym. The eastern one is from MIT. The western one is from University of Washington.
14 https://github.com/pepp-pt/

3



the purpose of the app more effectively, and must be clearly justified with sunset
provisions.

– The use of contact tracing Apps and the systems that support them must be
voluntary, used with the explicit consent of the user and the systems must be
designed to be able to be switched off, and all data deleted, when the current
crisis is over.”

The letter was used by advocates of decentralized systems as an endorsement by the aca-
demic community to decentralized systems. However, none of the above requirements is
explicit about it. To understand this interpretation, we should read the third requirement
and infer that contact tracing should be decentralized from contextual claims in the rest
of the letter. One can actually read a few (free) claims as follows:

“Some of the Bluetooth-based proposals respect the individual’s right to privacy,
whilst others would enable (via mission creep) a form of government or private sector
surveillance that would catastrophically hamper trust in and acceptance of such an
application by society at large. [...] Thus, solutions that allow reconstructing invasive
information about the population should be rejected without further discussion.
Such information can include the “social graph” of who someone has physically met
over a period of time.
[...]
Privacy-preserving decentralized methods of the type referred to in this document
include:
DP-3T: https://github.com/DP-3T
TCN Coalition: https://tcn-coalition.org/
PACT (MIT): https://pact.mit.edu/
PACT (UW): https://covidsafe.cs.washington.edu/”

This states that some schemes (which are unnamed, but we understand it means the
centralized schemes like ROBERT which was proposed at this time) reveal the social graph.
This statement is exaggerated, as we discuss in Section 3.2.

The letter undoubtedly states that four (decentralized) named schemes are privacy-
preserving. As detailed in this paper, the existing literature shows this is incorrect. The
argument that “solutions that allow reconstructing invasive information about the popu-
lation should be rejected without further discussion” could actually hold for decentralized
systems too. Contrarily, we propose to open a scientific discussion.

1.3 Our Contribution

This write-up is a survey on the discussions happening about the contact tracing appli-
cations. It is an academic treatment which is meant to be objective. We do not aim to
suggest any choice between two solutions. As a matter of fact, there may be more than
two solutions. The directions herein are gathered from literature to list the ideas with
corresponding strengths and weaknesses. In the present work, we compare centralized and
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decentralized systems by reviewing known attacks and presenting new ones. We, then, open
a new discussion on possible research directions to get the best of the two worlds.

While analyzing both systems, we can clearly state that centralized systems put the
anonymity of all users in high danger, specially against a malicious authority, while de-
centralized systems put the anonymity of diagnosed people in high danger against anyone.
Our conclusions are as follows.

– None of the discussed proposals (centralized or decentralized) is privacy-preserving to
any acceptable sense.

– The privacy protection of both systems can be compared for one attack scenario. How-
ever, the multiplicity of attack scenarios make it impossible to declare one superior to
the other in terms of privacy-preservation. Such assessment can only be subjective.

– Alternatives to centralized and decentralized systems exist but require more investiga-
tions.

We detail our contributions below.

Tracking people. We discuss the risk of depseudonymization of ephemeral identifiers, which
could help organizations to track people.

The main problem of centralized systems is that they enable those attacks at a large
scale, if the security of a central server is broken, or if the authority is corrupted. We
propose to reduce the impact of such disaster by rotating a key. Conversely, we present
a similar attack on decentralized systems, which is on a smaller scale, but which is also
easier, in the sense that the security of the phone (instead of the server) must be broken,
or the phone itself must be corrupted, on a smaller scale.

We compare attacks linking ephemeral identifiers, including coercion attacks. Although
those attacks apply to both systems, we prove that they put users of decentralized systems
under higher danger by storing digital evidence locally. This is due to a difference of the
exposure time of ephemeral identifiers in both systems: in centralized systems, they are
erased after use; in decentralized ones, they are stored for a couple of weeks. Reducing this
threat is possible using an enclave.

Besides, decentralized systems ease tracking people who are diagnosed and who report.

Disclosing the social graph. Again, centralized systems reveal something about the social
graph to the central server, and it is a terrible property. However, it is utterly exaggerated
to claim that centralized systems reveal the social graph. We review what protections are
present in the specifications of ROBERT against this to correct this claim. If the anonymous
channels of ROBERT work, the protocol reveals to the server the long-term pseudonyms
of users who could have been contaminated and nothing else. Under the assumption that
the powerful and malicious server can fully break the anonymous channels, the protocol
reveals a subgraph: the social contacts between people who reported and the contacts they
revealed. It is scary enough but certainly does not mean the full graph would be made
public.

We review an attack by Avitabile et al. [1] showing that decentralized systems allow
someone to formally prove that he encountered a person who was diagnosed. It is only one
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edge of the social graph but it comes together with a proof. Such a proof could be used
to blackmail or to sue. For this reason, the lack of plausible deniability is a more severe
problem in decentralized systems.

The social graph somehow always leaks in contact tracing because people can observe
who is getting sick in a sequence. We observe that this problem is exacerbated by decen-
tralized systems by making diagnosed people being more easily identifiable.

Identifying diagnosed people. We review attacks against decentralized systems allowing to
identify diagnosed people. We review several attacks from previous works [1, 4, 16, 17, 29].

We add more attack scenarios by which a hotel, a shop, or a company would easily
identify which of their visitors were diagnosed. Such information can be sold to adver-
tisers or insurance companies. We analyze similar attacks by malicious apps, malicious
operating systems, or malicious phones, and the risk such attack could be coupled with
video-surveillance.

We discuss similar existing attacks against centralized systems using dummy accounts
(Sybil attacks) [4].

By comparing centralized and decentralized architectures, we observe that attacks
against decentralized systems are undetectable, can be done at a wide scale, and that
the proposed countermeasures are, at best, able to mitigate attacks in a limited number of
scenarios. Contrarily, centralized systems offer many countermeasures, by accounting and
auditing.

Pressure to opt in. Both centralized and decentralized applications give two separate op-
tions to people. First, a person can opt in or out to use the app. Second, after being
diagnosed, a user can opt in or out to report for contacts. These are two different decisions
and we call a full opt-in as the decision to both use the app and report. A system needs
as many full opt-ins as possible to be effective. We discuss on the pressure that users may
have to use the app and report. As it is intended/believed that users will have a real choice,
we analyze the rationale incentives for a user and the different ways to opt in or out in a
game theoretic approach. We infer that a privacy-freak rational user is most likely to fully
opt-in in a centralized system than in a decentralized one, because if he would refrain to
use a centralized system (due to the risk that the server identifies him), he would most
likely refrain to report in a decentralized one (due to the risk to go public). Contrarily, a
grumpy user who was forced to use such system would probably by more happy with a
decentralized one.

Injecting false at-risk alerts. We review previous replay/relay attacks [17, 29] and the pro-
posed countermeasures. We observe that some countermeasures could lack of plausible
deniability and enable an observer to prove the location of someone at some place. Such
countermeasure should be taken with great care.

We propose an attack against centralized and decentralized systems in which diagnosed
persons could be bribed to submit false reports to raise alerts on some targeted people.
This could be done on a wide organized scale.
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We also propose a “terrorist” attack scenario the purpose of which is to create false
alerts for a massive list of users.

A third way. We list possible directions for other systems that we could find in the existing
literature, or variants which have not been explored enough. Current designs can choose to
report either collected identifiers or used identifiers, and to to have a server in open access
or accountable access. This makes four possibilities out of which only two are extensively
studied.

Private set intersection protocols was mentioned to offer privacy protection on the top
of some variants.15 Trieu at al. [28] implemented such a system called Epione.

Finally, some variants based on public-key cryptography can offer better options. Avitabile
et al. [1] proposed Pronto-C2, a fully decentralized solution based on the Diffie-Hellman
key exchange between apps.

1.4 Related Works

Since the number of publications on contact tracing increases day by day, we tried our best
to cover all possible works in literature. We also stress that, at the time of writing, none of
the references from April 2020 have gone through any peer review (and neither the present
paper), for obvious reasons. Clearly, the subject needs more time to settle on a proposal
to be deployed by nations.

Solutions not based on Bluetooth such as Reichert-Brack-Scheuermann [20] assume that
a server collects the geographic location of every user in real time and computes contacts
with multiparty computation.

An early Bluetooth-based solution was proposed in 2018 by Altuwaiyan-Hadian-Liang [2].
In this approach, only infected users upload to a server information about their encoun-
ters and other users request the server to compute their risk factor by using homomorphic
encryption.

TraceTogether was the first centralized Bluetooth-based solution. It is discussed by
Cho-Ippolito-Yu [8]. It was deployed in Singapore.16 Decentralized systems were released
in early April 2020: DP3T [19], Canetti-Trachtenberg-Varia [6], PACT-East [25], PACT-
West [7], TCN17.

Brack-Reichert-Scheuermann [5] also proposed CAUDHT, a system in which the server
is distributed, and plays the role of a blinded postbox between users. Participants exchange
(long-term) public keys and reporting consists of sending a private message using the public
key through an anonymous channel.

On April 8 of 2020 (at a time when DP3T was developed under the umbrella of
PEPP-PT and no centralized system was documented), Vaudenay released an analysis
of DP3T [29]. This report identifies some vulnerabilities of DP3T and proposes possible
countermeasures. One countermeasure allows to defeat relay and replay attack, at a cost

15 https://github.com/DP-3T/documents/issues/169
16 https://www.tracetogether.gov.sg/
17 https://tcn-coalition.org/
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of an interactive protocol between devices. Pietrzak [21] improved this countermeasure to
make it non-interactive.

Tang [27] surveys four different techniques of contact tracing. Namely, TraceTogether,
Reichert-Brack-Scheuermann [20], Altuwaiyan-Hadian-Liang [2], and DP3T [19].

Gvili [17] analyses the solution by Apple-Google and some vulnerabilities.
Bonnetain et al. [4] show that 15 very simple scenarios of attacks are feasible against

all contact tracing systems, though the article is meant to non-technical French-speaking
readers.

A report by the authors of NTK [16] analyzes NTK, ROBERT, and DP3T and shows
some benefits of centralized solutions. Besides other vulnerabilities which are covered in
the present paper, this article shows how the report to the epidemiologist option of DP3T
would disclose a part of the social graph. It also shows that it is feasible to recover the
location history of a diagnosed reported user.

Avitabile et al. [1] presented Pronto-C2, an Italian version of contact tracing. It relies
on blockchains to allow anonymous exchange of ephemeral Diffie-Hellman public keys be-
tween apps. This also allows apps to report to each other in a fully decentralized systems.
Interestingly, this paper questions whether the decision of Apple-Google which is in favor
of decentralized systems (as it makes the implementation of centralized ones hardly possi-
ble) has a hidden agenda. It also analyzes DP3T and shows that diagnosed users could be
tracked.

Kuhn-Beck-Strufe [18] initiate a formal treatment of privacy properties in contact trac-
ing.

Beskorovajnov et al. [3] explores a third way to solve contact tracing and proposes a
scheme where ephemeral identifiers of a user are anonymously uploaded to a central server.

Redmiles [24] analyzes the incentives to adopt and use such a technology.
Dar et al. [9] proposes an evaluation framework for contact tracing systems.
Finally, Trieu at al. [28] proposes the new system Epione based on private set intersec-

tion.

2 Overview of Contact Tracing Systems

The current debate of contact tracing systems is about solutions based on the Bluetooth
technology. Each user U carries a Bluetooth-equipped smartphone in which there is an
application appU installed.

In all systems, the appU is regularly loaded with a list Lout
U of ephemeral identifiers

e1, . . . , en to be released in a given order. Each ephemeral identifier is repeatedly released
during its epoch. During this epoch, the appU instructs the smartphone to broadcast the
ephemeral identifier ei frequently. At the same time, appU collects the ephemeral identifiers
e′j which are received from appV of a user V . Hence, appU manages two lists of identifiers:
the ones to send in Lout

U and the received ones in Lin
U . Identifiers are stored with a coarse

indication about when they have been sent/received. Quite regularly, very old identifiers are
removed from their respective lists. In centralized systems, Lout

U is obtained from a server.
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Fig. 1. Information flow in centralized (left) and decentralized (right) contact tracing when V , holder of appV , is
diagnosed

In decentralized systems, it is generated by appU . What changes between all protocols is
how the identifiers are generated or gathered.

When a user V is diagnosed, he receives from the health authority a token which allows
him to upload information in a central server. This operation requires his consent and he
may have a control on what to upload, depending on the scheme. We call this protocol
report. In centralized systems, what is uploaded is the list Lin

U of received identifiers. In
decentralized systems, what is uploaded is the list Lout

U of used identifiers.
Users can also check their “at-risk status” in the status protocol. Essentially, with the

help of the central server, they can figure out if they are at risk of being contaminated
because they have met some person who were diagnosed.

In decentralized systems, status operates by having appU dump the content of the server
(i.e. reported e′j from Lout

V of diagnosed V users) and check the intersection between the
reported identifiers and the locally stored received ones Lin

U . Given the intersection, appU
determines the at-risk status of the user. Systems like DP3T, PACT-East, PACT-West,
NTL Coalition fit this model.

In centralized systems such as ROBERT or NTK, ephemeral identifiers ei are derived
from a pseudonym pseudoU of the registered user U and the central server has a trapdoor τ
allowing to retrieve the pseudonym from the identifier. Hence, the server can determine if
user with pseudonym pseudoU is at risk as soon as he recognizes pseudoU from the received
ei. Hence, when appU connects to the server and authenticates under his pseudoU , the server
can directly tell if the user is at risk.

The difference is that the at-risk status is determined by the server instead of the app.
This has big consequences on security and privacy, as we discuss in the next sections.

For clarity, we recall here how centralized system work. We only recall elements which
are useful for the sake of our analysis. In this scheme, we assume that apps communicate
to the server through an anonymous channel and that the server owns a trapdoor τ .

– Registration. Each appU registers to the server. The server sets a pseudonym pseudoU .
(The server and appU determine a way to authenticate appU under pseudonym pseudoU
through the anonymous channel.)
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– Setup of identifiers. Quite regularly, appU connects and authenticates to the server to
get new identifiers. The server creates a list of ei which can be mapped to pseudoU by
using the trapdoor τ . The ei are given to appU which stores them in a list Lout

U .
– Broadcast. During epoch i, appU constantly broadcasts ei. After ei is broadcasted for

the last time, ei is erased from Lout
U . Every appV collects the broadcasted ei and stores

it in a list Lin
V together with a coarse time information.

– Reporting. Upon positive diagnosis, user V provides appV with the appropriate (anony-
mous) credential to upload (part of) Lin

V to the server. In this protocol, appU does not
authenticate to the server. Elements to report are sent separately to prevent the server
from linking them. The server associates each reported ei with a pseudoU in his database
(using τ) and remembers that pseudoU must be notified.

– Status verification. Regularly, appU connects and authenticates to the server to check
the status of U on the server. The server answers whether U is at risk. If at risk, data
about pseudoU are erased and U should register again.

Decentralized systems work more simply, as follows. Concrete protocols have different
instantiation of this general frame.

– Setup of identifiers. Quite regularly, appU prepares a list of random ei to be used and
stores them in a list Lout

U .
– Broadcast. During epoch i, appU constantly broadcasts ei. A few weeks after ei is broad-

casted for the last time, ei is erased from Lout
U . Every appV collects the broadcasted ei

and stores it in a list Lin
V together with a coarse time information.

– Reporting. Upon positive diagnosis, user V provides appV with the appropriate creden-
tial to upload (part of) Lout

V to the server. The server publishes it.
– Status verification. Regularly, appU checks the newly uploaded e′j on the server and

checks if they are element of Lin
U . This way, appU determines if U is at risk.

3 Privacy Issues

3.1 Depseudonymization of Ephemeral Identifiers: Tracking People

Malicious usage of the trapdoor. We start right away with the major problem of centralized
systems such as ROBERT and NTK. In ROBERT, the ephemeral identifier ei can be
mapped to a long-term pseudonym pseudoU of the user U by using a trapdoor τ . The
pseudonym pseudoU is established at registration to the authority and is supposed to be a
pseudonym. I.e., the authority is forbidden to store any side information (such as a phone
number) which could identify U .18 The trapdoor τ is only used by the authority for the
purposed use of the system.

This means that anyone who obtains τ is able to link all observed or collected ephemeral
identifiers ei to a unique pseudonym pseudoU . This also means that the authority has the
capability to do so.

18 In NTK, the phone number is actually stored with pseudoU to allow push at-risk notifications.
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A corrupted authority could use the registration procedure to map the long-term
pseudonym pseudoU to a real identity U in order to link every ephemeral identifier ei
to the identity U of individuals. Given that the same authority receives the identifiers of
people who could have been contaminated, this means that the authority could establish a
list of potentially-contaminated identified people. Although the report protocol is supposed
to be anonymous. As no anonymous system is perfect, the authority could even identify the
diagnosed users and obtain the identified list of people they have potentially contaminated.

Protections against this terrible privacy threat are mostly legal. The authority is sup-
posed to remain under the surveillance by privacy-enforcement authorities. There are also
protection means to limit the risk of leakage of the trapdoor. For instance, secure hardware
(such as HSM) and distributed systems with multiparty computation (MPC) could limit
the risks. The authority is supposed to invest a lot on the security of this sensitive server.

Still, many people hate the idea of a powerful central authority, even though very high
secure safeguard mechanisms are in place. The system could be under the threat that an
insider activist person decides to sabotage the system for ideological reasons. This insider
could try to exfiltrate the trapdoor τ and publish it to ruin the reputation of the system.

In the disaster case when τ leaks, a simple key rotation principle can circumvent the
damages to a limited period of time.19

To summarize, the impact of the attack is a disaster but the attack is very hard to
achieve.

Decentralized systems do not suffer from this vulnerability.

Equivalent case in decentralized systems. The above attack against centralized systems
assumes corruption of the server to disclose a secret τ . The main reason why the at-
tack is possible is that this τ makes ephemeral identifiers linkable. Indeed, by decrypting
two ephemeral identifiers from the same person with τ , the adversary recovers the same
pseudonym. We show here that decentralized systems could have an equivalent attack (with
less severe consequences).

In the case of decentralized systems, there is no such trapdoor τ . However, ephemeral
identifiers (which are short-terms pseudonyms) are derived from a medium-term key k.
Anyone in possession of k can link all ephemeral identifiers which are derived from k. We
note that the report scheme generally uploads this medium-term key k on the public server.
Hence, all ephemeral identifiers which are derived from it become linkable. Anyone has free
access to the public server, hence can determine if two ephemeral identifiers are derived
from the same published k in the server.

Typically, the user sets up the key k to be used for a single day. In addition to this,
the server tells which day an ephemeral identifier was used. It is expected that diagnosed
users report the keys k of several consecutive days during when they were contagious.
An adversary who collected ephemeral identifiers and kept some additional information
(like when and where they were kept, under which circumstance, etc), the adversary may
be able to link k’s of different days as coming from the same user. Data mining would

19 https://github.com/ROBERT-proximity-tracing/documents/issues/8
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allow to reconstruct the mapping from ephemeral identifiers to an identity. However, the
reconstruction of this mapping will remain partial and limited to diagnosed users.

Hence, the attack is very easy to make but the privacy leakage is small.

Comparing the previous attacks shows that centralized systems put privacy under more
risks than decentralized ones in the case of a key leakage.

Common vulnerabilities. If we assume that the authority is honest and that the trapdoor
does not leak, in centralized systems, ephemeral identifiers are unlinkable from a crypto-
graphic viewpoint. However, ephemeral identifiers could be linked by other attacks.

In all systems (centralized and decentralized), ephemeral identifiers are stored in the
app for some time which go beyond the time they are broadcasted. We call the time during
which they are stored the exposure time. During this time, ephemeral identifiers can be
linked by seeing that they are stored at the same time. In centralized systems, the exposure
time starts when ephemeral identifiers are downloaded from the server and lasts until the
time they are broadcasted for the last time. This exposure time is typically of the order of
magnitude of a day. In decentralized systems, ephemeral identifiers are often derived from
a medium-term key which is stored until there is no risk it has to be reported. This means
that the exposure time starts when the key is set (i.e. at the beginning of the day the
ephemeral identifier is used) and lasts for typically two weeks. During the exposure time,
ephemeral identifiers can be deanonymized by the two following attacks.

– Coercion. A user can be forced by an authority, an employer, or a jealous spouse to
reveal the content of the smartphone.

In centralized systems, coercion happening before ephemeral identifiers are used in the
same day would link them. A coerced user could just stop using the app for a day after
coercion to remain safe against this attack.

In decentralized systems, coercion happening after ephemeral identifiers are used would
always compromise privacy. The duration of exposure is also much longer. Actually, the
storage in the smartphone gives evidence against the user which can give incentives for
coercion. We provide below an attack scenario.

After a burglary during which a Bluetooth sensor captured an ephemeral identifier,
suspects could have their phones inspected for two weeks to find evidence. Clearly,
forensics would find more information in phones using decentralized systems. This would
deviate the system from its use.

Mitigation is possible by having app to run in an enclave. Assuming enclaves are secure,
app would make Lin and Lout unreadable by coercion. Gvili [17] observes that a secure
operating system could be enough to defeat coercion on the genuine app. (However, if
coercion happens at the installation, another app which mimics the genuine still eases
coercion could be installed...)

– Theft. A malicious app or a malicious operating system could disclose the content of the
smartphone to a third party. Popular operating systems, or popular apps could make
a large scale attack.

12



A smartphone is much less secure than a server so this is very likely to happen. If the
leakage from the phone is continuous, having an exposure after or before usage does
not matter.
Using an enclave is not enough to defeat this attack. Indeed, the operating system must
see all ephemeral identifiers passing through the Bluetooth interface. As for malicious
apps, it remains to be checked if accessing the interface allows them to keep the Blue-
tooth input and/or output of app under surveillance. We discuss this in more details in
Section 3.3 under Attack by a malicious app.

This applies to centralized and decentralized systems, with various risks due to the time of
exposure. We can see here that using an enclave puts centralized and decentralizes systems
at comparable levels of risks.

Tracking people is a serious privacy risk. To conclude this section, we can see that cen-
tralized systems concentrate the risk to a single point of failure τ which requires a very high
level of security. There is no technological solution to protect against a malicious server.
In Section 3.3 we will see that decentralized systems allow an organization to a posteriori
identify diagnosed users. Hence, diagnosed users could be tracked with comparable diffi-
culty. Decentralized systems limit the risk of being tracked to reported users. Both systems
are vulnerable against malicious operating systems, and probably against malicious apps
too.

Decentralized systems have a clear advantage over centralized ones, when
considering this risk of tracking people.

3.2 Disclosing the Social Graph

A recurring criticism by supporters of decentralized systems is that centralized ones reveal
the social graph, i.e. who met whom. We investigate this risk in this section.

The case of centralized systems. There is no difference between centralized and decentral-
ized systems as long as no report and status protocol is executed.

In centralized systems, users running report reveal to the server all contacts they had
in the past. Although one could say that this is what is happening in the case of human
contact tracing, this gives no reason to do the same with automated systems. Indeed, the
purpose is to make contacts of the diagnosed person aware that they are at risk. It does
not imply revealing the contact to any authority.

It is however incorrect to claim that centralized systems reveals the social graph. First
of all, the leakage is for the server only. In the ideal case where the server is trusted and
secure, there is no disclosure at all.

Second, what could be revealed is the unlinkable list of pseudonyms of the recent
contacts of a diagnosed user. A user who has never been in contact with any reported
diagnosed person has no information revealed.

Finally, protocols such as ROBERT assume that report and registration are run anony-
mously by the apps. Contacts are further sent separately to avoid disclosing that they come
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from the same diagnosed user. Opponents to centralized systems argue that anonymity can
be broken by traffic analysis and by comparing two reports which have many contacts in
common. This is certainly a valid argument. What we can conclude is that if the server
is corrupted and powerful enough to control the communication network, then centralized
systems reveal to the server the social subgraph with contacts between reported and at-risk
users. However, this attack requires a lot of data mining.

Decentralized systems. Avitabile et al. [1] showed that a user who stores in a blockchain
a commitment to each ephemeral identifier he collects would get, when the identifier is
reported, a proof of having seen this person by opening the commitment.20 Such a proof
could be sold to someone trying to reconstruct the social graph. It could also be used to
reveal an encounter or blackmail. There could be situations where A decides to report the
identifiers he used when he met his colleague B but not the ones that he used when he met
his hated colleague C. Then C, with the help of B, could prove that A did not report what
could have let C be aware of a risk. If the C was unaware of his risk and unintentionally
contaminated his parent D who later died of this disease, C could use such a proof and
sue A for that. Actually, decentralized systems suffer from a lack of plausible deniability.
Centralized systems do not have this problem (if the server is honest) since reports leave
no evidence.

As we assumed a corrupted server in centralized systems, we will assume that the central
server of decentralized systems is also malicious. Actually, a malicious server who wants
to know if a reported user A was in contact with a user B (what is obtained in the attack
with centralized systems), the server can provide B with the report by A together with
some junk ones, and wait to see if B receives an alert. For this attack to work, we assume
that the adversary has a side-channel information. Namely, we assume that he can see if
B received an alert, e.g. by seeing that B self-isolates or goes to be diagnosed. Contrarily
to the attack on centralized systems, this attack is harder to make at scale and could be
detected.

Common vulnerabilities. Both centralized and decentralized systems share the same vul-
nerabilities as for disclosing (part of) the social graph against coercion and theft attacks,
just as for the depseudonymization risk.

An adversary who has access to the at-risk status of users by a side channel (e.g. because
he can see users worrying after an alert, or seeing that they self-isolate) could deduce from
seeing A and B having an alert that they probably have met a person in common. Similarly,
seeing A diagnosed then B alerted would make them suspected to have met. This is an
inherent risk of all contact tracing systems.

This case can show a higher risk in decentralized systems in which there is a high risk
to publicly identify reported diagnosed users.

As diagnosed users are nearly publicly revealed, it is incorrect to claim that decentral-
ized systems do not reveal the social graph. The at-risk side channel leaks more than in
centralized systems.

20 This is referred to attack ATK5 by the authors [1].
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As we can see in this section, centralized systems reveal to a determined mali-
cious server a part of the social graph. We can also see that decentralized systems
reveal to a determined user a proof of encounter with a diagnosed person, hence
some social contact.

3.3 Identifying Diagnosed People

Decentralized systems. Probably the main vulnerability of decentralized systems lies in that
the pseudonyms of reported diagnosed users are publicly revealed. The attack was studied
several times [1, 17, 29]. Anyone (using the app or not) can connect to the server and
download the list of pseudonyms. Hence, anyone who has caught the ephemeral identifier
and managed to remember whose identifier it is could a posteriori recognize that this user
was diagnosed and reported. Getting such ephemeral identifier requires little equipment.
The adversary is undetectable. We call A the adversary and B the target user to be
recognized. Previous studies reported several scenarios of attacks, to which we can add
more.

– Paparazzi attack [29]. A motivated paparazzi A can extract the ephemeral identifier of
a public person B from far away and later on recognize if this person was reported. The
Bluetooth receiver may need to be boosted with a good antenna to work at distance.
DP3T Design 2 proposes a countermeasure against this attack: to broadcast the ephemeral
identifier piece by piece (using secret sharing) to make it hard to collect all pieces from
far away. At the same time, it would make real encounters harder to determine. Whether
the motivated paparazzi with a good equipment finds harder than the close genuine app
to reconstruct the ephemeral identifier is certainly a strong hypothesis which requires
experimental validation.
Gvili [17] had already proposed a countermeasure based on using k different broadcasts
instead of one to make A believe that there are more devices around and he cannot
determine which one is the one of the public person.

– Nerd attack [29]. Any person A can use an app which collects received ephemeral
identifiers, asks A whether he wants to memorize the identity of B in front of him,
regularly checks on the server for reported cases, and tell A about recognized cases.

– Militia attack [29]. This type of attack is a generalization of the nerd attack in which
a group of people (the militia) pool their data to recognize as many reported users as
possible.

– Attack by organization. Instead of using people with Bluetooth collectors, an organiza-
tion A such as a hotel, a shop, or a company, may install a Bluetooth collector at the
place visitors B are identified. The hotel identifies its customers at check-in. The shop
identifies its customers who hold the right discount card at the cashier. The company
identifies its employee or visitors at entrance. Hence, the organization A can collect
a lot of information as in the militia attack and later on recognize reported B. This
information can be sold or abused.
This attack is present as Scenario 13 (the insurance company)21 in Bonnetain et al. [4].

21 The shop sells the results to an insurance company.
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– Attack by malicious app. The organization could be a malicious app in the phone of
every potential user B. It could be a social media app which knows B well and just
collects its ephemeral identifier. The ephemeral identifier is released by the genuine app
for broadcast. Whether another app can see it depends on the API.

Malicious apps have several attack vectors:

1. access to data stored by the genuine app;

2. access to the outgoing ephemeral identifiers;

3. access to the incoming ephemeral identifiers;

4. other data they normally have access to.

The operating system can eliminate the first two attack vectors. As for the last one,
the Apple-Google API was announced never to let an app running in background have
access to the Bluetooth broadcast. However, some apps are frequently put in foreground.
A foreground app could retrieve the incoming ephemeral identifier and infer from side
information who sent it. For instance, a malicious app with access to the calendar would
know who the holder is meeting at the moment. An app with access to geoposition which
is running on many phones would also deduce who is in proximity. An app with access
to the camera or the microphone could also record the meeting. Essentially, a malicious
app could make a better job than the genuine one in spotting any small contact with a
diagnosed person and remembering more data about it. This would make the nerd or
militia attacks run in an automated way and without the user being malicious.

– Attack by malicious operating system or hardware. Instead of a malicious app, the oper-
ating system or the hardware could collect the identifier and exfiltrate to the company
A. Since appB is giving the ephemeral identifier to the operating system who gives it to
the hardware, no protection is possible.

– Attack coupled with video-surveillance.22 A nasty local authority A which installs a
video-surveillance system with a Bluetooth sensor could store in a database some pairs
consisting of the captured ephemeral identifier and a pointer to the recorded video. Later
on, the collected identifiers can be matched to reported cases with a direct pointer to
the video.

The feasibility of this attack was demonstrated by a proof-of-concept and a simulated
experience.23 It requires little equipment.

NTK authors [16] describe a variant of this attack with an adversary taking pictures at
the entrance of the subway or a building.

If really effective, the countermeasure by DP3T Design 2 based on secret sharing could
defeat this attack scenario because the video-surveillance sensor may be too far from
the phone.

Canetti-Trachtenberg-Varia [6] mentions private information retrieval or private set in-
tersection as a possible mitigation. However, it has not been investigated in the existing
literature so far.

22 https://github.com/DP-3T/documents/issues/121
23 https://github.com/oseiskar/corona-sniffer
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The case of centralized systems. A depseudonymization attack is always possible in any
contact tracing system. If A registered a dummy account with which he only goes in contact
to B, then using appA with report will make A aware whether B was reported or not. This
attack is present as Scenario 2 (the unique suspect)24, Scenario 5 (the hiring interview)25,
and Scenario 6 (the paparazzi) in Bonnetain et al. [4]. One big difference between this
attack and the previous ones against decentralized systems is that it requires a dummy
account, and that accounting could be used as a way to defeat it.

Indeed, my making sure that registering a dummy account is not massively doable and
by making sure that the same dummy account cannot be used to identify many people,
the attack is not feasible in a large scale.

Furthermore, raising the at-risk flag in report in ROBERT deactivates the account. This
means that a single dummy account can be used to query the server as an oracle to check
if one of the contacted users has been diagnosed. The oracle can be queried many times as
long as the answer is negative. But if the answer is positive, no more query can be made.
If the adversary is rewarded for each diagnosed user he could identify (e.g., because he
could sell this information for a good price), this means that n dummy accounts cannot
provide him with more than n rewards. Clearly, the attack needs many dummy accounts
to be done at scale.

In its current version, ROBERT requires a CAPTCHA to register an account. It is
probably not sufficient to avoid Sybil attacks at a large scale, but it is already making them
hard. Limiting each user to have a single account would be a more drastic countermeasure.26

Instead of using dummy accounts, the adversary could reserve some of his ephemeral
identifiers for a dummy usage. This is possible in decentralized systems but not in central-
ized ones, because status does not reveal which ephemeral identifier triggered an alert.

Those attacks were listed in a document by DP3T [13] as “inherent to all contact tracing
systems” (attack I). However, centralization offers many more countermeasures.

This section shows a clear advantage of centralized systems over decentral-
ized ones, when considering the risk of identifying diagnosed people.

3.4 The Opting Choice

Privacy is a human right. A user who really worries for his privacy is supposed to have the
choice to opt-out. Opting out can have several forms:

– not installing the app at all;

– turning off Bluetooth;

– using the app but refusing to report after diagnosis.

People who are really concerned about their privacy add hard covers on the webcam of their
laptop because they do not trust software deactivation. They have no reason to trust more

24 A left home only once and met a single person.
25 After a hiring interview, diagnosed people are eliminated.
26 https://github.com/ROBERT-proximity-tracing/documents/issues/46
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software Bluetooth deactivation. Hence, the second opt-out option is not really making
sense.

Regarding the first opt-out option, someone who is purposely not using the app is
exposed, because neighbors can see that someone is here but that no Bluetooth beacon
is broadcasted. Hence, there will be social pressure or discrimination towards people who
prefer not to use the app.

Here is a real story which already happened. In a (virtual) coffee break at work, some
people discussing on privacy risks on contact tracing. Eventually, someone asks if people
would use the app. One privacy-freak asocial engineer says he would rather not use any app
because of too many privacy risks. Immediately, others imply him for being an irresponsible
resident because he does not help society to avoid another lock-down.

A condition for the deployment of contact tracing is that it will be used on a voluntary
basis and that people would be free of any pressure or incentive to do so. Some legal
enforcement is proposed by Edwards et al. [14]. It is highly unlikely that this principle is
well understood by a majority of people and even less likely that it will be enforced.27

How about opting out in report? The diagnosed person will also interact with a human
tracer who may like that the app eases his job. His relatives and colleagues may also dislike
that he does not report because they would not receive an alert if they are at risk. The user
would certainly feel terribly responsible to make his contacts be alerted and be tapped by
his conscience. At this stage, the user may be pushed to make its app report. The absence
of pressure is for sure an illusion in this case. This is a form of coercion.

To defeat coercion - and still look like a good citizen - a twisted minded user may like
to use a modified app which mimics the genuine one but sends totally random beacons
and never stores anything in return. This way, reporting an empty list will let the user free
of any pressure. The only problem is that this opting choice for report must be done well
ahead in advance to the diagnosis.

Grumpy user. We could wonder how the system is perceived in the shoes of a grumpy user
who has been pressured to use the app.

In centralized systems, this user would certainly hate to know that the server identified
him just because he has encountered someone who has been diagnosed and who reported
him. Receiving an unsolicited alert coming from the server will certainly not cure his
grumpiness.

In decentralized systems, the grumpy user can let his app run at a small privacy cost.
Whether his app raises an alert or not will not mean that someone reported him. The
decentralized system would make this user happier.

For the grumpy user who is forced to report after a diagnosis, the situation is even
worse. In addition to the bad news of being diagnosed, the grumpy user would either fear
that his identity and contacts are revealed to the server (in centralized systems), or fear
that his identity are revealed to an unknown adversary (in decentralized systems). What is

27 Actually, we have already seen a Twitter post from a faculty member calling for making the use of tha app
mandatory for everyone on campus to be able to reopen.
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the worst depends on the subjective perception of the trust people put in a central secure
server or in the believe that no hidden adversary would dare identifying diagnosed people.

Actually, the situation of the grumpy user makes much sense in the scenario where
contact tracing is deployed, authorities realize that it is not useful because of a too low
acceptance rate, and a situation of emergency leads to the conclusion that the law must be
adapted to sacrifice a human right: either the freedom to move, or the right to privacy. In
the terrible case this should ever happen, the full opt-in choice would certainly be dropped.

Privacy-freak rational user. A rational user would only opt in using the app because it
brings a benefit. The first problem is to measure the societal benefit of automated contact
tracing. This question has been raised several times28 and people must essentially hope this
will be useful. However, the potential societal benefit creates an inherent social pressure to
opt in. Based on that using such app should remain on a voluntary basis and that an app
needs a huge number of users to be effective, we believe that a game theoretic approach
to analyze the expected opting rate is important. We make below a simple analysis. More
aspects are covered by Redmiles [24].

A rational (honest) user must make two choices: opt-in to use the app, and later on, if
this is the case, opt-in to report. The benefit includes the social benefit, the pride to be a
good citizen, and also the promise to be warned if the user it at risk. It does not seem to
depend on whether the system is centralized or not. The cost of using the app corresponds
to the privacy loss. Its perception depending on whether the system is centralized or not
may depend on the user. A privacy-freak user may find the privacy cost of centralized
systems larger than the privacy cost of decentralized systems because of the risk to be
deanonymized. Hence, this user is less likely to opt in with a centralized app than with a
decentralized app. However, when it comes that this user is diagnosed and must decide to
opt in with the report or not, we realize that the privacy cost for decentralized systems is
higher than for centralized ones. Indeed, in centralized systems, the reporting user reports
his contacts. In decentralized systems, the user reports his own keys.

Given a user U , a systems s ∈ {c, d} (centralized or decentralized), and the opting case
o ∈ {a, r} (for using the app or to report), we let us,o

U be the utility function. We have that
uc,a
U < ud,a

U and uc,r
U > ud,r

U .

If ud,r
U > 0, the rational user U is willing to report in a decentralized system. Since

uc,r
U > ud,r

U , U would also be willing to report in a centralized system.

If us,a
U < 0, the rational user U does not use the app in a centralized system. With

the previous analysis, we can think that this is because he is concerned about his privacy
and the risk to be identified is too high. Hence, we can suspect that for this user we have
ud,r
U < 0 too, because decentralized systems give a high risk to the reporting user to be

identified by anyone. This means that even if this user would have joined with the app in
decentralized systems, he would not have reported in the case of a positive diagnosis. The
consequence is that among rational users, there would be less reports with a decentralized
system than with a centralized one.

28 See e.g. Schneier. https://www.schneier.com/blog/archives/2020/04/contact tracing.html
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This proves that deploying a centralized system may generate more reports than de-
ploying a decentralized one. This assumes that users have a free choice and that they
behave rationally.

An important note is that the above reasoning assumes a rational user with no pres-
sure to opt in report, which is intended. Indeed, the situation may be different if U feels
responsible to report. This shows that for decentralized systems to be more effective than
centralized ones, we must assume some form of pressure on users.

Malicious privacy-freak rational user. A malicious user has more options in the game.
Namely, he can use a modified app. The rational malicious user would be willing to modify
the app in such a way that he gets the benefit (namely, the promise to be alerted when he
is at risk) at a reduced cost (namely, with less privacy risks).

In decentralized systems, the modified app would broadcast junk identifiers and report
the genuine ones. This would harm no privacy still provide functionality, because the
modified app would still collect the identifiers of encounters and recognize them if they
report. Therefore, a (selfish) malicious privacy-freak rational users would generate no useful
reports and no useful broadcast.

In centralized systems, to benefit from the functionality, the user must broadcast his
genuine ephemeral identifiers. Hence, this user is still behaving honestly. The remaining
question is whether he would report or not. However, this essentially goes back to the honest
rational user. Actually, the privacy cost to report is small so he may still contribute.

A surprising consequence of the central system is that the promise to be alerted when
being at risk only applies to honest users.

To conclude this section, we can say that privacy-freak rational users would prob-
ably make decentralized contact tracing less effective than centralized contact
tracing. However, the lack of real free opting choice may let users grumpy and
like decentralized systems more.

4 Security Issues

We assume an authenticated communication channel between the app and the central
server. (Decentralized systems need authentication of the server and no private commu-
nication; centralized systems need two-sided authentication and private communication.)
We further assume that the authorization to report has proper protections against replay
attacks. Hence, critical security comes at the app level.

4.1 False Encounter: The Lazy Student Attack

Previous studies [17, 29] reported replay and relay attacks, by which an adversary A which
has caught an identifier e from appB can later on replay it to appC . This way, C will store
an identifier as if he encountered B, although this was not the case.

The motivation for injecting false encounters could be to make appC raise an at-risk
alert. This could be stressful for C and the adversary could get an advantage (such as

20



elimination of a competitor, cancellation of a meeting, ...). Collecting identifiers e which
could make C raise an alert would create a hunt for ephemeral identifiers of people who
will become sick. Vaudenay [29] describes a dark economy in which some malicious hunters
would collect ephemeral identifiers e among people B who are more likely to be sick, deposit
them in a smart contract, and get a reward if the collected identifier is reported later on.
One hunting approach would be to collect the identifiers in the waiting room of a hospital
or to bribe some hospital employee to collect identifiers of the medical staff. Those are
places where to find people B who are highly likely to be diagnosed. Collected identifiers
can later be bought by the lazy student A who can bombard his professor C with them. If
A is lucky, appC will raise an alert and the professor will cancel the exam. The malicious
organization involves the lazy (but rich) student who can buy e’s online on a store which
is fed by hunters. This dark economy only works for decentralized systems, because the
smart contract has a way to check if a collected identifier belongs to a diagnosed person.
Without this, (doubly) malicious hunters29 would just submit random numbers and the
dark economy would collapse. This attack is a bit different in Scenario 9 (the lazy student)
and Scenario 15 (the Mafia) in Bonnetain et al. [4]

As discussed, the attack works for centralized and decentralized systems. However,
decentralized system would favor making it at a bigger scale with dark economy.

In the case where the ephemeral identifier ei is a PRF function ei = gk(i) with an
ephemeral secret k, Lout

B only needs to keep k. In this case, Vaudenay [29] proposed an
interactive protocol to defeat replay attacks. Pietrzak [21] proposed a way to make it
non-interactive. The idea is that, instead of sending ei, appB sends a triplet

(x, r,H(x, r), fk(h(x, r))

where x indicates a “location”, r is a random number, H is a hash function, and fk is a
message authentication code with key k. Upon receiving (x, r, h, τ), appC would verify that
h = H(x, r) and that the location x is correct (as explained below). If this is the case, appC
adds (h, τ) in Lin

C . What is reported after B is diagnosed is only k, which allows to verify
the (h, τ) pair in Lin

C .
The “location” x can consist of the clock value of B at sending. Hence, “verifying x”

means verifying that the difference between the clock value at reception and x is small
enough. This protocol would prevent A from replaying the identifier of B to C at a too
distant time. (This requires loosely synchronized and reliable clocks: if the clock of B or
C can be corrupted, this protection is ineffective.) The “location” x may also include the
geographic position (assuming a reliable positioning system). This could prevent relay from
B to C at a too far away distance.

Systems such as Hashomer [22] use such mechanism based on geographic position.
One problem of such mitigation is that it creates undeniable evidence. If the adversary A

keeps (x, r) together with (h, τ) then makes (x, r, h, τ) time-stamped (e.g. in a blockchain),
and if the timestamp is obtained before k is obtained (e.g. because B was diagnosed and
reported k on the server), this gives evidence that B was at (time-space) location x. This

29 This malicious hunter would indeed cheat with the darknet system.
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creates a privacy issue. Actually, the lack of plausible deniability in several schemes could
become an important issue. Hence, it is not recommended to use location.

Using the proper mitigation puts centralized and decentralized systems on
the same level. Without it, decentralized systems are more vulnerable because of the
large-scale attack.

Decentralized systems add another vulnerability, as it is also possible to replay an
identifier e which A gets from the server. However, replaying them would most likely
require to corrupt the clock of C. If C compares the received identifier e with the currently
reported ones, this attack scenario would also require to attack C before it downloads the
ephemeral identifier to be replayed. This attack was listed in a document by DP3T [13] as
an “attack which does not work” (attack E) because “phones will not check released data
against new observations”. However, appC will not download the newly released e as soon
as they are uploaded so this attack could still work. One countermeasure could be to make
sure that B does not report ephemeral identifiers which could immediately be replayed.
Hence, the attack would require that A corrupts the clock of C, which makes the attack
less practical (but still possible).

4.2 False Report: The Terrorist Attack

A previous report [29] suggests that a malicious and diagnosed user C could upload forged
identifiers to the server in the report protocol. Indeed, no mechanism makes the server
convinced that appC is honestly reporting. A greedy user C could use a modified app∗C
which allows him either to report some e′ obtained from a dark repository (and get a
reward for that), or sell the genuine e′ to be reported before the report is done.

Again, in a decentralized system, it is easy to see if e′ was reported by checking it on the
server. This favors a dark economy of rewarding e′. Using such malicious app, a malicious
user A who encountered B could offer a reward through the dark repository for reporting
A’s own identifiers. The payment could be made by a smart contract once e′ appears on
the server. Conversely, a malicious user A could buy the e′ fed by C on the dark repository
and send it to B before a diagnosed C reports e′. The payment could be made by a smart
contract once e′ appears on the server. This way, A makes appB raise an alert.

In a centralized system, A gets e from B and buys on the dark net a service to report
e. Once C is diagnosed, he can report e. To support the economy, the payment by A could
be held until B has an alert. However, it is a harder to extract this information to feed in
a smart contract. It makes the economic system a bit harder.

We can also imagine a kind of terrorist attack by which a group of people A would use
a modified app app∗A which would pool all information. If one person C from this group is
diagnosed, app∗C would report all necessary information to alert the contacts of all members
of this group. This could raise an alert in the entire city.

In centralized systems, the way to pool consists of collecting all received ephemeral
identifiers by group members in a unique list Lin

C . It could be defeated in the report protocol
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by denying a too large list of encounters.30 In decentralized systems, the way to pool is
much easier: it consists of using the same keys to generate the ephemeral identifiers to
broadcast.

A simpler form of terrorism attack is called a trolling attack in Gvili [17] and present at
Scenario 7 (the activist) and Scenario 8 (the secret agent)31 in Bonnetain et al. [4]. In this
attack, someone diagnosed or about to be diagnosed makes his phone circulate in a crowd,
e.g. by attaching it to a dog.32 This creates fake encounters with many people. After the
adversary is diagnosed, he can report and trigger alerts for many people.

5 A Third Way

Our analysis shows that centralized systems suffer from the use of the trapdoor τ . Con-
versely, decentralized systems suffer from that status requires the central server universally
readable. We could wonder if there is a hybrid way in between.

Cho-Ippolito-Yu [8] mentioned private set intersection. Canetti-Trachtenberg-Varia [6]
mentioned the direction of private information retrieval and of private set intersection
without any detail. Ramzan suggested to use techniques such as zero-knowledge or homo-
morphic encryption.33 Actually, Altuwaiyan-Hadian-Liang [2] already used homomorphic
encryption.

Trieu at al. [28] lists several strengthening strategies: private messaging to strengthen
anonymity in centralized systems, rerandomizaion of tokens, and secure computation (such
as private set intersection). The idea of token rerandomization applies in a decentralized
system in which the reporting user reports the collected ephemeral identifiers (tokens) like
in centralized systems. By rerandomizing the tokens, the server cannot link them with any
observation.

We list here several research directions.

5.1 Centralized Architecture with Open-Access Server

Beskorovajnov et al. [3] proposes that the ephemeral identifier of appU is associated with a
secret ephemeral identifier. The public-secret pairs of identifiers is uploaded anonymously
to a server prior to usage. The server keeps a database of pairs. Then, broadcasting, storing,
and reporting works like in centralized systems. That is, the system works as follows.

– Setup of identifiers. Each appU generates a list Lout
U of (ei, si) pairs and uploads it in a

secure and anonymous manner to a server.

30 In protocols such as ROBERT, identifiers in Lin
C are reported separately for privacy reasons. Hence, this mitiga-

tion requires a way to account the number of reports without decreasing privacy.
31 A secret agent wants to prevent the departure of a submarine by triggering an alert to the entire crew.
32 The example was borrowed to Anderson. https://www.lightbluetouchpaper.org/2020/04/12/contact-tracing-in-

the-real-world/
33 https://medium.com/@Zulfikar Ramzan/the-future-security-privacy-and-risk-in-a-post-covid-world-

bb7c10320a8e
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– Broadcast. During epoch i, appU constantly broadcasts ei. After ei is broadcasted for
the last time, ei is erased but si is kept in Lout

U . Every appV collects the broadcasted ei
and stores it in a list Lin

V together with a coarse time information.
– Reporting. Upon positive diagnosis, user V provides appV with the appropriate creden-

tial to upload (part of) Lin
V to the server. The server associates each reported ei with

an si in his database and publishes si.
– Status verification. Regularly, appU checks on the server for the new reported si. If one

si matches one in Lout
U , an alert can be raised.

Such an architecture is indeed hybrid between centralized and decentralized. However,
in this above form, it does not fully solve the problems of both schemes. Namely, the central
server which succeeds to break the anonymity of the upload of pairs of identifiers can later
track the broadcasting user. Second, a malicious user U who wants to be warned if V is
reported can just broadcast to V an identifier which is only used with V . Actually, it uses
a dummy pair of identifiers instead of a dummy account. Such vulnerabilities are known
and Beskorovajnov et al. [3] proposes extensions of this architecture to fix it.

This architecture essentially builds an open-access server (like in decentralized systems)
on the top of a centralized one. The converse approach (to be explored next) builds an
access-restricted central server on a decentralized architecture.

5.2 Decentralized Architecture with Restricted-Access Server

Epione [28] presents an alternate architecture. This approach consists of making status
private in a decentralized systems, by adding some flavors of centralized systems and secure
computation techniques. We start with the decentralized systems architecture.

– Setup of identifiers. Quite regularly, appU prepares a list of random ei to be used and
stores them in a list Lout

U .
– Broadcast. During epoch i, appU constantly broadcasts ei. A few weeks after ei is broad-

casted for the last time, ei is erased from Lout
U . Every appV collects the broadcasted ei

and stores it in a list Lin
V together with a coarse time information.

– Reporting. Upon positive diagnosis, user V provides appV with the appropriate creden-
tial to upload (part of) Lout

V to the server. The server stores it.
– Status verification. Regularly, appU runs with the server a protocol with input Lin

U . This
returns the at-risk status of U .

The difference is that the server is no longer universally readable. Instead, status is a 2-
party protocol with two sets at input and which returns to appU the at-risk status. We
explore below possible private status protocols. In what follows, we denote by S the set of
the server and by I (as for “identities”) the set of the app. Computing the risk reduces to
deciding whether S ∩ I is large enough.

The main privacy requirement is that the server should not learn anything about I.
Decentralized systems essentially use the trivial protocol in which the server gives S to
appU and appU computes the at-risk status. Hence, any protocol offering the functionality
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and satisfying the main privacy requirement would not leak more than in decentralized
systems.

Even a perfectly private protocol computing if S ∩ I is large enough would allow a
malicious client to identify diagnosed people by running the protocol many times. The
present approach consists of assuming that there is a centralized accounting for access to
the server. Namely, every appU must register a unique account (e.g. though the health
authorities), which is by no means connected to any ephemeral identifier. Accessing to the
server to run status would require to authenticate with this account and the server would
limit the number of queries for each account. This way, potential leakages from the protocol
is limited.

To determine whether #(S ∩ I) is above threshold or not, we can use a private set
intersection protocol (which would leak S ∩ I which is more than needed) a private set
intersection cardinality protocol (which would leak #(S ∩ I) which is more than needed),
or, if the threshold to apply is zero, i.e. if we want to know whether S and I intersect or
not, a private set intersection test protocol. Trieu at al. [28] reviewed several techniques
to achieve private set intersection. They designed for Epione a private set intersection
cardinality protocol which is based on Diffie-Hellman and private information retrieval.
We present below two other directions based on a way to represent sets in a compact
manner and we show the difficulty of such approach.

Bloom filters. Debnath and Dutta [10] present a private set intersection (and cardinality)
protocol which has a linear complexity and can further hide the cardinality of the set of
the app. It is based on Bloom filters.

A Bloom filter is a compact manner BFI to represent a set I in a way that we can test
membership efficiently. In a Bloom filter of length m using k hash functions, BFI is a string
of m bits and there are k hash functions h1, . . . , hk with output domain {1, . . . ,m}. The
Bloom filter BFI is defined by BFI [i] = 1 if and only if there exists x ∈ I and j such that
hj(x) = i. To check membership of a given x, we hash x using all hash functions and check
that BFI [hj(x)] = 1 for every j. Equivalently, we check that

k∏
j=1

BFI [hj(x)] = 1

A member of I is always recognized as a member. A non-member of I can be recognized
as a member, which is a false positive. Using m = k

ln 2
×#I, gives a probability of a false

positive roughly equal to 2−k. Hence, if there is no false positive, we have

#(S ∩ I) =
∑
x∈S

k∏
j=1

BFI [hj(x)]

Briefly, the app represents I in a compact manner using a Bloom filter BFI of m bits for
its set using k hash functions. The app makes a Goldwasser-Micali encryption enc(BFI [i])
of every of the m bits of the Bloom filter and sends it to the server. For each element x ∈ S
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of his set, the server hashes hj(x) for every j, extract every enc(BFI [hj(x)]), mixes and
blinds them. The server sends these back for every x ∈ S. The app can decrypt with the
Legendre symbol and determine how many elements x ∈ S are in the Bloom filter. The
complexity is O((#I +#S)× log(#S)) by taking k = O(log(#S)).

In this scheme, the server learns m and k. The app learns the cardinality #S of the set
of the server.34

Assuming that each user runs status every day, have no more than 100 new encounters
inserted in Lin per day, and must check for all encounters in the past two weeks, we can
upper bound #I ≤ 210. We assume that the number #S of new report per day is not larger
than #I. Otherwise, the two high number of diagnosed people would force authorities to
have another lock-down. The number of false positives in each status is limited by 2−k#S.
By taking k = 30, this is one over a million and we have m ≈ 43 Kbits.

Hence, we can estimate the complexity of this status protocol. The app hashes 30 000
times, encrypts 43 000 times, and computes 30 000 Legendre symbols to decrypt. The server
hashes 30 000 times and blinds 30 000 encryptions. Note that hashing can be precomputed
for all users if the hash functions are in common. Overall, the complexity is not so nice
but remains doable in a minute.

The volume of communication can be drastically reduced in two ways. First, the server
could compute #(S ∩ I) using a somewhat homomorphic encryption and respond with a
single ciphertext. Second, the server could use compression techniques for his query. Unfor-
tunately, all those solutions substantially increase the complexity on the server side. Given
that the solution with Goldwasser-Micali encryption would probably require a minute on
one CPU, having the server doing this millions of times in the same day is already quite
challenging.

Flajolet-Martin sketch. Another way, proposed by Dong and Loukides [12], consists of
approximating the cardinality, but with a much lower complexity. The proposed scheme
has logarithmic complexity (instead of linear) in the honest-but-curious model. The idea
is that both the app and the server will first represent their own set in a compact manner
using a Flajolet-Martin (FM) sketch [15]. Then, they use multiparty computation (based
on garbled circuits) to compute the cardinality of the intersection (or an approximation of
it).

Dong and Loukides [12] report that the estimate of union cardinality of sets of up to
1 million elements has a relative error of over ε = 1% with probability less than δ = 0.1%,
for an implementation running in less than 3 seconds.

An FM sketch for a set I is a bitstring of logarithmic length, in terms of the cardinality
of the set. Essentially, an FM sketch of w bits is defined by a random hash function h
mapping set elements to {0, . . . , w − 1} uniformly. The bit FMI [i] of the FM sketch of
index i is set to 1 if an only if there exists one element x ∈ I such that h(x) ends with 10i.
Hence, the bit of index 0 is hit by nearly half of the set elements. The bit of index 1 is hit
by nearly a quarter. Etc. The first bit index z in the FM sketch which is set to 0 indicates

34 The app also learns, for each x ∈ S − I, how many j leads to hj(x) = 0. So, it leaks more than it should (but
clearly less than revealing S as decentralized systems do).
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an approximation of the logarithm of the set cardinality. With ϕ = 0.77351, it was proven
that Ñ = 2z/ϕ is a loose approximation of the cardinality N . The size w of the sketch is
recommended to be such that w ≥ log2(N)+4 [15]. However, the value of z has a standard
deviation of 1.12 which is too loose. To improve the accuracy of the approximation, Dong
and Loukides [12] propose to use m FM sketches and to average the resulting z before
computing Ñ . This decreases the standard deviation of z by a factor

√
m. The Ñ for N is

further optimized, given the average of z [26]. Dong and Loukides [12] showed that m only
depends on the targeted ε and δ and given by

m ≥ 2.5088×
(

erf−1(1− δ)

min(− log2(1− ε), log2(1 + ε))

)2

The above accuracy rates are obtained with m = 216.
FM sketches have the nice homomorphic property that the FM sketch of a union of

sets is the bitwise OR of the FM sketches of those sets:

FMS∪I = FMS OR FMI

Hence, if both S and I compute the FM sketch of their sets, the problem reduces to
computing the bitwise OR of two binary strings of length mw, then compute m indices z,
then their average. Dong and Loukides [12] propose to do so with garbled circuits. This
way, the app can learn an approximation of #(S ∪ I) and deduce the approximation of
#(S ∩ I) using the inclusion-exclusion principle.

One problem is that the error or 1% is relative to the cardinality of S ∩ I. If the
union has one thousand elements, an error of 1% corresponds to 10 elements. If computing
the risk threshold allows to compute the intersection cardinality with this precision, with
sketches of w = 32 bits, we need to compute a bitwise OR of two bitstrings of 2 Mbits,
64 000 indices z, and their sum. Dong and Loukides [12] says that implementations run in
3 seconds.

However, if the at-risk status depends on whether or not the intersection is empty, the
error should be reduced to ε = 1

#I
= 0.1% and the algorithm becomes quadratic. For

this, we should use m = 223. With sketches of w = 32 bits, we obtain that we need to
compute a bitwise OR of two bitstrings of 128 Mbits, 8 000 000 indices z, and their sum.
Unfortunately, the complexity is too large.

5.3 Decentralized Architecture Reporting Received Identifiers

The authors of PACT-West [7] list as a possible alternate construction to decentralized
approaches to report the list of received identifiers instead of the list of sent ones. This
method offers the advantage that identifiers could be rerandomized in order to strengthen
privacy. More precisely, such system works as follows.

– Setup of identifiers. Quite regularly, appU prepares a list of random (ei, si) to be used
and stores them in a list Lout

U .35

35 The authors actually assume that all si are equal. We generalize the construction here.
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– Broadcast. During epoch i, appU constantly broadcasts ei. After ei is broadcasted for
the last time, ei is erased from Lout

U . A few weeks after ei is broadcasted for the last
time, si is erased from Lout

U as well. Every appV collects the broadcasted ei and stores
it in a list Lin

V together with a coarse time information.
– Reporting. Upon positive diagnosis, user V provides appV with the appropriate creden-

tial to upload to the server Rerand(ei) for (part of) the ei in Lin
V .

36 The server stores
it.

– Status verification. Regularly, appU checks the newly uploaded Rerand(ei) on the server
and checks if they match any element si of L

out
U . This way, appU determines if U is at

risk.

To make this structure possible, we need a way to rerandomize ei and to match it to
its secret form si. If ei has a Diffie-Hellman form ei = (gri , gsiri), rerandomizing consists
of raising both values to a random power: Rerand(x, y) = (xr, yr). Matching (x, y) to si
consists of checking whether y = xsi . The value of si could have a medium-term period to
decrease the complexity of the intersection protocol.

Trieu at al. [28] mentions that such approach does not solve the Sybil attack because
a malicious U could create dummy si to identify diagnosed people. Such approach should
certainly be enriched by some (centralized) accounting form on si.

5.4 Public-Key-Based Architecture

Avitabile et al. [1] presented Pronto-C2 which is based on the ephemeral Diffie-Hellman
protocol [11]. The idea is that each user anonymously posts on a public register (actually,
a blockchain) their ephemeral public keys and memorizes at which address on the register
they appear. The ephemeral identifier to broadcast is replaced by the address of the public
key they want to use. This trick allows apps to exchange Diffie-Hellman keys in a very
compact manner. Indeed, the Bluetooth beacon would not offer the necessary bandwidth
to broadcast a public key. Every user can establish a shared Diffie-Hellman key using his
secret key and the public key published at the received address. The report protocol posts
the Diffie-Hellman shared key between contacts. The status protocol checks whether those
keys are posted.

More precisely, the system works as follows.

– Setup of identifiers. Each appU generates a list of (pki, ski) pairs, with pki = gski in a
Diffie-Hellman group generated by some common g. The pki are stored in a blockchain
and the address ei of where it is stored is kept. The list Lout

U contains (ei, pki, ski) triplets.
– Broadcast. During epoch i, appU constantly broadcasts ei. After ei is broadcasted for

the last time, the corresponding triplet is erased from Lout
U . Every appV collects the

broadcasted ei. If (e
′
j, pk

′
j, sk

′
j) is the current triplet which is used by V to broadcast,

then (pk′j, sk
′
j, ei) is stored in Lin

V together with a coarse time information.
– Reporting. Upon positive diagnosis, user V provides appV with the appropriate cre-

dential to upload some si,j for (part of) the tuples in Lin
V to the server. Given a tuple

36 The server could apply an additional rerandomization.
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(pk′j, sk
′
j, ei), appV downloads pki at address ei in the server and computes si,j = pk

skj
i .

The server publishes si,j.

– Status verification. Regularly, appU checks on the server for the new reported si,j. Ac-
tually, appU computes his own list of si,j and compares with the published ones. If one
si matches, an alert can be raised.

In this scheme, the server is actually a public blockchain.

A variant of the Sybil attack is possible by using dummy Diffie-Hellman pairs. Using
one dummy pair for a target user would allow to recognize when this person was diagnosed
and reported. Hence, Pronto-C2 could also be vulnerable to deanonymization of diagnosed
users.

There could be ways to mitigate this attack, like in the centralized system, by limiting
the number of Diffie-Hellman ephemeral keys that a user can register.

Another problem could be that a user could formally prove its knowledge of a Diffie-
Hellman secret associated to a public key in the blockchain. He could also prove the Diffie-
Hellman link between three entries ga, gb, and gab in the blockchain. If he finds many triplets
with the same ga, this could give evidence that ga belongs to a user who reported. For that,
the user would collect pointers x, yi, zi, many NIZK proofs of {∃a : pk(x) = ga, s(zi) =
pk(yi)

a}, and sign them with secret a using a discrete-logarithm-based signature scheme.
This way, a user could prove that he did report and claim for a reward. As eliminating the
possible pressures to report is necessary, removing the possibility to reward a reporting user
should be made impossible too. Essentially, contact tracing should ideally be receipt-free,
like e-voting.

6 Conclusion

As detailed in this report, centralized systems suffer from the risk that people could be
deanonymized from their Bluetooth broadcasts and could also reveal some of their contact
if they meet a person who could contaminate them. It does reveal some part of the social
graph to the determined server. Conversely, decentralized systems make public the Blue-
tooth broadcast of diagnosed people, which could lead to mass surveillance. Essentially,
reporting people must agree to go public.

Against a powerful adversary, the privacy of a reporting user breaks as follows:

– (centralized system) it reveals its identity and the one of his reported contacts, but the
adversary can only be the server;

– (decentralized system) it reveals its identity, but the adversary can be anyone.

For the author, this really looks like plague and cholera. We believe that the debate between
centralized and decentralized systems has been heavily biased. We think that none of those
systems offer any decent level of privacy protection. As detailed in this paper, some hybrid
directions exist and are promising. Further work is definitely needed to get the best of the
two worlds.
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To conclude, we can borrow a quote from the Swiss minister Alain Berset, head of the
Federal Department of Home Affairs (which includes the Federal Office of Public Health),
by saying that contact tracing should be developed “as fast as possible but as slow as
necessary”.37
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4. Xavier Bonnetain, Anne Canteaut, Véronique Cortier, Pierrick Gaudry, Lucca Hirschi, Steve Kremer, Stéphanie
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