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Abstract

We define a set called the pAPN-spectrum of an (n, n)-function F , which mea-
sures how close F is to being an APN function, and investigate how the size of
the pAPN-spectrum changes when two of the outputs of a given F are swapped.
We completely characterize the behavior of the pAPN-spectrum under swapping
outputs when F (x) = x2

n−2 is the inverse function over F2n . We also investigate
this behavior for functions from the Gold and Welch monomial APN families, and
experimentally determine the size of the pAPN-spectrum after swapping outputs for
representatives from all infinite monomial APN families up to dimension n = 10.

Keywords: Boolean function, almost perfect nonlinear (APN), partial APN.

1 Introduction

Let F2n be the finite field with 2n elements for some positive integer n. We call a function
from F2n to F2 a Boolean function on n variables. The set of all Boolean functions on n
variables will be denoted by Bn.

For a Boolean function f : F2n → F2, we define the Walsh-Hadamard transform to
be the integer valued function

Wf (u) =
∑
x∈F2n

(−1)f(x)+Trn1 (ux),



where Trn1 : F2n → F2 is the absolute trace function, Trn1 (x) =
∑n−1

i=0 x
2i .

A vectorial Boolean function, or (n,m)-function, is a map F : Fn2 → Fm2 , for some
positive integers m and n. When m = n, it can be uniquely represented as a univariate
polynomial over F2n (using the natural identification of the finite field F2n with the
vector space Fn2 ) of the form

F (x) =

2n−1∑
i=0

aix
i, ai ∈ F2n .

The binary weight w2(i) of a positive integer i is the number of non-zero bits in its binary
expansion, i.e. w2(i) =

∑K
j=0 aj , where i =

∑K
j=0 aj2

j for some positive integer K and
for aj ∈ {0, 1}, with all sums involved being computed over the integers. The algebraic
degree of F (x) is then the largest binary weight of an exponent i with ai 6= 0. For an
(n, n)-function F and for a, b ∈ F2n , we define the Walsh transform WF (a, b) of F to be
the Walsh-Hadamard transform of its component function Trn1 (bF (x)) at a, that is,

WF (a, b) =
∑
x∈F2n

(−1)Tr
n
1 (bF (x)+ax).

For an (n, n)-function F , and a, b ∈ F2n , we let ∆F (a, b) = |{x ∈ F2n |F (x + a) +
F (x) = b}|. We call the quantity ∆F = max{∆F (a, b) : a, b ∈ F2n , a 6= 0} the differential
uniformity of F . If ∆F ≤ δ, then we say that F is differentially δ-uniform. Since x+ a
is a solution to F (x+ a) + F (x) = b whenever x is, the differential uniformity is always
even and is thus at least 2 for any F . If δ = 2, then F is an almost perfect nonlinear
(APN) function.

APN functions are of significant interest in cryptography for the construction of block
ciphers since they provide optimal resistance to differential cryptanalysis. Furthermore,
some classes of APN functions correspond to optimal objects in other areas of mathemat-
ics and computer science, such as coding theory, projective geometry, and combinatorial
design theory. Nonetheless, being cryptographically strong functions, APN functions
are by design unpredictable and difficult to construct and analyze. For the purpose of
making their analysis more tractable, a number of characterizations of APN-ness have
been derived and can be found in the literature. We give some of them below [3, 6, 7, 16].

Lemma 1. Let F be an (n, n)-function.

(i) We always have ∑
a,b∈F2n

W4
F (a, b) ≥ 23n+1(3 · 2n−1 − 1),

with equality if and only if F is APN.

(ii) If, in addition, F is APN and satisfies F (0) = 0, then∑
a,b∈F2n

W3
F (a, b) = 22n+1(3 · 2n−1 − 1).
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(iii) (Janwa-Wilson-Rodier Condition1) F is APN if and only if all the points x, y, z ∈
F2n satisfying

F (x) + F (y) + F (z) + F (x+ y + z) = 0

belong to the curve (x+ y)(x+ z)(y + z) = 0.

Along with S. Kwon, we introduced in [4] a notion of partial APN-ness in our attempt
to resolve a conjecture on the upper bound on the algebraic degree of APN functions [3].
For a fixed x0 ∈ F2n , we call an (n, n)-function a (partial) x0-APN function (which we
typically refer to as x0-APN, partially APN, or just pAPN, for short) if all points, x, y
satisfying

F (x0) + F (x) + F (y) + F (x0 + x+ y) = 0 (1)

belong to the curve
(x0 + x)(x0 + y)(x+ y) = 0. (2)

We will refer to the set of points x0 ∈ F2n for which a function is x0-APN as the pAPN-
spectrum of the function. Certainly, an APN function is x0-APN for any point x0; that
is, its pAPN-spectrum is F2n .

An alternative way to express the fact that a given function F is x0-APN is to say
that for any a 6= 0 the equation F (x + a) + F (x) = F (x0 + a) + F (x0) has only two
solutions x, namely x = x0 and x = x0 + a.

We shall denote by 1
a or 1/a the multiplicative inverse of a in F2n , adopting the usual

convention 1
0 = 1/0 = 0.

In this paper we show an intriguing property of the inverse, Gold and Welch functions:
swapping two of their output values leads to a reduction in the size of their pAPN-
spectra; in some cases, this reduction is quite significant. In the case of the inverse
function, we completely characterize the cases in which the resulting function has an
empty pAPN-spectrum.

2 Considerations and useful remarks

Throughout, we shall be using the following result [1, 17], which describes the existence
of solutions for quadratic and cubic equations over binary finite fields.

Theorem 2. Let n be a natural number, and consider the finite field F2n.

(1) The equation x2 + ax + b = 0, with a, b ∈ F2n, a 6= 0, has solutions in F2n if and
only if Trn1

(
b
a2

)
= 0.

(2) The equation x3 + ax + b = 0, with a, b ∈ F2n, b 6= 0, has (t1, t2 are the roots of
t2 + bt+ a3 = 0):

(i) three solutions in F2n if and only if Trn1 (a3/b2) = Trn1 (1) and t1, t2 are cubes
in F2n for n even, and in F22n for n odd ;

1We have been calling this the “Rodier condition”, but we realized that it did occur in the literature
prior to Rodier’s work, for power monomials in [10], so we will now call it by the three names.
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(ii) a unique solution in F2n if and only if Trn1 (a3/b2) 6= Trn1 (1);

(iii) no solutions in F2n if and only if Trn1 (a3/b2) = Trn1 (1) and t1, t2 are not cubes
in F2n for n even, respectively, F22n for n odd.

A construction proposed in [18] designed to construct differentially 4-uniform per-
mutations that involves swapping two outputs of a given (n, n)-function, has been the
subject of many papers since then (see [5, 13, 14, 15, 19], to cite just a few works; a
generalization allowing the modification of any two output values, of which swapping
is a special case, is investigated in [11]). This naturally leads to the question of how
swapping two outputs of a given function F would affect its pAPN-spectrum. We now
describe the Janwa-Wilson-Rodier equation for an (n, n)-function F with two output
points swapped. More precisely, given two points x0 6= x1 in F2n , we let Gx0x1 be the
{x0, x1}-swapping of F defined by

Gx0x1(x) = F (x) +
(
(x+ x0)

2n−1 + (x+ x1)
2n−1) (y0 + y1), (3)

where y0 = F (x0), y1 = F (x1). We will sometimes denote Gx0x1 simply by G if there is
no danger of confusion.

Note that x2
n−1 = 1 in F2n unless x = 0, and so for any x, y ∈ F2n , the expression

(x+ y)2
n−1 is equal to 1 if x 6= y and is equal to 0 if x = y.

The Janwa-Wilson-Rodier equation of G = Gx0x1 at ζ ∈ F2n becomes

0 = G(ζ) +G(x) +G(y) +G(x+ y + ζ) = F (ζ) + F (x) + F (y) + F (x+ y + ζ)

+
(
(ζ + x0)

2n−1 + (ζ + x1)
2n−1 + (x+ x0)

2n−1 + (x+ x1)
2n−1 + (y + x0)

2n−1

+(y + x1)
2n−1 + (x+ y + ζ + x0)

2n−1 + (x+ y + ζ + x1)
2n−1) (y0 + y1).

(4)

We consider several cases depending on the value of ζ:

• If ζ = x0, then (4) becomes (for x 6= ζ 6= y 6= x)

0 = F (x0) + F (x) + F (y) + F (x+ y + x0)

+
(
(x+ x1)

2n−1 + (y + x1)
2n−1 + (x+ y + x0 + x1)

2n−1) (y0 + y1).
(5)

• If ζ = x1, then (4) becomes (for x 6= ζ 6= y 6= x)

0 = F (x1) + F (x) + F (y) + F (x+ y + x1)

+
(
(x+ x0)

2n−1 + (y + x0)
2n−1 + (x+ y + x0 + x1)

2n−1) (y0 + y1).
(6)

• If x0 6= ζ 6= x1, then (4) becomes (for x 6= ζ 6= y 6= x)

0 = F (ζ) + F (x) + F (y) + F (x+ y + ζ)

+
(
(x+ x0)

2n−1 + (x+ x1)
2n−1 + (y + x0)

2n−1

+(y + x1)
2n−1 + (x+ y + ζ + x0)

2n−1 + (x+ y + ζ + x1)
2n−1) (y0 + y1).

(7)
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We shall be referring to equations (5)–(7) throughout the paper.
When studying how swapping outputs affects the pAPN-spectrum, we do not restrict

ourselves to APN functions and often drop the conditions on the parameters in the
definition of the infinite families; for example, in our experimental results for the Gold
functions in Table 6, we consider all functions of the form x2

i+1 over F2n regardless of
the value of gcd(i, n). In a number of cases, the functions in question are not APN,
but are still differentially two-valued, i.e., there is a positive integer s > 1 such that all
non-zero derivatives of these functions are 2s-to-1. While such a function is clearly not
ζ-APN for any ζ ∈ F2n , it is also easy to see that swapping two of its outputs will always
result in an empty pAPN-spectrum. The following proposition therefore allows us to
eliminate some trivial cases.

Proposition 3. Let F : F2n → F2n be such that ∆F (a, b) ≥ 4 whenever ∆F (a, b) 6= 0.
Then F has an empty pAPN-spectrum. Furthermore, for any x0, x1 ∈ F2n, the pAPN-
spectrum of the {x0, x1}-swapping Gx0x1, as defined in (3), is also empty.

Proof. We use the fact that a function F is ζ-APN if and only if the equation DaF (ζ) =
DaF (x) only has the trivial solutions x = ζ and x = a + ζ for any a ∈ F∗2n . Since
∆F (a,DaF (ζ)) ≥ 4 for any a ∈ F∗2n and any ζ ∈ F2n by the hypothesis, it is clear that
F cannot be ζ-APN for any ζ.

Suppose now that x0, x1 ∈ F2n , and G = Gx0x1 is obtained by swapping the outputs
of F at x0 and x1. Consider some ζ ∈ F2n . Let a, b ∈ F2n be such that x0 = ζ + a and
x1 = ζ + b. First, suppose that ab = 0, say a = 0. Then

DbG(ζ) = G(ζ) +G(ζ + b) = F (ζ + b) + F (ζ) = DbF (ζ).

Since ∆F (b,DbF (ζ)) ≥ 4, there must be some w ∈ F2n such that DbF (w) = DbF (ζ) and
w 6= ζ, ζ + b. Thus {x0, x1} ∩ {w, b+ w} = ∅ and hence

DbG(w) = DbF (w) = DbF (ζ) = DbG(ζ),

showing that G is not ζ-APN.
Suppose now that ab 6= 0, and let c = a+ b. We then have

DcG(ζ) = G(ζ) +G(ζ + a+ b) = F (ζ) + F (ζ + a+ b) = DcF (ζ)

due to {x0, x1} ∩ {ζ, ζ + a + b} = ∅. Since ∆F (c,DcF (ζ)) ≥ 4, we can find w ∈ F2n

with DcF (w) = DcF (ζ) and w 6= ζ, ζ + a+ b. Suppose now that x0 = ζ + a = w. Then
x1 = ζ + b = w + a + b = w + c. Thus, {x0, x1} and {w,w + c} are either identical or
disjoint. In both cases, we have

DcG(w) = DcF (w) = DcF (ζ) = DcG(ζ),

witnessing that G is not ζ-APN.
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3 The pAPN property for the inverse function swapped at
two outputs

Theorem 4. Let F (x) = x2
n−2 be the inverse function on F2n and let Gx0x1 be the

{x0, x1}-swapping of F for some x0, x1 ∈ F2n with x0 6= x1. If n is odd, then:

(i) If x0 = 0 or x1 = 0, then Gx0x1 is not ζ-APN for any ζ ∈ F2n.

(ii) If x0x1 6= 0, then G is not ζ-APN for ζ /∈ {0, x0, x1}. Furthermore:

(a) if G is 0-APN, then Trn1

(
x0
x1

)
= Trn1

(
x1
x0

)
= 1;

(b) if G is x0-APN, then Trn1

(
x0
x1

)
= 1;

(c) if Trn1

(
x0
x1

)
= 1, then G is x0-APN if and only if there is no α ∈ F2n \F2 such

that Trn1

(
t(α+α−1)

t2+α2+α−2+1

)
= 0, where t = x0

x1
;

(d) if G is x1-APN, then Trn1

(
x1
x0

)
= 1;

(e) if Trn1

(
x1
x0

)
= 1, then G is x1-APN if and only if there is no α ∈ F2n \F2 such

that Trn1

(
t(α+α−1)

t2+α2+α−2+1

)
= 0, where t = x1

x0
.

If n is even (we let ω be a primitive element of F4), then:

(i) If say x0 = 0, then G0x1 is not ζ-APN if ζ ∈ {0, x1}, or Trn1

(
x1
x1+ζ

)
= 0, or

Trn1

(
ζ2+ζ
x21

)
= 0.

(ii) If x0x1 6= 0, then we examine four cases depending on the value of the pair(
Trn1

(
1/x30

)
,Trn1

(
1/x31

))
:

(a) if Trn1
(
1/x30

)
= Trn1

(
1/x31

)
= 1, then G is not ζ-APN for ζ 6∈ {ωx0, ωx1, ω2x0, ω

2x1};
(b) if Trn1

(
1/x30

)
= 0 and Trn1

(
1/x31

)
= 1, then G is not ζ-APN for ζ 6∈ {ωx0, ω2x0};

(c) if Trn1
(
1/x30

)
= 1 and Trn1

(
1/x31

)
= 0, then G is not ζ-APN for ζ 6∈ {ωx1, ω2x1};

(d) if Trn1
(
1/x30

)
= Trn1

(
1/x31

)
= 0, then G is not ζ-APN for any ζ ∈ F2n.

Proof. We first examine the case when x0 = 0. Let ζ be an arbitrary element of F2n ,
and consider the Janwa-Wilson-Rodier equation for G0x1 at ζ. We distinguish three
subcases, namely ζ = 0, ζ = x1, and ζ 6= 0, x1, which we treat next.

Suppose first that ζ = 0. We then work under the assumption xy(x + y) 6= 0, and
obtain from (5)

0 =F (x) + F (y) + F (x+ y) +
(
(x+ x1)

2n−1 + (y + x1)
2n−1 + (x+ y + x1)

2n−1) y1
= x2

n−2 + y2
n−2 + (x+ y)2

n−2

+
(
(x+ x1)

2n−1 + (y + x1)
2n−1 + (x+ y + x1)

2n−1) y1.
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Taking x such that x 6= 0, x1 and letting y = x+x1, we get x2
n−2+(x+x1)

2n−2+x2
n−2

1 =
0. Multiplying both sides by x1x(x+x1) renders x2+xx1+x21 = 0, which, by Theorem 2,
has two solutions if and only if Trn1 (x21/x

2
1) = Trn1 (1) = 0, and that is true if and only if

n is even. Therefore, G0x1 cannot be 0-APN when n is even.
If n is odd, then we take 0 6= x 6= x1 6= x 6= y 6= x+ x1 and equation (5) becomes

F (x1) + F (x) + F (y) + F (x+ y) = 0,

that is,
x2y + xy2 + x1y

2 + x1x
2 + xyx1 = 0,

and taking an arbitrary a 6= 0, 1, we see that the pair x = x1

(
1 + 1

a2+a

)
, y = x1

(
a+ 1

a+1

)
is a solution to the above equation. We now argue that xy 6= 0 and x 6= y. Both of
these conditions are equivalent to the equation a2 +a+1 = 0 having no solutions in F2n ,
which is true since n is odd and a2 + a = 1 would imply Trn1 (a2 + a) = Trn1 (1). Next, we
verify that y 6= x+x1. Assuming that y = x+x1 leads to a3 +a2 +a+ 1 = (a+ 1)3 = 0,
which is impossible by the choice of a. Thus, G0x1 is not 0-APN when n is odd.

We now consider the case of x0 = 0, ζ = x1. Equation (6) transforms into

F (x1) + F (x) + F (y) + F (x+ y + x1) +
(
x2

n−1 + y2
n−1 + (x+ y + x1)

2n−1) y1. (8)

Let x, y, a ∈ F2n be such that x 6= y = ax 6= 0 (thus, a 6= 0, 1) and x 6= x1(a + 1)−1 (so
that y 6= x+ x1). Then (8) becomes

0 = x2
n−2

1 + x2
n−2 + y2

n−2 + (x+ y + x1)
2n−2 + y1

= x2
n−2 + y2

n−2 + (x+ y + x1)
2n−2,

which is equivalent to 0 = x2 + y2 + xy + x1(x + y) = x2(a2 + a + 1) + x1x(a + 1),
rendering the solution x = x1(a+ 1)(a2 + a+ 1)−1. It is easy to see that neither x nor
ax can be equal to x1, and so G0x1 is not x1-APN.
Finally, we consider the case of ζ 6= 0, x1. For x0 = 0, equation (7) becomes

0 = F (ζ) + F (x) + F (y) + F (x+ y + ζ)

+
(
x2

n−1 + (x+ x1)
2n−1 + y2

n−1 + (y + x1)
2n−1 (9)

+(x+ y + ζ)2
n−1 + (x+ y + ζ + x1)

2n−1) y1.
We now assume that G0x1 is ζ-APN, and so (9) has no nontrivial solutions. Take y = 0
and x1 +ζ 6= x 6= x1 in (9). We get ζ−1 +x−1 +(x+ζ)−1 +y1 = 0, which is equivalent to

x2(1 + y1ζ) + xζ(1 + y1ζ) + ζ2 = 0, and moreover (with y1 = 1/x1), x
2 + xζ + ζ2x1

x1+ζ
= 0.

By Theorem 2 this equation has no solution, i.e., G is ζ-APN, if and only if

Trn1

 ζ2x1
x1+ζ

ζ2

 = Trn1

(
x1

x1 + ζ

)
= 1. (10)
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Now, take 0 6= y = x1 6= x 6= 0 in (9), as well as x 6= x1 + ζ, x 6= ζ. We get ζ−1 + x−1 +
(x+ x1 + ζ)−1 = 0, which is equivalent to x2 + x(x1 + ζ) + x1ζ + ζ2 = 0, which has no
solutions if and only if

Trn1

(
ζ(x1 + ζ)

(x1 + ζ)2

)
= Trn1

(
ζ

x1 + ζ

)
= 1. (11)

Now, put together the conditions from equations (10) and (11). We obtain

0 = Trn1

(
x1

x1 + ζ

)
+ Trn1

(
ζ

x1 + ζ

)
= Trn1 (1).

When n is odd, Trn1 (1) = 1. We obtain a contradiction, and therefore, G0x1 cannot be
ζ-APN for n odd.

We now turn to the case when x0x1 6= 0. We first assume that n is odd and ζ 6= 0.
We examine two subcases, depending on whether ζ is one of x0, x1 or not.

We first assume that ζ = x0 (the case when ζ = x1 is treated in a similar manner).
Then equation (5) becomes

0 = x2
n−2

0 + x2
n−2 + y2

n−2 + (x+ y + x0)
2n−2

+
(

(x+ x1)
2n−1 + (y + x1)

2n−1 + (x+ y + x0 + x1)
2n−1

) (
x2

n−2
0 + x2

n−2
1

)
.

(12)

If the parenthesized expression vanishes, then an even number of its terms must
evaluate to 0, which leads to only trivial solutions. At least one of the terms must
therefore evaluate to 1, and so we consider the following possibilities:

• y = x1 and x = x0 immediately implies the trivial solution x = ζ.

• y = x1 and x 6= x0. Equation (12) reduces to 0 = x2
n−2

0 + x2
n−2 + x2

n−2
1 + (x +

x1 + x0)
2n−2, which is equivalent to x2 + (x0 + x1)x + x0x1 = 0, leading to the

trivial solutions x = x0, x1.

• y = x0 and x 6= x1. Equivalent to the previous case.

• y = x0 and x = x1 immediately implies the trivial solution y = ζ.

• x, y 6= x0, x1 but y = x+ x0 + x1. Equation (12) reduces to

0 = x2
n−2

0 + x2
n−2 + (x+ x0 + x1)

2n−2 + (x0 + x1 + x0)
2n−2 + x2

n−2
0 + x2

n−2
1

= x2
n−2 + x2

n−2
1 .

This has no solutions, since x 6= x1.

• x, y 6= x0, x1, y 6= x+ x0 + x1. The equation above is then

0 = x2
n−2

0 + x2
n−2 + y2

n−2 + (x+ y + x0)
2n−2 + x2

n−2
0 + x2

n−2
1

= x2
n−2 + y2

n−2 + (x+ y + x0)
2n−2 + x2

n−2
1 . (13)
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Suppose Trn1

(
x1
x0

)
= 0. Taking x = 0, equation (13) reduces to

0 = y2
n−2 + (y + x0)

2n−2 + x2
n−2

1 ,

which is equivalent to y2 + yx0 + x0x1 = 0, which has solutions in y if and only if

Trn1

(
x0x1
x20

)
= Trn1

(
x1
x0

)
= 0. In this case, notice that y = x0 is not a solution, so

that we can conclude that, if Trn1

(
x1
x0

)
= 0, the function is not x0-APN.

If Trn1

(
x1
x0

)
6= 0, we consider the case x 6= 0 (similarly, y 6= 0). We can then write

y = αx, with α 6= 0, 1. Equation (13) then reduces to

0 = α(1 + α)x2 + (x0α+ x1(1 + α+ α2))x+ (1 + α)x0x1,

which is equivalent to

0 = x2 +
x0α+ x1(1 + α+ α2)

α(1 + α)
x+

x0x1
α

.

Label t = x0/x1, z = x/x1. Dividing both sides by x21, the above equation becomes

z2 +
tα+ α2 + α+ 1

α2 + α
z +

t

α
= 0,

which has a solution if and only if

Trn1

 t
α(

tα+α2+α+1
α2+α

)2
 = Trn1

(
t(α+ α−1)

t2 + α2 + α−2 + 1

)
= 0.

Consider now the case of ζ 6= x0, x1 with ζ 6= 0. Assume first that xy 6= 0. Then, we
can write x = βζ, and y = αζ, with α, β 6= 0, 1 and α 6= β. Equation (7) then becomes

0 = ζ2
n−2(1 + α2n−2 + β2

n−2 + (1 + α+ β)2
n−2) + P (x2

n−2
0 + x2n−21 ),

where P = (x + x0)
2n−1 + (x + x1)

2n−1 + (y + x0)
2n−1 + (y + x1)

2n−1 + (x + y + ζ +
x0)

2n−1 + (x+y+ ζ+x1)
2n−1. Assume that P = 0 (which can be achieved, for instance,

if all the parenthesized expressions in P are different from zero). The equation becomes

0 = ζ2
n−2(1 + α2n−2 + β2

n−2 + (1 + α+ β)2
n−2),

which, since ζ 6= 0, is equivalent to

0 = 1 + α2n−2 + β2
n−2 + (1 + α+ β)2

n−2,

which, multiplying both sides by αβ(1 + α+ β), becomes

0 = αβ(1 + α+ β) + β(1 + α+ β) + α(1 + α+ β) + αβ

= αβ + α2β + αβ2 + β + αβ + β2 + α+ α2 + αβ + αβ

= α+ α2 + β + β2 + α2β + αβ2.

9



Writing β = γα, with γ 6= 0, 1, 1α , the equation above becomes

0 = α+ α2 + γα+ γ2α2 + γα3 + γ2α3 = α(1 + γ)(γα2 + (1 + γ)α+ 1).

Since α 6= 0, γ 6= 1, we obtain the equivalent equation

α2 +
1 + γ

γ
α+

1

γ
= 0,

which has solutions if and only if Trn1

(
1
γ(

1+γ
γ

)2
)

= Trn1

(
γ

1+γ2

)
= 0. Since γ

1+γ2
=

1
1+γ+

(
1

1+γ

)2
, we always have that Trn1

(
γ

1+γ2

)
= 0, so this equation always has solutions.

We can then always choose an appropriate solution of the Janwa-Wilson-Rodier equation,
so the function is not ζ-APN if ζ 6= 0, x0, x1.

For n even, the conditions from equations (10) and (11) are equivalent, since Trn1 (1) =

0, and x1
x1+ζ

+ ζ
x1+ζ

= 1. Therefore, when n is even and Trn1

(
x1
x1+ζ

)
= 0, the function

G0x1 is not ζ-APN.
Now, we shall show the claim of our theorem for x0x1 6= 0; there are two possibilities

for the Janwa-Wilson-Rodier equation (7) at ζ. The parenthesized expression is either
equal to 0 or to 1. If its value is 0 and ζ = 0, but x, y, x + y 6= 0, then the equation
transforms into

x−1 + y−1 + (x+ y)−1 = 0,

which is equivalent to (with y = ax, a 6= 0, 1)

a2 + a+ 1 = 0,

which always has solutions for n even since Trn1 (1) = 0. We can choose x 6= 0 so that the
parenthesized expression is 0, and, therefore, the function is never 0-APN for n even.
However, for n odd, the equation a2 + a+ 1 = 0 does not have solutions. We thus have
to consider the case where ζ = 0 and the expression in the parentheses in (7) is equal to
1. In that case, we must have that x = x0, or x = x1, or y = x0, or y = x1, or x+y = x0,
or x+ y = x1. We take first the case x = x0. Equation (7) becomes:

0 = x−10 + y−1 + (y + x0)
−1 + x−10 + x−11 ,

which is equivalent to
0 = y2 + yx0 + x0x1,

which has solutions if and only if Trn1

(
x0x1
x20

)
= Trn1

(
x1
x0

)
= 0. In that case, the function

is not 0-APN. By symmetry, the case x = x1 gives the condition Trn1

(
x0
x1

)
= 0. In that

case, the function is not 0-APN.
The other five cases lead to the same conditions. We conclude then that the function

is not 0-APN, for n odd, when either Trn1

(
x1
x0

)
= 0 or Trn1

(
x0
x1

)
= 0, and is 0-APN

otherwise.
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Consider now ζ 6= 0. If the parenthesized expression in (7) is 0, ζ 6= x0, x1, and
x, y, x+ y + ζ 6= 0, then equation (7) transforms into

ζ−1 + x−1 + y−1 + (x+ y + ζ)−1 = 0,

which is equivalent to 0 = x2y + xy2 + x2ζ + y2ζ + xζ2 + yζ2 = (x + y)(x + ζ)(y + ζ),
rendering trivial solutions.

If the parenthesized expression in (7) is 0, ζ 6= x0, x1 and x = 0, but y, y + ζ 6= 0,
then equation (7) transforms into

ζ−1 + y−1 + (y + ζ)−1 = 0,

which is equivalent to 0 = y2 + ζy + ζ2, which has solutions if and only if Trn1

(
ζ2

ζ2

)
=

Trn1 (1) = 0, which is always true for n even. These solutions are always nontrivial, since
y = x = 0 and y = ζ are never solutions, under ζ 6= 0. These solutions are, of course,
only valid if the parenthesised expression evaluates to 0. For ζ = x1 + x0, however, this
expression is always zero, and so the function cannot be ζ-APN.

Take now x1 6= x0 + ζ. We know that y2 + ζy + ζ2 = 0 has exactly two different
roots, y0 = ζω and y1 = ζω2, where ω is a primitive element of F4. When yj = xk for
j, k = 0, 1 or yj = xk + ζ, these solutions are not valid. Suppose that y0 = x0. The
equation x20 + ζx0 + ζ2 = 0 has solutions in ζ if and only if Trn1 (1/x30) = 0. The other
forbidden roots induce the condition Trn1 (1/x31) = 0, or Trn1 (1/x30) = 0.

So, for swaps such that Trn1 (1/x30) = 0, there will be two values ζ0 6= ζ1, namely the
solutions ζ0 = x0ω and ζ1 = x0ω

2 of the equation x20 + ζx0 + ζ2 = 0, for which the
function can still be ζ-APN, and similarly for x1 under the condition Trn1 (1/x31) = 0,
producing new (though not necessarily distinct) solutions. Summarizing, we have that:

• If Trn1 (1/x30) = 0 = Trn1 (1/x31), then G can be ζ-APN for at most four values of ζ.

• If Trn1 (1/x30) = 0, Trn1 (1/x31) = 1, then G can be ζ-APN for at most two values of
ζ.

• If Trn1 (1/x30) = 1, Trn1 (1/x31) = 0, then G can be ζ-APN for at most two values of
ζ.

• If Trn1 (1/x30) = 1 = Trn1 (1/x31), then G cannot be ζ-APN for any ζ.

By symmetry, we obtain a similar result in the case of y = 0. If the expression
in the parentheses in (7) is 0 and y = x + ζ, but x 6= 0, ζ, then (7) transforms into
ζ−1 + x−1 + (x + ζ)−1 = 0, which is equivalent to x2 + ζx + ζ2 = 0. We have already
handled this equation in the case x = 0 above, and we do not get any new information
from this.

If the parenthesized expression in (7) is 1, we cannot possibly have x0 = x1 + ζ. We
must then have that x = x0, or x = x1, or y = x0, or y = x1, or x + y = ζ + x0, or
x+ y = ζ + x1. We take first the case ζ 6= x0, x1, x0 + x1. If x = x0, then the equation
becomes ζ−1 + x−10 + y−1 + (x0 + y + ζ)−1 + x−10 + x−11 = 0, which is equivalent to

y2(x1 + ζ) + y(ζ + x0)(ζ + x1) + ζx1(ζ + x1) = 0,

11



and that, since x1 6= ζ, is equivalent to y2+y(ζ+x0)+ζx0 = 0, that is, (y+ζ)(y+x0) = 0.
Note that both solutions implied by this equation are invalid, since y = ζ is one of

the trivial solutions, and y = x0 leads to the expression in the parentheses in (7) to
evaluate to 0, and hence implies x = y, another trivial solution. The other cases also
yield trivial solutions.

We now consider ζ ∈ {x0, x1, x0 + x1}. Suppose that ζ = x0, and the parenthesized
expression in (5) is 1. Then, we have that x = x1, or y = x1, or x + y = x0 + x1. On
inspection, they either yield trivial solutions, or a contradiction. We have then that the
function is ζ-APN.

Remark 5. In the proof of the last item of the case n odd, ζx0x1 6= 0 above, taking

β = α+ α−1, we can easily show that Trn1

(
t β

t2+β2+1

)
= 0 has solutions. To see this, we

look at the equation t β
t2+β2+1

= t2+t (t 6= 0), which has solutions β if β2+ 1
1+tβ+(1+t)2 =

0, and this last equation, by Theorem 2, has solutions if and only if Trn1

(
(t+1)2

1
(t+1)2

)
=

Trn1 ((t + 1)4) = Trn1 (t + 1) = 0, which holds, by our assumption that Trn1

(
x1
x0

)
6= 0 and

n is odd. Unfortunately, it is not always true that there exists α such that α+ α−1 = β
(this last equation has a solution α if and only if Trn1 (β−2) = Trn1 (β−1) = 0).

To supplement the above discussion, we perform an exhaustive search by going over
all pairs (x0, x1) ∈ F2

2n and compute the size of the pAPN-spectrum of the (x0, x1)-
swapping of the inverse function x2

n−2 over F2n for 4 ≤ n ≤ 10. The results are
presented in Table 1 below. The sizes of the pAPN-spectra of all (x0, x1)-swaps are
given in the last column, with multiplicities given in superscript, e.g., the entry 045

for n = 4 indicates that the pAPN-spectrum of the (x0, x1)-swapping is empty for 45
pairs {x0, x1}. The remaining columns give the exponent d, the differential uniformity
of x2

n−2 (which is known to be 2, respectively 4 for odd, respectively, even n), and the
size of the pAPN-spectrum of x2

n−2.

n d δF Spectrum Swapped spectrum

4 7 4 0 045, 260, 815

5 15 2 32 031, 6155, 8155, 9155

6 31 4 0 01197, 2567, 4189, 3063

7 63 2 128 0127, 26889, 28889, 29889, 30889, 322667, 35889, 36889

8 127 4 0 019125, 210200, 43060, 128255

9 255 2 512 0511, 1164599, 1184599, 1194599, 1206132, 1229198, 12422995, 1254599,
1264599, 1274599, 1289198, 1294599, 13013797, 1314599, 1334599, 13413797,
1354599, 1364599, 1384599

10 511 4 0 0277233, 2230175, 415345, 5101023

Table 1: pAPN-spectra of two-point swaps of the inverse function
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4 The Gold APN case

A natural question arising from the above investigations is, how does swapping output
values affect the other infinite families of APN monomials. In this section, we present
our results on the Gold functions.

We will need the following theorem from [12], which shows that a trinomial zp
k−az−b

in the finite field Fpn has either zero, one, or pg roots, where g = gcd(n, k). This result
was made more explicit by [8].

Theorem 6. Let p be a prime. Let f(z) = zp
k − az − b in Fpn, g = gcd(n, k), m =

n/ gcd(n, k) and Trg be the trace function from Fpn to Fpg . For 0 ≤ i ≤ m−1, we define
ti =

∑m−2
j=i p

n(j+1), α0 = a, β0 = b. If m > 1, then, for 1 ≤ r ≤ m− 1, we set

αr = a1+p
k+···+pkr and βr =

r∑
i=0

asibp
ki
,

where si =
∑r−1

j=i p
k(j+1), for 0 ≤ i ≤ r − 1 and sr = 0. Then:

• if αm−1 = 1 and βm−1 6= 0, then f has no roots in Fpn;

• if αm−1 6= 1, then f has precisely one root in Fpn, namely x = βm−1/(1− αm−1);

• if αm−1 = 1 and βm−1 = 0, then f has precisely pg roots in Fpn given by x + δτ ,

where δ ∈ Fpg , τ is fixed in Fpn with τp
k−1 = a, and, for any e ∈ F∗pn with

Trg(e) 6= 0, where x =
1

Trg(e)

m−1∑
i=0

 i∑
j=0

ep
kj

 atibp
ki

.

Theorem 7. Let F (x) = x2
k+1 be the Gold function on F2n, where n is odd and

gcd(k, n) = 1. Let G0x1 be the {0, x1}-swapping of F for some x1 ∈ F∗2n. Then:

• G0,x1 is not 0-APN ;

• G0,x1 is not x1-APN for 0 6= x1 ∈ F2n if and only if there exists 0 6= t ∈ F2n such

that

n−1∑
i=0

t2
ki

= 0;

• if 0 6= ζ 6= x1, then G0x1 is ζ-APN if and only if there are no solutions to either of

u2
k
+u+(x1/ζ)2

k+1 = 0, and y2
k
+y(x1+ζ)2

k−1+x2
k

1 + x1ζ2
k

x1+ζ
= 0; equivalently, G0x1

is ζ-APN if and only if

n−1∑
i=0

(
x1
ζ

)2ki

6= 0 and

n−1∑
i=0

(
(x1 + ζ)−2

k

(
x2

k

1 +
x1ζ

2k

x1 + ζ

))2ki

6=

0.
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Proof. Let Gx0x1 be the {x0, x1}-swapping of F . The Janwa-Wilson-Rodier condition (4)
of Gx0x1 at ζ becomes

x2
k
y + x2

k
ζ + y2

k
x+ y2

k
ζ + ζ2

k
x+ ζ2

k
y

+
(
(ζ + x0)

2n−1 + (ζ + x1)
2n−1 + (x+ x0)

2n−1 + (x+ x1)
2n−1 + (y + x0)

2n−1 (14)

+(y + x1)
2n−1 + (x+ y + ζ + x0)

2n−1 + (x+ y + ζ + x1)
2n−1) (y0 + y1) = 0.

We will use below the fact that under gcd(k, n) = 1, the equation z2
k−1 = a has a

unique solution in F2n . Let x0 = 0 (hence y0 = 0). We consider three cases depending
on the value of ζ.

In the first case, suppose that ζ = 0. If 0 6= x 6= y 6= 0, then equation (14) becomes

x2
k
y + y2

k
x+

(
(x+ x1)

2n−1 + (y + x1)
2n−1 + (x+ y + x1)

2n−1) y1 = 0.

If x = x1 (similarly, for y = x1 and x + y = x1), then we get (certainly, 0 6= y 6= x1,

respectively, 0 6= x 6= x1), x
2k
1 y + y2

k
x1 = 0, rendering (y/x1)

2k−1 = 1, and since
gcd(k, n) = 1, this last equation has only the trivial solution y = x1.

We now assume x 6= x1 6= y and x + y 6= x1. Thus, recalling that y1 = x2
k+1

1 ,

equation (14) becomes x2
k
y + y2

k
x + x2

k+1
1 = 0. Taking u = x/x1, v = y/x1, and

dividing by x2
k+1

1 above, we get u2
k
v + v2

k
u+ 1 = 0. Let us take α with α2k + α 6= 0, 1.

Such an α certainly exists; we can, for instance, take α to be a primitive element of F2n .
Writing v = αu, the above equation becomes

u2
k+1 =

(
α2k + α

)−1
.

Since n is odd, gcd(2k + 1, 2n− 1) = 1, and so, the equation above has a unique solution

u 6= 1 in F2n for every α ∈ F2n satisfying α2k + α 6= 0, 1. Thus, G0x1 cannot be 0-APN.
In the second case, let ζ = x1 6= 0. If x1 6= x 6= y 6= x1, then equation (14) becomes

x2
k
y + x2

k
x1 + y2

k
x+ y2

k
x1 + x2

k

1 x+ x2
k

1 y

+
(
x2

n−1 + y2
n−1 + (x+ y + x1)

2n−1) y1 = 0.
(15)

If x = 0, then y 6= 0, x1 and the above equation becomes y2
k
x1 + x2

k

1 y = 0, which only
has the trivial solutions y = 0 and y = x1. The cases when y = 0 and y = x + x1 are
handled similarly.

We next assume that xy 6= 0, x+ y 6= x1. Thus, equation (14) becomes

x2
k
y + x2

k
x1 + y2

k
x+ y2

k
x1 + x2

k

1 x+ x2
k

1 y + x2
k+1

1 = 0. (16)

Dividing by x2
k+1

1 and labelling u = x/x1, v = y/x1, we obtain

u2
k
v + u2

k
+ v2

k
u+ v2

k
+ u+ v + 1 = 0. (17)
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We now let w = u+ v and rewrite (17) as w2k(u+ 1) + w(u+ 1)2
k

+ 1 = 0, that is,

w2k + w(u+ 1)2
k−1 + (u+ 1)−1 = 0.

We now apply Theorem 6. Here, p = 2, a = (u + 1)2
k−1, b = (u + 1)−1, and

m = n
gcd(k,n) = n. Then,

αn−1 =
(

(u+ 1)2
k−1
)1+2k+···+2k(n−1)

=
(

(u+ 1)2
k−1
) 2kn−1

2k−1 = (u+ 1)2
kn−1 = 1.

Furthermore,

βn−1 =
n−1∑
i=0

(
(u+ 1)2

k−1
)∑n−2

j=i 2k(j+1) (
(u+ 1)−1

)2ki
=

n−1∑
i=0

(u+ 1)2
k(i+1)(2k(n−i−1)−1)−2ki

= (u+ 1)2
kn

n−1∑
i=0

(u+ 1)−2
ki(2k+1) .

Thus, βn−1 = 0 if and only if there exists u such that

n−1∑
i=0

(u+ 1)−2
ki(2k+1) = 0. We

conclude that G0x1 is not x1-APN if and only if there exists t 6= 0 such that

n−1∑
i=0

t2
ki

= 0.

In the final case, we assume that 0 6= ζ 6= x1 6= 0. Equation (14) becomes

0 = x2
k
y + y2

k
x+ x2

k
ζ + ζ2

k
x+ y2

k
ζ + ζ2

k
y

+
(
x2

n−1 + (x+ x1)
2n−1 + y2

n−1

+(y + x1)
2n−1 + (x+ y + ζ)2

n−1 + (x+ y + ζ + x1)
2n−1) y1.

(18)

We will show that equation (18) has no nontrivial solutions x, y. All of the resulting
subcases are similar, so we will explicitly describe only some of them.

If the expression in the parentheses in (18) is equal to 0, then we need to investigate
the equation

x2
k
y + y2

k
x+ x2

k
ζ + ζ2

k
x+ y2

k
ζ + ζ2

k
y = 0.

Writing y = αx, we get

x2
k+1α+ x2

k+1α2k + x2
k
ζ + xζ2

k
+ α2kx2

k
ζ + αxζ2

k
= 0,

which becomes

x2
k+1(α+ α2k) + x2

k
ζ(1 + α2k) + xζ2

k
(α+ 1) = 0.

Dividing by x2
k+1, and labelling z = ζ

x , we get

z2
k
(α+ 1) + z(α+ 1)2

k
+ α+ α2k = 0.
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Dividing by 1+α and observing that α2k+α
α+1 = α2k+1+α+1

α+1 = (α+1)2
k
+α+1

α+1 = (α+1)2
k−1+1,

we obtain
z2
k

+ z(α+ 1)2
k−1 + (α+ 1)2

k−1 + 1 = 0,

which can be factored as

(z + 1)2
k

+ (z + 1)(α+ 1)2
k−1 = 0,

that is,

(z + 1)((z + 1)2
k−1 + (α+ 1)2

k−1) = 0,

with roots z = 1 and z = α. Both of these, however, are trivial, since then x = ζ,
respectively, y = ζ.

Assume now that the parenthesized expression in (18) does not evaluate to 0 (which
can only happen if an odd number of terms vanish). Equation (18) becomes

x2
k
y + y2

k
x+ x2

k
ζ + ζ2

k
x+ y2

k
ζ + ζ2

k
y + x2

k+1
1 = 0.

If x = 0, then (18) becomes y2
k
ζ + ζ2

k
y + x2

k+1
1 = 0. Dividing by ζ2

k+1 and labelling

u = y/ζ, we get u2
k

+ u + (x1/ζ)2
k+1 = 0. By the same argument as in the previous

case, solutions to this equation exist if and only if
∑n−1

i=0 (x1/ζ)(2
k+1)2ki = 0. Thus, if

there exist solutions to this equation other than u = x1
ζ or u = 1 + x1

ζ (which would give
y = x1 or y = ζ + x1, making the parenthesized expression in (18) vanish), then G0x1 is
not ζ-APN (note that y = 0, y = ζ cannot be solutions).

We have to ensure that the potential solutions of u2
k
+u+(x1/ζ)2

k+1 = 0 are different
from u = x1

ζ (which would give y = x1) and u = 1 + x1
ζ (which would give y = ζ + x1),

since in both cases the expression inside the parentheses in (18) would vanish. If y = x1

or y = ζ + x1, since x = 0, then (18) becomes x2
k

1 ζ + ζ2
k
x1 + x2

k+1
1 = 0. Dividing by

x2
k+1

1 and relabelling z = ζ
x1

, we obtain the equation z2
k

+ z + 1 = 0, which has no
solutions by Theorem 6.

If x = x1, then (18) transforms into

x2
k

1 y + y2
k
x1 + x2

k

1 ζ + ζ2
k
x1 + y2

k
ζ + ζ2

k
y + x2

k+1
1 = 0,

which can be rewritten as y2
k

+ y(x1 + ζ)2
k−1 +x2

k

1 + x1ζ2
k

x1+ζ
= 0. If a solution y exists to

this previous equation (observe that y cannot be equal to x1), then G0x1 is not ζ-APN.
By a similar argument as the one in the second case, by Theorem 6 we get αn−1 = 1,
and

βn−1 = (x1 + ζ)2
kn

n−1∑
i=0

(
(x1 + ζ)−2

k

(
x2

k

1 +
x1ζ

2k

x1 + ζ

))2ki

.

Therefore, G0x1 is not ζ-APN if and only if
∑n−1

i=0

(
(x1 + ζ)−2

k

(
x2

k

1 + x1ζ2
k

x1+ζ

))2ki

= 0.

The remaining cases give the same equations (up to relabelling).
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Remark 8. Our computations for 4 ≤ n ≤ 10 suggest that swapping any outputs in a
Gold APN function produce a function with a non-empty pAPN-spectrum, but we do not
yet have a theoretical argument explaining this. See Table 6 in the appendix for detailed
computational results.

5 The Welch APN case

Recall that the Welch APN function is defined over F2n as F (x) = x2
k+3 for n = 2k+ 1.

In this section, we generalize this function by allowing k in x2
k+3 to be any positive

integer.
To simplify notation, we denote

E(ζ, x1, x, y) = ζ2
n−1 + (ζ + x1)

2n−1 + x2
n−1 + (x+ x1)

2n−1 + y2
n−1

+ (y + x1)
2n−1 + (x+ y + ζ)2

n−1 + (x+ y + ζ + x1)
2n−1,

C(ζ, x, y) = ζ2
k+3 + x2

k+3 + y2
k+3 + (x+ y + ζ)2

k+3

in F2n . Certainly, E(ζ, x1, x, y) ∈ {0, 1}.

Theorem 9. Let F (x) = x2
k+3 be the Welch function on F2n, where n is odd and let

G0x1 be the {0, x1}-swapping of F for some 0 6= x1 ∈ F2n. Then:

• G0x1 is not 0-APN if gcd(2k + 3, 2n−1) = 1 (which always happens if n = 2k+ 1),
nor x1-APN in general ;

• if ζ 6= 0, x1, then G0x1 is not ζ-APN if and only if there is a solution (x, y)

of the system C(ζ, x, y) = 0 and E(ζ, x1, x, y) = 0, or C(ζ, x, y) = x2
k+3

1 and
E(ζ, x1, x, y) = 1, where x1, ζ 6= x 6= y 6= x1, ζ.

Proof. Let G0x1 be the {0, x1}-swapping of F . The Janwa-Wilson-Rodier condition (4)
of G0x1 at ζ becomes

ζ2
k+3 + x2

k+3 + y2
k+3 + (x+ y + ζ)2

k+3

+
(
ζ2

n−1 + (ζ + x1)
2n−1 + x2

n−1 + (x+ x1)
2n−1 + y2

n−1 (19)

+(y + x1)
2n−1 + (x+ y + ζ)2

n−1 + (x+ y + ζ + x1)
2n−1)x2k+3

1 = 0.

First, assume that ζ = 0. Then (19) becomes

x2
k
y3 + x2

k+2y + x2
k+1y2 + y2

k
x3 + y2

k+1x2 + y2
k+2x

+
(
x2

n−1
1 + x2

n−1 + (x+ x1)
2n−1 + y2

n−1 (20)

+(y + x1)
2n−1 + (x+ y)2

n−1 + (x+ y + x1)
2n−1)x2k+3

1 = 0.

If the expression inside the parentheses vanishes (with y = αx 6= 0, x), the equation
becomes

α(α2k−1 + 1)(α2 + α+ 1) = 0,
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which does not have solutions other than α = 0, 1 (which contradict y 6= 0, x), since
gcd(k, n) = 1 and n is odd. Thus, we need to assume that the parenthesized expression
in (20) does not vanish, that is, E(0, x1, x, y) = 1. The equation thus becomes

x2
k
y3 + x2

k+2y + x2
k+1y2 + y2

k
x3 + y2

k+1x2 + y2
k+2x+ x2

k+3
1 = 0.

Taking y = αx 6= 0, x (so, α 6= 0, 1) we obtain,

x2
k+3α(α2k−1 + 1)(α2 + α+ 1) = x2

k+3
1 ,

and since α(α2k−1 + 1)(α2 + α + 1) 6= 0, if gcd(2k + 3, 2n − 1) = 1, then there exists a
unique solution

x2
k+3 =

x2
k+3

1

α(α2k−1 + 1)(α2 + α+ 1)
,

and so G0x1 is not 0-APN.
We argue now that when n = 2k + 1 we have gcd(2k + 3, 2n − 1) = 1. Let us denote

d = gcd(2k + 3, 2n − 1). We then have

2k ≡−3 (mod d)

22k+1 ≡ 1 (mod d),

and so

22k+1 ≡ 2 · 32 (mod d)

22k+1 ≡ 1 (mod d),

which, by subtraction, renders

17 ≡ 0 (mod d).

Thus, d = 1 or d = 17. However, by [9, Lemma 9] we know that gcd(2s + 1, 2n − 1) =
2gcd(n,2s)−1
2gcd(n,s)−1 , which, if s = 2 and n is odd becomes gcd(2n − 1, 24 + 1) = 1. Therefore,

gcd(2k + 3, 2n − 1) = 1, when n = 2k + 1.
Now, suppose that ζ = x1. Then (19) becomes

x2
k+3

1 + x2
k+3 + y2

k+3 + (x+ y + x1)
2k+3 +

(
x2

n−1
1 + x2

n−1 + (x+ x1)
2n−1

+y2
n−1 + (y + x1)

2n−1 + (x+ y + x1)
2n−1 + (x+ y)2

n−1)x2k+3
1 = 0.

(21)

If the parenthesized expression above does not vanish, that is, E(ζ, x1, x, y) = 1, the
equation becomes

x2
k+3 + y2

k+3 + (x+ y + x1)
2k+3 = 0,

which, dividing by x2
k+3

1 , and taking u = x/x1, v = y/x1, becomes

u2
k+3 + v2

k+3 + (u+ v + 1)2
k+3 = 0.

18



Noting that u = 0 can not be a solution, we take v = αu with α 6= 0, 1 and divide both
sides by u2

k+3. Since gcd(2k + 3, 2n− 1) = 1, then a unique (2k + 3)-root exists and this
last equation becomes

β =
1 + u(1 + α)

u
= (1 + α2k+3)1/(2

k+3)

which (taking α such that β + α + 1 6= 0) renders the solution u = (β + α + 1)−1.
Surely, one can find many values of α such that 1 6= u 6= v 6= 1, and consequently,
x1 6= x 6= y 6= x1. Therefore, G0x1 is not x1-APN, either.
Finally, assume that 0 6= ζ 6= x1. If the expression in the parentheses in (19) is zero,
that is, E(ζ, x1, x, y) = 0, the equation becomes

ζ2
k+3 + x2

k+3 + y2
k+3 + (x+ y + ζ)2

k+3 = 0.

If the expression in the parentheses in (19) is not zero, that is, E(ζ, x1, x, y) = 1, the
equation is then

x2
k+3

1 + ζ2
k+3 + x2

k+3 + y2
k+3 + (x+ y + ζ)2

k+3 = 0,

which concludes the proof of the theorem.

Remark 10. As with the Gold function, our computational results in Table 5 suggest
that swapping any two points of the Welch APN function leads to a function with a
non-empty spectrum. At the moment, we cannot theoretically justify why this happens.
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plicative uniformity and (almost) perfect c-nonlinearity, IEEE Trans. Inf. Theory,
2020, https://doi.org/10.1109/TIT.2020.2971988.

[10] H. Janwa and M. Wilson, Hyperplane sections of Fermat varieties in P 3 in char.
2 and some applications to cyclic codes, Applied Algebra, Algebraic Algorithms
and Error-Correcting Codes, Proceedings AAECC10 (G. Cohen, T. Mora and O.
Moreno, Eds.), LNCS 673, Springer-Verlag, New York/Berlin, pp. 180–194, 1993.

[11] N.S. Kaleyski, Changing APN functions at two points, Cryptography and Commu-
nications 11.6 (2019): 1165-1184.

[12] J. Liang, On the solutions of trinomial equations over finite fields, Bull. Cal. Math.
Soc. 70 (1978), 379–382.

[13] D. Tang, C. Carlet, X. Tang, Differentially 4-uniform bijections by permuting the
inverse function, Des. Codes. Cryptogr. 77 (2014), 117–141.

[14] L. Qu, Y. Tan, C. H. Tan, C. Li, Constructing differentially 4-uniform permutations
over F22k via the switching method, IEEE Trans. Inf. Theory 59:4 (2013), 4675–4686.

[15] L. Qu, Y. Tan, C. Li, and G. Gong, More constructions of differentially 4-uniform
permutations on F22k , Des., Codes Cryptogr. 78 (2016), 391–408.
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A Experimental data on the infinite APN families

For functions from each of the infinite APN monomial families over F2n with n ≤ 10
(except for the inverse family which is characterized by Theorem 4), we have computed
the size of the pAPN-spectrum of Gx0x1 for all possible pairs (x0, x1) ∈ F2

2n . The results
are given in Tables 2, 3, 4, 5, 6 below.

In all cases, the results are computed for generalizations of the respective infinite
families, with all restrictions on the parameters dropped. This means that we consider
the function

• x24i+23i+22i+2i−1 for Dobbertin,

• x22i−2i+1 for Kasami,

• x2i+2i/2−1 or x2
i+2(3i+1)/2−1 for even and odd values of i, respectively, for Niho,

• x2i+3 for Welch, and

• x2i+1 for Gold

over F2n , with the parameter i being any positive integer in the range 1 ≤ i ≤ n− 1.
The first two columns of each table specify the degree n of the extension field F2n

and the value of the parameter i. The third column gives the smallest element from
the cyclotomic coset of the resulting exponent d. The fourth and fifth columns give
the differential uniformity and size of the pAPN-spectrum of xd over F2n , respectively.
Finally, the last column describes how the pAPN-spectrum changes after swapping two
output values of the function. More precisely, for every pair {x0, x1} ⊆ F2n with x0 6= x1,
we compute the size of the pAPN-spectrum of Gx0x1 ; the last column then lists the sizes
of all possible spectra obtained in this way. The frequencies with which these sizes occur
over all possible pairs {x0, x1} are given as superscripts. For example, the first row of
Table 2 contains 045, 260, 815 in the last column. This means that, out of the 120 pairs
{x0, x1} ⊆ F24 , 45 pairs produce a function with an empty pAPN-spectrum, 60 pairs
produce a function which is ζ-APN for two values of ζ, and the remaining 15 pairs lead
to functions that are ζ-APN for 8 values of ζ.

By Proposition 3, all exponents d such that xd has 2s-to-1 derivatives for some
fixed s > 1 are omitted. All such functions and all two-point swaps of these functions
have an empty pAPN-spectrum by the proposition, and are therefore of very limited
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interest. These include all Gold functions with gcd(i, n) > 1 and all Kasami functions
with gcd(i, n) > 1 and n/ gcd(i, n) odd. They also include the exponents i = 3, 4 for
n = 6 and i = 5 for n = 10 in the Dobbertin case; i = 3 for n = 6 in the Kasami case;
i = 1 for even n, i = 4 for n = 6 and i = 8 for n = 10 in the Welch case; i = 1, 2 for n
even, i = 3 for n = 5, i = 4 for n = 6, i = 5 for n = 8 and i = 6 for n = 9 in the Niho
case.

We note that in some cases, swap operations lead to a full-sized pAPN-spectrum,
indicating that the corresponding function is APN. This occurs exclusively in even dimen-
sions for APN functions, and is caused by pairs {x0, x1} with x0 6= x1 but F (x0) = F (x1),
where F is the function in question. Consider, for example, F (x) = x3 for n = 6 and
i = 2 in Table 2; there are 63 pairs leading to a pAPN-spectrum of size 64. We know
that APN power functions over even-degree extensions of F2 are 3-to-1; in this case, x3

has 21 non-zero images y, for each of which there are three pre-images x1, x2, x3 such
that F (x1) = F (x2) = F (x3) = y. Since a pair of elements from among {x1, x2, x3} can
be selected in three different ways, each of the 21 images contributes three pairs, leading
to these 63 pairs which trivially preserve the APN-ness of the initial function.

The only exceptions to this occur for n = 4; for example, for F (x) = x3 in Table
2, there are 30 pairs giving a full pAPN-spectrum, while the trivial pairs as described
above account for only 15 of these. To the best of our knowledge, n = 4 is the highest
extension degree for which APN functions at Hamming distance 2 from each other exist;
this is reflected in e.g. [11] and agrees with the results presented in the tables.

Conversely, we can observe that the inverse function is the only APN function among
the ones considered whose pAPN-spectrum can become empty after a two-point swap.
We ran a separate experiment in which we computed the sizes of the pAPN-spectra of
all two-points swaps for representatives from all known CCZ-equivalence classes of APN
functions, and observed the same phenomenon: the inverse function is the only one for
which an empty pAPN-spectrum could be obtained by swapping two points. Based on
this, we formulate the following conjecture.

Conjecture 11. Let F be any APN power function over F2n, CCZ-inequivalent to the
inverse power function x2

n−2, and let Gx0x1 be the (x0, x1)-swapping of F for some
(x0, x1) ∈ F2

2n. Then the pAPN-spectrum of G is not empty.

We note that the multiset of the sizes of the pAPN-spectra of all functions obtained
by swapping two points in a given function is not CCZ-invariant. Counterexamples can
be found easily, for instance by considering the Kim function and its CCZ-equivalent
permutation [2] over F26 : the pAPN-spectra of all functions obtained by swapping two
outputs of the former are of even size, while pAPN-spectra of odd size can be obtained
from the latter. Hence, our conjecture relates only to power APN functions and does
not include the ones CCZ-equivalent to them.

Some of the functions listed in the table have a singleton pAPN-spectrum, e.g.
F (x) = x47 for i = 3 and n = 7 in Table 2. All such functions are 0-APN.

The function F (x) = x15 over F28 , as given in Table 4, is remarkable due to the
fact that all possible pairs {x0, x1} lead to a function with a singleton pAPN-spectrum.
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When x0 = 0, the resulting function is x1-APN, and when x0 6= 0, the resulting function
is 0-APN.
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Table 2: pAPN-spectra of two-point swaps of the Dobbertin function

n i d δF Spectrum Swapped spectrum

4 1,3 7 4 0 045, 260, 815

2 3 2 16 1630, 490

5 1,2,3,4 15 2 32 031, 6155, 8155, 9155

6 1 23 10 0 02016

2 3 2 64 10189, 12378, 16189, 22378, 24378, 26378, 6463, 863

5 31 4 0 01197, 2567, 3063, 4189

7 1,5 29 2 128 25889, 28889, 29889, 301778, 312667, 32889, 42127

2,4 43 2 128 22889, 26889, 28127, 30889, 322667, 361778, 38889

3 47 4 1 04572, 13556

6 63 2 128 0127, 26889, 28889, 29889, 30889, 322667, 35889, 36889

8 1 29 10 0 032640

2,6 21 4 1 014025, 118615

3 43 30 0 032640

4 9 2 256 256255, 482040, 522040, 542040, 562040, 586120, 603060, 625100, 70510,
74255, 802040, 864080, 883060

5 59 12 0 032640

7 127 4 0 019125, 128255, 210200, 43060

9 1 29 8 0 0130816

2 117 6 1 080227, 150589

3 5 2 512 11213797, 1141533, 1184599, 12013797, 12213797, 1249198, 12614308,
12818396, 1309198, 1329198, 1349198, 1364599, 1424599, 1444599

4 95 8 0 0130816

5 83 6 1 080227, 150589

6 17 2 512 1064599, 1144599, 1189198, 12022995, 12213797, 12418396, 12611242,
1284599, 1329198, 13618396, 1384599, 1429198

7 85 8 0 0130816

8 255 2 512 0511, 1164599, 1184599, 1194599, 1206132, 1229198, 12422995, 1254599,
1264599, 1274599, 1289198, 1294599, 13013797, 1314599, 1334599,
13413797, 1354599, 1364599, 1384599

10 1 29 4 0 0523776

2,4,6,8 213 2 1024 10241023, 22410230, 22810230, 23015345, 23225575, 24110230, 24310230,
24425575, 24510230, 24620460, 24710230, 25030690, 25120460, 25220460,
25430690, 25510230, 25810230, 26020460, 2615115, 2621023, 26310230,
26425575, 26510230, 26610230, 26710230, 26810230, 26910230, 27010230,
27120460, 27220460, 2745115, 27520460, 27820460, 27920460, 28310230,
29110230

3 151 6 0 0523776

7 89 6 0 0523776

9 511 4 0 0277233, 2230175, 415345, 5101023
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Table 3: pAPN-spectra of two-point swaps of the Kasami function

n i d δF Spectrum Swapped spectrum

4 1,3 3 2 16 1630, 490

2 7 4 0 045, 260, 815

5 1,4 3 2 32 1031, 6155, 8310

2,3 11 2 32 1031, 6155, 8310

6 1,5 3 2 64 10189, 12378, 16189, 22378, 24378, 26378, 6463, 863

7 1,6 3 2 128 22889, 26889, 28127, 30889, 322667, 361778, 38889

2,5 13 2 128 21127, 27889, 28889, 292667, 30889, 321778, 38889

3,4 23 2 128 25889, 28889, 29889, 301778, 312667, 32889, 42127

8 1,7 3 2 256 256255, 482040, 524080, 544080, 562040, 584080, 623060, 662040, 70510,
74255, 761020, 802040, 822040, 883060, 902040

2,6 13 12 0 032640

3,5 39 2 256 256255, 532040, 552040, 572040, 604080, 614080, 626630, 652040, 812040,
832040, 854080, 881020, 98255

4 31 16 0 032640

9 1,8 3 2 512 1129198, 1144599, 11613797, 1184599, 1209198, 1224599, 1249198,
12620440, 1284599, 13013797, 13213797, 1364599, 1384599, 1409198,
1424599

2,7 13 2 512 1081533, 1184599, 1199198, 1204599, 1219198, 1224599, 12313797,
1244599, 1254599, 1264599, 1274599, 12822995, 12913797, 1304599,
1324599, 13313797, 1354599, 144511

4,5 47 2 512 1164599, 1179198, 1214599, 1234599, 1244599, 1259198, 1269198,
1279198, 12813797, 1294599, 13127594, 13210731, 1334599, 1359198,
1364599, 99511

10 1,9 3 2 1024 10241023, 2121023, 21610230, 21820460, 22020460, 22210230, 22410230,
22620460, 23030690, 23220460, 23815345, 24010230, 2425115, 2465115,
25210230, 25610230, 25830690, 26230690, 26410230, 26620460, 26835805,
27020460, 27210230, 27620460, 27820460, 28030690, 28430690, 28610230,
28820460, 29010230, 29210230, 29410230

3,7 57 2 1024 10241023, 21920460, 22010230, 22710230, 22810230, 22910230, 23110230,
23236828, 23310230, 23410230, 23510230, 24010230, 24220460, 24410230,
2485115, 25510230, 25910230, 26020460, 26310230, 26640920, 26910230,
27010230, 27110230, 27210230, 27320460, 27410230, 27510230, 27610230,
27720460, 27820460, 27920460, 28010230, 28120460, 28210230, 28310230,
28430690, 29010230

5 63 32 0 0523776

25



Table 4: pAPN-spectra of two-point swaps of the Niho function

n i d δF Spectrum Swapped spectrum

4 3 3 2 16 1630, 490

5 1,2 5 2 32 1031, 6155, 8310

4 7 2 32 1031, 6155, 8310

6 3 15 8 0 02016

5 7 6 0 02016

7 1,2,5 5 2 128 20889, 28127, 301778, 322667, 34889, 36889, 38889

3 29 2 128 25889, 28889, 29889, 301778, 312667, 32889, 42127

4 19 4 1 04572, 13556

6 15 2 128 22889, 26889, 281016, 32889, 341778, 362667

8 3 39 2 256 256255, 532040, 552040, 572040, 604080, 614080, 626630, 652040, 812040,
832040, 854080, 881020, 98255

4 19 16 0 032640

6 29 10 0 032640

7 15 14 1 132640

9 1,2 5 2 512 11213797, 1141533, 1184599, 12013797, 12213797, 1249198, 12614308,
12818396, 1309198, 1329198, 1349198, 1364599, 1424599, 1444599

3 39 8 0 0130816

4 19 2 512 1164599, 117511, 1194599, 1214599, 1224599, 1234599, 1249198,
12527594, 1269198, 12713797, 1289198, 1299198, 1304599, 1314599,
1329198, 1334599, 1356132

5 63 6 1 0129283, 11533

7 13 2 512 1081533, 1184599, 1199198, 1204599, 1219198, 1224599, 12313797,
1244599, 1254599, 1264599, 1274599, 12822995, 12913797, 1304599,
1324599, 13313797, 1354599, 144511

8 31 2 512 1064599, 1144599, 1189198, 12022995, 12213797, 12418396, 12611242,
1284599, 1329198, 13618396, 1384599, 1429198

10 3 39 32 0 0523776

4 19 6 0 0523776

5 125 34 0 0523776

6 71 6 0 0523776

7 9 2 1024 10241023, 20620460, 20810230, 21010230, 21211253, 22020460, 22210230,
23010230, 2325115, 23410230, 23615345, 23810230, 24225575, 24815345,
2545115, 25620460, 25810230, 26020460, 2625115, 26430690, 26620460,
26830690, 27040920, 27230690, 27430690, 27820460, 28010230, 28620460,
28810230, 29210230, 29410230, 30010230, 30810230

8 61 6 0 0523776

9 31 30 0 0523776
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Table 5: pAPN-spectra of two-point swaps of the Welch function

n i d δF Spectrum Swapped spectrum

4 2,3 7 4 0 045, 260, 815

5 1 5 2 32 1031, 6155, 8310

2,4 7 2 32 1031, 6155, 8310

3 11 2 32 1031, 6155, 8310

6 2,5 7 6 0 02016

3 11 10 0 02016

7 1 5 2 128 20889, 28127, 301778, 322667, 34889, 36889, 38889

2,6 7 6 1 05461, 12667

3 11 2 128 21127, 27889, 28889, 292667, 30889, 321778, 38889

4 19 4 1 04572, 13556

5 13 2 128 21127, 27889, 28889, 292667, 30889, 321778, 38889

8 2,7 7 6 0 032640

3 11 10 0 032640

4 19 16 0 032640

5 25 6 0 032640

6 13 12 0 032640

9 1 5 2 512 11213797, 1141533, 1184599, 12013797, 12213797, 1249198, 12614308,
12818396, 1309198, 1329198, 1349198, 1364599, 1424599, 1444599

2,8 7 6 1 0129283, 11533

3 11 8 0 0130816

4 19 2 512 1164599, 117511, 1194599, 1214599, 1224599, 1234599, 1249198,
12527594, 1269198, 12713797, 1289198, 1299198, 1304599, 1314599,
1329198, 1334599, 1356132

5 35 6 1 0129283, 11533

6 25 8 0 0130816

7 13 2 512 1081533, 1184599, 1199198, 1204599, 1219198, 1224599, 12313797,
1244599, 1254599, 1264599, 1274599, 12822995, 12913797, 1304599,
1324599, 13313797, 1354599, 144511

10 2,9 7 6 0 0523776

3 11 10 0 0523776

4 19 6 0 0523776

5 35 34 0 0523776

6 49 8 0 0523776

7 25 8 0 0523776
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Table 6: pAPN-spectra of two-point swaps of the Gold function

n i d δF Spectrum Swapped spectrum

4 1,3 3 2 16 1630, 490

5 1,4 3 2 32 1031, 6155, 8310

2,3 5 2 32 1031, 6155, 8310

6 1,5 3 2 64 10189, 12378, 16189, 22378, 24378, 26378, 6463, 863

7 1,6 3 2 128 22889, 26889, 28127, 30889, 322667, 361778, 38889

2,5 5 2 128 20889, 28127, 301778, 322667, 34889, 36889, 38889

3,4 9 2 128 22889, 26889, 281016, 32889, 341778, 362667

8 1,7 3 2 256 256255, 482040, 524080, 544080, 562040, 584080, 623060, 662040, 70510,
74255, 761020, 802040, 822040, 883060, 902040

3,5 9 2 256 256255, 482040, 522040, 542040, 562040, 586120, 603060, 625100, 70510,
74255, 802040, 864080, 883060

9 1,8 3 2 512 1129198, 1144599, 11613797, 1184599, 1209198, 1224599, 1249198,
12620440, 1284599, 13013797, 13213797, 1364599, 1384599, 1409198,
1424599

2,7 5 2 512 11213797, 1141533, 1184599, 12013797, 12213797, 1249198, 12614308,
12818396, 1309198, 1329198, 1349198, 1364599, 1424599, 1444599

4,5 17 2 512 1064599, 1144599, 1189198, 12022995, 12213797, 12418396, 12611242,
1284599, 1329198, 13618396, 1384599, 1429198

10 1,9 3 2 1024 10241023, 2121023, 21610230, 21820460, 22020460, 22210230, 22410230,
22620460, 23030690, 23220460, 23815345, 24010230, 2425115, 2465115,
25210230, 25610230, 25830690, 26230690, 26410230, 26620460, 26835805,
27020460, 27210230, 27620460, 27820460, 28030690, 28430690, 28610230,
28820460, 29010230, 29210230, 29410230

3,7 9 2 1024 10241023, 20620460, 20810230, 21010230, 21211253, 22020460, 22210230,
23010230, 2325115, 23410230, 23615345, 23810230, 24225575, 24815345,
2545115, 25620460, 25810230, 26020460, 2625115, 26430690, 26620460,
26830690, 27040920, 27230690, 27430690, 27820460, 28010230, 28620460,
28810230, 29210230, 29410230, 30010230, 30810230
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