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Abstract. This work introduces an extension of the UC framework with
an abstract notion of time that allows for modeling relative delays in
communication and sequential computation without requiring parties to
keep track of a clock. The potential uses of this extension are demon-
strated by: (1) formalizing a functionality for (semi-)synchronous secure
message transmission; (2) formalizing the notion of time-lock puzzles
in the UC setting and showing how to realize it in the restricted pro-
grammable and observable global random oracle model; (3) showing
that UC time-lock puzzles yield UC-secure fair coin flips; (4) showing
that UC-secure two-party computation realizing a new notion of output-
independent abort can be obtained leveraging composable time-lock puz-
zles. Finally, we show that a programmable random oracle is necessary
to obtain UC-secure fair coin flip, secure two-party computation with
output-independent abort or time-lock puzzles, which yields a new sep-
aration between programmable and non-programmable random oracles.

1 Introduction

The Universal Composability (UC) framework [15] is the gold standard for for-
mally analyzing cryptographic protocols as it provides strong security guarantees
that allow UC-secure protocols to be arbitrarily composed. This is a very useful
property and enables the modular design of cryptographic protocols. However,
the original UC framework is inherently asynchronous and does not support the
notion of time. Katz et al. [30] introduced a global clock functionality in order to
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define universally composable synchronous computation. Their clock function-
ality captures the essence of loosely synchronized wall clocks that are available
to all parties. This notion is particularly useful in reasoning about synchronous
protocols in the UC framework, since the honest parties can use the global clock
to achieve synchronization.

However, many cryptographic protocols do not depend on concrete time (or
delays) provided by a wall clock, but just on the relative timing that is ob-
servable through events, such as the arrival of messages or the completion of
some computation. In particular, protocols in a semi-synchronous communica-
tion model (e.g. [22,5]) rely on the fact that there exists a finite (but unknown)
upper bound for the delay in communication channels, not necessarily requiring
that events (e.g. the arrival of a message) occur at a specific wall clock time
(or even within a concrete delay) as long as they occur in a certain order. In
this case, using a global clock can make the design and security analysis of such
protocols unnecessarily complicated.

Another important challenge lies in modeling sequential computation and
computational delays in the UC framework. Since the environment may oper-
ate in many parallel sessions and activate parties arbitrarily, it obtains an unfair
computation advantage in relation to the parties. For example, even if its compu-
tational power is constrained within a session, the environment can use multiple
sessions to solve a computational problem assumed to require at least a certain
amount of computational steps (and thus time) faster than a regular party. This
precludes the UC modeling and construction of primitives based on sequential
computation and computational delays, such as time-lock puzzles [38].

1.1 Our Contributions

In this work, we introduce a new abstract notion of time in the UC framework
that allows us to reason about communication channels with delays as well as
delays induced by sequential computation. We demonstrate the power of our
approach by introducing the first definition and construction of composable time-
lock puzzles (TLPs) without resorting to clocks, which we use to obtain the
first two-party computation protocol with output-independent abort. Finally,
we establish that a programmable random oracle is necessary for obtaining UC-
secure TLPs. Our contributions are summarized below:

– Abstract Time in UC: we put forth a novel abstract notion of time for
the UC framework capturing relative event ordering without a clock.

– First Composable Treatment of Time-Lock Puzzles (TLPs): we in-
troduce the first composable definition and construction of time-lock puzzles.

– First Two-Party Computation Protocol with Output Independent
Abort: we use TLPs to construct a UC-secure two-party computation pro-
tocol where the adversary cannot see the output before deciding to abort.

– Impossibility of UC-Secure TLPs without Programmable Random
Oracles: we prove that the use of programmable random oracles are nec-
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essary for constructing UC-secure TLPs, yielding a new separation between
programmable and non-programmable random oracles.

The advantage of our new abstract notion of time for the UC framework
is twofold: 1. it captures delays without explicitly referring to wall clock time
and 2. it allows for modeling delays induced by sequential computation. This
notion it makes it possible to state protocols and security proofs in terms of the
relative delays between events (e.g. the arrival of a message or completion of a
computation) and the existence of large enough delays that ensure that these
events occur in a certain order.

Building on this model, we introduce the first definition and construction
of UC-secure time-lock puzzles. Previous works on time-lock puzzles have not
considered composability guarantees, meaning that current protocols that use
time-lock puzzles as black-box building blocks cannot be formally proven secure.
Our construction is based on the classical time-lock assumption of Rivest et
al. [38], which we capture as a UC setup assumption using our model of abstract
time. In order to construct a simulator for our security proofs, we further require
a restricted programmable and observable global random oracle, which we prove
to be necessary, providing a new separation between non-programmable and
programmable random oracles.

As an application of our abstract time model and composable TLPs, we
introduce the notion of two-party computation (2PC) with output independent
abort (OIA) along with the first OIA-2PC protocol. This new security notion
for secure computation guarantees that an adversary who aborts the execution
cannot learn any information about the output before deciding to abort, only
obtaining the output after this decision is made. Our new definition improves on
the standard security notion with abort (realized by all known 2PC protocols),
which allows for the adversary to decide whether to force the honest parties to
abort without obtaining the output after learning the output itself. We argue
that this new security notion is optimal, since fairness (i.e. ensuring all parties
obtain the output if the adversary does so) for 2PC protocols is impossible [20].

Our results are further explored in Section 1.3.

1.2 Related Work.

Composition frameworks with time and fairness. Composition frameworks for
cryptographic protocols (e.g. UC [15], constructive cryptography [34], the reac-
tive simulatability (RSIM) framework [36]) provide strong security guarantees for
protocols under concurrent composition. In all mentioned frameworks, communi-
cation is though inherently asynchronous channels. Several works have therefore
studied general composition guarantees with synchronous communication by in-
troducing a shared source of time or restricting adversarial scheduling. Modeling
network timing assumptions such as bounded message delay and clock drift and
the resulting concurrent composition guarantees for specific tasks was studied
for zero-knowledge [23], [25] and MPC [29]. In the context of composition frame-
works, Backes et al. [4] model traffic-related timing attacks in GNUC [27] by
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allowing the adversary to measure the local time at which a message arrives. In
this setting, each party has a local execution time, and the EXEC function of
GNUC maps the local times into a global time. Backes et al. [3] studied fairness
in the RSIM framework and achieve composable notion of fairness by restricting
the adversary model to fair schedulers who deliver any message after at most a
polynomial number of steps.

The work that is most closely related to ours is the model by Katz et al. [30]
that extends the Global UC (GUC) framework [16] to provide all parties with
access to a global clock functionality for the purpose of synchronization. This
model requires all parties executing a (semi-)synchronous protocol to keep track
of current global clock time and to actively query the global clock functionality
in order to advance of time. In particular, even if the model of Katz et al. is
used to define semi-synchronous communication, it implies that all parties are
kept synchronized and may learn how much time has elapsed since it their last
activation (i.e. by obtaining the current time from the global clock), which is a
rather strong synchrony assumption. However, many protocols cast in this model
do not crucially rely on obtaining concrete time stamps or determining concrete
delays between party activations, as long as messages are guaranteed to be de-
livered within certain delays and in a certain order (e.g. as in [5]). This is exactly
the kind of guarantees that our model captures without explicitly exposing time
keeping to parties or requiring them to keep track of concrete time sources. By
doing that, our model allows us to analyse many protocols cast in the model
of Katz et al. while significantly relaxing synchrony assumptions. Moreover, our
model can be used to capture delays induced by sequential computation, which
is not captured by the global clock model of Katz et al..

Time-Lock Puzzles and Computational Delay The original construction of time-
lock puzzles was proposed by Rivest, Shamir and Wagner [38]. Boneh and Naor
[12] introduced the notion of timed commitments. An alternative construction
of time-lock puzzles was presented by Bitansky et al. [10]. Recently, the related
notion of verifiable delay functions has been investigated [11,37,42]. These con-
structions are closely related in that they rely on sequential computational tasks
that force parties to spend a certain amount of time before they are able to
obtain an output. However, none of these works have considered composability
issues for such time-based primitives. In particular, the issues of malleability
for these time-based primitives and the relationship between computational and
communication delay are notably ignored in previous works. The lack of compos-
abillity guarantees for time-lock puzzles is a significant shortcoming, since these
primitives are mostly used as building blocks for more complex protocols and
current constructions do not ensure that their security guarantees are retained
when composed with other primitives to obtain such protocols. Our composable
treatment of time-lock puzzles addresses theses issues by introducing construc-
tions that can be arbitrarily composed along with a framework for analysing
complex protocols whose security relies on the relative delays in computation
and communication.
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Aborts and Fairness in Secure Computation An MPC protocol is said to be fair
if a party can obtain the output if and only if all other parties also obtain the
output. It is a well-known fact that fair MPC in the standard communication
model is impossible with a dishonest majority [20]. Given the impossibility to
achieve fairness, techniques for identifying misbehaving parties responsible for
causing an abort have been investigated [28,7]. In the last few years a line of
work developed which imposes financial penalties on parties who are identified as
misbehaving by using cryptocurrencies and smart contracts, thus giving finan-
cial incentives for rational parties to behave in a fair way. Protocols have been
designed to punish misbehavior at any point of the protocol execution (Fair
Computation with Penalties) [2,33,31] or to only punish participants that learn
the output but prevent others from doing the same (Fair Output Delivery with
Penalties) [1,9,32,6]. However, these protocols allow the adversary to make a de-
cision on whether to abort or not after seeing the output that will be obtained
by the honest parties in case the execution proceeds.

The recent work of Couteau et al. [21] studies the problem of obtaining
partially-fair exchange from time-lock puzzles, but in much weaker security and
adversarial models. In particular, their work does not consider composability
issues and is limited to the specific problem of fair exchange rather than the
general problem of secure computation considered in our results.

Random oracle separation results. Our impossibility result provides yet another
separation between the programmable and non-programmable random oracle
models, complementing the few previously known separations [35,41,24,8].

1.3 Our Techniques

In the remainder of this section, we briefly outline the new techniques behind
our results and their implications.

Abstract Time: Our goal is to express different timing assumptions (possibly
related) within the GUC framework in such a way that protocols are oblivious
to them. We do so by providing the adversary with a way of advancing time in
the form of ticks. A tick represents a discrete unit of time. Time can only be
advanced, and moreover only one unit at a time. In contrast to Katz et al. [30],
however, these ticks and thus the passing of time are not supposed to be directly
visible to the protocol. Thus instead of a global clock that parties can ask for
the current time, we add a ticking interface to ideal functionalities. This way,
timing-related observable behavior becomes an assumption of the underlying
functionalities, e.g. of a computational problem or a channel. Parties may now
observe events triggered by elapsed time, but not the time itself. Ticked function-
ality are free to interpret ticks in any way they like; this way we can synchronize
and relate ticks representing elapsed time in different ”units” like passed time
or computation steps. The technical challenge is to ensure in a composable way
that all honest parties have a chance at observing all relevant timing-related
events. Katz et al. solved this issue inside the global clock by keeping track of

5



which parties have been activated in the current time period (and thus asked
for the time) and refusing to advance time if necessary. Since our modeling does
not have a single entity that is ticked, we take a different approach: We restrict
the class of environments to those that activate all honest parties (in arbitrary
order) between two ticks. To further control the observable side effects of ticks,
we restrict protocols and ideal functionalities to interact in the ”pull model”
known from Constructive Cryptography, precluding functionalities from implic-
itly providing communication channels between parties and instead requiring
parties to actively query functionalities in order to obtain new messages. Apart
from presenting a clear abstraction of time, this notion explicitly exposes issues
that must be taken in consideration when implementing protocols that realize
our functionalities, i.e. the concrete delays in real world communication channels
and computation. In particular, while the theoretical protocol description and
security analysis can be carried in terms of such abstract delays, our techniques
clarify the relationship between concrete time-based parameters (e.g. timeouts
vs. network delays) that must be respected in protocol implementations. We will
go into this in more detail in Section 2.

Composable Treatment of Time-Lock Puzzles: To illustrate the potential uses
of our framework, we present the first definition and construction of UC-secure
Time-Lock Puzzles (TLP). We depart from the classical construction by Rivest et
al. [38] and provide the first UC abstraction behind the Time-Lock Assumption,
which is modeled in a “generic group model” style, hiding the group description
from the environment and limiting its access to group operations. A party acting
as the “owner” of an instance of the TLP functionality can generate a puzzle
containing a certain message that should be revealed after a certain number of
computational steps. The functionality allows the parties to make progress on
the solution of the puzzle every time that it is ticked. Once a party solves a
puzzle, it can check that a certain message was contained in that puzzle. The
ticks given to this functionality come externally from the adversary and we
require in the framework that the parties get activated often enough. We show
that our UC abstraction of the Time-Lock Assumption allows us to implement
UC-secure TLPs in the restricted programmable and observable global random
oracle model of Camenisch et al. [13] (which turns out to be necessary for UC-
realizing TLPs).

Two-Party Computation with Output Independent Abort: To further showcase
our framework we construct the first protocol for secure two-party computation
(2PC) with output-independent abort, i.e., the adversary must decide whether
to abort or not before seeing the output. In order to do so, we build on techniques
from [6]: there, the authors combine an MPC protocol with linearly secret-shared
outputs and an additively homomorphic commitment by having each party com-
mit to its share of the output and then reconstruct the output inside the com-
mitments. In [6], the output of the secure computation is obtained by opening
the final commitments resulting from the reconstruction procedure, which allows
the adversary to learn the output before the honest parties do and refuse to open

6



its commitment, causing the protocol to abort. Similarly to [6], we combine a
2PC protocol with secret-shared outputs and an additively homomorphic com-
mitment but we define and construct commitments with a new delayed opening
interface. When a delayed opening happens, the receiver is notified after a com-
munication delay but only receives the revealed message after an opening delay.
Hence, we can obtain output independent abort by delayed opening the final
commitments obtained after reconstructing the output and considering that a
party aborts if it does not execute a delayed opening of their commitments be-
fore the other parties delayed openings reveal their messages. Finally, we show
how to obtain UC-secure additively homomorphic commitments with delayed
opening by modifying the scheme of Cascudo et al. [18] with the help of the
delayed secure message transmission and TLP functionalities.

Impossibility Result. Finally, we prove that a non-programmable random oracle
is not sufficient for obtaining UC-secure fair-coin flip, secure 2PC with output-
independent abort or TLP. Therefore a programmable random oracle is necessary
to implement these primitives, yielding a separation between the programmable
and non-programmable random oracle models. This also shows that our TLP
construction which requires this strong assumption is in that sense “optimal”.

1.4 Paper Outline

Section 2 introduces our model of abstract time. In Sections 3 and 4, we present
two possible interpretations of abstract time for communication delay and for
computational delay, respectively. In Section 5, we show how to construct UC-
secure time-lock puzzles. In Section 6, we show how composable time-lock puzles
can be used obtain 2PC with output-independent abort. Finally, in Section 7,
we prove it is impossible to obtain composable time-lock puzzles without pro-
grammabe random oracles.

2 UC with Relative Time

This section introduces our UC framework with relative time (RUC) and dis-
cusses its interpretation using the examples of communication delays and non-
parallelizable computation.

2.1 Modeling Elapsing Time

Based on the observation that many cryptographic protocols do not rely on exact
timing information through clocks etc., but only on relative timing, we propose
to model elapsing time by introducing adversarially controlled time “ticks” as
basic discrete units of passing time. At the core, ticks are a tool for modeling
physical timing assumptions like a channel introducing a certain delay to mes-
sages or a problem taking a certain time to solve. The ticks are importantly only
visible to ideal functionalities, while protocols can only depend on the relative
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timing that is observable through events, e.g., messages arriving or computa-
tions completing. This allows the notion of abstract time to be instantiated later
as protocol implementers wish, as long as the relative timing between events is
preserved.

Our model is a modification of the GUC framework [16] to incorporate rel-
ative timings. Our changes affect the activation patterns of entities as well as
their interface. Assume that T is the set of names of all possible timing assump-
tions in the protocol to be executed. This set remains the same for a particular
protocol, no matter in which hybrid model it is studied. We demand that:

Ticked functionalities can be activated with (tick, t) messages by the adver-
sary for t ∈ T ⊆ T . Upon this activation, the functionality can possibly
perform local computations and must then return to the adversary. Upon
any other activation by a party P, the functionality must either return to the
caller or activate the adversary. Moreover, we specify some default behavior
that is omitted in descriptions: The functionality can be activated by party
P with message (NoQuery,P) upon which it performs no actions and returns
to the caller. When a (tick, t) message does not trigger any action within the
functionality, it can be omitted to simplify the description of functionalities
that do not rely on timing assumptions. If t is clear from the context, we
will omit it.

Tick-forwarding adversaries must react to (tick, t) messages from the envi-
ronment by forwarding them to the corresponding ideal functionality.

Ticking environments are parameterized by a set T of all timing assumptions
in the protocol they are currently executing. An environment can instruct an
adversary to trigger a tick for assumption t ∈ T by sending (tick, t). When-
ever the environment sends one such message, it must send (tick, t′) for all
other t′ ∈ T to the adversary before performing any other activations. Be-
tween two consecutive ticks to all assumptions in this way, the environment
must activate all parties at least once in arbitrary order.

Activation-forwarding parties and protocols As is standard in any proto-
col that models communication through physical assumptions like a chan-
nel, parties can only activate functionalities or return to the caller when
activated. Before returning to the caller, a party needs to activate each func-
tionality at least once, possibly with the default message (NoQuery).

The execution model remains otherwise the same. These restrictions ensure in
a composable way that (1) time is advanced for all functionalities in synchrony
and (2) between any two ticks, each party has a chance to observe the passing
of time through changes in behavior of functionalities. The ticked functionality
itself is free to interpret the ticks in any way it likes. Typically, the tick will
trigger a state change, e.g. new information becomes available to parties.

Definition 1 (RUC-emulation). Let π and φ be PPT protocols where π is
Ḡ-subroutine respecting. We say that π RUC-emulates φ with respect to shared
functionality Ḡ if for any PPT adversary A there exists a PPT adversary S such
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that for any Ḡ-externally constrained environment Z, we have that

EXECḠφ,S,Z ≈ EXECḠπ,A,Z .

Denote by ρφ→π the protocol obtained by replacing π in ρ by φ.

Theorem 1 (Universal composition for RUC). Let ρ, π, φ be PPT mul-
tiparty protocols where both φ and π are Ḡ-subroutine respecting, and where π
RUC-emulates φ. Then ρφ→π RUC-emulates ρ.

Proof. Since the execution model of RUC and hence also this proof is very
similar to the universal composition theorem in GUC, we focus here on the dif-
ferences, namely the restrictions in activation patterns. The proof is a reduction
of ρφ→π RUC-emulating ρ to π RUC-emulating φ by showing that any attack on
ρφ→π can be translated into an attack on φ. Assume for the sake of contradiction
that ρφ→π does not RUC-emulate ρ. In this case, there exists a tick-forwarding
adversary Dρ such that the ticking environment Z can distinguish the two ex-
ecutions. This tick-forwarding adversary Dρ can be split into a tick-forwarding
adversary Dπ interacting with π and the remaining tick-forwarding adversary D.
We will now argue that Z executing D and ρ is again a ticking environment in
our model, which concludes the proof. Since D is tick-forwarding, Z executing
D is still ticking all ticked functionalities as specified. To reason about Z execut-
ing ρ, observe that any possible message that a ticked functionality can receive
from an honest party can be attributed to a specific party P. For any party in
protocol ρ, we moreover know that it is activation-forwarding, meaning that any
activation of a party P in ρφ→π will result in an activation of the corresponding
dummy party in ρ. Therefore, if Z actives all parties of ρφ→π between ticks, then
Z executing ρ does so too. ut

2.2 Interpreting ticks

For now, the ticks do not have any meaning attached to them. The interpretation,
e.g. how many ticks it takes to complete which task, will depend on the concrete
functionality. Note that a system will contain different ticked functionalities,
and that the system description will typically omit concrete instantiations of
the ticks. Instead, only relations between the ticks of different functionalities
are prescribed. Examples could be that a message is transported “fast enough”
(message delay is less than the time it takes to perform some computation)
or that a computation is performed “slow enough” (computation time is greater
than message delay). Concrete delays etc. will then only be fixed once the system
is instantiated concretely.

This work focuses on two notions, bounded message delays and computa-
tional hardness, that we will describe in the following sections.

3 Communication Delay

In the context of communication, we interpret abstract time ticks in order to
model message transmission delays. That is, we model the fact that message
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transmission is never instantaneous and thus takes time. Moreover, we model
the different synchrony assumptions for communication channels in current lit-
erature. As a concrete example, we will study the secure message transmis-
sion functionality F`smt. Any implementation of an interactive functionality must
strictly speaking be in a F`smt(or similar) hybrid model and hence our model-
ing can be adapted to any interactive functionality. Notice that by interactive
functionalities we mean any functionality that transmits information between
parties, a task that is often done implicitly by UC ideal functionalities such as
those for secure computation.

Functionality F∆smt,delay

F∆smt,delay proceeds as follows, when parameterized by maximal delay ∆ > 0, sender
PS , receiver PR and adversary S. Internal variable t is initally set to 0, and flags
msg, released, done to ⊥.

Send: Upon receiving an input (Send, sid,PR,m) from party PS , do:
– If msg = ⊥, record m, set msg = >, and send (Sent, sid,PR, `(m)) to S.
– If msg = >, send (None, sid) to PS .

Receive: Upon receiving an input (Rec, sid, R) from PR, do:
– If released = ⊥ and done = ⊥, then send (None, sid) to PR.
– If released = > and done = ⊥, then msg = > as well and there exists a

recorded message m. Set done = > and send (Sent, sid,PS ,PR,m) to PR.
– If done = >, then send (done, sid) to PR.

Release message: Upon receiving an input (ok, sid,PS ,PR) from S, do:
– If msg = ⊥, then send (None, sid,PS ,PR) to S.
– If msg = > and released = ⊥, then set released = >.
– If released = >, then send (None, sid,PS ,PR) to S.

Tick: Upon receiving an input (Tick, sid) from S, do:
– If msg = ⊥, then send (None, sid,PS ,PR) to S.
– If msg = > and released = ⊥, then set t = t + 1. If now t = ∆, set

released = >. Then send (Ticked, sid) to S.
– If released = >, then send (None, sid,PS ,PR) to S.

Corrupt: Upon receiving an input (Corrupt, sid,P) from S where P ∈ {PS ,PR},
do:

– If P = PS and msg = ⊥, send (None, sid,PS ,PR) to S.
– If P = PS and msg = >, then there exists a recorded message m. Send

(Sent, sid,m,PS ,PR) to S.
– If P = PR and done = ⊥, send (None, sid,PS ,PR) to S.
– If P = PR and done = >, then there exists a recorded message m. Send

(Sent, sid,m,PS ,PR) to S.

Fig. 1. Ticked ideal functionality F∆smt,delay for secure message transmission with maxi-
mal message delay ∆.
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3.1 Secure Message Transmission with Delays

Secure message transmission (SMT) is the problem of securely sending a single
message m from a sender PS to a receiver PR. Secure means that the power of
an eavesdropper intercepting the channel is restricted to learning some leakage
`(m) on the message and delaying the message delivery. The standard formu-
lation of F`smt [14, 2019 version] assumes that message delivery can be delayed
infinitely by an adversary. Here, we want to add an upper bound on the message
delay. The exact constraints on this upper bound will determine whether a pro-
tocol operates over synchronous, semi-synchronous or asynchronous channels, as
discussed further in Section 3.2

In order to capture elapsed time according to our model, we add a ticks inter-
face to obtain a ticked ideal functionality. The functionality is parameterized by
a maximal delay ∆ > 0. Requiring ∆ > 0 models the fact that communication
always takes time. After a message is input to the functionality by the sender,
each tick will increase a counter. The message is released to the receiver no later
after at most ∆ ticks are counted or whenever the ideal adversary instructs the
functionality to release it4. However, a tick cannot directly trigger the activa-
tion of parties other than the adversary. Otherwise, we would be exposing the
elapsed time towards the partiesand implicitly synchronizing them. As a con-
sequence, the functionality cannot send the message to the receiver as in [14].
We solve this issue by requiring the receiver to actively query the functionality
for newly released messages. Finally, the adversary can adaptively request to
corrupt a party P ∈ {PS ,PR}, in which case they will learn the message if the
corresponding party knows it already. Note that this corruption behavior differs
crucially from Canetti’s formulation: Since message transmission is explicitly
taking time, adaptive corruptions at runtime are actually meaningful now. In
particular, it is no longer possible to first observe leakage on a sent message to
then corrupt the sender and change the message that was sent. The resulting
ideal functionality F∆smt,delay is shown in Fig. 1.

In principle, one can transform a UC-functionality also by adding a wrap-
per that buffers messages and handles ticks. Due to the differences in handling
adaptive corruption, we chose a standalone solution for this concrete example.

3.2 Modeling (Semi)-Synchronous Channels

Besides establishing that all messages must be delivered with a maximal delay
∆, our formulation of F∆smt,delay does not specify if it operates as a synchronous,
semi-synchronous or asynchronous channel. This modeling choice is made so that
this single formulation can capture all of these assumptions on communication
synchrony by imposing constraints of the maximal delay ∆. We obtain a chan-
nel satisfying each communication synchrony assumption by constraining ∆ as
follows:

4 The delay model could generalized even further by introducing two delay parameters
∆min and∆max to model that communication must take time. In that case, messages
are only forwarded after ∆min ticks were received.
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– Synchronous Channel, finite and publicly known ∆: a synchronous
channel is modeled by setting a finite ∆ > 0 and allowing all parties to learn
∆, which makes it possible for parties to determine whether a given message
was sent or not (since a message must be delivered within the known delay
∆).

– Semi-Synchronous Channel, finite but unknown ∆: a semi-synchronous
channel is modeled by setting a finite ∆ > 0 that is only known to the ad-
versary, which ensures parties that all messages will be eventually delivered
but does not allow them to explicitly distinguish a delayed message from a
dropped message (since they do not know the maximal delay ∆ after which
messages are guaranteed to be delivered).

– Asynchronous Channel, infinite ∆: an asynchronous channel is modeled
by setting ∆ =∞, which allows the adversary to never release messages sent
through F∆smt,delay (i.e. essentially dropping these messages).

In the synchronous and asynchronous cases, the constraints on ∆ simply
model the usual notions of synchronous and asynchronous channels. In the semi-
synchronous case, the constraints limit the way a protocol can use ∆, since no
information about it is given to honest parties, precluding them from setting
other parameters of the protocol relatively to a previously known ∆. We remark
that ∆ can potentially be chosen by the adversary itself or preset before exe-
cution starts, as long as the right constraints for the communication synchrony
assumption considered in the proof are obeyed (i.e. in the synchronous case the
adversarially chosen ∆ must be made public to the honest parties and in the
semi-synchronous case ∆ is not revealed to the honest parties). Notice that the
exact value of ∆ does not affect the behavior of honest parties in our model
because the honest parties cannot perceive the advance of abstract time (i.e. the
honest parties cannot tell when a tick happened).

4 Computational Delay

We will now introduce a concept for modeling sequential computation inside
the UC framework that does not suffer from degradation through composition
or adversarially chosen activation of parties. As an example, we will realize the
notion of a “time-lock puzzle” [38] in a composable fashion.

4.1 Modeling Time-Lock Puzzles

In a time-lock puzzle (TLP), the owner generates a computational puzzle that
outputs a message to the receiver when solved. The main property of the con-
struction is that none of the solvers can obtain the message from the puzzle
substantially faster than any other solvers, thus introducing problems that can-
not be parallelized.

To the best of our knowledge, this has not been formalized in the UC frame-
work before and there are multiple pitfalls that one has to avoid when formalizing
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TLPs. First, UC allows the environment to activate parties at its will through-
out the session and it might be that an honest party does not even get activated
before the puzzle was solved by the adversary. Even worse, such a modeling
might permit that the environment can solve the puzzle in another session, so
even by enforcing regular activation inside a session (as in the previous section)
or equal computational powers between the iTM modeling the parties as well as
the adversary one cannot achieve the aforementioned notion.

Ticked ideal functionalities help us to overcome both issues, and the resulting
ticked time lock puzzle ideal functionality Ftlp is shown in Fig. 2. It can easily be
seen that the functionality fulfills our definitions as outlined before. First, any
new instance of a puzzle can be tied to a specific party, namely the owner Po,
who can initialize the puzzle by providing a number of computation steps Γ and
a message m. The functionality outputs a puzzle puz = (st0, Γ, tag) consisting
of an initial state st0, the number of steps Γ needed for reaching a final state and
tag tag used to encode the message. After every tick, each party can use a puzzle
state sti to call the Solve interface, which will append the next state sti+1 to a
list of messages delivered to the party after the next tick. By buffering messages
containing the next states, we essentially limit all parties’ (and the environment’s
and adversary’s) ability to attempt performing more than one solving step per
puzzle. Notice that any party who tries to call solve more than once per tick
for a puzzle would have to guess the next state sti+1 in order to perform the
second call, which can only be done with negligible probability. Once the final
state stΓ is reached, parties can call the Get Message interface in order to
retrieve the message associated with the puzzle by presenting the puzzle puz

and the final state stΓ obtained through successive calls to Solve. Finally, the
environment can at any point send a comp-tick command which will allow each
party to “tick” again and obtain a new value, which may get it closer to the
solution of the puzzle.

Observe that this model does neither restrict the actual computational power
of the environment nor any other iTM. The environment can activate any party
arbitrarily often, as long as the honest parties also occasionally can have the
ability to access the restricted resource. Care must also taken to allow limited
ideal adversarial control over the functionality’s answers to queries to Solve
containing undefined states and queries to Get Message containing undefined
(puz, st) tuples. While the adversary is allowed to provide an arbitrary sequence
of states st0, . . . , stΓ and an arbitrary tag tag, the functionality enforces the fact
that, once defined, the same sequence of steps will be deterministically obtained
by all honest parties invoking Solve. However, queries to Ftlp involving undefined
states and puzzles are answered with messages provided by the ideal adversary.
This is necessary for capturing adversaries that construct different versions of a
puzzle departing from different initial states of the original sequence st0, . . . , stΓ
or from an arbitrary state that eventually leads to this sequence.
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Functionality Ftlp

Ftlp is parameterized by a set of parties P, an owner Po ∈ P, a computational
security parameter τ , a state space ST and a tag space T AG. In addition to P the
functionality interacts with an adversary S. Ftlp contains initially empty lists steps
(honest puzzle states), omsg (output messages), in (inbox) and out (outbox).

Create puzzle: Upon receiving the first message (CreatePuzzle, sid, Γ,m) from Po
where Γ ∈ N+ and m ∈ {0, 1}τ , proceed as follows:

1. If Po is honest sample tag
$← T AG and Γ + 1 random distinct states

stj
$← {0, 1}τ for j ∈ {0, . . . , Γ}. If Po is corrupted, let S provide values

tag ∈ T AG and Γ + 1 distinct values stj ∈ ST .
2. Append (st0, tag, stΓ ,m) to omsg, append (stj , stj+1) to steps for j ∈
{0, . . . , Γ − 1}, output (CreatedPuzzle, sid, puz = (st0, Γ, tag)) to Po and
S. Ftlp stops accepting messages of this form.

Solve: Upon receiving (Solve, sid, st) from party Pi ∈ P with st ∈ ST , if there
exists (st, st′) ∈ steps, append (Pi, st, st

′) to in and ignore the next steps. If
there is no (st, st′) ∈ steps, proceed as follows:

– If Po is honest, sample st′
$← ST .

– If Po is corrupted, send (Solve, sid, st) to S and wait for answer
(Solve, sid, st, st′).

Append (st, st′) to steps and append (Pi, st, st
′) to in.

Get Message: Upon receiving (GetMsg, sid, puz, st) from party Pi ∈ P with st ∈
ST , parse puz = (st0, Γ, tag) and proceed as follows:

– If Po is honest and there is no (st0, tag, st,m) ∈ omsg, append
(st0, tag, st,⊥) to omsg.

– If Po is corrupted and there exists no (st0, tag, st,m) ∈ omsg,
send (GetMsg, sid, puz, st) to S, wait for S to answer with
(GetMsg, sid, puz, st,m) and append (st0, tag, st,m) to omsg.

Get (st0, tag, st,m) from omsg and output (GetMsg, sid, st0, tag, st,m) to Pi.
Output: Upon receiving (Output, sid) by Pi ∈ P, retrieve the set Li of all entries

(Pi, ·, ·) in out, remove Li from out and output (Complete, sid, Li) to Pi.
Tick: Upon receiving (comp-tick, sid) from S, set out ← in, set in = ∅ and send

(comp-ticked, sid) to S.

Fig. 2. Functionality Ftlp for time-lock puzzles.

5 Constructing Time-Lock Puzzles in UC

The functionality given in Fig. 2 from Section 4 describes how we ideally model
a TLP in our framework. We will now instantiate Ftlp departing from the well-
known construction by Rivest et al. [38]. In order to obtain a UC-secure protocol,
we will first model the assumption that underpins Rivest et al.’s construction
under our notion of sequential computation with ticks. Moreover, we will resort
to a global random oracle, which turns out to be necessary for UC-realizing Ftlp

as discussed later in this section.
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The TLP construction of Rivest et al. [38] is based on the assumption that
it is hard to compute successive squarings of an element of (Z/NZ)

×
(i.e. the

group of primitive residues modulo N) with a large N in less time than it takes
to compute each of the squarings sequentially, unless the factorization of N is

known. In other words, for a random element g
$← (Z/NZ)

×
and a large N whose

factorization is unknown, this assumptions says that it is hard to compute g2Γ

in less time than it takes to compute Γ sequential squarings g2, g22

, g23

, . . . , g2Γ .
On the other hand, if N = pq is generated following the key generation algorithm
of the RSA cryptosystem, one obtains a trapdoor (i.e. the order of (Z/NZ)

×
)

φ(N) = (p − 1)(q − 1) that allows for fast computation of g2Γ requiring two
exponentiations: first compute t = 2Γ mod φ(N) and then gt. Hence, a TLP
encoding a message m ∈ (Z/NZ)

×
with a number of steps Γ can be generated by

a party who knows N = pq, p, q by sampling a random g
$← (Z/NZ)

×
, computing

t = 2Γ mod φ(N), g2Γ = gt and mg2Γ , arriving at a puzzle puz = (g, Γ,mg2Γ ).
From the assumption of Rivest et al., it follows that any party must compute

Γ sequential squarings departing from g in order to obtain g2Γ and compute

m = mg2Γ g−2Γ .

In employing Rivest et al.’s time-lock assumption to UC-realize Ftlp we face
an important challenge: even if the environment is computationally constrained
in a session, it can use the representation of (Z/NZ)

×
(i.e. N) to compute all Γ

squarings needed to obtain g2Γ from g across multiple sessions. Hence, it would
be impossible to construct a simulator for a protocol realizing Ftlp, since the
environment would be able to immediately extract the message encoded in the
puzzle. Notice that an environment that can immediately solve a TLP makes it
impossible for the simulator to provide a TLP containing a random message and
later equivocate the opening of this TLP so that it yields an arbitrary message
obtained from Ftlp. In order to address this issue, we need to model this time-
lock assumption using our notion of sequential computation with ticks, which will
limit the environment’s power for computing squarings of elements of (Z/NZ)

×
.

5.1 Modeling Rivest et al.’s Time-Lock Assumption [38]

We describe in Fig. 3 an ideal functionality Frsw that captures the hardness
assumption used by Rivest et al. [38] to build a time-lock puzzle protocol. This
functionality essentially treats group (Z/NZ)

×
as in the generic group model [40]

and only gives handles to the group elements to all parties. In order to perform
operations, the parties then need to interact with the functionality. They can ask
for any number of operations to be performed between two computational ticks.
However, the outcome of the operation (i.e. the handle of the resulting group
element) will only be released after the next computational tick occurs. However,
a special owner party Po who initializes Frsw receives a trapdoor td that allows
it to perform arbitrary operations on group elements. Upon learning td any
party gains the power to perform arbitrary operations in Frsw but parties who
do not know td are restricted to sequential operations and have no information
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Functionality Frsw

Frsw is parameterized by a set of parties P, an owner Po ∈ P, an adversary S and a
computational security parameter τ and a parameter N ∈ N+. Frsw contains a map
group which maps strings el ∈ {0, 1}τ to N as well as maps in and out associating
parties in P to a list of entries from ({0, 1}τ )2 or ({0, 1}τ )3. The functionality
maintains the group of primitive residues modulo N with order φ(N) denoted as
(Z/NZ)×.

Create Group: Upon receiving the first message (Create, sid) from Po:
1. If Pi is corrupted then wait for message (Group, sid, N, φ(N)) from S with

N ∈ N+, N < 2τ and store N,φ(N).
2. If Po is honest then sample two random distinct prime numbers p, q of

length approximately τ/2 bits according to the RSA key generation proce-
dure. Set N = pq and φ(N) = (p− 1)(q − 1).

3. Set td = φ(N) and output (Created, sid, td) to Po.
Random: Upon receiving (Rand, sid, td′) from Pi ∈ P, if td′ 6= td, send

(Rand, sid, Invalid) to Pi. Otherwise, sample el
$← {0, 1}τ and g

$← (Z/NZ)×,
add (el, g) to group and output (Rand, sid, el) to Pi.

GetElement: Upon receiving (GetElement, sid, td′, g) from Pi ∈ P, if g /∈
(Z/NZ)× or td′ 6= td, send (GetElement, sid, td′, q, Invalid) to Pi. Otherwise,
if there exists an entry (el, g) in group then retrieve el, else sample a random
string el and add (el, g) to group. Output (GetElement, sid, td′, g, el) to Pi.

Power: Upon receiving (Pow, sid, td′, el, x) from Pi ∈ P with x ∈ Z, if td′ 6= td or
(el, a) 6∈ group, output (Pow, sid, td′, el′, x, Invalid) to Pi. Otherwise, proceed:
1. Convert x ∈ Q into a representation x ∈ Zϕ(N). If no such x exists in Zϕ(N)

then output (Pow, sid, td′, el′, x, Invalid) to Pi.
2. Compute y ← ax mod N . If (el′, y) 6∈ group then sample el′

$← {0, 1}τ
randomly but different from all group entries and add (el′, y) to group.

3. Output (Pow, sid, td, el, x, el′) to Pi.
Multiply: Upon receiving (Mult, sid, el1, el2) from Pi ∈ P:

1. If (el1, a) 6∈ group or (el2, b) 6∈ group, then output (Invalid, sid) to Pi.
2. Compute c ← ab mod N . If (el3, c) 6∈ group then sample el3

$← {0, 1}τ
randomly but different from all group entries and add (el3, c) to group.

3. Add (Pi, (el1, el2, el3)) to in and return (Mult, sid, el1, el2) to Pi.
Invert: Upon receiving (Inv, sid, el) from some party Pi ∈ P:

1. If (el, a) 6∈ group then output (Invalid, sid) to Pi.
2. Compute y ← a−1 mod N . If (el′, y) 6∈ group then sample el′

$← {0, 1}τ
randomly but different from all group entries and add (el′, y) to group.

3. Add (Pi, (el, el′)) to in and return (Inv, sid, el) to Pi.
Output: Upon receiving (Output, sid) by Pi ∈ P, retrieve the set Li of all entries

(Pi, ·) in out, remove Li from out and output (Complete, sid, Li) to Pi.
Tick: Upon receiving (comp-tick, sid) from S, set out ← in, set in = ∅ and send

(comp-ticked, sid) to S.

Fig. 3. Functionality Frsw capturing the time lock assumption of [38].
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about the group representation. In particular, in case of an honestly generated
group the order will remain completely hidden from the adversary. Finally, this
functionality is treated as a global functionality in order to make sure that a
simulator does not obtain an unreal advantage in computing the solution of a
TLP without waiting for enough ticks.

We remark that our modeling of this time-lock assumption is corroborated
by a recent result [39] showing that delay functions (such as TLP) based on
cyclic groups that do not exploit any particular property of the underlying group
cannot be constructed if the order is known. It is clear that we cannot reveal
any information about the group structure to the environment, since it could use
this information across multiple sessions to solve TLPs quicker than the parties.
Hence, in order to make it possible to UC-realize Ftlp based on cyclic groups
(and in particular the time-lock assumption of Rivest et al. [38]), we must model
the underlying group in such a way that both its structure and its order are
hidden from the environment and the parties.

5.2 Realizing Ftlp in the Frsw,GrpoRO-hybrid model

Using Rivest et al.’s time-lock assumptions modeled in Frsw following our se-
quential computation with ticks framework, we can instantiate Rivest et al.’s
original time-lock puzzle without running into the issues described before. How-
ever, we now face a different issues: 1. because all parties are forced by Frsw to do
sequential computation, a simulator for Rivest et al.’s construction would not be

able to extract m from mg2Γ ; 2. because Frsw deterministically assigns handles

to each group element, a simulator would not be able to equivocate mg2Γ in such
a way that it yields an arbitrary message m′. In order to address these issues,
we must resort to a random oracle. More specifically, we work in the restricted
programmable and observable global random oracle model GrpoRO of [13] (see
Fig. 12 in Appendix A for the description). It turns out that a programmable
random oracle is indeed necessary for UC-realizing Ftlp, since this functionality
implies coin flipping with output independent abort as shown in Section 6, which
is impossible without a programmable random oracle as we discuss in Section 7.

We present Protocol πtlp in Figure 4. The main idea behind this protocol is to
follow Rivest et al.’s construction to compute puz = (el0, Γ, tag) while encoding
the initial random group element el0, the message m, the final group element
elΓ and the trapdoor td for Frsw in a tag generated with the help of the random
oracle. This tag is generated in such a way that a party who solves the puzzle
can retrieve td,m and test whether the tag is consistent with these values and
with initial and final group elements el0, elΓ . More specifically, the tag tag =
(tag2, tag2) is generated by computing h1 = H1(el0|elΓ ), tag1 = h1 ⊕ (m|td)
and tag2 = H2(h1|m|td), where H1(·), H2(·) are random oracles. A party who
solves this puzzle obtaining elΓ by performing Γ sequential squarings of el0 can
retrieve h1, obtain (m|td) and check that these values are consistent with h2.
Notice that this also allows a simulator who observes queries to random oracles
H1(·), H2(·) to extract all parameters of a puzzle (including the message) and
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Protocol πtlp

Protocol πtlp is parameterized by a security parameter τ , a state space ST = {0, 1}τ
and a tag space T AG = {0, 1}τ × {0, 1}τ . πtlp is executed by an owner Po and a
set of parties P interacting among themselves and with functionalities Frsw, GrpoRO1

(an instance of GrpoRO with domain {0, 1}2∗τ and output size {0, 1}2∗τ ) and GrpoRO2

(an instance of GrpoRO with domain {0, 1}3∗τ and output size {0, 1}τ ).

Create Puzzle: Upon receiving input (CreatePuzzle, sid, Γ,m) for m ∈ {0, 1}τ , Po
proceeds as follows:
1. Send (Create, sid) to Frsw obtaining (Created, sid, td).
2. Send (Rand, sid, td) to Frsw, obtaining (Rand, sid, el0).
3. Send (Pow, sid, td, el0, 2

Γ ) to Frsw, obtaining (Pow, sid, td, el0, 2
Γ , elΓ ).

4. Send (Hash-Query, (el0|elΓ )) to GrpoRO1, obtaining (Hash-Confirm, h1).
5. Send (Hash-Query, (h1|m|td)) to GrpoRO2, obtaining (Hash-Confirm, h2).
6. Compute tag1 = h1 ⊕ (m|td) and tag2 = h2, set tag = (tag1, tag2) and

output (CreatedPuzzle, sid, puz = (el0, Γ, tag)) to Po.
Solve: Upon receiving input (Solve, sid, el), a party Pi ∈ P, send (Mult, sid, el, el)

to Frsw. If Pi obtains (Invalid, sid), it aborts.
Get Message: Upon receiving (GetMsg, puz, el) as input, a party Pi ∈ P parses

puz = (el0, Γ, tag), parses tag = (tag1, tag2) and proceeds as follows:
1. Send (Hash-Query, (el0|el)) to GrpoRO1, obtaining (Hash-Confirm, h1).
2. Compute (m|td) = tag1 ⊕ h1 and send (Hash-Query, (h1|m|td)) to
GrpoRO2, obtaining (Hash-Confirm, h2).

3. Send (Pow, sid, td, el0, 2
Γ ) to Frsw, obtaining (Pow, sid, td, el0, 2

Γ , elΓ ).
4. Send (IsProgrammed, (el0|el)) and (IsProgrammed, (h1|m|td))

to GrpoRO1 and GrpoRO2, obtaining (IsProgrammed, b1) and
(IsProgrammed, b2), respectively. Abort if b1 = 0 or b2 = 0,.

5. If tag2 = h2 and el = elΓ , output (GetMsg, sid, el0, tag, el,m). Other-
wise, output (GetMsg, sid, el0, tag, el,⊥).

Output: Upon receiving (Output, sid) as input, a party Pi ∈ P sends (Output, sid)
to Frsw, receives (Complete, sid, Li) in response and outputs it.

Fig. 4. Protocol πtlp realizing time-lock puzzle functionality Ftlp in the Frsw,GrpoRO-
hybrid model.

check whether it is a valid puzzle. A simulator who also has the additional (and
provably necessary) power of programming the output of these random oracles
can deliver an arbitrary message m′ to a party who solves the puzzle.

We formally state the security of πtlp in Theorem 2.

Theorem 2. Protocol πtlp UC-realizes Ftlp in the GrpoRO,Frsw-hybrid model with
computational security against a static adversary. Formally, there exists a sim-
ulator S such that for every static adversary A, and any environment Z, the
environment cannot distinguish πtlp composed with GrpoRO,Frsw and A from S
composed with Ftlp. That is:

IDEALFtlp,S,Z ≈c HYBRID
GrpoRO,Frsw

πtlp,A,Z .
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Proof. In order to prove this theorem we construct a simulator S that interacts
with the functionality Ftlp, the environment Z and an internal copy of the ad-
versary A, towards which it executes πtlp and simulates GrpoRO,Frsw. We describe
S separately for two important cases: Corrupted Po in Figure 5 and Honest Po
in Figure 6. In the case of a corrupted Po, we focus on the steps necessary for
dealing with an adversary A who corrupts Po and leave the steps necessary for
dealing with an A who also corrupts parties in P to the case of an honest Po.

In the case of a corrupted Po, the simulator S must extract the message
m from a puzzle puz = (el0, Γ, tag = (tag1, tag2)) and deliver it to Ftlp if
puz is valid. In order to do this, S observes the queries to GrpoRO2 and finds
a query (Hash-Query, (h1|m|td)) from A to GrpoRO2 for which there was a
response (Hash-Confirm, tag2), i.e. a query matching tag2. Using td and el0,
S can compute elΓ with the help of Frsw. Finally, the simulator checks GrpoRO1

returns (Hash-Confirm, h1) when queried with (Hash-Query, (el0|elΓ )). If
this check succeeds S sends (CreatePuzzle, sid, Γ,m) to Ftlp. This procedure works
because S performs exactly the same computation that an honest party would
in order to obtain and verify the solution to this puzzle, with the difference that
it can perform all steps without waiting for the next tick, since it extracts td

from tag2.
In the case of an honest Po, there is no need to extract the message from

a puzzle. Instead, in this case we focus on dealing with an adversary A that
corrupts parties in P. Now the simulator S must provide a puzzle toA containing
a random message in such a way that later on it can simulate a solution of this
puzzle yielding an arbitrary message upon learning the ideal puzzle solution
from Ftlp. The main point to be observed in this case, is that S provides a
puzzle puz = (el0, Γ, tag) with a random tag that remains indistinguishable
from an honestly generated puzzle until the moment A obtains elΓ from Frsw

after performing Γ sequential squarings. At this point, A would be able to query
GrpoRO1 and GrpoRO2 and find out that this puzzle is invalid. However, since S
sends the ticks to Ftlp, it can learn m immediately after sending the last of
the Γ ticks needed for solving the puzzle and before any other party learns the
outputs of operations performed with Frsw (i.e. learning elΓ ). This allows S
to program GrpoRO1 and GrpoRO2 with negligible probability of failure, since the
probability GrpoRO1 has been queried on (el0|elΓ ) is negligible before the elΓ
randomly sampled by Frsw is known by other parties. S can also program GrpoRO2

with negligible probability of failure, since the probability of GrpoRO2 having been
queried on (h1|m|td) before these values become known is also negligible. ut
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Simulator S for the case of a corrupted Po in πtlp

Simulator S interacts with environment Z, functionalities Ftlp,GrpoRO1,GrpoRO2,Frsw

and an internal copy of an A corrupting Po. S forwards all messages between A
and Z. Moreover, S forwards all queries to GrpoRO1, GrpoRO2 and Frsw unless explicitly
stated, keeping lists of all such requests, which are updated every time S checks
these lists by appending the Qs set of request obtained by sending (Observe, sid) to
GrpoRO1 and GrpoRO2. All queries to GrpoRO1 or GrpoRO2 made by S go through dummy
honest parties so that the queries are not marked as illegitimate. S keeps a initially
empty lists tag-tag, el-st, omsg.

Create Puzzle: Upon receiving a puzzle puz from A, S proceeds as follows to
check if the tag is valid with respect to the puzzle and extract the message m:
1. Parse puz = (el0, Γ, tag), parse tag = (tag1, tag2) and check that there

exists a request (Hash-Query, (h1|m|td)) fromA to GrpoRO2 for which there
was a response (Hash-Confirm, tag2).

2. Send (Pow, sid, td, el0, 2
Γ ) to Frsw, obtaining (Pow, sid, td, el, 2Γ , elΓ ).

Check that there exists a request (Hash-Query, (elΓ |elΓ )) from A to
GrpoRO1 for which there was a response (Hash-Confirm, h1).

3. Check that (m|td) = tag1 ⊕ h1.
If any of the checks above fail, it means that verifying the opening of this puzzle
will always fail, so S sets m = ⊥. S proceeds as follows to simulate the creation
of a puzzle with message m:

1. For j ∈ {0, . . . , Γ}, sample stj
$← {0, 1}τ , add (elj , stj) to el-st and send

(Pow, sid, td, elj , 2) to Frsw, obtaining (Pow, sid, td, sti, 2, elj+1).

2. Sample tag
$← T AG, append (tag, tag) to tag-tag and append

(st0, tag, stΓ ,m) to omsg.
3. Send (CreatePuzzle, sid, Γ,m) to Ftlp and provide st0, . . . , stΓ , tag.

Solve: Upon receiving (Solve, sid, st) from Ftlp, S proceeds as follows:

– If there is (el, st) ∈ el-st, send (Pow, sid, td, el, 2) to Frsw, obtaining
(Pow, sid, td, st, 2, el′).

– If there is no (el, st) ∈ el-st, send (Rand, sid) to Frsw, obtaining
(Rand, sid, el′).

Sample st′
$← {0, 1}τ and add (el′, st′) to el-st. Finally, send (Solve, sid, st, st′)

to Ftlp.
Get Message: Upon receiving (GetMsg, sid, puz, st) from Ftlp, S parses puz =

(st0, Γ, tag) and proceeds as follows:
1. Check that there exist entries (el0, st0) and (el, st) in el-st and (tag, tag)

in tag-tag, using el0, el, tag for the remaining checks.
2. Check that the tag tag = (tag1, tag2) is valid with respect to the

puzzle puz and the solution el by proceeding as in the protocol: Send
(Hash-Query, (el0|el)) to GrpoRO1, obtain(Hash-Confirm, h1), compute
(m|td) = tag1 ⊕ h1, send (Hash-Query, (h1|m|td)) to GrpoRO2, ob-
tain (Hash-Confirm, h2), send (Pow, sid, td, el0, 2

Γ ) to Frsw, obtaining
(Pow, sid, td, st0, 2

Γ , elΓ ). Check that tag2 = h2 and el = elΓ .
If the above checks are successful, S sends (GetMsg, sid, st0, tag, st,m) to Ftlp.
Otherwise, S sends (GetMsg, sid, st0, tag, st,⊥) to Ftlp.

Ticks: S sends tick messages to all functionalities when activated if all honest
parties have been activated after the last tick.

Fig. 5. Simulator S for the case of a corrupted Po in πtlp .
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Simulator S for the case of an honest Po in πtlp

Simulator S interacts with environment Z, functionalities Ftlp,GrpoRO1,GrpoRO2,Frsw

and an internal copy of an A corrupting one or more parties Pi ∈ P \ Po. S
forwards all messages between A and Z. Moreover, S forwards all queries to GrpoRO1,
GrpoRO2 and Frsw unless explicitly stated, keeping lists of all such requests. However,
for every query (IsProgrammed,m) to GrpoRO1 or GrpoRO2, S always answers with
(IsProgrammed, 0). S keeps an initially empty lists el-st, omsg, next.

Create Puzzle: Upon receiving (CreatedPuzzle, sid, puz = (st0, Γ, tag)) from Ftlp,
S proceeds as follows to create a puzzle (el0, Γ, tag) that can be later pro-
grammed to yield an arbitrary message obtained from Ftlp:

1. Sample a random m
$← {0, 1}τ and tag1

$← {0, 1}2τ and tag2
$← {0, 1}τ .

2. Send (Create, sid) to Frsw obtaining (Created, sid, td). Send (Rand, sid) to
Frsw, obtaining (Rand, sid, el0). Send (Pow, sid, td, el, 2Γ ) to Frsw, obtaining
(Pow, sid, td, el, 2Γ , elΓ ).

3. Append (el0, st0) to el-st, set tag = (tag1, tag2), append (tag, tag) to
tag-tag and output (CreatedPuzzle, sid, puz = (el0, Γ, tag)).

Solve: If A makes a query (Mult, sid, el, el) to Frsw on behalf of Pi ∈ P \ Po such
there exists an entry (el, st) in el-st, S proceeds as follows:
1. Send (Pow, sid, td, el, 2) to Frsw, obtaining (Pow, sid, td, el, 2, el′).
2. If there is no entry (el′, st′) in el-st, append (el′, st) to next and send

(Solve, sid, st) to Ftlp on behalf of Pi.
Get Message: Forward queries to GrpoRO1, GrpoRO2 and Frsw from A on behalf of

corrupted parties Pi ∈ P \ Po, allowing A to perform the necessary steps
for GetMessage. However, for every query (IsProgrammed,m) to GrpoRO1 or
GrpoRO2, S always answers with (IsProgrammed, 0).

Ticks: S sends tick messages to all functionalities when activated if all honest
parties have been activated after the last tick. Immediately after each tick, if
S sent a query (Solve, sid, st) to Ftlp before this tick, it sends (Output, sid) to
Ftlp on behalf of each corrupted PiP \ Po, obtaining (Output, sid, Li). For each
Li and each entry (Pi, st, st′) ∈ Li, S proceeds as follows:

1. If there exists an entry (el′, st) in next, remove (el′, st) from next and
append (el′, st′) to el-st.

2. If there is an entry (elΓ , st
′) in el-st, it means A should be able to execute

GetMessage and obtain message m in puzzle puz when activated after this
tick. S proceeds as follows to program the global random oracles so that
executing GetMessage with (el0, Γ, tag), elΓ will return m:

(a) Send (GetMsg, sid, puz, st′) to Ftlp, obtaining (GetMsg, sid, puz, st′,m).
(b) Compute h1 = tag1 ⊕ (m|td) and send (Program-RO, (el0|elΓ ), h1)

to GrpoRO1. Since elΓ is randomly chosen by Frsw and still unknown
to A, Z or any other party at this point, the probability that this
programming fails in negligible.

(c) Send (Program-RO, (h1|m|td)), h2) to GrpoRO2. Since h1 is randomly
chosen by S and still unknown to A, Z or any other party at this point,
the probability that this programming fails in negligible.

Fig. 6. Simulator S for the case of an honest Po in πtlp.
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6 Secure Two-Party Computation with Output-
Independent Abort

We now discuss how to compile any 2PC with secret-shared outputs into a 2PC
with output-independent abort using homomorphic commitments with delayed
opening. We focus on the two-party setting, although our construction could be
generalized to the multi-party setting as we will describe.

6.1 Functionalities

We begin by describing the functionalities that are used in this section and which
have not appeared before when modeled with respect to time:

– The functionality F∆,δ2pcoia (Fig. 7) for Output-Independent 2PC.

– The functionality F∆2pcsso (Fig. 8 and Fig. 9) for secure 2PC with secret-shared
output which naturally arises from existing protocols.

– The functionality F∆,δahcom (Fig. 10) for homomorphic commitments with de-
layed non-interactive openings that naturally arises from homomorphic com-
mitments that are combined with Ftlp.

An additional functionality Fct for coin-flipping with abort in the timed
message model appears in Appendix A.

All of the functionalities assume that one of the parties is honest while the
other is corrupted, but this is only for simplicity of exposition of the functional-
ities. We choose to write functionalities where the parties have to send messages
to trigger “regular behavior” instead of giving full one-sided control to S as
this appears more natural. Messages to dishonest parties, on the other hand, go
directly to S that can act upon them.

2PC with Output-Independent Abort. The functionality F∆,δ2pcoia as outlined
in Fig. 7 shows how Output-Independent Abort for 2PC can be modeled. Similar
to other 2PC functionalities, it allows parties to fix the circuit C to be computed,
provide inputs, compute with these inputs and then output the result of the
computation. In comparison to regular UC functionalities, there are two distinct
differences how this is handled:

– Parties using F∆,δ2pcoia do not receive messages from F∆,δ2pcoia in a push-model
where they get activated upon each new message, but instead they have to
pull messages from the functionality (which was also already the case for
F∆smt,delay). The reasoning behind this is that the functionality is ticked and
it might happen that multiple messages arrive to multiple receivers in the
same “tick” round. But upon receiving a message from F∆,δ2pcoia, a party may
not return activation to it. This means that another “tick” may happen
before another message gets delivered, which would break the guaranteed
delivery requirement. A pull-model is a solution as each party is guaranteed
to get activated between any two “ticks” in our model, allowing it to re-
ceive messages if it wants to. We will also use this modeling for the other
functionalities in this section.
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Functionality F∆,δ2pcoia

The functionality runs with parties P1,P2 and an adversary S who may corrupt
either of the parties. It is parameterized by parameters ∆, δ ∈ N+. The computed
circuit is defined over F2. The functionality internally has two lists M,Q and flags
output, noabort← ⊥.

Init: On input (Init, sid, C) by Pi ∈ {P1,P2}:
1. Add (∆,mid, sid,P3−i, (Init, C)) to Q for an unused mid.
2. If both parties sent (Init, sid, C) then store C locally.
3. Send (Init, sid,Pi, C,mid) to S.

Input: On first input (Input, sid, i, xi) by Pi for i ∈ {1, 2}:
1. Add (∆,mid, sid,P3−i, (Input,Pi)) to Q for an unused mid.
2. Accept xi as input for Pi.
3. Send (Input, sid,Pi, xi,mid) to S if Pi is corrupted and (Input, sid,Pi,mid)

otherwise.
Computation: On first input (Compute, sid) by Pi ∈ {P1,P2} and if both x1, x2

were accepted:
1. Add (∆,mid, sid,P3−i, (Compute)) to Q for an unused mid.
2. If both parties sent (Compute, sid) compute y = C(x1, x2) and store y.
3. Send (Compute, sid,Pi,mid) to S.

Output: On first input (Output, sid) by both parties and if y has been stored:
1. Add (∆+ δ,mid, sid,Pj , (Output, y)) to Q for the honest party Pj and for

some unused mid.
2. Set output← mid and send (OutputOrAbort, sid,mid) to S.

Fetch Message: Upon receiving (FetchMsg, sid) by P ∈ {P1,P2} retrieve the set
L of all entries (P, sid, ·) inM, remove L fromM and return (FetchMsg, sid, L)
to P.

Scheduling: On input of S:
– If S sent (Deliver, sid,mid) and mid 6= output then remove each

(cnt,mid, sid,P,m) from Q and add (P, sid,m) to M.
– If S sent (DeliverOrAbort, sid,mid, f) and mid = output 6= ⊥:

if f = ⊥ then replace (cnt,mid, sid,Pi, (Output, y)) in Q with
(cnt,mid, sid,Pi, (NoOutput)).

if f = > then leave the entry in Q unchanged.
Then set noabort← >, output← ⊥ and send (Output, sid, y) to S.

– If S sent (Abort, sid) and noabort = ⊥ then add (P1, sid,Abort),
(P2, sid,Abort) toM and ignore all further calls to the functionality except
to Fetch Message.

Tick: Upon receiving (Tick, sid) from S:
1. For each query (0,mid, sid,P,m) ∈ Q:

(a) Remove (0,mid, sid,P,m) from Q.
(b) Add (P, sid,m) to M.

2. Replace each (cnt,mid, sid,P,m) in Q with (cnt− 1,mid, sid,P,m).

Fig. 7. The F∆,δ2pcoia Functionality for 2PC with Output-Independent Abort.
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– The functionality does not directly deliver messages to receivers, but in-
stead internally queries them first. This is because it is necessary to use
communication using F∆smt,delay, which means that the adversary may arbi-
trarily control how messages get delivered, and he may reorder delivery at
his will within the maximal delay that F∆smt,delay permits. We also allow the
adversary to influence delivery “adaptively”, meaning depending on other
events outside of F∆,δ2pcoia’s scope. We could theoretically model this freedom
of S as macros in the functionality’s definition, but believe that this explicit
modeling is better suited to our framework.

Towards achieving this pull-model and adversarial reordering of messages, F∆,δ2pcoia

has two internal lists Q andM. Q contains all the buffered messages which can
be delivered in the future, while messages in M can be retrieved right now by
the respective receivers. When Tick is called F∆,δ2pcoia will then move all messages
from Q toM which get available in the next round, and which can be retrieved
via the interface Fetch Message.
S may use Scheduling to prematurely move messages to M by sending a

special message that contains the message id mid — that means that S gets
notified about every new mid whenever a message is added to Q which S can
influence. S may also cancel the delivery of messages, though this will lead to
a break-down of the functionality as F∆smt,delay does not allow to drop messages
altogether.

Additionally, we let Scheduling be responsible to realize the output-independent
abort property of F∆,δ2pcoia. To see why this is the case, observe that once both
parties activate the output phase the functionality stores the message id output

that represents the output in Q. The adversary can then send a message Deliv-
erOrAbort and will thereby learn the output y only after deciding if the honest
party obtains it as well: once it allows delivery or denies it via DeliverOrAbort
then the Abort command cannot be used anymore. Furthermore, DeliverOrAbort
can only be called once and thereby fixes the message that will eventually be
delivered to the honest party in Q. Once this decision was made, S can then
adjust the delivery time via Deliver as before. If S never calls DeliverOrAbort
then both S and the honest party learn the output at the same time. In that
case, even after calling Abort the honest party can still read the output fromM.

Two-Party Computation with Secret-Shared Output. In Fig. 8 and Fig. 9
we describe a 2PC functionality F∆2pcsso which will be the foundation for our

compiler that will realise F∆,δ2pcoia. F∆2pcsso has the same initialization, input and
computation interfaces as other 2PC functionalities. The two main differences
between a standard 2PC functionality and F∆2pcsso: first, F∆2pcsso is again a “ticked”

functionality, meaning that it similarly to F∆,δ2pcoia considers a 2PC protocol that

implements communication via F∆smt,delay. Second, F∆2pcsso does not directly output
the outcome of the computation. Instead, it reveals a secret-sharing of it to both
parties. The parties can then manipulate shares using the functionality, generate
additional random shares or reconstruct them.
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Functionality F∆2pcsso (Computation, Message Handling)

The functionality interacts with two parties P1,P2 and an adversary S which may
corrupt either of the parties. The functionality will internally have two lists M,Q.

Init: On input (Init, sid, C) by Pi ∈ {P1,P2}:
1. Add (∆,mid, sid,P3−i, (Init, C)) to Q for an unused mid.
2. If both parties sent (Init, sid, C) then store C locally and let m be the length

of the output of C.
3. Send (Init, sid,Pi, C,mid) to S.

Input: On first input (Input, sid, i, xi) by Pi for i ∈ {1, 2}:
1. Add (∆,mid, sid,P3−i, (Input,Pi)) to Q for an unused mid.
2. Accept xi as input for Pi.
3. Send (Input, sid,Pi, xi,mid) to S if Pi is corrupted and (Input, sid,Pi,mid)

otherwise.
Computation: On first input (Compute, sid) by Pi ∈ {P1,P2} and if both x1, x2

were accepted:
1. Add (∆,mid, sid,P3−i, (Compute)) to Q for an unused mid.
2. If both parties sent (Compute, sid) compute y = (y1, . . . , ym) ← C(x1, x2)

and store y.
3. Send (Compute, sid,Pi,mid) to S.

Fetch Message: Upon receiving (FetchMsg, sid) by P ∈ {P1,P2} retrieve the set
L of all entries (P, sid, ·) in M, remove L from M and return (Output, sid, L)
to P.

Scheduling: On input of S:
– If S sent (Deliver, sid,mid) then remove each (cnt,mid, sid,P,m) from Q

and add (P, sid,m) to M.
– If S sent (Abort) add (PS , sid,Abort), (PR, sid,Abort) to M and ignore all

further calls to the functionality except to Fetch Message.
Tick: Upon receiving (Tick, sid) from S:

1. For each query (0,mid, sid,P,m) ∈ Q:
(a) Remove (0,mid, sid,P,m) from Q.
(b) Add (P, sid,m) to M.

2. Replace each (cnt,mid, sid,P,m) in Q with (cnt− 1,mid, sid,P,m).

Fig. 8. Functionality F∆2pcsso for 2PC with Secret-Shared Output and Linear Secret
Share Operations.

We will not show in this work how to realize F∆2pcsso. This is because it’s
output-sharing property is rather standard (albeit not always modeled as ex-
plicitly as here) and it follows directly from any 2PC protocol that is entirely
based on secret-sharing or on BMR protocols that secret-share the output. For
example, [6] show how to implement a multi-party version of F∆2pcsso (albeit with-
out abstract time) using the BMR protocol of [26].

Additively Homomorphic Commitments with Delayed Openings. In
order to implement F∆,δ2pcoia we also need a special commitment scheme that al-

25



Functionality F∆2pcsso (Computation on Outputs)

Share Output: Upon input (ShareOutput, sid, I) by Pi ∈ {P1,P2} for fresh iden-
tifiers I = {cid1, . . . , cidm} and if Computation was finished:
1. Add (∆,mid, sid,P3−i, (ShareOutput)) to Q for an unused mid. Then send

(ShareOutput, sid,Pi,mid) to S.
2. If both parties sent ShareOutput (and letting Pj be the corrupted party):

(a) Send (RequestShares, sid, I) to S, which replies with
(OutputShares, sid, {(cid, sj,cid)}cid∈I) for the corrupted party Pj .
Then set s3−j,cidh = yh ⊕ sj,cidh .

(b) For cid ∈ I store (cid, s1,cid, s2,cid). Then add
(∆,mid1, sid,P3−j , (OutputShares, {(cid, s3−j,cid)}cid∈I)) for a fresh
mid1 to Q and send (OutputShares, sid,P3−j ,mid1) to S.

Share Random Value: Upon input (ShareRandom, sid, I) by both parties, for
fresh identifiers I and letting Pj be the corrupted party:

1. Send (RequestShares, sid, I) to S, which replies with
(RandomShares, sid, {(cid, sj,cid)}cid∈I) for the corrupted party Pj . Then

sample s3−j,cid
$← F for each cid ∈ I.

2. For each cid ∈ I store (cid, s1,cid, s2,cid). Then add
(∆,mid1, sid,P3−j , (RandomShares, {(cid, s3−j,cid)}cid∈I)) for a fresh
mid1 to Q and send (RandomShares, sid,P3−j ,mid1) to S.

Linear Combination: Upon input (Linear, sid, {(cid, αcid)}cid∈I , cid
′) from both

parties: If all αcid ∈ F, all cid ∈ I have stored values and cid′ is unused, set
si,cid′ ←

∑
cid∈I αcid · si,cid for i ∈ {1, 2} and record (cid′, s1,cid′ , s2,cid′).

Reveal: Upon input (Reveal, sid, cid) by Pi ∈ {P1,P2}, if (cid, s1, s2) is stored and
Pj is corrupted:
1. Add (∆,mid, sid,Pi, (Reveal)) to Q for an unused mid. Then send

(Reveal, sid,Pi,mid) to S.
2. If both parties sent (Reveal, sid, cid) then send (Reveal, sid, cid, s1 ⊕ s2) to
S.

3. If S sends (DeliverReveal, sid, cid) then add (∆,mid, sid,P3−j ,
(Reveal, cid, s1 ⊕ s2)) for a fresh mid to Q.

4. Send (DeliverReveal, sid, cid,P3−j ,mid) to S.

Fig. 9. Functionality F∆2pcsso for 2PC with Secret-Shared Output and Linear Secret
Share Operations, Part 2.

lows for delayed openings. The functionality is naturally ticked, as its implemen-
tation will use both F∆smt,delay and Ftlp (see Appendix B). In addition to regular
commit and opening procedures, the functionality has a special Delayed Open
command which releases the message in a commitment after a delay δ. The ad-
versary A is notified that an honest party has requested a delayed opening and
may introduce a (communication) delay of maximum ∆ ticks before the honest
party receives the delayed opening (or it may decide to abort the opening pro-
cess). However, A cannot choose to abort the delayed opening anymore once the
process started. A will learn the opening after δ ticks while an honest receiver
PR might have to wait δ +∆ ticks in total as the ticking for the delayed open-
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Functionality F∆,δahcom

The functionality is parameterized by h,∆ ∈ N and interacts with two parties
PS ,PR and an adversary S who may corrupt either of PS ,PR. The functionality
will internally have initially empty lists M,Q and O, a map commits, and a flag
open = 0.

Commit: Upon receiving (Commit, sid, cid,x) from PS where cid is an unused iden-
tifier and x ∈ Fh, ignore if open = 1. Otherwise, proceed as follows:
1. Set commits[cid] = x.
2. Add (∆,mid, sid,PR, (Commit, cid)) to Q for an unused mid.
3. Send (Commit, sid,mid, cid) to S. If S answers with (sid, abort), the func-

tionality halts.
Open: Upon receiving (Open, sid, cid1, . . . , cido) from PS , ignore if open = 1. Oth-

erwise, if commits[cidi] = xi 6=⊥ for i ∈ [o], proceed as follows:
1. Add (∆,mid, sid,PR, (Open, (cidi,xi)i∈[o]) to Q for a fresh mid.
2. Send (Open, sid,mid, (Open, (cidi,xi)i∈[o]) to S and set open = 1.

Delayed Open: Upon receiving (DOpen, sid, cid1, . . . , cido, δ) from PS , ignore if
open = 1. Otherwise, if commits[cidi] = xi 6=⊥ for i ∈ [o], proceed as follows:
1. Add (∆,mid, sid,PR, (DOpen, cid1, . . . , cido)) to Q for a fresh mid.
2. Add (δ,PR, (cidi,xi)i∈[o]) and (δ,S, (cidi,xi)i∈[o]) to O.
3. Send (DOpen, sid, cid, . . . , cido, δ) to S and set open = 1.

Linear Combination: Upon receiving (Linear, sid, {(cid, αcid)}cid∈I ,β, cid
′) where

all αcid ∈ F and β ∈ Fh from PS , ignore if open = 1. Otherwise, if commits[cid] =
xcid 6=⊥ for all cid ∈ I and cid′ is unused, set commits[cid′] = β+

∑
cid∈I αcid·xcid.

Fetch Message: Upon receiving (FetchMsg, sid) by P ∈ {PS ,PR} retrieve the set
L of all entries (P, sid, ·) in M, remove L from M and return (Output, sid, L)
to P.

Scheduling: On input of S:
If S sent (Deliver, sid,mid) then remove each (cnt,mid, sid,P,m) from Q and add

(P, sid,m) to M.
Tick: Upon receiving (Tick, sid) from S:

1. For each query (0,mid, sid,P,m) ∈ Q:
(a) Remove (0,mid, sid,P,m) from Q.
(b) Add (P, sid,m) to M.

2. Replace each (cnt,mid, sid,P,m) in Q with (cnt− 1,mid, sid,P,m).
3. For each entry (δ,S, cid,x) ∈ O, proceed as follows:

– If δ = 0, output (DOpen, sid,S, (cidi,xi)i∈[o]) to S and append
(PS , sid, (DOpened, cid1, . . . , cido)) to M.

– If δ > 0, replace (δ,S, (cidi,xi)i∈[o]) with (δ− 1,S, (cidi,xi)i∈[o]) in O.
4. For each entry (δ,PR, (cidi,xi)i∈[o]) ∈ O, if there is no entry

(cnt,mid, sid,PR, (DOpen, cid1, . . . , cido)) ∈ Q , proceed as follows:
– If δ = 0, output (DOpen, sid,PR, (cidi,xi)i∈[o]) to PR.
– If δ > 0, replace (δ,PR, (cidi,xi)i∈[o]) with (δ− 1,PR, (cidi,xi)i∈[o]) in
O.

Fig. 10. Functionality F∆,δahcom For Homomorphic Commitments with Delayed Opening.
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ing of a commitment naturally can only happen once notification arrives on the
receiver’s side.

Coin Tossing. In our protocol we additionally need to use a functionality for
coin tossing, as mentioned before. It could actually already be implemented, al-
beit inefficiently, using F∆,δahcom. For completeness, we instead use the functionality
Fct which can be found in Appendix A.

6.2 Achieving Output-Independent Abort for 2PC in UC

Intuitively, the protocol realizing F∆,δ2pcoia works as follows: first, both parties use

F∆2pcsso to perform the secure computation. They then don’t directly obtain an
output, but instead each get a vector of shares si. Afterwards, the parties will
commit to si and use the homomorphic property of F∆,δahcom to show consistency
between the values in both functionalities for which they use Fct. At this stage
the protocol might still fail and an adversary might still abort, but no information
will leak. Finally, both parties use the Delayed Open to reveal their share si
which allows each party to reconstruct the output. At this stage, A might decide
not to activate Delayed Open, but we can set the parameters of F∆,δahcom such
that it will have to do so before the commitment of the honest party opens. If
it does not do so, then the honest party will decide that an abort happened and
just ignore any future messages of A.

The full protocol π2pcoia can be found in Fig. 11. We can then show the
following statement:

Theorem 3. Let δ > ∆ and κ ∈ N+ be a statistical security parameter. Then the
protocol π2pcoia implements F∆,δ2pcoia in the F∆2pcsso,F

∆,δ
ahcom,Fct-hybrid model against

any static active adversary corrupting at most one of the two parties that follows
our “ticking” requirement.

In the proof, we will make crucial use of the following standard fact:

Lemma 1. Fix values s, r1, . . . , rm, s
′, r′1, . . . , r

′
m ∈ Fh. Then pick αk

$← F for
k ∈ [κ] uniformly at random. If for all k ∈ [κ]

rk ⊕ αk · sk = r′k ⊕ αk · s′k

then s = s′ and rk = r′k for all k ∈ [κ] except with probability O(2−κ).

Proof. To simplify notation, assume that A will corrupt P2. In the proof,
we will construct a simulator S which will run a “fake” instance of the pro-
tocol π2pcoia with the adversary A while actually interacting with the ideal

functionality F∆,δ2pcoia. It therefore simulates a party P1 as well as functionali-

ties Fct,F∆,δahcom,F∆2pcsso. During the simulation, whenever A will tick the hybrid

functionalities then S will tick F∆,δ2pcoia after A has finished the ticking. When-

ever S calls Scheduling of F∆,δ2pcoia then it will only make the query just before

executing Tick on F∆,δ2pcoia.
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Protocol π2pcoia

This protocol is for two parties P1,P2 and uses the functionalities F∆,δahcom, F∆2pcsso

and Fct. The parties want to compute the circuit C over F with output length
m. We assume for simplicity that the commitment functionality F∆,δahcom commits to
vectors of length m.

Init: Each Pi sends (Init, sid, C) to F∆2pcsso and then queries F∆2pcsso for an output
(Init, sid, C). If F∆2pcsso instead aborts, then output (Abort, sid) and stop.

Input: Each Pi sends (Input, sid, i, xi) to F∆2pcsso and then queries F∆2pcsso for an
output (Input, sid,P3−i). If F∆2pcsso instead aborts, then output (Abort, sid) and
stop.

Computation: Each Pi sends (Compute, sid) to F∆2pcsso and then queries F∆2pcsso for
an output (Compute, sid). If F∆2pcsso instead aborts, then output (Abort, sid) and
stop.

Output:
1. Each party Pi sends (ShareOutput, sid, cid1, . . . , cidm) for fixed cidh to
F∆2pcsso to receive its shares s1,i, . . . , sm,i.

2. Each party Pi sends (RandomOutput, sid, ĉid1, . . . , ĉidm·κ) for fixed ĉidt to
F∆2pcsso to receive its shares r1,i, . . . , rm·κ,i.

3. Each party uses F∆,δahcom to commit to si = (s1,i, . . . , sm,i) as well as rk,i =
(r(k−1)·m+1,i, . . . , rk·m,i) for k ∈ [κ] using the cid’s cidsi , cid

r
1,i, . . . , cid

r
κ,i.

4. Each Pi sends (Toss, sid, κ) to Fct and obtains α1, . . . , ακ.
5. For i ∈ [2], k ∈ [κ] the parties use Linear Combination on F∆,δahcom to

compute commitments for the κ values dk,i = αk · si ⊕ rk,i. These have
cid’s cidd1,i, . . . , cid

d
κ,i.

6. For k ∈ [κ], h ∈ [m] the parties use Linear Combination on F∆2pcsso to
compute the linear relations dk,h = αk · sh ⊕ r(k−1)·m+h.

7. The parties use Reveal to open dk,h for all k ∈ [κ], h ∈ [m].
8. Each party Pi sends (DOpen, sid, cidsi , cid

d
1,i, . . . , cid

d
κ,i, δ) to its instance of

F∆,δahcom.
9. In a loop, each party Pi:

(a) Queries the instance of F∆,δahcom where Pi was a receiver to see if it
obtained a message (DOpen, cids3−i, cid

d
1,3−i, . . . , cid

d
κ,3−i). If so, then

exit the loop.
(b) Queries the instance of F∆,δahcom where Pi was a sender to see if it obtained

a message (DOpened, cidsi , cid
d
1,i, . . . , cid

d
κ,i). If so, then exit the loop.

(c) Returns activation.
10. After having obtained either of the above messages, Pi does the following:

– If DOpened arrived before DOpen then output ⊥.
– If DOpen arrived before DOpened then query F∆,δahcom until
s̃3−1, d̃1,3−i, . . . , d̃κ,3−i were obtained. Then output y = si ⊕ s̃3−i if
d̃k,3−i[h] = dk,h ⊕ dk,i[h] for all k ∈ [κ], h ∈ [m] and ⊥ otherwise.

Fig. 11. Protocol π2pcoia For 2PC with Output-Independent Abort.

S will let P1 follow the protocol in steps Init, Input and Computation,
where it will use a random input x1 for F∆2pcsso, additionally extract the input
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x2 which A inputs into F∆2pcsso and forward it to F∆,δ2pcoia. The exact delay of

the Init, Input,Computation messages can directly be forwarded by S to F∆,δ2pcoia -
whenever A inputs a message of P2 into these interfaces or accelerates message
delivery, then S can do the respective operation in F∆,δ2pcoia using Scheduling.
During Output S runs the protocol until Step 8 begins. If in Step 3 A will
input values s2, rk,2 into F∆,δahcom that it did not obtain from F∆2pcsso then set
cheated← >.

In Step 8 S will follow the protocol as before, but will send (Output, sid) to

F∆,δ2pcoia and for the next∆ ticks it will wait if it obtains (DOpen, sid,P1, (cidi, ·)i∈[o])

from F∆,δahcom where P1 is receiver. If during this period it will either not obtain

DOpen or cheated = > then S will send (DeliverOrAbort, sid,mid,⊥) to F∆,δ2pcoia,
otherwise it will send (DeliverOrAbort, sid,mid,>) for the output message-id mid

of F∆,δ2pcoia. One of these two messages will be sent until ∆ ticks have passed. Then,

S obtains the output y from F∆,δ2pcoia. In the “tick-round” when F∆,δahcom outputs a

value to the simulated P1 send (Deliver, sid,mid) to F∆,δ2pcoia. In the round when

F∆,δahcom outputs the committed messages to the adversary replace the value for

cids1 with y ⊕ s2 where the latter was extracted from the F∆,δahcom instance where
P2 was sender.

Indistinguishability. We first observe that S is poly-time and also ticks F∆,δ2pcoia

whenever A ticks the hybrid functionalities. Therefore, S preserves the required
ticking property.

The output which A obtains is exactly the output of F∆,δ2pcoia which follows by

linearity on how the output s1 of F∆,δahcom is constructed. A obtains the output in

the same round as in the real protocol, and P1 obtains the output from F∆,δ2pcoia

in the same round as in a real protocol. The DeliverOrAbort message is sent by
S after ∆ ticks, and since δ > ∆ it will only have to reprogram the output of
F∆,δahcom after actually having obtained it from F∆,δ2pcoia. The other messages which

A obtains from F∆,δahcom and F∆2pcsso have the same distribution as in the protocol
as they are generated the same way and due to the uniform choice of the rk,1.

The only difference in the output distribution towards A is the influence of
the flag cheated. In the simulation we will make F∆,δ2pcoia output Abort whenever

the values that go into F∆,δahcom are not the same as the ones A received from
F∆2pcsso. In the real protocol, we instead abort if the conditions in Step 10 of
π2pcoia do not hold. The difference is exactly captured by Lemma 1 as being
negligible in the statistical security parameter κ and the claim follows. ut

6.3 Extensions

It is possible to extend the protocol π2pcoia to have timeouts, support more than
two parties as well as achieve identifiable abort and public verifiability. We will
now sketch the approaches but leave a detailed analysis for future work.
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Timeouts. F∆,δ2pcoia does not make any abort guarantees before the output phase,
meaning that if an adversary never sents an Init message to it then the honest
party might wait for a response forever. This is due to the fact that the parties
themselves are unaware of the actual delays involved in F∆smt,delay and Ftlp. We
can avoid this by introducing local clocks to the implementing protocols which
tick correlated with the “ticks” issued to the functionalities by A. Using such
local clocks we can then achieve a protocol that always terminates.

Realizating Output-Independent Identifiable Abort in the Multiparty
Setting. As the Ftlp functionality already can handle multiple parties, this func-
tionality can be instantiated the same way. In order to generalize F∆2pcsso,Fct and

F∆,δahcom we would then additionally have to assume the existence of a broadcast
channel and explicitly model such a channel in our framework. The modifications
to a multiparty-setting of F∆2pcsso and Fct are folklore, whereas the protocol that

we use to instantiate F∆,δahcom can be generalized to the multiparty-setting as well.
In the presence of multiple parties we can furthermore modify the protocol so

all honest parties agree on a set of cheaters. Using multi-receiver commitments
this property can be proven to hold for the output phase of a multiparty version
of our protocol, since the output reconstruction will only consist of an opening
phase for a multi-receiver commitment with delayed opening. We leave a formal
analysis of this as future work.

Public Verifiability. While a protocol with identifiable abort allows the par-
ticipants of it to agree on cheaters, a protocol with publicly verifiable abort
additionally generates a publicly available certificate that can be used by an
external party to detect the same set of cheaters. This approach has been used
in previous work to incentivize fairness by financially punishing adversarial be-
havior. Our protocol can be made compatible with the approach of [6] in the
multiparty setting by using their publicly verifiable commitments and a publicly
verifiable version of Ftlp. Notice that πtlp already supports public verifiability,
since the trapdoor for Frsw is obtained by each party who solves the puzzle,
allowing them to publicly prove that a certain message was obtained by simply
handing the puzzle along with the trapdoor to a third party verifier. We leave a
detailed construction and formal analysis as future work.

7 The Impossibility Result

We show that in the UC model one cannot implement fair coin-flip without using
a random oracle, or similar programmable setup assumption. This holds even if
one is allowed to use time-lock puzzles, and non-programmable random oracles
and 2PC with abort. We first show the impossibility result for the simple case
where we assume there is no setup, no random oracles and that the protocol has
a fixed round complexity. This allows us to focus on the central new idea. After
that we show the result for the full case.

31



The ideal functionality Fcf for fair coin-flip (without abort) proceeds as fol-
lows. When activated by any party in round 0 it will sample a uniformly random
bit c and output it to both parties in some round ρ specified by the adversary.
The adversary cannot refuse the output to be given. The ideal functionality is
rushing: the adversary gets c in round 0. The honest parties do not get the coin
until round ρ.

Implications. Below we show that in several settings, called the excluded set-
tings, one cannot UC securely realize Fcf. By the UC composition theorem this
impossibility result has wide implications. In particular, it holds for all ideal
functionalities G that if one can UC securely realize Fcf in the G-hybrid model,
then one cannot UC realize G in the excluded settings either.

Impossibility of Two-Party Coinflip with Output-Independent Abort
It follows that two-party coin-flip with output-independent abort is impossible in
the excluded settings. Namely, given a protocol πcfoia for two-party coin-flip with
output-independent abort one can get a two-party coin-flip protocol πcf without
abort as follows. We describe the protocol in the Fcfoia-hybrid model and get the
result by composition. Run Fcfoia. If neither of the parties aborts, take the output
of Fcfoia to be the output. If one of the parties aborts, let the other party sample
and announce a uniformly random c and take c as the output. To simulate the
protocol, get from Fcf the coin c to hit in the simulation. Simulate a copy of
Fcfoia to the adversary. If the adversary does not abort, let the output of Fcfoia

be c. Otherwise, let the output of Fcfoia be a uniformly random c′, and then
simulate that the honest party samples and announces c.

Notice that it was crucial for this simulation that we could change the output
of Fcfoia from c to an independent c′ when there was an abort. Namely, when
there is an abort we still need to hit the c output by Fcf in the simulation, so
we are forced to simulate that the honest party samples and announces c in the
simulation. But if we were then also forced to let Fcfoia output c, then in the
simulation the bits output by Fcfoia and the honest party when there is an abort
will always be the same. In the protocol they are independent. This would make
it easy to distinguish. A generalisation of this observation will later be the basis
for our impossibility result.

Impossibility of UC 2PC with Output-Independent Abort It also follows
that 2PC with output-independent abort is impossible in the excluded settings.
Namely, given a functionality F2pcoia for 2PC with output-independent abort (as
described in the previous section) one can UC securely realize Fcfoia. Namely,
use F2pcoia to compute the function which takes one bit as input from each party
and outputs the exclusive or. Let each party input a uniformly random bit. If
any party aborts on F2pcoia, abort in πcfoia. It is straight forward to simulate
πcfoia given F2pcoia.
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Impossibility of UC Time-lock Puzzles It also follows that UC time-lock
puzzles are impossible in the excluded settings. Namely, we have shown that
given UC time-lock puzzles one can UC securely realize F2pcoia, which was ex-
cluded above.

7.1 Technical Details of the Simple Setting

We now show that one cannot UC securely implement Fcf using a synchronous
protocol using only point-to-point communication even if one is allowed time-
lock puzzles.

We will assume without loss of generality that πcf is of a particular form
described now. Consider a synchronous protocol for two parties Alice and Bob.
They have no inputs. They begin the protocol in the same round, call it round
1. In round 1 Alice first sends m1 to Bob. In round 2 Bob sends m2 to Alice,
and so on. We assume a rushing adversary, so we can without loss of generality
assume the parties take turns sending messages.

To simplify our treatment of abort, we assume that the parties abort by
sending a special symbol abort. We also imagine that in all rounds after the
protocol ended a party sends abort, whereas in practice it would terminate a
send nothing. This is just to make notation easier. We make the convention
that if a party P sends abort in a given round i the other party P ′ proceeds
as if P sends abort in all rounds ≥ i and party P ′ will itself send abort in all
following rounds. Therefore, once a party sent abort the other parties will de
facto ignore at its future messages. In particular, it follows that a party can
eventually compute its output bit cP the first time it receives abort from the
other party without considering any future message from the other party. This
is purely a notational convenience for talking about aborts. We have to some
extend just made abort a legal message. This is possible as when implementing
Fcf the parties must always output a bit c even when the other party aborts.
The only way to “abort” is hence to send the “end of protocol” signal abort
prematurely. For a given execution, we use ρ to denote the first round in which
a parties sent abort.

Checkpoints. We define a number of so-called checkpoints in the execution.
These are just internal states of parties at particular points in the execution.
We let σ0 be the initial state of Bob. For round 0 < i ≤ ρ we let P be the party
computing mi and we let σi be the state of P right after computing mi and right
before sending mi.

Default Values. For each round i ≥ 0 we define a bit ci called the default value
of round i. This is the value that the party P that sent mi will output as result
of the coin-flip if the other party replies to mi by aborting. Due to the use of for
instance time-lock puzzles P might not be able to compute ci during round i,
but P will eventually be able to compute ci as it is its output if the other party
P ′ sends abort in all following rounds. Therefore P can just start from its state

33



after computing mi and simulate that P ′ sends abort in all subsequent rounds,
and run until P gives an output. This will by definition be ci.

– We let c0 be the output c that Bob would output if Alice sends abort in
the first round. In more details, let σ0 be the initial state of Bob. Continue
running from σ0 and simulate that Alice sends abort in all subsequent rounds.
When Bob gives an output cBob, let c0 = cBob.

– For each round 0 < i ≤ ρ we let ci be the output bit the sending party
P would give if after sending message mi to the other party that other
party replies with abort. Let σi be the state of P right after computing mi.
Continue running P from σi and simulate that the other party P ′ sends
abort in all subsequent rounds. When P gives an output cP , let ci = cP .

– For each round i > ρ we let ci = ci−2.

We record a property of the default value which is crucial to the proof.

Eventual Revelation: After a party P computedmi it can eventually compute
ci. This holds no matter whether mi is sent or withheld or in general how the
future executing proceeds. This is because ci can be computed solely from
the checkpoint σi, the state of P after computing mi. This property ensures
that the default value ci will eventually be revealed to the party P computing
mi. Note that this would not be true in the presence of an arbitrary ideal
functionality used by Alice and Bob for communication, as the sending of
mi might change the behaviour of the ideal functionality, preventing P from
later computing ci. However, in our simple setting the property clearly holds.

Let Z be an environment which we will specify below. Let Execπcf ,Z be
the execution in the real world model with a dummy adversary. Let S be any
potential simulator and let ExecFcf,S,Z be the simulation. We will assume that
it holds for all Z that ExecFcf,S,Z ≈ Execπcf ,Z , and reach a contradiction.

For any execution of πcf define the default values ci as above. Let c be the
output of an honest party in πcf . We can assume without loss of generality
that if there are two honest parties, then they output the same c (except with
negligible probability). If not this would allow a trivial distinguishing attack. Let
ei = Pr[ci = c] and let di = Pr[ci = ci−1]. The value ei is the probability that
the default value that P was ”planning” to output after sending mi in case the
other party would abort equals the value it ended up outputting in round ρ. The
value di is the probability that the default value that P was planning to output
after sending mi in case the other party would abort equals the value that the
other party defaulted to in the round before. The key to our impossibility result
is that sometimes the values ei and di are different in the real world execution,
whereas in the simulation they are the same as ci−1 must be the output of Fcf.

Lemma 2. In a random honest run in the real world it holds that e0 ≈ 1
2 .

Proof. If Pr[c0 = c] > 1
2 , then Pr[c = 0|c0 = 0] > 1

2 or Pr[c = 1|c0 = 1] > 1
2 .

Assume without loss of generality that it is Pr[c = 0|c0 = 0] > 1
2 . Recall that
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c0 is the output c that Bob would output if Alice sends abort in the first round.
This bits depends only on the random tape of Bob. So, if Pr[c = 0|c0 = 0] > 1

2 ,
then Bob can use a hard coded random tape where c0 = 0 and hence ensure that
Pr[c = 0] > 1

2 in an honest run with that random tape. This biases the coin,
which in particular allows to distinguish the real world execution from the ideal
one, where the coin is unbiased. ut

Lemma 3. In a random honest run in the real world it holds that eρ = 1.

Proof. The party P sending mρ gives output after sending it without consider-
ing any new inputs from the other party, by definition of ρ. Hence the output of
that party is independent of what the other party sends in round ρ+1. Therefore
by definition cρ = cP , which implies that eρ = 1. ut

The following Lemma also follows from [20].

Lemma 4. There exists a round i > 0 such that it is not the case that ei ≈ di.

Proof. It follows from eρ = 1 and e0 = 1
2 that we can find a round i > 0 such

that ei ≈ 1 and ei−1 6≈ 1. At this point di = Pr[ci−1 = ci] ≈ Pr[ci−1 = c] =
ei−1 6≈ 1. ut

Recall that in the impossibility result of Cleve cited above the basis for the
proof is that when ei 6= di then the party P to send mi can bias the coin. If
it withholds the message mi the output is ci−1. If it sends it the output will
be the output of an honest run. By ei 6= di these distributions are different.
We cannot use this attack as we do not necessarily know ci when we are to
withhold mi, for instance due to the use of time-lock puzzles. It is crucial in the
proof of Cleve that ci is known when mi is about to be sent. This is why it is
impossible to circumvent Cleve’s result using time-lock puzzles in the stand alone
model. However, maybe surprisingly, when security is defined via simulation we
can reestablish impossibility using a variant of Cleve’s techniques. Instead of
mounting Cleve’s witholding attack, the environment will after the execution of
the protocol test whether the witholding attack would have biased the count. In
the real world it sometimes will. In the ideal world it cannot. This will allow to
distinguish.

Consider the following strategy Z0 of the environment when the P to send mi

in round i is corrupted. Run a copy P of the honest P and instruct the corrupted
dummy adversary P̂ to send the same messages as P in all rounds. Record the
checkpoint σi, call it σi0. At the end of the protocol compute the default ci of P
in round i and call it ci0. This is possible by eventual revelation. Let cP′ be the
output of the honest party P ′. In the UC model the environment sees this value.
Output (ci0, c0 = cP′). By definition we have that Pr[ci0 = cP′ ] ≈ ei in the real
world. Therefore this also holds for the output (ci0, c0) in the ideal world or we
would have an attack. Note that in the simulation cP′ = c, where c is the coin
output by Fcf. It follows that in the simulation it holds that

Pr[ci0 = c] ≈ ei .

Note that this follows purely from eventual revelation.
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Consider now the following strategy Z1 of the environment when the P to
send mi in round i is corrupted. Run a copy P of the honest P and instruct the
corrupted dummy adversary P̂ to send the same messages as P in all rounds
j < i. Compute mi and record the checkpoint σi, call it σi1. Then abort in round
i, i.e., do not send mi. At the end of the protocol compute the default value ci

of P in round i and call it ci1. Let cP′ be the output of the honest party P ′.
Output (ci1, c1 = cP′). Note that in the real world cP′ = ci−1 (by definition).
Therefore in the real world the distribution of the output (ci1, c1) is that of
(ci, ci−1). Therefore this also holds for the output (ci1, c1) in the ideal world or
we would have an attack. Note that in the simulation cP′ = c, where c is the coin
output by Fcf. It follows that in the simulation (ci1, c) is distributed as (ci, ci−1)
in the real world. In particular Pr[ci1 = c] ≈ Pr[ci1 = ci−1]. By definition this
gives us that

Pr[ci1 = c] ≈ di .
The above was the crucial point where we use simulatability. Also without simu-
latability would We find a way to output (ci, ci−1) in the real world. We then go
to the simulation and force ci−1 = c. This gives us a second correlation between
ci and c.

Consider now the following strategy Z of the environment when the P to
send mi in round i is corrupted. Run a copy P of the honest P and instruct the
corrupted dummy adversary P̂ to send the same messages as P in all rounds
j < i. Compute mi and record the checkpoint σi, call it σi. Pause. We record a
property of the default value which is crucial to the proof.

Simulator Non-Interference: After an emulated party P in Z computed mi

it can by eventual revelation compute ci from σi, we write ci = ci(σi).
Furthermore, after mi was computed there is no way for the simulator to
affect the computation ci = ci(σi) anymore. Therefore the probability that
ci = c depends only on the distribution of (σi, c). We call this simulator non-
interference. Note that this would not be that case in the programmable
random oracle model where the computation of ci = ci(σi) might involve
querying the oracle. But in our simple setting we clearly have simulator
non-interference.

Notice now that up until and including the computation of mi the three en-
vironments Z0, Z1, and Z have the exact same behaviour. In fact, if we stripped
the continuation after round i, they would be the same environment, namely Z.
In the UC model the simulator therefore cannot distinguish Z0, Z1 and Z until
mi has been computed, as it only has blackbox access to Z. From this it follows
that (σi0, c), (σi1, c), and (σi, c) have identical distributions, where c is the coin in
Fcf. In particular, if we let ci = ci(σi) then Pr[ci = c] = Pr[cib = c] for b ∈ {0, 1}.
This follows from simulator non-interference. This gives us that

Pr[ci = c] = Pr[ci0 = c] ≈ ei

and
Pr[ci = c] = Pr[ci1 = c] ≈ di .

This is a contradiction as it is not the case that ei ≈ di.
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7.2 Excluded Settings

We now describe how to handle non-programmable random oracles as defined in
e.g. [35] and other types of setup. It is straight forward to verify that the above
proofs goes through as long as we can prove eventual revelation and simulator
non-interference. Therefore all settings with eventual revelation and simulator
non-interference are excluded, they do not allow to UC securely realize Fcf. We
now give some examples.

Non-programmable Random Oracles. Adding a random oracle does not
violate eventual revelation. It does, however, violate simulator non-interference,
as it is the simulator which simulates the random oracle to the environment.
We can, however, add a restricted observable global random oracle [17]. Since
the restricted observable global random oracle cannot be programmed by the
simulator it does not violate simulator non-interference. As a special case a
global CRS is not enough to bring us out of the excluded settings.

2PC with Abort. We can also add a special type of ideal functionalities F2pca

working as follows. In each round it has a direction, sending from Alice to Bob
in odd rounds and from Bob to Alice in even rounds. We describe a round i
from Alice to Bob. First both parties give an input xiAlice and xiBob. If a party
does not give an input, the ideal functionality uses 0. Then F2pca computes the
corresponding outputs yiAlice and yiBob given by a randomised function f i being
part of the description of F2pca. The outputs are only allowed to depend on
the current inputs xiAlice and xiBob and fresh randomness, i.e., the rounds are
run independently. Then it outputs yAlice to Alice who gives an input mi. If
mi = abort, the output to Bob is abort. Otherwise the output to Bob is yBob.
If a party aborts in any round, the other party aborts in all future rounds and
proceed as if the other party aborted in all subsequent rounds rounds, no matter
what values the other party sends. As before we can define the check point σi

of Alice to be her state after computing mi. Rounds with direction from Bob to
Alice are the same except that it is Bob who gets to choose whether to abort
by inputting mi. It is easy to see that this setting has eventual revelation and
simulator non-interference.

As for eventual revelation, consider a party P in the check point σi. If the
other party would abort in the next round, then P will receive no more in-
formation from F2pca. Hence in σi the party P has all the information needed
to compute ci(σi). As for simulator non-interference, note that when computing
ci(σi) one does not access F2pca. Therefore ci(σi) depends only on the local state
of the environment. Again, this would have been different in the programmable
random oracle model.

Note that the above leaves a pretty pessimistic picture. Even with a non-
programmable random oracles, time-lock puzzles, and access to unlimited 2PC
with abort, one cannot UC securely implement even a simple task as fair coin-
flip, which is arguable one of the simplest tasks where abort is an issue. The only
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way to UC securely implement fair coin-flip is therefore to cheat in the model in
a strong way, by for instance using a programmable random oracle.

.
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Appendix A Additional Functionalities

Functionality GrpoRO

GrpoRO is parameterized by an output size function ` and a security parameter τ ,
and keeps initially empty lists ListH,prog.

Query: On input (Hash-Query,m) from party (P, sid) or S, parse m as (s,m′)
and proceed as follows:

1. Look up h such that (m,h) ∈ ListH. If no such h exists, sample h
$← {0, 1}`(τ)

and set ListH = ListH ∪ {(m,h)}.
2. If this query is made by S, or if s 6= sid, then add (s,m′, h) to the (initially

empty) list of illegitimate queries Qs.
3. Send (Hash-Confirm, h) to the caller.

Observe: On input (Observe, sid) from S, if Qsid does not exist yet, set Qsid = ∅.
Output (List-Observe,Qsid) to S.

Program: On input (Program-RO,m, h) with h ∈ {0, 1}`(τ) from S, ignore the
input if there exists h′ ∈ {0, 1}`(τ) where (m,h′) ∈ ListH and h 6= h′. Otherwise, set
ListH = ListH ∪ {(m,h)}, prog = prog ∪ {m} and send (Program-Confirm) to S.

IsProgrammed: On input (IsProgrammed,m) from a party P or S, if the input
was given by (P, sid) then parse m as (s,m′) and, if s 6= sid, ignore this input. Set
b = 1 if m ∈ prog and b = 0 otherwise. Then send (IsProgrammed, b) to the caller.

Fig. 12. Restricted observable and programmable global random oracle functionality
GrpoRO from [13].
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Functionality Fct

Fct interacts with two parties P1,P2 and an adversary S. The functionality will
internally have two lists M,Q.

Toss: Upon receiving (Toss, sid,m) from Pi ∈ {P1,P2} where m ∈ N:

1. Add (∆,mid, sid,Pi, (Toss,m)) to Q for an unused mid. Then send
(Toss, sid,Pi,mid) to S.

2. If both parties sent (Toss, sid,m):

(a) Uniformly sample m random elements x1, . . . , xm
$← F and send

(Tossed, sid,m,F, x1, . . . , xm) to S.
(b) If S sends (DeliverCoins, sid) and Pj is corrupted then add

(∆,mid, sid,P3−j , (Coins, x1, . . . , xm)) for a fresh mid to Q.
(c) Send (DeliverCoins, sid,P3−j ,mid) to S.

Fetch Message: Upon receiving (FetchMsg, sid) by P ∈ {P1,P2} retrieve the set
L of all entries (P, sid, ·) in M, remove L from M and return (Output, sid, L)
to P.

Scheduling: On input of S:
– If S sent (Deliver, sid,mid) then remove each (cnt,mid, sid,P,m) from Q

and add (P, sid,m) to M.
– If S sent (Abort) add (PS , sid,Abort), (PR, sid,Abort) to M and ignore all

further calls to the functionality except to Fetch Message.
Tick: Upon receiving (Tick, sid) from S:

1. For each query (0,mid, sid,P,m) ∈ Q:
(a) Remove (0,mid, sid,P,m) from Q.
(b) Add (P, sid,m) to M.

2. Replace each (cnt,mid, sid,P,m) in Q with (cnt− 1,mid, sid,P,m).

Fig. 13. Functionality Fct for Coin Tossing.

Appendix B Additively Homomorphic Commitments
with Delayed Opening

We present a protocol πahcom for additively homomorphic commitments realizing
functionality F∆,δahcom from Section 6.1 in Figures 14, 15 and 16. Protocol πahcom

is based on a protocol for additively homomorphic commitments with multiple
verifiers presented in [18]. As it is the case in [18], we actually construct a protocol
for commitments to random messages rather than a protocol for commitments
to arbitrary messages. As observed in [19,18], such a protocol for additively
homomorphic commitments to random messages can be trivially transformed
into a protocol that realizes a functionality supporting arbitrary message. In
order to obtain πahcom we add a delayed opening phase to the protocol of [18]
and modify it in the following way:

Delayed Communication via F∆smt,delay: All messages between sender PS and

PR are exchange through secure channels with delays modeled by F∆smt,delay

42



with a maximum message delay ∆, whereas the protocol of [18] employs
standard secure channels with no delay. This is necessary in order to cap-
ture the fact that our additively homomorphic commitment functionality
with delayed openings F∆,δahcom allows for adversarially controlled delays in
the delivery of commitments and openings to honest parties.

Support for only one receiver: Protocol πahcom only realizes additively ho-
momorphic commitments with delayed opening for one receiver PR instead
of supporting multiple receivers as in the protocol of [18]. While it would be
possible to obtain a multiple receiver version of our protocol with delayed
openings, this would require a broadcast functionality with adversarialy con-
trolled message delays (i.e. a generalization of F∆smt,delay for multiple receivers)
in order to ensure that all messages exchanged are eventually received by all
receivers. Such a multiple receiver version of πahcom is not necessary for re-
alizing two party computation with output independent abort as defined in
Section 6 and is thus left as future work.

Hardcoded global random oracle commitments: Instead of basing our con-
struction on a generic (non-homomorphic) commitment functionality as in [18],
we explicitly use canonical random oracle commitments based on a restricted
observable and programmable global random oracle GrpoRO as presented
in [13]. This concrete construction of non-homomorphic commitments works
by having the sender sample some randomness w and compute a commitment
to a message m by querying the global random oracle on (m|w) and sending
the output scom to the receiver as a commitment. Later on, the receiver
can check that an opening (m′|w′) is valid by querying the global random
oracle on (m′|w′) and verifying that the output scom′ is equal to scom. This
allows us to obtain time lock puzzles containing an opening (m′|w′) of such
commitments scom through Ftlp in such a way that this opening can be ver-
ified locally by the receiver once the time lock puzzle is solved (i.e. after
receiving and solving the time lock puzzle containing (m′|w′), the receiver
can simply query the global random oracle in order to verify it without any
further communication with the sender).

While these modifications allow us to obtain delayed openings, πahcom’s pro-
cedures for committing, performing addition of commitments and opening essen-
tially work as in the protocol of [18] for the case where there is only one verifier.
In this case, the only difference between πahcom and [18] is that πahcom specifically
uses global random oracle commitments (as proven UC-secure in [13]) instead
of a non-homomorphic commitment functionality as in [18]. Hence, all the ar-
guments in the security proof for the protocol of [18] carry on to πahcom and we
only need to prove security of the delayed opening procedure in order to prove
Theorem 4.

B.1 Security Analysis

The security of πahcom is formally expressed in Theorem 4.
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Protocol πahcom

Let C be a systematic binary linear [n, k, s] code, where s is the statistical security
parameter and n is k +O(s). Let τ be a computational security parameter. Let H
be a family of linear almost universal hash functions H : {0, 1}m → {0, 1}l. Let
PRG : {0, 1}` → {0, 1}m+l be a pseudorandom generator. Protocol πahcom is run
by a sender PS and a receiver PR, who interact with GrpoRO (having output size
τ), instances of Ftlp and instances of F∆smt,delay with message delay parameter ∆,
proceeding as follows:

Commitment Phase
1. On input (commit, sid, ssid1, . . . , ssidm,PS ,PR), PS proceeds as follows:

(a) For i ∈ [n] and j ∈ {0, 1} PS commits to ~si,j by performing the fol-
lowing steps: (1) Sample wi,j ← {0, 1}τ and ~si,j ← {0, 1}`; (2) Send
(Hash-Query, (~si,j |wi,j)) to GrpoRO, obtaining (Hash-Confirm, scomi,j);
(3) Send scomi,j to PR via F∆smt,delay.

(b) Compute Rj[i, ·] = PRG(~si,j) and set R = R0 + R1 so that R0,R1 forms
an additive secret sharing of R.

(c) Adjust the bottom n− k rows of R so that all columns are codewords in C
by constructing a matrix W with dimensions as R and 0s in the top k rows,
such that A := R + W ∈ C�m+l (recall that C is systematic). Set A0 =
R0,A1 = R1 + W and send to PR via F∆smt,delay (sid, ssid1, . . . , ssidm,W)
(only sending the bottom n− k = O(s) rows).

2. Upon receiving all messages scomi,j and (sid, ssid1, . . . , ssidm,W) from PS , PR
proceeds as follows:

(a) Sample ~r′ ← {0, 1}`, and send it to PS via F∆smt,delay.

3. Upon receiving ~r′ from PR via F∆smt,delay, PS proceeds as follows:

(a) Use ~r′ as a seed for a random function H ∈ H (note that we identify the
function with its matrix and all functions in H are linear).

(b) Set matrices P, P0 and P1 as the first l columns of A, A0 and A1, re-
spectively, and remove these columns from A, A0 and A1. Renumber the
remaining columns of A, A0 and A1 from 1 and associate each scomi,j (for
i ∈ [n] in step 1) with a different column index in these matrices. Notice
that P = P0 + P1.

(c) For i ∈ {0, 1}, compute Ti = AiH + Pi and send
(sid, ssid1, . . . , ssidm,T0,T1) to PR via F∆smt,delay. Note that

AH + P = A0H + P0 + A1H + P1 = T0 + T1, and AH + P ∈ C�l.

Fig. 14. Modified version of the Commit phase for the protocol πahcom of [18] with
delayed opening.

Theorem 4. Protocol πahcom UC-realizes F∆,δahcom in the GrpoRO,Ftlp,F∆smt,delay-
hybrid model with computational security against a static adversary. Formally,
there exists a simulator S such that for every static adversary A, and any envi-
ronment Z, the environment cannot distinguish πahcom composed with GrpoRO,Ftlp,F∆smt,delay

and A from S composed with F∆,δahcom. That is:

IDEALF∆,δ
ahcom,S,Z

≈c HYBRID
GrpoRO,Ftlp,F∆

smt,delay

πahcom,A,Z .
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Protocol πahcom

Addition of Commitments
1. On input (add, sid, ssid1, ssid2, ssid3,PS ,PR), PS finds indexes i and j corre-

sponding to ssid1 and ssid2 respectively and check that ssid3 is unused. PS
appends the column A[·, i] + A[·, j] to A, likewise appends to A0 and A1 the
sum of their i-th and j-th columns, and associates ssid3 with the new column
index. PS sends (add, sid, ssid1, ssid2, ssid3) to PR via F∆smt,delay.

2. Upon receiving (add, sid, ssid1, ssid2, ssid3) from PS via F∆smt,delay, PR stores the
message.

Opening
1. On input (reveal, sid, ssid1, . . . , ssido), PS finds the set J = {j1, . . . , jo} of in-

dexes associated to ssid1, . . . , ssido and sends (A0[·, j],A1[·, j])j∈J to PR via
F∆smt,delay.

2. Upon receiving message (A0[·, j],A1[·, j])j∈J from PS via F∆smt,delay, PR samples
~r ← {0, 1}n and sets the diagonal matrix ∆ such that it contains ~r[1], . . . , ~r[n]
in the diagonal. Send ~r to PS via F∆smt,delay.

3. Upon receiving ~r from PR via F∆smt,delay, PS opens commitments scomi,~r[i] by
sending (~si,~r[i]|wi,~r[i]) to PR via F∆smt,delay and halts.

4. Upon receiving (~si,~r[i]|wi,~r[i]) from PS via F∆smt,delay for i ∈ [n], PR proceeds as
follows:

(a) For i ∈ [n], check the validity of the openings to scomi,~r[i]
by sending (Hash-Query, (~si,~r[i]|wi,~r[i])) to GrpoRO, obtaining
(Hash-Confirm, scomi,~r[i]) and aborting if scomi,~r[i] 6= scomi,~r[i].

(b) Compute S[i, ·] = PRG(~si,~r[i]), obtaining a matrix S. Set B = ∆W + S.
Define the matrix Q as the first l columns of B and remove these columns
from B, renumbering the remaining columns from 1. Check that ∆T1 +
(I−∆)T0 = BH + Q and that T0 + T1 ∈ C�l. If any check fails, abort.

(c) For every message (add, sid, ssid1, ssid2, ssid3) received from PS , append
B[·, j] + B[·, i] to B, where i and j are the index corresponding to ssid1
and ssid2 respectively and associate ssid3 with the new column index.

(d) For every j ∈ J , check that A0[·, j] + A1[·, j] ∈ C and that, for i ∈ [n],
it holds that B[i, j] = Ar̃[i][i, j] (recall that ~r[i] is the i-th entry on the
diagonal of ∆). If all checks succeed, for every j ∈ J , output the first k
positions in A0[·, j] + A1[·, j] as the opened string and halt. Otherwise,
abort by outputting (sid, ssidj ,⊥).

Fig. 15. Addition of commitments and modified opening phase for the protocol πahcom

of [18] with delayed opening.

Proof. (Sketch) As it is the case in [18], we actually construct a protocol for
commitments to random messages rather than a protocol for commitments to
arbitrary messages. As observed in [19,18], such a protocol for additively homo-
morphic commitments to random messages can be trivially transformed into a
protocol that realizes a functionality supporting arbitrary message. We omit this
straightforward transformation and focus on the case of random messages.

45



We construct a simulator S that interacts with the functionality F∆,δahcom, the
environment Z an internal copy of the adversary A, towards which it executes
πahcom and simulates GrpoRO,Ftlp,F∆smt,delay. As observed previously, we can use
the instructions from the simulator for the protocol of [18] in the case with 1
verifier in order to construct S for the commitment, addition and opening phases
of πahcom. The only difference is that instead of simulating a non-homomorphic
commitment functionality as in [18], S follows the instructions of a simulator
for the global random oracle commitment scheme of [13] (used explicitly by
πahcom in place of a commitment functionality) in order to extract the messages
from A when the simulator of [13] would do so by simulating the commitment
functionality towards A. Besides that, S simulates message delivery through
F∆smt,delay exactly as indicated by F∆,δahcom.

In order to simulate the delayed opening phase, S takes advantage of its
simulation of Ftlp towards A. In case the adversary A corrupts PS , S learns
(~si,~r[i]|wi,~r[i]) for i ∈ [n] (resp. (A0[·, j],A1[·, j])j∈J)|w)) contained in puz~s (resp.
puzo) by observing the queries of A to the simulated Ftlp. S checks that these
values are valid openings for the global random oracle commitments scom~s, scomo
sent by A are valid by following the instructions of the global random oracle com-
mitment simulator of [13]. If these are valid openings, S uses (A0[·, j],A1[·, j])j∈J)
and (~si,~r[i]|wi,~r[i]) for i ∈ [n] to execute the steps of an honest receiver PR in
order to check that the opening each commitment identified by ssid1, . . . , ssido is
valid. If any of these checks fails, S outputs whatever A outputs and aborts. Oth-
erwise, it sends (DOpen, sid, ssid1, . . . , ssido, δ) to F∆,δahcom and halts. Essentially,
upon receiving the messages for a delayed commitment, S checks that they will
result in an honest receiver accepting this delayed opening, either performing a
similar delayed opening via F∆,δahcom if this is the case, or aborting and outputting
what A outputs if the checks fail.

If A corrupts PR, upon receiving (DOpen, sid, cid, . . . , cido, δ) from F∆,δahcom,
S simulates the steps of an honest sender for a delayed commitment, with the
difference that the puzzles puz~s, puzo are generated for random messages. Upon
receiving (DOpen,S, (ssidi,xi)i∈{1,...,o}), S simulates the solutions of puzzles in a
way that they yield delayed openings to messages xi for commitments identified
by ssidi. Notice that S can do that following the instruction of the simulator
of [18] for the case of a corrupted receiver in order to obtain (A0[·, j],A1[·, j])j∈J)

consistent with x1, . . . ,xo obtained from F∆,δahcom and then make puzo open to
these simulated values when A queries the simulated Ftlp to obtain this solution.

ut
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Protocol πahcom

Delayed Opening
1. On input (reveal, sid, ssid1, . . . , ssido), PS finds the set J = {j1, . . . , jo} of

indexes associated to ssid1, . . . , ssido, samples wo
$← {0, 1}τ and commits to

(A0[·, j],A1[·, j])j∈J by sending (Hash-Query, (((A0[·, j],A1[·, j])j∈J)|wo))
to GrpoRO, obtaining (Hash-Confirm, scomo). PS commits to
(sid, ssid1, . . . , ssido, (A0[·, j],A1[·, j])j∈J) towards PR by sending scomo
to PR via F∆smt,delay.

2. Same as Step 2 of Opening Phase, except that PR proceeds upon receiving
scomo from PS via F∆smt,delay.

3. Upon receiving ~r from PR via F∆smt,delay, PS creates time lock
puzzles containing the opening of commitments scomi,~r[i] sends
(CreatePuzzle, sid, δ,

(
(~s1,~r[1]|w1,~r[1]), . . . , (~sn,~r[n]|wn,~r[n])

)
) (resp.

(CreatePuzzle, sid, δ, (((A0[·, j],A1[·, j])j∈J)|wo)))) to Ftlp, obtaining
(CreatedPuzzle, sid, puz~s) (resp. (CreatedPuzzle, sid, puzo) ). PS sends puz~s, puzo
to PR via F∆smt,delay. In order to determine the earliest point when these time
lock puzzles can be opened, PS parses puz~s = (st − ~s0, Γ − ~s, tag − ~s), sets
cst− ~s = 0 and performs the following loop:
(a) Send (Solve, sid, st− ~scst−~s) to Ftlp.
(b) Send (Output, sid) to Ftlp and checks that there is an entry (PR, st −

~scst−~s, st− ~scst−~s+1) in Li. If yes, increment cst− ~s.
(c) If cst − ~s = Γ , PS outputs (DOpened, sid, ssid1, . . . , ssido) and exits the

loop.
4. Upon receiving time lock puzzles puz~s, puzo via F∆smt,delay, PR uses Ftlp to obtain

(~si,~r[i]|wi,~r[i]) (resp. ((A0[·, j],A1[·, j])j∈J)|wo)), i.e., PR parses puz~s = (st −
~s0, Γ − ~s, tag − ~s) (resp. puzo = (st − o0, Γ − o, tag − o)), sets cst − ~s = 0
(resp. cst− o = 0) and performs the following loop:
(a) Send (Solve, sid, st− ~scst−~s) (resp. (Solve, sid, st− ~scst−o)) to Ftlp.
(b) Send (Output, sid) to Ftlp and checks that there is an entry (PR, st −

~scst−~s, st − ~scst−~s+1) (resp. (PR, st − ~scst−o, st − ~scst−o+1)) in Li. If yes,
increment cst− ~s (resp. cst− o).

(c) If cst − ~s = Γ (resp. cst − o = Γ ), send
(GetMsg, sid, puz~s, st− ~scst−~s) ((GetMsg, sid, puzo, st− ocst−o)), obtaining
(GetMsg, sid, puz~s, st − ~scst−~s,

(
(~s1,~r[1]|w1,~r[1]), . . . , (~sn,~r[n]|wn,~r[n])

)
) (resp.

(GetMsg, sid, puzo, st − ocst−o, (((A0[·, j],A1[·, j])j∈J)|wo)))). If both(
(~s1,~r[1]|w1,~r[1]), . . . , (~sn,~r[n]|wn,~r[n])

)
and (((A0[·, j],A1[·, j])j∈J)|wo))

have been obtained, PR exits the loop and proceeds to the next step.
5. For each commitment scom where scom = scomi,~r[i] (resp. scomo) and mes-

sage of the form (m|w) where m = ~si,~r[i] and w = wi,~r[i] (resp. m =
((A0[·, j],A1[·, j])j∈J) and w = wo), PR checks the validity of the openings
obtained from the time lock puzzles by sending (Hash-Query, (m|w) to GrpoRO,
obtaining (Hash-Confirm, scom) and aborting if scom 6= scom.

6. PR uses (~si,~r[i]|wi,~r[i]) for i ∈ [n] and
(sid, ssid1, . . . , ssido, (A0[·, j],A1[·, j])j∈J)|w) obtained in the previous step to
execute Step 4 of the Opening Phase.

Fig. 16. Delayed Opening phase for the protocol πahcom of [18] with delayed opening.
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