
Drop by Drop you break the rock - Exploiting generic
vulnerabilities in Lattice-based PKE/KEMs using EM-based

Physical Attacks
Prasanna Ravi

Temasek Laboratories and School of Computer Science
and Engineering, NTU Singapore

prasanna.ravi@ntu.edu.sg

Shivam Bhasin
Temasek Laboratories, NTU Singapore

sbhasin@ntu.edu.sg

Sujoy Sinha Roy
University of Birmingham, United Kingdom

s.sinharoy@cs.bham.ac.uk

Anupam Chattopadhyay
Temasek Laboratories and School of Computer Science

and Engineering, NTU Singapore
anupam@ntu.edu.sg

ABSTRACT
We report an important implementation vulnerability ex-
ploitable through physical attacks for message recovery in
five lattice-based public-key encryption schemes (PKE) and
Key Encapsulation Mechanisms (KEM) - NewHope, Kyber,
Saber, Round5 and LAC that are currently competing in
the second round of NIST’s standardization process for post-
quantum cryptography. The reported vulnerability exists in
the message decoding function which is a fundamental kernel
present in lattice-based PKE/KEMs and further analysis of
the implementations in the public pqm4 library revealed that
the message decoding function is implemented in a similar
manner in all the identified schemes and thus they all share
the common side-channel vulnerability that leaks individual
bits of the secret message. We demonstrate that the iden-
tified vulnerability can be exploited through a number of
practical electromagnetic side-channel attacks, fault attacks
and combined attacks on implementations from the pqm4
library running on the ARM Cortex-M4 microcontroller. As a
key contribution, we also demonstrate the first practical EM-
based combined side-channel and fault attack on lattice-based
PKE/KEMs.

KEYWORDS
post-quantum cryptography; lattice-based cryptography; EM-
based side-channel attacks; EM-based fault injection attacks

1 INTRODUCTION
Post-quantum cryptographic schemes use mathematical prob-
lems that are presumed to be computationally infeasible to
solve by classical as well as quantum computers. Based on
the underlying hard problem - post-quantum schemes can
be categorized into: code-based, lattice-based, hash-based,
multivariate-based,and super-singular isogeny based. NIST
initiated a process for standardization of post-quantum cryp-
tography (PQC) in 2017, which is currently in its second
round [18]. There are 26 candidates which include public key
encryption schemes (PKE), digital signatures (DS) and key
establishment schemes (KEM) and among them lattice-based

cryptography forms the majority with 12 candidates [19].
NIST and the PQC research community anticipate that a
subset of PQC candidates will be standardized around 2024
and soon reach wide scale adoption. Among the several cri-
teria such as post-quantum security guarantees, uniqueness,
speed, communication bandwidth and efficiency based on
which the schemes are evaluated, implementation resistance
to physical side-channel and fault attacks is a prominent
important criteria especially concerning deployment of PQC
in embedded devices [18].

The primary usage of PKE/KEMs is to securely exchange a
shared secret (secret message) between two untrusted parties
using their respective public-private key pairs. The shared
secret is subsequently used within much faster symmetric
schemes such as block ciphers, stream ciphers and MACs for
secure communication. The long term secret key used during
decryption has been the main target of several side-channel
analyses (SCA) and fault injection analyses (FIA) on lattice-
based PKE/KEMs [9, 21, 24]. This is because retrieval of
a single static long term private key has maximum impact
as it compromises all the shared secrets generated using
that private key, while recovering the secret message or the
shared secret does not impact other key-exchanges or shared
secrets. However, message recovery attacks can become very
practical especially if they require only a single to very few
queries with the target device and can thus have a huge
impact even if static key pairs are not compromised. In fact,
new protocol standards including TLS 1.3 are increasingly
advocating and mandating use of PKE/KEMs that utilize
ephemeral key pairs to achieve the notion of perfect forward
secrecy [1]. This decreases the impact of recovering the long
term private key as it results in recovery of lesser number of
messages/shared secrets, which makes session key recovery
more or less equally attractive for an attacker. However, very
few works have investigated message recovery attacks over
lattice-based PKE/KEMs [3, 23]. While both these works
targeted the encryption procedure, we perform our attacks
on the decryption procedure.

In this work, we exploit a generic vulnerability within imple-
mentations of multiple second round lattice-based PKE/KEMs

, , Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, and Anupam Chattopadhyay

of the NIST’s standardization project. This implementation
vulnerability leaks information about single bits of the decryp-
tion output through the message decoding function, which
is a fundamental kernel in lattice-based PKE/KEMs. We
exploit this vulnerability to demonstrate a range of simple
side-channel attacks, fault injection attacks and combined
side-channel and fault attacks to perform message recovery
leading to recovery of the shared secret in five lattice-based
PKE/KEMs which include NewHope, Kyber, Saber, Round5
and LAC.

Contributions. The main contributions of this work are as
follows:

(1) We identify an important vulnerability within the
implementation of the message decoding function
which leaks information about individual bits of the
secret message. This function is a fundamental ker-
nel in the decryption procedure of multiple lattice-
based PKE/KEMs and the same vulnerability is
present in implementation of five round 2 candidate
PKE/KEMs such as NewHope KEM, Kyber KEM,
Saber KEM, LAC KEM and Round5 PKE.

(2) We exploit the identified vulnerability through a
range of six practical Electromagnetic (EM) ema-
nation based side-channel attacks, EM-based fault
injection attacks. We also exploit a few inherent
properties of lattice-based schemes to heavily opti-
mize our attacks to minimize the number of attack
queries with the target device. All attacks presented
in this paper require anywhere between a single at-
tack query to a few hundred attack queries for full
message recovery.

(3) We performed experimental validation of our attacks
on optimized implementations of the aforementioned
NIST candidates obtained from the pqm4 public
library, a testing and benchmarking framework for
post quantum cryptographic schemes on the ARM
Cortex-M4 microcontroller [15].

(4) We also propose novel clustering-based attack tech-
niques to perform message recovery over implementa-
tions protected with concrete side-channel masking
countermeasures.

(5) We also identified a covert bug in the implementation
of NewHope KEM in pqm4 public library that does
not violate correctness of the scheme, but has the
potential to be used as a hidden backdoor in cryp-
tographic implementations. We show that this bug
can be exploited to perform efficient fault injection
attacks for message recovery.

(6) To the best of our knowledge, we demonstrate the
first practical EM based combined SCA & FIA over
lattice-based PKE/KEMs.

A summary of the suite of the attacks presented later
in this work are tabulated in Tab.2. Efficiency of the at-
tacks are evaluated under three common operating modes
of PKE/KEMs: (1) Static public-private key pair setting
- (S), (2) Nominally Ephemeral setting with key caching -

Table 1: Summary of our SCA, FIA and combined SCA&FIA
based message recovery attacks. Table provides the number
of (#) attack queries required for each attack in the best
case scenario for the three operating modes of PKE/KEMs.
We provide generic results in terms of the bit-width 𝑛 of the
decryption output. Please refer Tab.2 for the value of 𝑛 for
various schemes. Notation: ✓- Applicable, ✗- Not Applicable,
✚- Applicable based on the duration of validity of cached key
pairs

Attack
Attack Queries Nature of PKE/KEM

S NE PE
Single_Bit_SCA (Sec.5.3) 𝑛 * 1 ✓ ✚ ✗

Single_Byte_SCA (Sec.5.4) ⌈𝑛/8⌉ ✓ ✚ ✗

Multi_Byte_SCA (Sec.5.5) 1 ✓ ✓ ✓

Masked_Single_Bit_SCA (Sec.5.6) 𝑛 * 1 ✓ ✚ ✗

Single_Bit_Bug_Exploit_FIA (Sec.6.3) 𝑛 * 2 ✓ ✚ ✗

Single_Bit_Combined_SCA_FIA (Sec.6.2) 𝑛 * 3 ✓ ✚ ✗

Table 2: Bit-width (𝑛) of the decryption output of various
schemes and their respective variants. Please note that not
all variants are covered in this table.

Scheme Variant n

NewHope KEM NewHope512 256
NewHope1024 256

Kyber KEM
Kyber512 256
Kyber768 256
Kyber1024 256

Saber KEM
LightSaber 256

Saber 256
FireSaber 256

LAC KEM
LAC128 511
LAC192 511
LAC256 1023

Round5 PKE
r5nd_1KEM_5d 318
r5nd_3KEM_5d 410
r5nd_5KEM_5d 490

(NE) and (3) Purely Ephemeral setting - (PE). Provided
the attacker capability and access to optimised measurement
setup, complete message recovery can be performed in as low
as a single trace thus recovering ephemeral secrets. Other
attacks however can be performed in a static or nominally
ephemeral (with key caching) setting, if the lifetime of the key
pair allows 32 to 768 queries depending on the application.

Organization. This paper is organized as follows. Section 2
covers the necessary background by introducing the required
concepts, Section 3 presents the main implementation vul-
nerability that underlies all the message recovery attacks
presented in this paper. Section 4 presents different side-
channel attacks to perform message recovery including attack
approaches applicable to side-channel protected implemen-
tations. Section 5 presents the fault injection attacks and
combined attacks for message recovery. Section 6 discusses
potential countermeasures against our proposed attacks and
finally, Section 7 concludes our paper.

Drop by Drop you break the rock , ,

2 LATTICE PRELIMINARIES
2.1 Notation
We denote the ring of integers modulo a prime 𝑞 as Z𝑞. The
polynomial ring Z𝑞 (𝑥)/𝜑(𝑥) is denoted as 𝑅𝑞 where 𝜑(𝑥) is
its reduction polynomial. We denote r ∈ 𝑅𝑘×ℓ

𝑞 as a module
of dimension 𝑘 × ℓ. Polynomials in 𝑅𝑞 and modules in 𝑅𝑘×ℓ

𝑞

are denoted in bold lower case letters. The 𝑖𝑡ℎ coefficient of
a polynomial a ∈ 𝑅𝑞 is denoted as a[𝑖]. Matrices/vectors in
Z𝑘×𝑙

𝑞 are denoted in bold upper case letters. Multiplication
of two polynomials a and b in the ring 𝑅𝑞 is denoted as c =
a×b. We define two operations Rotr(a, 𝑝) and Anti_Rotr(a, 𝑝)
which rotate the polynomial a ∈ 𝑅𝑞 by 𝑝 positions to the left
in a cyclic and anti-cyclic fashion respectively, as described in
Eqn.1-2. An element x ∈ 𝑅𝑞 sampled from the distribution 𝒟
with standard deviation 𝜎 is denoted as x← 𝒟𝜎 (𝑅𝑞). Byte
arrays of length 𝑛 are denoted as ℬ𝑛 and the 𝑖𝑡ℎ byte in
𝑎 ∈ ℬ𝑛 is denoted as 𝑎[𝑖]. The 𝑖𝑡ℎ bit in an element 𝑥 ∈ Z𝑞

is denoted as 𝑥𝑖.

Rotr(a, 𝑝)[𝑖] =
{︂

a[𝑛− 𝑝 + 𝑖], for 0 ≤ 𝑖 < 𝑝

a[𝑖− 𝑝], for 𝑝 ≤ 𝑖 ≤ 𝑛− 1
(1)

Anti_Rotr(a, 𝑝)[𝑖] =
{︂
−a[𝑛− 𝑝 + 𝑖], for 0 ≤ 𝑖 < 𝑝

a[𝑖− 𝑝], for 𝑝 ≤ 𝑖 ≤ 𝑛− 1
(2)

2.2 Learning With Error/Learning With
Rounding Problem

The security of most lattice-based PKE/KEMs including
those competing in the NIST standardization process are gov-
erned by the well known average-case hard problem known
as the Learning With Errors (LWE) problem [25]. The LWE
problem is at least as hard as solving the Bounded Dis-
tance Decoding (BDD) problem on the same lattices in
the worst case. A standard LWE instance is an overde-
fined system of noisy linear equations denoted as a tuple
(A, T) ∈ (Z𝑘×ℓ

𝑞 × Z𝑘×𝑛
𝑞) where A ← 𝒰 (Z𝑘×ℓ

𝑞) is a public
parameter and T = A × S + E where S ∈ 𝒟𝜎 (Z

ℓ×𝑛
𝑞) is the

secret and E ∈ 𝒟𝜎 (Z
𝑘×𝑛
𝑞) is the explicitly added error com-

ponent. One can also implicitly generate the error component
E by simply scaling all the elements of the linear system
A × S ∈ Z𝑘×𝑛

𝑞) to a lower modulus 𝑝 with 𝑝 < 𝑞 resulting
in the tuple (A, T = ⌊𝑝

𝑞
(A× S)⌉) ∈ (Z𝑘×ℓ

𝑞 × Z𝑘×𝑛
𝑝). This is

termed as a Learning With Rounding (LWR) instance [6].
Using LWE/LWR instances, one can define two types of
problems: Search and Decisional Problems. While the search
LWE/LWR problem requires to obtain a unique solution for
S given polynomially many LWE/LWR instances, the deci-
sional variant requires to distinguish structured LWE/LWR
instances from elements chosen uniformly in random from
the same space.

There are also certain structured variants of the stan-
dard LWE/LWR problem known as the Ring-LWE/Ring-
LWR (RLWE/RLWR) and Module-LWE/Module-LWR (ML-
WE/MLWR) problems which involve computation over poly-
nomials and offer substantially smaller key sizes and com-
putational times compared to the standard LWE problem.
The Ring LWE instance is defined as (a, t = ⌊a × s⌉𝑞→𝑝) ∈
(𝑅𝑞 × 𝑅𝑝) with s, e ← 𝒟𝜎 (𝑅𝑞) and an RLWR instance is
defined as (a, t = ⌊a× s⌉𝑞→𝑝) ∈ (𝑅𝑞 ×𝑅𝑝). The module vari-
ants (MLWE/MLWR) however involve computations over
vectors/matrices of polynomials in 𝑅𝑘1×𝑘2

𝑞 with (𝑘1, 𝑘2) > 1.
With a ← 𝒰 (𝑅𝑘1×𝑘2

𝑞) and s← 𝒟𝜎 (𝑅
𝑘2
𝑞) and e← 𝒟𝜎 (𝑅

𝑘1
𝑞).

the corresponding MLWE instance is defined as (a, t =
a×s+e) ∈ (𝑅𝑘1×𝑘2

𝑞 , 𝑅𝑘2
𝑞) and the MLWR instance is defined

as (a, t = ⌊a × s⌉𝑞→𝑝) ∈ (𝑅𝑘1×𝑘2
𝑞 , 𝑅𝑘2

𝑝).

2.3 A Generic Framework for LWE/LWR based
PKE schemes

Most LWE/LWR based schemes including all the lattice-
based NIST candidate PKE/KEMs are variants of a gen-
eralized paradigm proposed by Lyubashevskey, Peikert and
Regev [16] in 2010, now well known as the “LPR Encryption
scheme”. We provide a high level description of the LPR
encryption scheme as it is the basis of multiple lattice-based
PKE/KEMs based on the LWE/LWR problem (Refer Alg. 1).
We generalize its description so that parametric choices such
as the structure of the underlying ring (𝑅𝑞, 𝑅𝑘×𝑘

𝑞 , Z𝑛×𝑛
𝑞),

choice to use error correcting codes (ℰ𝑐ℎ𝑜𝑖𝑐𝑒 = 0/1) and rela-
tive sizes of the rounding moduli (𝑝, 𝑞) can describe specific
schemes.

LPR Encryption Scheme [16]: We define the function pair
(ECC_Enc, ECC_Dec) to denote the encoding and decoding
procedures of an error correcting code ℰ . Specialized proce-
dures used to convert a binary message/codeword in {0, 1}*
to a corresponding polynomial in the underlying ring and
vice versa are denoted as msg_to_poly and poly_to_msg)
respectively.

The key generation procedure (PKE.KeyGen) simply in-
volves generation of the LWE/LWR instance (a, t) (Line 6
in PKE.KeyGen) which is output as the long term public-key
while the secret s is the long term secret key. For a given
message 𝑚 ∈ ℬ*, the encryption procedure (PKE.Encrypt)
outputs two ciphertext components which are built from two
separate LWE/LWR instances using an ephemeral secret s′.
Depending on whether the scheme utilizes error correcting
procedures, the message is encrypted in two ways. Some
schemes such as LAC and variants of Round5 that utilize
error correcting codes to artificially reduce the decryption
failure rate. In such schemes, the message 𝑚 is first en-
coded into a codeword 𝑐 ∈ ℬ* (i.e) 𝑐 = ECC_Enc(𝑚) and
subsequently encoded into a polynomial x using the func-
tion msg_to_poly (lines 10-11). However, in schemes such
as NewHope, Kyber and Saber which do not use ECC, the
message 𝑚 is directly encoded to the polynomial x using
the same function msg_to_poly (line 14). Subsequently, the

, , Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, and Anupam Chattopadhyay

Algorithm 1: Generic framework of LWE/LWR based
PKE schemes

1 Procedure PKE.KeyGen()
2 𝑝𝑢𝑏𝑙𝑖𝑐𝑠𝑒𝑒𝑑← 𝒰 (ℬ32)

3 a = gen(𝑝𝑢𝑏𝑙𝑖𝑐𝑠𝑒𝑒𝑑) ∈ 𝑅𝑘×𝑘
𝑞

4 s← 𝜒s (𝑅𝑘
𝑞)

5 e← 𝜒e (𝑅𝑘
𝑞)

6 t = ⌊a𝑇 × s + e⌉𝑞→𝑝 ∈ 𝑅𝑘
𝑝

7 return (𝑝𝑘 = EncodePK(t, 𝑝𝑢𝑏𝑙𝑖𝑐𝑠𝑒𝑒𝑑), 𝑠𝑘 = EncodeSK(s))
8

1 Procedure PKE.Encrypt(𝑝𝑘, 𝑚 ∈ ℬ32, 𝑟 ∈ ℬ32)
2 (t, 𝑝𝑢𝑏𝑙𝑖𝑐𝑠𝑒𝑒𝑑) = DecodePK(𝑝𝑘)
3 a ← gen(𝑝𝑢𝑏𝑙𝑖𝑐𝑠𝑒𝑒𝑑)

4 s′ ← 𝜒s′ (𝑅𝑘
𝑞)

5 e′ ← 𝜒e′ (𝑅𝑘
𝑞)

6 e′′ ← 𝜒e′′ (𝑅𝑞)

7 t𝑟 = ⌊t⌉𝑞→𝑝 ∈ 𝑅𝑘
𝑝

8 u = ⌊a𝑇 × s′ + e′⌉𝑞→𝑝 ∈ 𝑅𝑘
𝑝

9 v = t𝑇
𝑟 s′ + e′′

10 if ℰ𝑐ℎ𝑜𝑖𝑐𝑒 = 1 then
11 𝑐 = ECC_Enc(𝑚)
12 x = msg_to_poly(𝑐)
13 end
14 else
15 x = msg_to_poly(𝑚)
16 end
17 v = ⌊v + x⌉𝑞→𝑡 ∈ 𝑅𝑡

18 return 𝑐𝑡 = EncodeCT(u, v)
19
1 Procedure PKE.Decrypt(𝑐𝑡, 𝑠𝑘)
2 u, v = DecodeCT(𝑐𝑡)
3 s = DecodeSK(𝑠𝑘)

4 u′ = ⌊u⌉𝑝→𝑞

5 v′ = ⌊v⌉𝑡→𝑞

6 x = (v′ − (u′)𝑇 s) ∈ 𝑅𝑞

7 if ℰ𝑐ℎ𝑜𝑖𝑐𝑒 = 1 then
8 𝑐′ = poly_to_msg(x)

9 𝑚′ = ECC_Dec(𝑐′)
10 end
11 else
12 𝑚′ = poly_to_msg(x)
13 end
14 return 𝑚′

encoded polynomial x is added to one of the LWE/LWR
instance v (line 17) and is output as part of the ciphertext
while the other LWE/LWR instance u is directly output as
the ciphertext (line 8). Subsequently, the decryption proce-
dure (PKE.Decrypt) recovers the message or the codeword
polynomial x (depending upon usage of ECC) from the ci-
phertext and performs an inverse decoding (poly_to_msg)
function to recover the message 𝑚′ (resp. codeword 𝑐′ if ECC
is used) one bit at a time. If ECC is used, 𝑐′ is subsequently
decoded to the message 𝑚′. The various parameters of the
PKE such as the dimension of the ring, size of modulus, size
of error etc. are chosen so as to achieve a certain security
level while also ensuring a negligible decryption failure rate.

2.4 Security in the Chosen-Ciphertext Model
The LPR encryption scheme is provably secure in the IND-
CPA secure model (Indistinguishability under Chosen-Plaintext
Attack), however several schemes utilizing the LPR encryp-
tion scheme achieve the more stronger notion of IND-CCA
(Indistinguishability under Chosen-Ciphertext Attack) secu-
rity using the well known Fujisaki-Okamoto transform [12].

Algorithm 2: FO transform of a IND-CPA secure PKE
into a IND-CCA secure KEM

1 Procedure KEM.Encaps(𝑝𝑘, ℰ𝑐ℎ𝑜𝑖𝑐𝑒)
2 𝜌← 𝒰 (ℬ32)
3 𝑚 = ℋ(𝜌)
4 𝑟 = 𝒢 (𝑚, 𝑝𝑘)
5 if ℰ𝑐ℎ𝑜𝑖𝑐𝑒 = 1 then
6 𝑐 = ECC_Enc(𝑚)
7 𝑐𝑡 = PKE.Encrypt(𝑝𝑘, 𝑐, 𝑟)
8 end
9 else

10 𝑐𝑡 = PKE.Encrypt(𝑝𝑘, 𝑚, 𝑟)
11 end
12 𝐾 = ℋ(𝑟, 𝑐𝑡)
13 return 𝑐𝑡, 𝐾
14
1 Procedure KEM.Decaps(𝑠𝑘, 𝑝𝑘, 𝑐𝑡, ℰ𝑐ℎ𝑜𝑖𝑐𝑒)
2 if ℰ𝑐ℎ𝑜𝑖𝑐𝑒 = 1 then
3 𝑐′ = PKE.Decrypt(𝑠𝑘, 𝑐𝑡)

4 𝑚′ = ECC_Dec(𝑐′)
5 end
6 else
7 𝑚′ = PKE.Decrypt(𝑠𝑘, 𝑐𝑡)
8 end
9 𝑟′ = 𝒢 (𝑚′, 𝑝𝑘)

10 𝑐𝑡′ = PKE.Encrypt(𝑝𝑘, 𝑚′, 𝑟′)
11 if 𝑐𝑡′ = 𝑐𝑡 then
12 return 𝐾 = ℋ(𝑟′‖𝑐𝑡′)
13 end
14 else
15 return 𝐾 = ℋ(𝑧‖𝑐𝑡′) /* 𝑧 ∈ ℬ32 is a random secret */
16 end

It utilizes a pair of hash functions ℋ and 𝒢 and forms a
wrapper around the encryption and decryption procedures
resulting in an IND-CCA secure KEM. Both parties arrive at
a shared secret 𝐾 derived from the message 𝑚 using within
the LPR encryption scheme. The IND-CCA secure encapsu-
lation and decapsulation procedures are shown in Alg.2. The
validity of ciphertexts are checked through a re-encryption
procedure after decryption which enable to detect handcraft-
ed/malicious ciphertexts, thereby providing security against
chosen-ciphertext attacks. If the ciphertext check is passed,
then the shared secret 𝐾 is generated by hashing the de-
crypted message with the public key and the ciphertext (line
12 in KEM.Decaps). Otherwise, a pseudorandom shared se-
cret is generated by hashing a random secret part of the
secret key with the ciphertext (line 15). Thus, at the end of
a failed decapsulation procedure, both parties end up with
different keys and thus the higher level protocol is responsi-
ble for detecting a failed key exchange. If the secret message
𝑚 is compromised, then it directly leads to recovery of the
shared secret 𝐾. The encapsulation procedure internally and
randomly generates the message 𝑚 and thus every run al-
ways generates a unique ciphertext 𝑐𝑡 and a shared secret 𝐾
corresponding to the message 𝑚. However, decapsulation is
deterministic and always returns the same shared secret 𝐾
for a given ciphertext 𝑐𝑡 as long as the public-private key pair
𝑝𝑘 − 𝑠𝑘 remains the same. While schemes such as NewHope,
Kyber, Saber and LAC are IND-CCA secure KEMs, Round5
is an IND-CCA secure PKE which utilizes this IND-CCA
secure KEM as a building block. We refer the reader to [19]
for the algorithmic specifications all the round 2 candidates.

Drop by Drop you break the rock , ,

One can operate the IND-CCA secure PKE/KEM in three
modes based on the lifetime of the public-private key pair.
They are (1) Static (S), (2) Nominally ephemeral with key-
caching (NE) and (3) Purely ephemeral (PE). The choice
of mode in which the PKE/KEM operates depends upon
the security requirements of the higher level protocol. Purely
ephemeral mode requires to generate new public-private key
pairs for every run of the key-exchange process and is typically
utilized by IND-CPA secure PKE/KEMs as well as when
perfect forward secrecy (PFS) is a strict security requirement
so that compromise of a long term secret key does not lead to
recovery of multiple short term session keys [1]. Sometimes,
key pairs are cached for a short period of time by the commu-
nicating parties so that the costly key-generation procedure
need not be performed for every run of the key-exchange [2, 4].
This is a common practice employed in security protocols
such as the TLS where keys are cached for durations in
the range of several minutes to hours. Static mode is used
typically when the underlying KEMs are PKE/KEMs are
IND-CCA secure and is also used when PFS is not a strict
security requirement.

3 TEST VECTOR LEAKAGE ASSESSMENT
(TVLA)

The Test Vector Leakage Assessment (TVLA) [14] is a popu-
lar conformance-based evaluation methodology widely used
by both academia and the industry to perform side-channel
evaluation of cryptographic implementations. TVLA involves
computation of the well known univariate Welch’s 𝑡-test over
two sets of side-channel measurements to identify differen-
tiating features in them. By testing for a null hypothesis
such that the mean of two sets is identical, a PASS/FAIL
decision is taken. The formulation of TVLA over two sets of
measurements 𝒯𝑟 and 𝒯𝑓 is given by:

𝑇 𝑉 𝐿𝐴 =
𝜇𝑟 − 𝜇𝑓√︂

𝜎2
𝑟

𝑚𝑟
+

𝜎2
𝑓

𝑚𝑓

, (3)

where 𝜇𝑟, 𝜎𝑟 and 𝑚𝑟 (resp. 𝜇𝑟, 𝜎𝑟 and 𝑚𝑟) are mean, stan-
dard deviation and cardinality of the trace set 𝒯𝑟 (resp. 𝒯𝑓).
The null hypothesis is rejected with a confidence of 99.9999%
only if the absolute value of the 𝑡-test score is greater than
4.5 [14]. A rejected null hypothesis implies that the two data
sets are different and might leak some side-channel infor-
mation and hence is considered a FAIL test. While TVLA
is mainly used as a metric for side-channel evaluation, we
utilize TVLA as a tool for feature selection from side-channel
measurements [13, 22].

4 MAIN VULNERABILITY IN MESSAGE
DECODING OPERATION

In this section, we report the main vulnerability present
within the decryption procedure which we exploit to perform
message recovery attacks in five lattice-based PKE/KEMs
such as NewHope KEM, Saber KEM, Kyber KEM, LAC

KEM and Round5 PKE. It is an implementation level vulnera-
bility present in the message decoding function (poly_to_msg
in Alg.1) that leaks information about single bits of the
decrypted message 𝑚′ (when ECC is used) or decrypted
codeword (𝑐′) (when ECC is not used) exploitable through
EM-based SCA and FIA. Since recovery of 𝑚′ from 𝑐′ is
straightforward, the vulnerability in the poly_to_msg func-
tion essentially leaks information about the message 𝑚′ en-
abling full message recovery. All our analyses and experi-
ments are performed over NewHope KEM and in particular
its NewHope512 variant. Unless specified otherwise, the same
analysis also applies to all the other aforementioned schemes.

1 void poly_to_msg (unsigned char ∗m, const poly ∗x)
2 {
3 unsigned i n t i ;
4 uint16_t t ;
5 memset (m, 0 ,NEWHOPE_SYMBYTES) ; \\ m[i] = 0
6 f o r (i =0; i <256; i ++)
7 {
8 t = f l i p a b s (x−>c o e f f s [i+ 0]) ;
9 t += f l i p a b s (x−>c o e f f s [i +256]) ;

10 t = ((t − NEWHOPE_Q/2)) ;
11 t >>= 1 5 ;
12 m[i >>3] |= t<<(i &7) ;
13 }
14 }

Figure 1: C code snippet of message decoding operation in
NewHope KEM

Refer to Fig.1 for the C code snippet of the poly_to_msg
function used in the implementation of NewHope512 taken
from the pqm4 library, an open-source benchmarking and
testing framework for post-quantum cryptographic schemes
on the ARM Cortex-M4 microcontroller [15]. All our exper-
iments in this paper are performed using implementations
from this open-source library. The poly_to_msg function
converts a given polynomial x with 512 coefficients into the
message 𝑚 ∈ ℬ32 which is stored as a byte array of length
32 bytes. All of its bytes are first initialized to 0 (line 5)
and subsequently, a pair of coefficients x[𝑖] and x[𝑖 + 256] for
𝑖 ∈ [0, 255] are together decoded to a single bit 𝑚𝑖 (calculated
in variable 𝑡 in lines 8-11). This bit is updated in the byte
array at the appropriate location and the same operations
are repeated for 256 iterations. Thus, the secret message is
updated in memory one bit at a time starting from a fixed
value of 0 and this method of handling single bits of the
message can be an effective target for side-channel and fault
attacks. This vulnerability exists in the C code and we per-
form a deeper analysis of the same using its corresponding
assembly implementation.

This C code is compiled using the arm-none-eabi-gcc
compiler for the ARM Cortex-M4 processor while enabling
the highest optimization level -O3 and the following com-
piler options -mthumb -mcpu=cortex-m4 -mfloat-abi=hard
-mfpu=fpv4-sp-d16). Refer Fig.2 for the assembly code snip-
pet of the last three lines of the C code within the iteration
(lines 10-12 in Fig.1). Considering the 𝑖𝑡ℎ iteration, these

, , Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, and Anupam Chattopadhyay

1 LSRS r6 , r1 , #3 @ r6 = i >>3
2 SUB.W r3 , r3 , #6144 @ r3 = ((t − NEWHOPE_Q/2))
3 AND.W r7 , r1 , #7 @ r7 = i &7
4 LDRB r2 , [r4 , r6] @ r2 = m[i >>3]
5 UBFX r3 , r3 , #15, #1 @ r3 = t >>= 15
6 LSLS r3 , r7 @ r3 = t<<(i &7)
7 ADDS r1 , #1 @ r1 = i + 1
8 ORRS r3 , r2 @ r3 = r3 | m[i >>3]
9 CMP.W r1 , #256 @ Check (i >= 256)

10 STRB r3 , [r4 , r6] @ m[i >>3] = r3
11 BNE.N 0 x8003a0a @ End o f Loop

Figure 2: Assembly code snippet of a single iteration of the
message decoding function (lines 10-12) in Fig.1)

lines of code correspond to the update of bit 𝑚𝑖 in the byte
array 𝑚. The value of 𝑚𝑖 is calculated and held in register
r3 (line 5 in Fig.2). It is updated in the position (𝑖&7) within
byte 𝑚[𝑖≪ 3] in the following manner. This value of 𝑚𝑖 in
register r3 is first left shifted by (𝑖&7) positions and subse-
quently bitwise or’red with the current value of 𝑚[𝑖≪ 3] in
register r2. The result in register r3 is stored in memory using
the STRB instruction (line 10). Thus, every byte 𝑚[𝑖≪ 3] is
updated in eight iterations (one bit at a time) and thus the
whole message 𝑚 in 256 iterations.

We denote the value of message byte 𝑚[𝑗] at the end of
the 𝑖𝑡ℎ iteration as 𝑚[𝑗, 𝑖]. Thus, the intermediate values of
a byte 𝑚[0] are denoted as 𝑚[0, 𝑗] for 𝑗 ∈ [0, 7]. 𝑚[0, 0] can
only take two values 0/1 based on first bit 𝑚0, while 𝑚[0, 1]
can take four values {0, . . . , 3} and so on. The same also ap-
plies to all the other bytes of 𝑚. The STRB instruction that
updates the message 𝑚 one bit at a time in each iteration can
serve as a very effective point of attack using both SCA and
FIA. This vulnerability of handling single bits of the message
is also present in implementations of other schemes such as
Kyber, Saber, LAC and Round5. We refer the reader to the
algorithm specification documents and source code of the
respective schemes found in [19]. We henceforth refer to this
implementation level vulnerability as the Single_Bit_Update
vulnerability throughout the paper. In the subsequent sec-
tions, we show that this vulnerability can be easily exploited
through SCA and FIA to perform message recovery in the
aforementioned LWE/LWR-based PKE/KEMs.

4.1 Manipulating Messages of Valid Ciphertexts
We also identified certain properties of the target lattice-based
PKE/KEMs that enabled us to optimize our side-channel and
fault attacks. Given a ciphertext 𝑐𝑡 containing a message 𝑚, it
is possible to construct malicious (though invalid) ciphertexts
(𝑐𝑡′) from 𝑐𝑡, that deterministically decrypt to variants of
the original secret message 𝑚. We identified two ways to
manipulate secret messages within valid ciphertexts. They
are (1) cyclic rotation of the message (2) Targeted flip of
individual bits of the message.

4.1.1 Cyclic Message Rotation. All the target schemes in
this work perform polynomial arithmetic over rings 𝑅𝑞 mod-
ulo cyclotomic polynomials and together referred to as ideal
lattice-based schemes. While schemes such as NewHope, Ky-
ber, Saber and LAC operate over the anti-cyclic polynomial

ring 𝑅𝑞 = Z𝑞[𝑥]/(𝑥𝑛 + 1), some efficient variants of Round5
utilize a cyclic polynomial ring 𝑅𝑞 = Z𝑞[𝑥]/(𝑥𝑛+1 − 1). The
product of a polynomial s with 𝛼𝑖 (𝑥) = 𝑥𝑖 in the anti-cyclic
polynomial ring results in s′ = AntiRotr(s, 𝑖). So, it is possible
to rotate the polynomial of s by any number of positions
in an anti-cyclic fashion by simply changing 𝑖 in 𝛼𝑖. This
rotation property can be used to construct handcrafted ci-
phertexts 𝑐𝑡′ (𝑖) for 𝑖 ∈ {0, 255} from a given ciphertext 𝑐𝑡
whose corresponding decrypted messages 𝑚′ (𝑖) are cyclic ro-
tations of the original message 𝑚 (i.e) 𝑚′ (𝑖) = Rotr(𝑚, 𝑖). The
ciphertext 𝑐𝑡 of NewHope KEM consists of two polynomials
u and v. The decryption procedure computes the polyno-
mial x = (v− u× s) where s is the secret polynomial. This
polynomial x is subsequently input to the message decoding
function (poly_to_msg) to retrieve the encrypted message
𝑚. For the NewHope512 variant, the first message bit 𝑚0
can be represented as follows:

𝑚0 = 𝒫 (x[0], x[256])
= 𝒫 (v[0]− (u× s)[0], v[256]− (u× s)[256])
= 𝒫 (v[0]− (us)[0], v[256]− (us)[256])

where 𝒫 is the operation that decodes 𝑚0 from the coeffi-
cient pair (x[0], x[256]). This operation determines the value
of 𝑚0 based on the distance the inputs x[0] and x[256] from
the center ⌈𝑞/2⌋ of the modular operating range [0, 𝑞 − 1]
(lines 8-11 of C code snippet in Fig.1). This operation 𝒫 is
commutative and is also agnostic to the sign of the operands
since the distance of a given value 𝑥 from the center 𝑞/2
(|𝑥 − 𝑞/2|) does not change with a sign change of 𝑥 (i.e)
| − 𝑥− 𝑞/2| = |𝑞− 𝑥− 𝑞/2| = |𝑥− 𝑞/2|. We can create modi-
fied ciphertexts of the form 𝑐𝑡′ (𝑖) = (v′ (𝑖), u′ (𝑖)) where u′ (𝑖) =
(u×𝛼𝑖) = AntiRotr(u, 𝑖) and v′ (𝑖) = (v×𝛼𝑖) = AntiRotr(v, 𝑖)

and 𝛼𝑖 = 𝑥𝑖. If u × s = us, then us′ (𝑖) = (u′ (𝑖) × s) =
AntiRotr(us, 𝑖). Thus, the first bit of the resulting modified
message 𝑚′0 is given as follows:

𝑚′0 = 𝒫 ((v
′ (𝑖)[0]− us′ (𝑖)[0]), (v′ (𝑖)[256]− us′ (𝑖)[256]))

= 𝒫 (−v[512− 𝑖] + us[512− 𝑖],−v[256− 𝑖] + us[256− 𝑖])
= 𝒫 (−(x[512− 𝑖]),−(x[256− 𝑖]))
= 𝒫 (−(x[256 + 256− 𝑖]),−(x[256− 𝑖]))
= 𝑚(256−𝑖)

Thus, by simply changing 𝑖, it is possible to construct
modified ciphertexts which decrypt to cyclic rotations of
the original message 𝑚 by arbitrary number of positions
(i.e) Rotr(𝑚, 𝑖) for 𝑖 ∈ {0, 255} without any knowledge of 𝑚.
We also denote the corresponding modified ciphertext 𝑐𝑡′ as
Rotr(𝑐𝑡, 𝑖). The rotation property works in the same manner
for the other schemes such as Kyber, Round5, LAC and
Saber. We henceforth refer to this as the Rotate_Message
property throughout this paper. We reiterate that these
malicious ciphertexts are invalid and will always result in a
decapsulation failure. However, these malicious ciphertexts
are still be decapsulated by the target device during which
side-channel observations or fault injection can be performed.

Drop by Drop you break the rock , ,

4.1.2 Targeted Flip of Single Bits. It is also possible to
construct modified ciphertexts 𝑐𝑡′ which decrypt to 𝑚′ in
which bits at specific locations are flipped compared to the
original message 𝑚, while all other bits are the same. We
denote 𝑚′ = Flip(𝑚, 𝑖) whose 𝑖𝑡ℎ bit has been flipped, while
all the other bits are the same. The corresponding cipher-
text 𝑐𝑡′ is denoted as Flip(𝑐𝑡, 𝑖). Referring to the encryption
procedure PKE.Encrypt in Alg.1 , the message 𝑚 is encoded
into a polynomial x one bit at a time in the same ring (line
14). In case of NewHope512, a single bit 𝑚𝑖 is encoded to
two coefficients (i.e) x[𝑖] = 𝑞/2 and x[𝑖 + 256] = 𝑞/2 if 𝑚𝑖 = 1
else both coefficients are zero otherwise. This polynomial x
is added to an LWE/LWR instance and subsequently output
as the ciphertext component v (line 16). Thus, flipping bit
𝑚𝑖 can simply be done by subtracting 𝑞/2 from the corre-
sponding coefficients of v (i.e) (v[𝑖], v[𝑖 + 256]) that are used
to determine the value of 𝑚𝑖. The same can be done to flip
any number of bits of the original message 𝑚. We refer to
this as the Bit_Flip property throughout this paper.

4.2 Adversary Model
We first establish the capabilities of the attacker and the
settings in which all the attacks in this paper are conducted
(both SCA and FIA). The attacker has physical access to
the device under test (DUT) performing decapsulation and
hence can passively observe EM side-channel information
or actively interfere with its operation using fault injection.
The attacker can snoop over the communication channel
between the target device (𝒟𝑡) and another legitimate device
(𝒟𝑟). Thus, he/she can recover the ciphertext 𝑐𝑡 used during
their key-exchange procedure to arrive at a shared secret
key 𝐾. The attacker is also capable of triggering the target
device 𝒟𝑡 (DUT) to decapsulate arbitrarily any number of
chosen ciphertexts. Please refer Fig.3 for an illustration of
the attacker setting for all the attacks covered in this paper.

5 SIDE-CHANNEL ATTACKS
In this section, we demonstrate a range of side-channel attacks
to perform message recovery by exploiting the Single_Bit_Update
vulnerability. Note that one EM trace refers to a single mea-
surement from a single execution of the target operation.

5.1 Experimental Setup
Our DUT is the STM32F407VG microcontroller housed on
the STM32F4DISCOVERY evaluation board. The implemen-
tation of NewHope512 from the pqm4 library is clocked at 24
MHz. We utilize the ST-LINK/v2.1 add-on board for UART
communication with our DUT and OpenOCD framework for
flash configuration and on-chip hardware debugging with the
aid of the GNU debugger for ARM (arm-none-eabi-gdb).
We utilized the EM side-channel for our experiments and the
EM measurements were observed from the same DUT using
a Langer RF-U 5-2 near-field probe and processed using a
Lecroy 610Zi oscilloscope at a sampling rate of 500MSam/sec,
amplified 30dB with a pre-amplifier. Refer Fig.4 for our EM-
based SCA setup used for our experiments.

Target Device Dt

Public Key (pk)

Ciphertext (ct)
KeyGen

Encaps
Decaps

Eve (pk, ct)

Valid Key Exchange

Shared Key K’

Valid Device Dr

Shared Key K

Target Device Dt

Public Key (pk) KeyGen
Encaps

Decaps

Malicious Key Exchange

Shared Key K’

Attacker Da

Shared Key K

Ciphertext (ct/ct’) SCA

FIA

SCA

FIA

Figure 3: Pictorial illustration of the attacker setting

(a) (b)

Figure 4: Experimental Setup for SCA (a) SCA Setup (b)
Zoomed-in view of EM-probe over the DUT

5.1.1 Two Phase Attack. All our side-channel attacks cov-
ered in this work are performed in two phases. The first is
a pre-processing phase which involves building profiles/tem-
plates for different values of the message. The pre-processing
phase has several advantages. Firstly, it only has to be done
once for a given DUT and hence its cost is amortized over
time when the same templates are used for multiple attacks.
Since we are only building profiles for the message, it is
agnostic to the lifetime of the public-private key pairs (stat-
ic/nominally ephemeral/purely ephemeral). After the pre-
processing phase, the second phase is the attack phase where
the attacker queries the DUT with the attack ciphertexts 𝑐𝑡′

adapted from the target ciphertext 𝑐𝑡 and observes the cor-
responding side-channel traces. Subsequently, he utilizes the
templates from the pre-processing phase and the attack traces
to perform message recovery. Here the DUT utilizes the same
public-private key pair that was utilized during key exchange
with the legitimate device. For efficient attacks, the SNR of
measured traces in the attack phase are desired to have a
high SNR. Some common techniques to boost SNR involve
employing high precision EM probes, hardware analog filters,
advanced digital filtering, trace re-synchronization to remove
jitter, averaging etc. The choice of noise reduction technique
is completely platform dependent. For our experiment, we
used averaging as an SNR boosting technique which has built-
in support in modern oscilloscopes. Recall that the attacker
can trigger the DUT (𝒟𝑡) to decapsulate arbitrarily any num-
ber of chosen ciphertexts (Sec.4.2), thus allowing averaging.

, , Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, and Anupam Chattopadhyay

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6 10

s = poly_frombytes(sk)

u = poly_frombytes(ct)

v = poly_ decompress(ct)

t = poly_ mul_pointwise(u, s)

t’ = bitrev_vector(t)

t’’ = NTT(t’,)

7

8

9

g = mul_coefficients(t’’,⍵)

x = poly_sub(g,v)

m = poly_to_msg(x)

f = Hash(m,pk)

Start of
Decryption

Target Op. End of
Decryption

Figure 5: Visual inspection of the EM side-channel trace
to locate the target poly_to_msg function within the de-
cryption procedure. The different patterns are annotated
against names of functions according to the implementation
of NewHope512 in the pqm4 library.

In the following, the traces for attack phase are averaged 20
times to boost the SNR, unless otherwise specified.
5.2 Leakage Detection
We identified that the store instruction (STRB) in each iter-
ation of the message decoding operation leaks information
about intermediate values of the message bytes. The first
step towards message recovery is to identify features on the
side-channel trace corresponding to the update of the inter-
mediate values of the message bytes in memory. We start by
inspecting the EM side-channel trace of the decryption pro-
cedure of NewHope512 to locate the target message decoding
operation. Refer Fig.5 for an EM trace from the decryp-
tion procedure captured on the oscilloscope. We can identify
distinct patterns on the trace corresponding to different oper-
ations within the decryption procedure through simple visual
inspection. This enables us to approximately locate the time
window containing our target message decoding operation.

We narrow our focus towards detecting leakage correspond-
ing to the first byte 𝑚[0]. We use the Welch’s 𝑡-test to per-
form leakage detection. We construct two sets of ciphertexts,
denoted as 𝐶𝑇0 and 𝐶𝑇1. The set 𝐶𝑇0 consists of ℓ cipher-
texts for random messages with the first byte fixed to 0 (i.e)
𝑚[0] = 0 while all other bytes 𝑚[𝑖] for 𝑖 ∈ [1, 31] are chosen
at random. The set 𝐶𝑇1 contains ciphertexts for random
messages with 𝑚[0] = 1 while all the other bytes are chosen
at random. This ensures that for ciphertexts in set 𝐶𝑇0,
𝑚[0, 𝑗] = 0 for 𝑗 ∈ [0, 7], while 𝑚[0, 𝑗] = 1 for 𝑗 ∈ [0, 7] for
ciphertexts in set 𝐶𝑇1 and this persistent 1 bit difference
between the stored values can be detected through the EM
side-channel.

We collect two sets of ℓ = 50 EM side-channel measure-
ments corresponding to both ciphertext sets which we denote
as 𝒯0 (for 𝐶𝑇0) and 𝒯1 (for 𝐶𝑇1). We normalize each trace
and compute the Welch’s 𝑡-test between the two trace sets.
Refer Fig.6(a) for the 𝑡-test plot where we can observe eight
distinct and evenly spaced out sets of peaks (greater than
the pass-fail threshold ±4.5) which correspond to the time
instances of storage of 𝑚[0, 𝑗] for 𝑗 ∈ [0, 7]. It is also possible
that with more traces in each set, the 𝑡-test plot could have

0 10000 20000 30000 40000 50000
Time Index

10

5

0

5

10

15

t-t
es

t

t-test threshold

0 10000 20000 30000 40000 50000
Time Index

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

t-t
es

t

t-test threshold

(a) (b)

Figure 6: TVLA results for NewHope KEM (NewHope512)
targeting 𝑚[0] (a) 𝒯0 (𝑚[0] = 0) and 𝒯1 (𝑚[0] = 1) (b) 𝒯0
(𝑚[0] = 0) and 𝒯2 (𝑚[0] = 2)

0 2000 4000 6000 8000 10000
Time Index

20

15

10

5

0

5

10

15

t-t
es

t

t-test threshold

0 2000 4000 6000 8000 10000
Time Index

20

10

0

10

20

t-t
es

t

t-test threshold

(a) (b)

Figure 7: TVLA results between 𝒯0 (𝑚[0] = 0) and 𝒯1 (𝑚[0] =
1) for other schemes (a) Kyber KEM (Kyber512) (b) Round5
PKE (R5ND_1KEM_5d)

additional peaks corresponding to other operations. But, we
only utilize the time instances corresponding to the storage
of 𝑚[0, 𝑗] for 𝑗 ∈ [0, 7] for all our analysis. For validation,
we also repeated the same experiments with ciphertext sets
𝐶𝑇0 (𝑚[0] = 0) and 𝐶𝑇2 (𝑚[0] = 2) and the corresponding
𝑡-test plot shows 7 distinct peaks (since 𝑚[0, 0] = 0 for both
sets), thus confirming our hypothesis of leakage from the
update of message in memory (Refer Fig.6(b)). We also vali-
dated the presence of the same leakage in two other schemes
- Kyber (Kyber512 variant) and Round5 (R5ND_1KEM_5d
variant). We obtain a very similar 𝑡-test plot for both these
schemes which validates the presence of leakage due to the
same Single_Bit_Update vulnerability. While the above ex-
periments merely confirmed the presence of message leakage
through the EM side-channel, we will subsequently demon-
strate different profiling and extraction strategies to perform
full message recovery.

5.3 Single Bit Leakage Attack
In this attack, we exploit leakage from update of the first
message bit 𝑚0 to recover the full message. We thus construct
templates corresponding to the update of the first bit in mem-
ory (i.e) update of 𝑚[0, 0] in memory. These templates are
built in the pre-processing phase from traces corresponding
to 𝐶𝑇0 (𝑚[0] = 0) and 𝐶𝑇1 (𝑚[0] = 1) whose 𝑡-test plot is
shown in Fig.6(a). We only select those points whose absolute
𝑡-test value is greater than a certain threshold 𝑇 ℎ𝑠𝑒𝑙 as our

Drop by Drop you break the rock , ,

set of Points of Interest (PoI) 𝒫. 𝑇 ℎ𝑠𝑒𝑙 is also a parameter of
the experimental setup and must be empirically determined.
The set of PoI can be divided into eight subsets each denoted
as 𝒫 (𝑗) for 𝑗 ∈ [0, 7] - each corresponding to update of 𝑚[0, 𝑗]
in memory. We only choose the subset 𝒫 (0) corresponding
to 𝑚[0, 0] to construct templates for the two possible values
for 𝑚[0, 0] (i.e) 0 and 1. We build a reduced traces from
both trace sets corresponding to 𝒫 (0) and the mean of these
reduced trace sets are nothing but the reduced templates for
𝑚[0, 0] = 0 and 𝑚[0, 0] = 1, denoted as 𝑟𝑡0 and 𝑟𝑡1.

Given a single trace 𝑡𝑟 to attack, we normalize the attack
trace and obtain a reduced trace 𝑡𝑟′ corresponding to 𝒫0.
Subsequently, we compute the sum-of-squared difference Γ*
of the trace with each reduced template as follows:

Γ0 = (𝑡𝑟′ − 𝑟𝑡0)
𝑇 · (𝑡𝑟′ − 𝑟𝑡0)

Γ1 = (𝑡𝑟′ − 𝑟𝑡1)
𝑇 · (𝑡𝑟′ − 𝑟𝑡1)

We can then classify 𝑚[0, 0] as 0/1 based on the least sum-of-
squared difference. Since 𝑚[0, 0] = 𝑚0, a single trace can thus
be used to recover the first bit of the message 𝑚0. Having
recovered 𝑚0, we can now exploit the Rotate_Message prop-
erty to construct ciphertexts 𝑐𝑡′ (𝑖) = Rotr(𝑐𝑡, 𝑖) for 𝑖 ∈ [0, 255]
that decrypt to cyclic rotations of the original message 𝑚 (i.e)
𝑚′ (𝑖) = Rotr(𝑚, 𝑖), thereby rotating message bits at different
positions to the first position, which can be recovered in the
same manner. Thus, the complete message can be recovered
one bit at a time.

5.3.1 Experimental Results. We performed experimental
validation of our attack on the implementation of NewHope512
from the pqm4 library. 100 traces were used for the one-time
pre-processing phase to build templates. In the attack phase,
we could recover the complete message with 100% success
rate in just 256 traces (i.e) 1 bit per trace. This attack is
applicable to PKE/KEMs working with static public-private
key pairs. It is also reasonable to assume that it can also
work over PKE/KEMs working in a nominally ephemeral
mode with key pairs cached for a short period of time (in
the range of minutes), considering our low trace complexity
(256 traces). However, this attack fails in a purely ephemeral
mode. We henceforth refer to our single bit leakage attack
as Single_Bit_SCA throughout the paper.

5.4 Single Byte Leakage Attack
While our single bit leakage attack was only able to recover
one bit per trace (targeting 𝑚[0, 0]), we can extend the same
approach to recover the complete byte 𝑚[0] by recovering
all of its intermediate values 𝑚[0, 𝑗] for 𝑗 ∈ [0, 7] from the
same trace. The one-time pre-processing phase of this attack
simply involves collection of traces for all possible values
for 𝑚[0, 𝑗] for 𝑗 ∈ [0, 7]. Thus, we collect 50 traces each
corresponding to valid decapsulations of 256 ciphertext sets
𝐶𝑇𝑘 for 𝑘 ∈ [0, 255] where ciphertexts in set 𝐶𝑇𝑘 correspond
to messages 𝑚 with the first byte fixed to a value of 𝑘 (i.e)
𝑚[0] = 𝑘 while all the other message bytes are random. The
attack phase involves utilizing traces from the pre-processing

phase to adaptively construct templates and recover the
intermediate values 𝑚[0, 𝑗] for 𝑗 ∈ {0, 7} in a greedy manner.

Given a trace 𝑡𝑟 for attack, 𝑚[0, 0] can be recovered the
same manner as our Single_Bit_SCA using trace sets 𝒯0 and
𝒯1. Having recovered 𝑚[0, 0] = 𝑏0, 𝑏1 = 𝑚[0, 1] can now take
two possible values (i.e) 𝑏1 = 𝑏0 or 𝑏1 = 𝑏0 + 21. We similarly
repeat our Single_Bit_SCA between trace sets 𝒯𝑏0 and 𝒯𝑏1 .
We can utilize traces corresponding to different values of 𝑚
in each set since multiple values of 𝑚 have the same 𝑚[0, 𝑗]
for 𝑗 = {0, 6}. For example, both 𝑚 = 3, 𝑚 = 7, 𝑚 = 15
all correspond to 𝑚[0, 1] = 3. The peak of the 𝑡-test plot
observed at the location corresponding to storage of 𝑚[0, 1]
is chosen as the relevant PoI for 𝑚[0, 1]. As stated earlier,
we only consider those PoIs for our attack that are in the
vicinity of the initial PoI set correspoding to the storage of
𝑚[0, 𝑗] for 𝑗 ∈ {0, 7} obtained from the 𝑡-test plot between
𝒯0 and 𝒯1, in order to avoid any false positives. Once 𝑚[0, 1]
is recovered, all other intermediate values 𝑚[0, 𝑗] for 𝑗 ∈ [2, 7]
can be similarly recovered in a greedy manner to completely
recover 𝑚[0] from a single trace since 𝑚[0, 7] = 𝑚[0]. We
can then utilize the Rotate_Message property to rotate bytes
at different locations to the first location and thus perform
complete message recovery in 32 traces (i.e) one byte per
trace.

5.4.1 Experimental Results. We performed practical ex-
periments on the same NewHope512 implementation. The
one-time pre-processing phase requires about 256 * 50 =
12.8𝑘 traces to construct templates for all values of 𝑚[0].
The 256 templates are then used for message recovery in the
attack phase. The attack phase only requires 32 traces for
full message recovery with 100% success rate. Similar to the
Single_Bit_SCA, this attack also works over PKE/KEMs
working in the static mode and nominally ephemeral mode
with keys cached for a short period of time (in the range
of minutes). However, this attack is also not possible in a
purely ephemeral mode. We henceforth refer to this attack
as Single_Byte_SCA throughout the paper.

5.5 Pushing the limits of Single Byte Leakage
Attack

Both the aforementioned attacks (Single_Bit_SCA and
Single_Byte_SCA) do not work in a purely ephemeral mode
since they require multiple traces during the attack phase.
While our Single_Byte_SCA only built templates for 𝑚[0],
it is possible to similarly build templates for all other bytes
𝑚[𝑗] for 𝑗 ∈ [1, 31], which would enable to recover the com-
plete message from just a single trace. This would however
require 32 * 256 * 50 = 409.6𝑘 traces for the one-time pre-
processing phase while only a single trace (with sufficiently
high SNR) for full message recovery. This, thus enables to
perform attacks over PKE/KEMs using ephemeral public-
private key pairs. We henceforth refer to this single trace
attack as Multi_Byte_SCA throughout the paper. However,
the trace requirement for the one-time pre-processing phase
of our Multi_Byte_SCA can be significantly reduced (from
819.2𝑘) by profiling multiple message bytes at the same time.

, , Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, and Anupam Chattopadhyay

We can create ciphertext sets with multiple bytes of the mes-
sage fixed to a particular value while the remaining bytes are
random. For example, we can create ciphertexts for messages
with 𝑚[𝑗] = 𝑘 for 𝑗 ∈ [0, 15] with 𝑘 ∈ [0, 256] while the other
message bytes 𝑚[𝑗] for 𝑗 ∈ [16, 31] are chosen at random.
This enables to profile the first 16 bytes at the same time
and this improved pre-processing only requires 2 * 256 * 50 =
25.6𝑘 for the Multi_Byte_SCA attack and a single trace in
the attack phase for full message recovery.

Given the ephemeral mode, the attacker has access to one
and only one trace that was captured from the DUT when de-
capsulating a valid ciphertext from another legitimate device.
This, thus prevents use of averaging as an SNR boosting tech-
nique and hence the attacker must resort to alternate noise
reduction techniques to perform the Multi_Byte_SCA attack.
Ephemeral secrets have also shown to prevent a wide range of
SCA in classical PKE like RSA and ECC [7, 17]. The impact
of reduced SNR due to low averaging on Single_Bit_SCA
and Single_Byte_SCA is shown in Fig. 9. With no averaging,
the attacker can only recover each byte (working with 256
classes) from the attack trace with 35% success but mounts
quickly to over 90% in couple of traces. We also observed
that distinguishing certain values of 𝑚[0, 𝑗] for 𝑗 ∈ {0, 7} is
more difficult than distinguishing certain other values. This
is also confirmed by differing heights of the peaks in the the
𝑡-test plot in Fig.8(a)-(d) corresponding to different pairs
of values obtained using 50 traces in each set. Thus, uti-
lizing more traces in the pre-processing phase could result
in creating of better templates leading to reduced number
of traces to average in the attack-phase. From the 𝑡-test
plots we can also see that distinguishing between 𝑚 = 0 and
𝑚 = 1 (Fig.8(a)) is much easier than other pairs of values and
thus we also observed a high success rate of 98.5% for our
Single_Bit_SCA without averaging and a 100% success rate
using as low as 3 traces for averaging. This high success rate
for Single_Bit_SCA without averaging, is later exploited to
break the masking countermeasure in the following section.

5.6 Attacking Masked Implementations
Masking is a well known countermeasure with provable secu-
rity to protect cryptographic implementations against side-
channel attacks. Among the several generic masking schemes
proposed for Ring-LWE encryption schemes [20, 26, 27], the
masking scheme of Oder et al. [20] is the only known mask-
ing scheme with a negligible decryption failure probability
applicable for IND-CCA secure PKE/KEMs. We assess the
possibility of exploiting the Single_Bit_Update vulnerability
in side-channel protected implementations.

We briefly explain the masking scheme of Oder et al. [20]
and in particular, cover only the relevant details of its de-
cryption procedure that concerns our attack. The secret key
polynomial s is additively and randomly split into two shares
s′ and s′′ such that s = s′+s′′ ∈ 𝑅𝑞 . Subsequently, two shares
x′ = u×s′ and x′ = v−u×s′′ are computed and together de-
coded into 𝑚′ and 𝑚′′ such that 𝑚 = 𝑚′⊕𝑚′′. These message
shares change for every run of the masked decryption/decap-
sulation procedure for the same ciphertext input. In the case

0 10000 20000 30000 40000 50000
Time Index

15

10

5

0

5

10

t-t
es

t

t-test threshold

0 10000 20000 30000 40000 50000
Time Index

10

5

0

5

10

t-t
es

t

t-test threshold

(a) (b)

0 10000 20000 30000 40000 50000
Time Index

10

5

0

5

10

t-t
es

t

t-test threshold

0 10000 20000 30000 40000 50000
Time Index

7.5

5.0

2.5

0.0

2.5

5.0

7.5

t-t
es

t

t-test threshold

(c) (d)

Figure 8: 𝑡-test plot computed between traces from decoding
different values of 𝑚 (a) 𝑚 = 0 and 𝑚 = 1 (b) 𝑚 = 0 and
𝑚 = 2 (b) 𝑚 = 2 and 𝑚 = 6 (b) 𝑚 = 6 and 𝑚 = 14

0 5 10 15 20
No of Traces Averaged

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
u
cc

e
ss

 R
a
te

Single_Byte_SCA

Single_Bit_SCA

Figure 9: Success rate of message byte recovery in
Single_Byte_SCA against number of averaged traces

of NewHope512, the pairs of coefficients (x′[𝑖], x′[𝑖+256]) and
(x′′[𝑖], x′′[𝑖 + 256]) are together decoded into bits 𝑚′𝑖 and 𝑚′′𝑖
respectively. We do not have access to a publicly available
masked implementation of any of the target schemes and
thus assume a scenario of the Single_Bit_Update vulnerabil-
ity present in the masked implementation of NewHope512
such that individual message shares 𝑚′ and 𝑚′′ are updated
one bit at a time. For our experiments, we tweak the message
decoding function into computing another dummy byte array
𝑚′′ that acts as the second message share updated one bit at
a time. Thus, we have a pair of store instructions updating
single bits of the shares at different time instances. Much like
the ephemeral mode, averaging cannot be done due to use
of random masks. Thus, the results presented in this section
are for non-averaged measurements.

5.6.1 Clustering-based Attack Methodology. In the one-
time pre-processing phase, we identify features on the trace
corresponding to the first bit update of both shares (i.e)

Drop by Drop you break the rock , ,

update of 𝑚′[0, 0] and 𝑚′′[0, 0] in memory and subsequently
build reduced templates for the same. Since the message
shares are random, we cannot utilize a 𝑡-test based approach
for leakage detection and hence propose a new clustering
based approach for leakage detection. We create 𝐿 valid
ciphertexts 𝑐𝑡𝑗 for 𝑗 ∈ [0, 𝐿− 1] for messages with 𝑚[0] = 1
while all its other bytes are random. This will ensure that the
first bit of the message shares 𝑚′0 and 𝑚′′0 are always different
since 𝑚′0 ⊕ 𝑚′′0 = 1. Moreover, the choice of message also
induces a constant 1-bit difference between the intermediate
values of the first byte of the shares (i.e) 𝑚′[0, 𝑗] and 𝑚′′[0, 𝑗]
for 𝑗 ∈ [0, 7].

Let the traces obtained for decapsulation of the chosen
ciphertexts be denoted as 𝑡𝑟𝑗 for 𝑗 ∈ [0, 𝐿− 1]. We can view
the trace set as a matrix of dimension (𝐿×𝑀) where 𝑀 is
the number of samples in each trace. We perform a simple
2-class k-means clustering of each individual column of the
matrix (i.e) 𝑐𝑜𝑙𝑖 for 𝑖 ∈ [0, 𝑀 − 1], to obtain an equally
sized classification matrix 𝑐𝑟. Since 𝑚′[0, 0] and 𝑚′′[0, 0]
complement each other, our hypothesis is that there were
will be atleast two columns of 𝑡𝑟 that are classified exactly
opposite to each other (i.e) two points on the same trace that
are classified into the opposite classes across all 𝐿 traces. We
thus perform a pairwise comparison of all 𝑀 columns of the
clustering matrix 𝑐𝑟 to identify those pairs that have been
clustered exactly opposite to one-another or atleast nearly
exact. To reduce the complexity of pairwise comparison,
the attacker can choose a smaller window if he/she has an
approximate knowledge of the interval separating the time
instances. This is possible especially since both 𝑚′[0, 0] and
𝑚′′[0, 0] are updated immediately one after another. This
approach may lead to a lot of false positives (i.e) random
pair of columns which have exactly opposite clustering. Thus,
when a match is obtained say for 𝑐𝑜𝑙𝑖 and 𝑐𝑜𝑙𝑗 , we partition
the trace set 𝑡𝑟 into two sets based on the clustering of 𝑐𝑜𝑙𝑖
or 𝑐𝑜𝑙𝑗 and computes the Welch’s 𝑡-test. When clustered
correctly according to 𝑚′[0, 0] or 𝑚′′[0, 0], we should ideal be
able to see two tall and close peaks corresponding to 𝑚′[0, 0]
and 𝑚′′[0, 0] and monotonically diminishing pairs of peaks
for the subsequent intermediate values of the shares since
they also maintain a 1-bit difference in the LSB, however
with added noise from the other bits resulting in lower peaks.

Please refer to Fig.10(a) for the 𝑡-test plot when correctly
partitioned according to the column corresponding to 𝑚′[0, 0]
or 𝑚′′[0, 0]. Please refer Fig.10(b)-(d) for 𝑡-test plots when
wrongly clustered. Thus, a simple visual inspection of the
plots can easily help identify the correct clustering. Based on
the correct 𝑡-test plot shown in Fig.10(a), we can create two
reduced templates for 𝑚′[0, 0] and 𝑚′′[0, 0] using the first
two peaks respectively, which can subsequently be utilized to
recover the first bit of each shares from a given side-channel
trace. In the attack phase, one can utilize the same technique
used in the Single_Bit_SCA to individually recover the first
bits of the message shares 𝑚′ and 𝑚′′. Subsequently, the
attacker can utilize the Rotate_Message property to recover
the other bits of both the shares in a similar manner to

0 2000 4000 6000 8000 10000

15

10

5

0

5

10
t-test threshold

0 2000 4000 6000 8000 10000

15

10

5

0

5

10

t-test threshold

(a) (b)

0 2000 4000 6000 8000 10000

15

10

5

0

5

10

t-test threshold

0 2000 4000 6000 8000 10000

15

10

5

0

5

10
t-test threshold

(c) (d)

Figure 10: (a) 𝑡-test plot corresponding to correct partitioning
of traces from the masked decoding procedure, (b)-(d) 𝑡-test
plot corresponding to incorrect and random partitioning of
traces from the masked decoding procedure

recover the complete message in just 256 traces (i.e) 1 bit
per trace.

5.6.2 Experimental Results. For our experiments, we uti-
lized 100 non-averaged traces for the one-time pre-processing
phase. We cannot use averaging to boost the SNR over
masked implementations due to use of random shares. Our
attack works with a success rate of 99% in recovering the com-
plete message. We can repeat the attack multiple times and
use majority voting to increase the success rate to 100%. We
refer to this as the Masked_Single_Bit_SCA attack through-
out this paper. We reiterate that we do not perform our
attack on an actual masked implementation, but merely in-
vestigate techniques to access the possibility of exploiting the
Single_Bit_Update vulnerability by tweaking the existing
unprotected implementation to create a scenario similar to
a masked implementation. However, we have shown signif-
icant evidence through our attacks that this vulnerability
can potentially be exploited to perform message recovery in
side-channel protected implementations.

6 FAULT-BASED ATTACKS
In this section, we show that the Single_Bit_Update vulner-
ability can also be exploited using FIA as well as combined
SCA and FIA. We utilize NewHope512 for our experiments,
while the same can be easily adapted to other schemes such
as Kyber, Saber, Round5 and LAC.

6.1 Fault Vulnerability
Since the message 𝑚 within the decryption procedure is up-
dated one bit at a time in each iteration, it is possible to skip
the update of individual bits of the message while leaving the
other bits unchanged. We investigate the effect of skipping

, , Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, and Anupam Chattopadhyay

the update of the first bit 𝑚0. If 𝑚0 = 0, then skipping its
update does not have any effect since 𝑚0 is initialized to 0.
However if 𝑚0 = 1, then skipping its update results in the
faulty message �̂� = Flip(𝑚, 0). This is similar to a safe-error
scenario encountered in RSA and ECC based crypto-systems
where a targeted fault induces a faulty computation depend-
ing on value of the corresponding bit of the secret key [10]. In
our case, if 𝑚0 = 1, the injected fault will result in a decapsu-
lation failure but if 𝑚0 = 0, the decapsulation still succeeds
upon fault injection. Thus, the result of the faulted decapsu-
lation procedure can be used to recover 𝑚0. Similarly, if we
can identify different time instances to fault the update of 𝑚𝑖

for 𝑖 ∈ [0, 255], then the complete message can be recovered
from the outputs of the faulted decapsulation procedures.
However, profiling the device to identifying multiple time
instances to inject targeted faults can be very cumbersome.
Thus, it is more practical to utilize a single or at best very
few time instances to inject targeted faults.

6.2 Bug Identification in pqm4 Library
We identified a covert bug in the implementation of NewHope
in the pqm4 library that can be exploited in some scenarios to
perform message recovery using faults targeting a single time
instance. Referring to the IND-CCA secure decapsulation
procedure in Alg.2, if the ciphertext check is passed, the
shared secret 𝐾 = ℋ(𝑟′, 𝑐𝑡) where 𝑟′ = 𝒢 (𝑚′, 𝑝𝑘) (line 12).
Otherwise, 𝐾 = ℋ(𝑧, 𝑐𝑡) where 𝑧 is a random secret, part
of the secret key (line 15). In the NewHope implementation,
both 𝑟′ and 𝑧 are stored as a byte arrays and 𝑟′ is replaced
by 𝑧 if the ciphertext check fails. We identified that this
replacement is not done correctly and that several bits of 𝑟′

still remain in place upon a failure of the ciphertext check. We
denote this erroneous component as 𝑟′′. Due to the presence
of this bug, the shared secret key 𝐾 in case of an invalid
ciphertext (i.e) 𝐾 = ℋ(𝑟′′, 𝑐𝑡) still depends upon several bits
of 𝑟′. If 𝑚0 = 0, faulting 𝑚0 neither induces a change in 𝑟′

nor 𝐾. However if 𝑚0 = 1, the resulting 𝑟′ changes upon
faulting 𝑚0 thus also changing the shared secret 𝐾. This is
in contrary to a correct implementation where the shared
secret 𝐾 for an invalid ciphertext is fixed and does not change
upon faulting the message. If we have the ability to know if
the shared secret changed upon faulting 𝑚0, then 𝑚0 can
be easily recovered in two executions (i.e) one correct and
one faulty. If the shared secret of both executions are the
same, then 𝑚0 = 0, else 𝑚0 = 1. Then, the Rotate_Message
property can be exploited to recover the complete message
one bit at a time in just 512 decapsulations. We refer to this
attack as the Single_Bit_Bug_Exploit_FIA throughout the
paper.

This ability to detect the change in shared secret depends
upon the way the higher level security protocol manages failed
decapsulations. In case of TLS 1.2 or TLS 1.3, PKE/KEMs
are only used to arrive at the pre-master secret. Finally, the
master secret is computed by hashing the pre-master secret us-
ing random values from both the parties (i.e) server_random
and client_random. Thus in such a scenario, it is not possible
to extract any information about change in the pre-master

secret [8]. However, in scenarios where the DUT can be trig-
gered to encrypt/authenticate a static message 𝑚 using the
shared secret 𝐾, the change in shared secret can be detected
from the resulting ciphertext/tag. This bug does not affect
correctness of the scheme and is only encountered during
failed decapsulations. Hence, this bug is very hard to detect
and could potentially be placed as hidden backdoors in cryp-
tographic implementations to enable easy key or message
recovery.

6.2.1 Responsible Disclosure. We have reported the bug to
the pqm4 team and the bug was immediately acknowledged
and corrected in the NewHope implementation. This bug
is only present in the implementation of NewHope and is
not present in implementation of any other scheme in the
pqm4 library. Please refer https://github.com/mupq/pqm4/
issues/132 for more details on the reported bug in the pqm4
library. While we show the bug in the implementation of
NewHope512 can be exploited using fault injection targeting
a single time instance, the same attack cannot be performed
on a semantically correct implementation as the attacker
does not gain any information from the result of the faulted
decapsulations. However in the following discussion, we show
that additional side-channel information (SCA) can be used
as an oracle to detect changes due to the injected fault which
can result in full message recovery.

6.3 Combined SCA & FIA Methodology
Referring to the Alg.2 for the IND-CCA secure decapsula-
tion procedure, we observe that the output of decryption is
actually utilized in subsequent operations within the decapsu-
lation procedure. In schemes such as NewHope KEM, Kyber
KEM, Saber KEM and variants of Round5 (Round5(NE))
which do not use error correcting codes (ECCs), the decryp-
tion output is hashed with the public key (i.e) 𝒢 (𝑚, 𝑝𝑘) (line
9). However, in schemes such as LAC and variants of Round5
(Round5(E)) which utilize ECCs, the decryption output is
decoded (line 4) to retrieve the message. We hypothesize that
side-channel information from these operations can provide
information about the fault induced on the decryption output.
Please refer Fig.11 for a pictorial illustration of the combined
SCA & FIA attack.

ECC FO TransformCiphertext

Shared Key K

Codeword

Message

CCA-Secure Decapsulation

Message
Decoding

Decryption

SCA_ECC
(Round5(E), LAC)

SCA_FO
(NewHope, Kyber, Saber, Round5(NE))FIA

With Error Correction

Target elements

Private elements
Public elements

Without Error Correction

Figure 11: Pictorial illustration of our combined SCA & FIA

For a given ciphertext 𝑐𝑡 for NewHope512, if 𝑚0 = 1, the
side channel trace from 𝒢 (�̂�, 𝑝𝑘) for �̂� = Flip(𝑚, 0) will be

https://github.com/mupq/pqm4/issues/132
https://github.com/mupq/pqm4/issues/132

Drop by Drop you break the rock , ,

(a) (b)

Figure 12: 𝑡-test plot between side-channel traces for decryp-
tion outputs that differ by a single bit obtained from (a) Hash
function in NewHope KEM (NewHope512) (b) XEf decoding
procedure in Round5 PKE (R5ND_1KEM_5d)

different from that of the original message 𝑚 (i.e) 𝒢 (𝑚, 𝑝𝑘).
However, if 𝑚0 = 0, the side-channel trace for the faulty
execution will be the same as one from a correct execu-
tion. Thus, detecting this change in the side-channel trace
can enable recovery of 𝑚0. While this detection can be per-
formed using several techniques, we resort to using the same
Welch’s 𝑡-test based reduced template approach. We utilize
the Bit_Flip property to construct a modified ciphertext
𝑐𝑡 = Flip(𝑐𝑡, 0) from the target ciphertext 𝑐𝑡, which decrypts
to �̄� = Flip(𝑚, 0) whose first bit is flipped compared to 𝑚.
The diffusion property of the hash function ensures that the
computations are significantly different for 𝑚 and �̄�. We
collect two trace sets (25 traces each) from repeated execu-
tions of the hashing operation 𝒢 denoted as 𝑡𝑟(𝑚) and 𝑡𝑟(�̄�)

respectively, whose 𝑡-test plot is shown in Fig.12(a).
We utilize the various peaks in the 𝑡-test plot to create

reduced templates from the trace sets, denoted as 𝑟𝑡(𝑚) and
𝑟𝑡(�̄�) . We also performed similar experiments over Round5
PKE (R5ND_1KEM_5d variant) to detect single bit change
in the decryption output from side-channel traces of its XEf
error correcting procedure [5]. We targeted a particular ma-
jority logic operation within the decoding procedure, similar
to the prior work of Ravi et al. [24] who utilized side-channel
traces from the same operation to differentiate between valid
and faulty codewords. Please refer Fig.12(b) for the 𝑡-test
plot obtained for traces from decoding two random XEf code-
words of Round5 that differ by a single bit. The high peaks
in the 𝑡-test plot reveal the presence of multiple PoIs that
can be used to easily distinguish the two computations.

We trigger the DUT into decapsulating the ciphertext 𝑐𝑡
and inject targeted faults to skip the update of 𝑚0. Simultane-
ously, we capture side-channel traces 𝑡𝑟(�̂�) from the hashing
operation 𝒢 (�̂�, 𝑝𝑘). Its reduced trace denoted as 𝑟𝑡(�̂�) is com-
pared with the reduced templates 𝑟𝑡(𝑚) and 𝑟𝑡(�̄�) . If 𝑟𝑡(�̂�) is
classified as 𝑟𝑡(𝑚) , there is no effect due to the injected fault
and hence 𝑚0 = 0. However, if 𝑟𝑡(�̂�) is classified as 𝑟𝑡(�̄�) ,
then 𝑚0 is flipped due to the injected fault and thus 𝑚0 = 1.
Thus, recovery of 𝑚0 can be divided into two phases. The
first pre-processing phase involves building templates for 𝑚
and �̄� while the attack phase involves fault injection yielding
�̂� and utilizing the side-channel templates to classify �̂� as

𝑚 or �̄� to recover 𝑚0. Unlike our SCA techniques, the pre-
processing phase requires knowledge of the ciphertext 𝑐𝑡 and
hence is not a one-time offline process. Having recovered 𝑚0,
we can exploit the Rotate_Message property to construct
ciphertexts 𝑐𝑡′𝑖 = Rotr(𝑐𝑡, 𝑖) for 𝑖 ∈ [0, 255] which correspond
to cyclic rotations of the message 𝑚 (i.e) 𝑚′𝑖 = Rotr(𝑚, 𝑖).
All the above steps can be repeated to recover 𝑚(256−𝑖) and
thus the complete message one bit at a time.

6.3.1 Experimental Setup. We performed experimental val-
idation of our attack on the NewHope512 implementation.
We first provide details of our FIA setup to perform Electro-
magnetic Fault Injection (EMFI). Please refer Fig.13 for our
EMFI setup. It consists of a pulse generator that can generate
high voltage pulses (upto 200 v) with very low rise times
(<4ns). A controller software on the laptop synchronizes the
operation of the EM pulse generator and DUT through se-
rial communication. The pulse generator is directly triggered
by an external trigger signal from the DUT. The EM pulse
injector is a customized hand-made EM probe designed as a
simple loop antenna. Refer Figure 14(a)-(b) for the EM probe
used for our experiments. Our SCA setup for the combined
attack is already described in Sec.5.1, with averaging dis-
abled. Our combined attack requires to simultaneously place
both the SCA and FIA probes on the chip (Refer Fig.14(c)).
The FIA probe injects a single fault during the update of 𝑚0
while the SCA probe captures traces from the end of the hash
computation, both of which are sufficiently spaced out in
time. Both the probes are also placed at different locations on
the chip and thus the FIA probe does not affect the captured
EM measurements.

PC

EM pulse
generator

DUT
(ARM Cortex-M4F)

Injection Probe

X-Y Table

Figure 13: Experimental setup for the fault injection

(a) (b)

Figure 14: (a) Handmade flat tip EM injection probe (b) Both
SCA and FIA probes placed over the DUT

, , Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, and Anupam Chattopadhyay

6.3.2 Experimental Results. The attack is enabled by the
widely popular instruction skip attack which alters the con-
trol flow of the algorithm execution. We skip the update
of 𝑚0 by targeting the store instruction that stores 𝑚[0, 0]
in memory (line 10 in Fig.2) in the first iteration. However,
performing targeted fault injection requires precise identifi-
cation of two parameters - (1) location to fault and (2) time
to fault. We utilize the leakage detection procedure of our
Single_Bit_SCA attack to narrow down to a time window
around the PoI corresponding to the update of 𝑚[0, 0] in
memory. We scanned the entire top surface of the chip while
varying the EMFI parameters - voltage and pulse width. We
successfully identified a sweet spot where we could reliably
skip the first bit update with a high repeatability of about
95%. We can simply inject multiple faults over repeated
executions to increase the confidence.

We utilized 50 traces for the pre-processing phase and
5 faulty executions during the attack phase for majority
voting to recover 𝑚0 with 100% success rate. Thus, we re-
covered the complete message using 50 * 256 = 12.8𝑘 traces
for the pre-processing phase and 5 * 256 = 1.28𝑘 traces for
the attack phase, thus amounting to a total of 14.02𝑘 traces
for full message recovery. The trace complexity depends on
the SNR of SCA traces and fault repeatability. In the bast
case, a single trace with high SNR can be used as a tem-
plate and faults achieved with 100% repeatability resulting
in full message recovery with 2 * 256 = 512 traces for the
pre-processing phase and 1 * 256 = 256 traces for the attack
phase, amounting to a total of 768 attack queries for full
message recovery. To the best of our knowledge, we present
the first EM based combined message SCA & FIA attack on
lattice-based PKE/KEMs. We henceforth refer to this attack
as the Single_Bit_Combined_SCA_FIA.

7 MITIGATION
Since all the attacks presented in this paper exploit the
reported Single_Bit_Update vulnerability in different way,
we can recommend the following mitigation approaches:

∙ Random Shuffling: Shuffling the order of the single
bit updates of the message using well known shuf-
fling techniques such as Fisher-Yates algorithm [11]
can provide sufficient protection against all attacks
presented in this paper.

∙ Less Frequent Updates: The implementation of the
message decoding function can be modified to with-
hold the message bits in the registers so that only
byte updates of the message are performed instead of
bit updates. This countermeasure however can only
mitigate our attacks, as more sophisticated attacks
possibly targeting the arithmetic operations within
the message decoding function can be performed for
message recovery.

∙ Use of Vectorized Instructions: Several embedded
platforms including the ARM Cortex-M4 microcon-
troller support vectorized arithmetic, load and store
instructions. Thus, multiple bits of the message can

be decoded simultaneously which can effectively mit-
igate proposed attacks.

8 CONCLUSION
In this paper, we identified a generic vulnerability in the mes-
sage decoding procedure, a fundamental kernel used in lattice-
based public-key encryption and encapsulation schemes. We
showed how the vulnerability could be exploited to leak in-
formation about the individual message bits through a range
of side-channel, fault injection, and their combined attacks.
We experimentally validated the attack techniques on im-
plementations taken from the open-source pqm4 library and
proposed potential countermeasures.

REFERENCES
[1] 2016. The transport layer security (tls) protocol version 1.3 (May

2016). https://tools.ietf.org/html/draft-ietf-tls-tls13-13. (2016).
[2] Erdem Alkim, Roberto Avanzi, Joppe W. Bos, Leo Ducas, Anto-

nio de la Piedra, Thomas Poppelmann, Peter Schwabe, and Dou-
glas Stebila. 2019. NewHope: Algorithm Specifications And Sup-
porting Documentation. Submission to the NIST post-quantum
project (2019).

[3] Dorian Amiet, Andreas Curiger, Lukas Leuenberger, and Paul
Zbinden. 2020. Defeating NewHope with a Single Trace. In Inter-
national Conference on Post-Quantum Cryptography. Springer,
189–205.

[4] Roberto Avanzi, Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede
Lepoint, Vadim Lyubashevsky, John Schanck, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. 2019. Kyber: Algorithm Spec-
ifications And Supporting Documentation. Submission to the
NIST post-quantum project (2019).

[5] Hayo Baan, Sauvik Bhattacharya, Scott Fluhrer, Oscar Garcia-
Morchon Garcia-Morchon, Thijs Laarhoven, Rachel Player,
Ronald Rietman, Markku-Juhani O. Saarinen, , Ludo Tolhuizen,
Jos’e Luis Torre-Arce, and Zhenfei Zhang. 2020. Round5: Algo-
rithm Specifications And Supporting Documentation. Submission
to the NIST post-quantum project (2020).

[6] Abhishek Banerjee, Chris Peikert, and Alon Rosen. 2012. Pseu-
dorandom functions and lattices. In Annual International Con-
ference on the Theory and Applications of Cryptographic Tech-
niques. Springer, 719–737.

[7] Naomi Benger, Joop Van de Pol, Nigel P Smart, and Yuval
Yarom. 2014. “Ooh Aah... Just a Little Bit”: A small amount
of side channel can go a long way. In International Workshop
on Cryptographic Hardware and Embedded Systems. Springer,
75–92.

[8] M Campagna and E Crockett. 2019. BIKE and SIKE Hybrid
Key Exchange Cipher Suites for Transport Layer Security (TLS).
(2019).

[9] Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and
Ingrid Verbauwhede. 2019. Timing attacks on Error Correct-
ing Codes in Post-Quantum Secure Schemes. IACR Cryptology
ePrint Archive 2019 (2019), 292.

[10] Junfeng Fan and Ingrid Verbauwhede. 2012. An updated survey on
secure ECC implementations: Attacks, countermeasures and cost.
In Cryptography and Security: From Theory to Applications.
Springer, 265–282.

[11] Ronald A Fisher and Frank Yates. 1938. Statistical tables: For
biological, agricultural and medical research. Oliver and Boyd.

[12] Eiichiro Fujisaki and Tatsuaki Okamoto. 1999. Secure integration
of asymmetric and symmetric encryption schemes. In Annual
International Cryptology Conference. Springer, 537–554.

[13] Benedikt Gierlichs, Kerstin Lemke-Rust, and Christof Paar. 2006.
Templates vs. stochastic methods. In International Workshop
on Cryptographic Hardware and Embedded Systems. Springer,
15–29.

[14] Benjamin Jun Gilbert Goodwill, Josh Jaffe, Pankaj Rohatgi, et al.
2011. A testing methodology for side-channel resistance validation.
In NIST non-invasive attack testing workshop, Vol. 7. 115–136.

[15] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and
Ko Stoffelen. 2020. PQM4: Post-quantum crypto library for the
ARM Cortex-M4. (2020). https://github.com/mupq/pqm4.

https://tools.ietf.org/html/draft-ietf-tls-tls13-13
https://github.com/mupq/pqm4

Drop by Drop you break the rock , ,

[16] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2010. On
ideal lattices and learning with errors over rings. In Annual
International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 1–23.

[17] Erick Nascimento, Łukasz Chmielewski, David Oswald, and Pe-
ter Schwabe. 2016. Attacking embedded ECC implementations
through cmov side channels. In International Conference on
Selected Areas in Cryptography. Springer, 99–119.

[18] NIST. 2016. Submission Requirements and Evalu-
ation Criteria for the Post-Quantum Cryptography
Standardization Process. https://csrc.nist.gov/csrc/
media/projects/post-quantum-cryptography/documents/
call-for-proposals-final-dec-2016.pdf. (2016).

[19] NIST. 2019. Post Quantum Cryptography - Round 2 Submissions.
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Round-2-Submissions/. (2019).

[20] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim
Güneysu. 2018. Practical CCA2-secure and masked ring-LWE
implementation. IACR Transactions on Cryptographic Hardware
and Embedded Systems 2018, 1 (2018), 142–174.

[21] Robert Primas, Peter Pessl, and Stefan Mangard. 2017. Single-
Trace Side-Channel Attacks on Masked Lattice-Based Encryption.
In Cryptographic Hardware and Embedded Systems – CHES
2017, Wieland Fischer and Naofumi Homma (Eds.). Springer
International Publishing, Cham, 513–533.

[22] Prasanna Ravi, Bernhard Jungk, Dirmanto Jap, Zakaria Najm,
and Shivam Bhasin. 2018. Feature Selection Methods for Non-
Profiled Side-Channel Attacks on ECC. In 2018 IEEE 23rd Inter-
national Conference on Digital Signal Processing (DSP). IEEE,
1–5.

[23] Prasanna Ravi, Debapriya Basu Roy, Shivam Bhasin, Anupam
Chattopadhyay, and Debdeep Mukhopadhyay. 2019. Number "Not
Used" Once-Practical Fault Attack on pqm4 Implementations of
NIST Candidates. In International Workshop on Constructive
Side-Channel Analysis and Secure Design. Springer, 232–250.

[24] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and
Shivam Bhasin. 2019. Generic Side-channel attacks on CCA-
secure lattice-based PKE and KEM schemes. IACR ePrint
Archive (2019), 948.

[25] Oded Regev. 2009. On lattices, learning with errors, random
linear codes, and cryptography. Journal of the ACM (JACM)
56, 6 (2009), 34.

[26] Oscar Reparaz, Ruan de Clercq, Sujoy Sinha Roy, Frederik
Vercauteren, and Ingrid Verbauwhede. 2016. Additively Ho-
momorphic Ring-LWE Masking. In Post-Quantum Cryptogra-
phy - 7th International Workshop, PQCrypto 2016, Fukuoka,
Japan, February 24-26, 2016, Proceedings. 233–244. https:
//doi.org/10.1007/978-3-319-29360-8_15

[27] Oscar Reparaz, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid
Verbauwhede. 2015. A Masked Ring-LWE Implementation. In
Cryptographic Hardware and Embedded Systems - CHES 2015 -
17th International Workshop, Saint-Malo, France, September
13-16, 2015, Proceedings. 683–702. https://doi.org/10.1007/
978-3-662-48324-4_34

https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions/
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions/
https://doi.org/10.1007/978-3-319-29360-8_15
https://doi.org/10.1007/978-3-319-29360-8_15
https://doi.org/10.1007/978-3-662-48324-4_34
https://doi.org/10.1007/978-3-662-48324-4_34

	Abstract
	1 Introduction
	2 Lattice Preliminaries
	2.1 Notation
	2.2 Learning With Error/Learning With Rounding Problem
	2.3 A Generic Framework for LWE/LWR based PKE schemes
	2.4 Security in the Chosen-Ciphertext Model

	3 Test Vector Leakage Assessment (TVLA)
	4 Main Vulnerability in Message Decoding Operation
	4.1 Manipulating Messages of Valid Ciphertexts
	4.2 Adversary Model

	5 Side-Channel Attacks
	5.1 Experimental Setup
	5.2 Leakage Detection
	5.3 Single Bit Leakage Attack
	5.4 Single Byte Leakage Attack
	5.5 Pushing the limits of Single Byte Leakage Attack
	5.6 Attacking Masked Implementations

	6 Fault-Based Attacks
	6.1 Fault Vulnerability
	6.2 Bug Identification in pqm4 Library
	6.3 Combined SCA & FIA Methodology

	7 Mitigation
	8 Conclusion
	References

