
Exploiting Weak Diffusion of Gimli:
A Full-Round Distinguisher and Reduced-Round

Preimage Attacks

Fukang Liu1,3, Takanori Isobe2,3, Willi Meier4

1 Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

liufukangs@163.com
2 National Institute of Information and Communications Technology, Japan

3 University of Hyogo, Hyogo, Japan
takanori.isobe@ai.u-hyogo.ac.jp

4 FHNW, Windisch, Switzerland
willimeier48@gmail.com

Abstract. The Gimli permutation was proposed in CHES 2017, which
is distinguished from other well-known permutation-based primitives
for its cross-platform performance. One main strategy to achieve such
a goal is to utilize a sparse linear layer (Small-Swap and Big-Swap),
which occurs every two rounds. In addition, the round constant addition
occurs every four rounds and only one 32-bit word is affected by it.
The above two facts have been exploited by Liu-Isobe-Meier to mount
a distinguishing attack on 14 rounds of Gimli permutation with time
complexity 1 by utilizing the internal difference. Inspired by the 14-round
distinguisher, we demonstrate that it is feasible to extend it to the
full Gimli permutation with time complexity 2129 by further taking
advantage of its weak diffusion. The corresponding technique is named
as hybrid zero internal differential since the internal difference and
XOR difference are simultaneously traced. Our distinguisher can be
interpreted as a variant of the common differential distinguisher and
zero-sum distinguisher. Apart from the permutation itself, combined
with some new properties of the SP-box, the weak diffusion can also be
utilized to accelerate the preimage attacks on reduced Gimli-Hash and
Gimli-XOF-128 with a divide-and-conquer method. As a consequence,
the preimage attack on 2-round Gimli-Hash is practical and it can reach
up to 5 rounds. For Gimli-XOF-128, our preimage attack can reach up to
9 rounds. To the best of our knowledge, this is the first attack on the full
Gimli permutation and our preimage attacks on reduced Gimli-Hash and
Gimli-XOF-128 are the best so far. Since Gimli is included in the second
round candidates in NIST’s Lightweight Cryptography Standardization
process, we expect that our analysis can advance the understanding of
Gimli. It should be emphasized that this work can not threaten the
security of the hash scheme and authenticated encryption scheme built
on Gimli.



Keywords: hash function, Gimli, Gimli-Hash, Gimli-XOF, preimage
attack, distinguisher

1 Introduction

The Gimli permutation was proposed by Bernstein et al. in CHES 2017 [2]. As the
designers claimed, Gimli is distinguished from other well-known permutation-
based primitives for its cross-platform performance. The main strategy to
improve the performance of Gimli is to process the 384-bit data in four 96-bit
columns independently and make only a 32-bit word swapping among the four
columns every two rounds. Soon after its publication, the security of such a design
strategy received a doubt from Hamburg, who posted a paper [9] to explain how
dangerous such a strategy would be.

Like the AES and SHA-3 competition, NIST is currently holding a pub-
lic lightweight cryptography competition, aiming at lightweight cryptography
standardization [1]. Since Gimli has been included in the Round 2 candidates
in NIST’s Lightweight Cryptography Standardization process, it is of practical
importance to further investigate its security, especially for its authenticated
encryption (AE) scheme and hash scheme in the submitted Gimli document. It
should be emphasized that the attack described in [9] is for an ad-hoc mode
and mainly exploits the fact that there is occasional 32-bit word communication
among the 4 columns. Such an attack [9] can not be directly applied to the
submitted hash scheme or AE scheme.

Recently, a comprehensive study for reduced Gimli has been made by
Liu-Isobe-Meier [11], covering the collision attack on Gimli-Hash, state-recovery
attack on the AE scheme and distinguishing attack on the Gimli permutation.
These attacks exploited the facts that there is occasional communication between
the four columns of the Gimli state and that the constant addition operation
occurs every four rounds. Moreover, several useful properties of the SP-box of
Gimli have been revealed and become the basis of all the attacks in [11].

For the distinguishing attack on 14-round Gimli [11], only one input of a
specific format is utilized. Consequently, we are curious whether it is possible to
use more different inputs of the same format to construct a longer distinguisher,
just as the zero-sum distinguisher which aims at finding a set of inputs such that
the sum of the corresponding outputs is zero. In addition, since the preimage
attack is not covered in [11], we are motivated to make a research in this direction.

Gimli-Hash is based on the well-known sponge structure [4,3], with 128-bit
rate and 256-bit capacity. For such a small rate, it is challenging to devise a faster
preimage attack on Gimli-Hash than the generic one, which requires 2128 time
and 2128 memory. This is because the attacker has to utilize at least two message
blocks to match a given 256-bit hash value. In other words, 2n rounds of the
Gimli permutation need to be taken into account to efficiently find a preimage of
n-round Gimli-Hash. Considering the progress in the cryptanalysis of Keccak [5],
even with a relatively large rate, the currently best preimage attacks can only
reach up to 4 rounds [8,12,10]. For Ascon [6], the preimage attack is much more

2



difficult due to the small rate. As a result, the designers could only mount a
preimage attack [7] on up to 5 rounds of Ascon-XOF-64 with a rather high time
complexity, which is almost close to exhaustive search. Especially, to demonstrate
the efficiency of the new technique called linear structures [8] for the preimage
attack on reduced Keccak, Guo et al. provided a practical preimage attack on
3-round SHAKE-128 as an extreme example.

Following the research on Keccak and Ascon, we believe it meaningful to
apply our technique to both Gimli-XOF-128 and Gimli-Hash. On one hand,
it can be used to demonstrate the limit of our technique. On the other hand, a
comparison can be made between Gimli and other primitives regarding preimage
resistance, especially for those selected in the second round in NIST’s Lightweight
Cryptography Standardization process.

Related Work. We noticed that there is an independent work on the
distinguishing atttack on Gimli announced at the rump session of Eurocrypt
2020, where a full-round distinguisher is claimed to be found. According to our
understanding, it shares a very similar idea with our distinguisher. However, the
details on their full-round distinguisher are not clear yet.

Our Contributions. Leveraging the facts that there is little communication
between the four columns of the Gimli state in the Gimli permutation and that
the constant addition operation occurs only every four rounds, we extend the
14-round distinguisher as proposed in [11] to the full 24 rounds by utilizing
a new technique called hybrid zero-internal-differential (ZID) distinguisher.
Specifically, different from the 14-round distinguisher where only one input is
used, two different inputs of a specific format will be used in our distinguisher.
In addition, not only the symmetry in each internal state but also the symmetry
between two different internal states generated by the two inputs will be
simultaneously traced. Consequently, we could construct a distinguisher for 18
rounds of Gimli permutation with two different inputs and time complexity 2,
which is further extended to the full 24 rounds with time complexity 2129 by
using 2128 different input pairs.

In addition, we develop a divide-and-conquer method to accelerate the
exhaustive search for the preimages of reduced Gimli-Hash and Gimli-XOF-128.
It should be mentioned that similar ideas have appeared in the cryptanalysis of
Gimli [9,11,14]. Therefore, this work can be viewed as an extension of previous
techniques. However, as can be seen from our preimage attack on Gimli-Hash and
Gimli-XOF-128, extra efforts are essential in order to attack as many rounds as
possible. Especially for the preimage attack on Gimli-Hash, two message blocks of
size 2256 have to be exhausted in less than 2128 time, which is quite a challenge. In
addition, some new properties of the SP-box are revealed, one of which directly
makes the preimage attack on 2-round Gimli-Hash practical. Our results are
summarized in Table 1.

Organization. This paper is organized as follows. In section 2, we introduce
the notations, the Gimli permutation, some useful properties of the SP-box , the

3



Table 1: The analytical results of reduced Gimli-Hash and Gimli-XOF-128
Target Attack Type Rounds Memory Time Ref.

Permutation distinguisher
18 negligible 2 Sec. 4.2
21 negligible 265 Sec. 4.3

24 (full round) negligible 2129 Sec. 4.4

Gimli-Hash preimage
2 232 242.4 Sec. 6
5 265.6 296 Sec. 7

Gimli-XOF-128 preimage
8 270 2104 App. C
9 270 2104 Sec. 8.1

hash scheme Gimli-Hash and Gimli-XOF. In section 3, two new properties of
the SP-box will be presented. The distinguishing attack on full Gimli is shown
in section 4. The overview of our preimage attack on reduced Gimli-Hash is
described in section 5. Then, we show the preimage attacks on 2 and 5 rounds of
Gimli-Hash in section 6 and section 7, respectively. How to mount the preimage
attack on up to 9 rounds of Gimli-XOF-128 is explained in section 8. Finally,
the paper is concluded in section 9.

2 Preliminaries

In this section, we will present some notations, the description of the Gimli
permutation and its applications to hashing. Meanwhile, some useful properties
of the SP-box discussed in [11] will be introduced as well.

2.1 Notation

1. �, �, ≪, ≫, ⊕, ∨, ∧ represent the logic operations shift left, shift right,
rotate left, rotate right, exclusive or, or, and, respectively.

2. Z[i] represent the (i + 1)-th bit of the 32-bit word Z. where the least
significant bit is the 1st bit and the most significant bit is the 32nd bit.
For example, Z[0] represents the least significant bit of Z.

3. Z[i ∼ j](0 ≤ j < i ≤ 31) represents the (j + 1)-th bit to the (i+ 1)-th bit of
the 32-bit word Z. For example, Z[1 ∼ 0] represents the two bits Z[1] and
Z[0] of Z.

4. A||B represents the concatenation of A and B. For example, if A = 0012
and B = 10012, then A||B = 00110012.

5. 0n represent an all-zero string of length n.

6. SP represents the application of the 96-bit SP-box.

7. r represents the rate part of the Gimli state.

8. c represents the capacity part of the Gimli state.

9. f represents the Gimli permutation.

10. f−1 represents the inverse of Gimli permutation.

4



2.2 Description of Gimli

Gimli was proposed in CHES 2017 [2] and is a Round 2 candidate in NIST’s
Lightweight Cryptography Standardization process [1]. The Gimli state can be
viewed as a two-dimensional state S = (S[i][j]) (0 ≤ i ≤ 2, 0 ≤ j ≤ 3), where
S[i][j] ∈ F 32

2 , as illustrated in Figure 1.

S[0][0] S[0][1] S[0][2] S[0][3]

S[1][0] S[1][1] S[1][2] S[1][3]

S[2][0] S[2][1] S[2][2] S[2][3]

Fig. 1: The Gimli state

The Gimli permutation is described in Algorithm 1. As specified in [2], the
permutation is composed of four operations: SP-box, Small-Swap, Big-Swap and
Constant Addition. For simplicity, we denote the SP-box, Small-Swap, Big-Swap
and Constant Addition by SP, S SW, B SW and AC, respectively. Therefore, the
24-round permutation can be viewed as 6 times of the application of the following
sequence of operations:

(SP→ S SW→ AC)→ (SP)→ (SP→ B SW)→ (SP).

For convenience, denote the internal state after r-round permutation by Sr

and the input state by S0. In other words, we have

S4i SP−→ S4i+0.5 S SW−→ AC−→ S4i+1 SP−→ S4i+2 SP−→S BW−→ S4i+3 SP−→ S4i+4,

where 0 ≤ i ≤ 5. Moreover, the six 32-bit round constants are denoted by ci
(0 ≤ i ≤ 5), where ci = 0x9e377900⊕ (24− 4i).

2.3 SP-box

The SP-box can be viewed as a 96-bit S-Box. Denote the 96-bit input and output
by (IX, IY, IZ) ∈ F 32×3

2 and (OX,OY,OZ) ∈ F 32×3
2 , respectively. Formally, the

following relation holds:

(OX,OY,OZ) = SP (IX, IY, IZ).

(OX,OY,OZ) is computed as follows:

IX ← IX ≪ 24

5



IY ← IY ≪ 9

OZ ← IX ⊕ IZ � 1⊕ (IY ∧ IZ)� 2

OY ← IY ⊕ IX ⊕ (IX ∨ IZ)� 1

OX ← IZ ⊕ IY ⊕ (IX ∧ IY )� 3

2.4 Linear Layer

The linear layer consists of two swap operations, namely Small-Swap and
Big-Swap. Small-Swap occurs every 4 rounds starting from the 1st round.
Big-Swap occurs every 4 rounds starting from the 3rd round. The illustration of
Small-Swap and Big-Swap can be referred to Figure 2.

Fig. 2: The linear layer, where the left/right part represents S SW/B SW.

2.5 Properties of the SP-box

Suppose (OX,OY,OZ) = SP (IX, IY, IZ). Several properties have been dis-
cussed in [11] and we list some useful ones for our attacks.

Property 1 [11] If (IY ≪ 9)∧0x1fffffff = 0, OX will be independent on
IX.

Property 2 [11] A random triple (IY, IZ,OX) is potentially valid with prob-
ability 2−15.5 without knowing IX.

Property 3 [11] Given a random triple (IX,OY,OZ), it is valid with proba-
bility 2−1. Once it is valid, (OX[30 ∼ 0], IY, IZ[30 ∼ 0]) can be determined.

Property 4 [11] Given a random triple (IY, IZ,OZ), (IX,OX,OY ) can be
uniquely determined. In addition, a random tuple (IY, IZ,OY,OZ) is valid with
probability 2−32.

Property 5 [11] Suppose the pair (IY, IZ) and q bits of OY are known. Then
t bits of information on IX can be recovered by solving a linear equation system
of size q.

6



Property 6 [11] Let (OX,OY,OZ) = SP (IX ′, IY ′, IZ ′). If IY = IY ′ and
IZ = IZ ′, the following relations must hold:

OX[0] = OX ′[0], OX[1] = OX ′[1], OX[2] = OX ′[2].

OY [0]⊕OZ[0] = OY ′[0]⊕OZ ′[0].

Property 7 [11] Let (OX,OY,OZ) = SP (IX ′, IY ′, IZ ′). If OY = OY ′ and
OZ = OZ ′, the following relations must hold:

IX[8] = IX ′[8], IY [23] = IY ′[23].

2.6 Gimli-Hash

How Gimli-Hash compresses a message is illustrated in Figure 3. Specifically,
Gimli-Hash initializes a 48-byte Gimli state to all-zero. It then reads sequentially
through a variable-length input as a series of 16-byte input blocks, denoted by
M0, M1, · · ·.

S0 S1

⊕

M0

r

f

c

M1

⊕

Mi

Si

c

Sh0 Sh1

f f f

Injection Hash value

Fig. 3: The process to compress the message

Each full 16-byte input block is handled as follows:

• XOR the block into the first 16 bytes of the state (i.e. the top row of 4
words).

• Apply the Gimli permutation.

The input ends with exactly one final non-full (empty or partial) block,
having b bytes where 0 ≤ b ≤ 15. This final block is handled as follows:

• XOR the block into the first b bytes of the state.
• XOR 1 into the next byte of the state, position b.
• XOR 1 into the last byte of the state, position 47.
• Apply the Gimli permutation.

After the input is fully processed, a 32-byte hash output is obtained as follows:

• Output the first 16 bytes of the state (i.e. the top row of 4 words), denoted
by H0.

• Apply the Gimli permutation.

7



• Output the first 16 bytes of the state (i.e. the top row of 4 words), denoted
by H1.

As depicted in Figure 3, the state after Mi (i ≥ 0) is injected is denoted by Si

and the 256-bit hash value is the concatenation of (Sh0[0][0], Sh0[0][1], Sh0[0][2],
Sh0[0][3], Sh1[0][0], Sh1[0][1], Sh1[0][2], Sh1[0][3]). Formally, the following rela-
tions hold:

S0 = IV ⊕ (M0||0256),

Si+1 = f(Si)⊕ (Mi||0256) (i ≥ 0),

where IV is the initial state.
In our preimage attack on Gimli-Hash, two consecutive message blocks will be

utilized. To distinguish the states where different message blocks are processed,
we further introduce the following notations: When processing Mi, denote the
internal state after r-round permutation by Sr

i and the input state by S0
i . In

other words, we have

S4j
i

SP−→ S4j+0.5
i

S SW−→ AC−→ S4j+1
i

SP−→ S4j+2
i

SP−→S BW−→ S4j+3
i

SP−→ S4j+4
i ,

where 0 ≤ j ≤ 5 and i ≥ 0.

Gimli-XOF In addition to Gimli-Hash, another application of the Gimli
permutation called ”extendable one-way function” (Gimli-XOF) is specified
in the submitted Gimli document [2]. For completeness, we briefly introduce
the construction of Gimli-XOF recommended by the designers for lightweight
applications.

Construction. At the squeezing phase, different from Gimli-Hash which gener-
ates a fixed-length output of 32 bytes, Gimli-XOF works as follows to generate
t bytes of output:

1. Concatenate d t
16e blocks of 16 bytes, each of which is obtained by extracting

the first 16 bytes of the state and then applying the Gimli permutation.
2. Truncate the obtained 16d t

16e bytes to t bytes.

At the absorbing phase, the so-called two-way fork [2] is adopted, as specified
below:

1. Read the message byte by byte (imaging that there is a device). Xor the
byte at the current position and then increase the current position. If the
current position exceeds the end of the block (each block can absorb at most
16 bytes per time), apply the permutation and set the current position back
to the first byte.

2. When reaching the ”end of data”, xor 1 into the state at the current position
and apply the Gimli permutation.

8



Obviously, the difference between Gimli-Hash and Gimli-XOF at the absorbing
phase exists in the padding rule.

To apply our technique, the parameter t is set as 16. In other words, the Gimli
permutation is used to generate 128 bits of output. For simplicity, Gimli-XOF
with a 128-bit output is denoted by Gimli-XOF-128.

3 New Properties of SP-box

In this section, two new properties of SP-box will be introduced to make our
attacks efficient and reliable.

Property 8 Suppose (x1, y1, z1) = SP (x0, y0, z0) and (x′, y′, z′) = SP (x2, y1, z1).
Given a random value of (y0, z0, y

′, z′), all feasible solutions of (x0, x2) can be
recovered with time complexity of 210.4.

Due to the length of the proof, the details can be referred to Appendix B.

Property 9 Given a random constant value of OX and N random pairs of
(IY, IZ), when N is sufficiently large, the expectation of the number of the
solutions of IX is N .

Proof. Consider the expressions to compute OX as shown in Equation 1.

OX[i] =

{
IZ[i]⊕ IY [i− 9] (0 ≤ i ≤ 2)

IZ[i]⊕ IY [i− 9]⊕ (IX[i− 27] ∧ IY [i− 12]) (3 ≤ i ≤ 31)
(1)

Denote the probability that there are 2s solutions of IX for a given random
triple (IY, IZ,OX) by Pr(s). Therefore,

Pr(s+ 3) = 2−3 × 2−s ×
(
29
s

)
229

, (0 ≤ s ≤ 29).

As a result, the expectation of the number of solutions of IX denoted by E can
be formulated as follows:

E =

29∑
s=0

(2s+3 × Pr(s+ 3)) =

29∑
s=0

(2s+3 × 2−3 × 2−s ×
(
29
s

)
229

) =

29∑
s=0

(
29
s

)
229

= 1.

In addition, according to Property 2, a random triple (IY, IZ,OX) is valid with
probability 2−15.5. Thus, we can expect N solutions of OX when N is sufficiently
large, e.g. N = 232. According to experiments, when N = 232, about 232 (slightly
greater than 232) solutions of (IX, IY, IZ) can be obtained to match a given OX.

9



4 Hybrid ZID Distinguisher for Full Gimli

In this section, we extend the zero-internal-differential (ZID) distinguisher for
14 rounds of the Gimli permutation as proposed in [11] to the full round.
Different from [11], where only one input of a specific format is utilized
and the attacker tries to trace its evolution of the symmetry of the internal
states in both backward and forward directions, two different inputs of a
specific format will be exploited in our new distinguisher. Specifically, both
the symmetry in each internal state and the symmetry between two different
internal states generated by the two inputs will be carefully investigated.
Consequently, our new distinguisher is more effective and it is named as
the hybrid zero-internal-differential (ZID) distinguisher. An illustration of the
difference between the hybrid ZID distinguisher and the ZID distinguisher as
in [11] is shown in Figure 4.

input
Undesirable

property

Underirable

property ⊕

input0

input1

Undesirable

property

Undesirable

property

Undesirable

property

Fig. 4: Difference between the ZID distinguisher (left) [11] and our hybrid ZID
distinguisher (right)

Since two different inputs are taken into account, similar to the conventional
differential attack, if a specific configuration between two different outputs holds
with a probability higher than that for a random permutation, a distinguisher
can be constructed to distinguish the target permutation from a random one.

4.1 Revisiting the 14-Round ZID Distinguisher

First of all, we give a brief description of the 14-round ZID distinguisher [11].
For the 14-round distinguisher, the attacker starts from the internal state S5

satisfying the following conditions and computes backwards and forwards.

S5[0][0] = S5[0][1] = S5[0][2] = S5[0][3],

S5[1][0] = S5[1][1] = S5[1][2] = S5[1][3],

S5[2][0] = S5[2][1] = S5[2][2] = S5[2][3].

Then, it can be observed that the following undesirable properties hold in S0.5

and S13:

S0.5[1][0] = S0.5[1][2],

10



S0.5[2][0] = S0.5[2][2],

S13[1][1] = S13[1][3],

S13[2][1] = S13[2][3].

By exploiting Property 6 and Property 7, the following undesirable properties
will always exist in S0 and S14:

S0[0][0][8] = S0[0][2][8],

S0[1][0][23] = S0[1][2][23],

S14[0][1][0] = S14[0][3][0],

S14[0][1][1] = S14[0][3][1],

S14[0][1][2] = S14[0][3][2],

S14[1][1][0]⊕ S14[2][1][0] = S14[1][3][0]⊕ S14[2][3][0].

As explained in [11], such a 14-round ZID distinguisher can be interpreted as
a zero-sum distinguisher with the data complexity reduced to the smallest one,
i.e. 1. For the zero-sum distinguisher, it is common to first bound the algebraic
degree after a certain number of rounds of permutation and then to find a
sufficiently large number of inputs so that the sum of the corresponding outputs
is zero. Naturally, to construct a longer distinguisher, the data complexity has
to be increased. Thus, it is natural to ask whether it is possible to use more
inputs to extend the 14-round ZID distinguisher to more rounds. Inspired by
the conventional differential attack, we choose to consider two different inputs
sharing a specific format and trace the symmetry between the two internal states
generated by the two inputs as well as the symmetry in each internal state
itself. Obviously, our distinguisher is different from the conventional internal
differential where only the internal difference is traced for just one input.

4.2 Deterministic Hybrid ZID Distinguisher for 18-Round Gimli

We begin with the hybrid ZID distinguisher for 18 rounds of the Gimli
permutation, which will be basis of the distinguisher for full Gimli. Such a
distinguisher only requires 2 different inputs and 2 queries of the 18-round Gimli
permutation.

Consider two different values (S9, S′9), which satisfy the following conditions:

S9[0][0] ⊕ S9[0][2] = c2,

S9[1][0] = S9[1][2],

S9[2][0] = S9[2][2],

S9[0][1] = S9[0][3],

S9[1][1] = S9[1][3],

S9[2][1] = S9[2][3],

S′9[0][0] = S9[0][2],

11



S′9[0][2] = S9[0][0],

S′9[1][0] = S′9[1][1] = S9[1][2],

S′9[2][0] = S′9[2][2] = S9[2][2],

S′9[0][1] = S′9[0][3] = S9[0][3],

S′9[1][1] = S′9[1][3] = S9[1][3],

S′9[2][1] = S′9[2][3] = S9[2][3],

where c2 is the round constant used to compute S9 and S′9 in the Gimli
permutation.

As illustrated in Figure 13 and Figure 14, we can trace the evolutions of the
internal difference in both directions for S9 and S′9, respectively. The following
XOR difference between S17 and S′17 can be derived:

S17[1][1]⊕ S′17[1][3] = 0,

S17[2][1]⊕ S′17[2][3] = 0,

S17[1][3]⊕ S′17[1][1] = 0,

S17[2][3]⊕ S′17[2][1] = 0.

Consequently, according to Property 6 and Property 7, the following 8 relations
always hold for (S18,S′18).

S18[0][1][0] = S′18[0][3][0],

S18[0][1][1] = S′18[0][3][1],

S18[0][1][2] = S′18[0][3][2],

S18[1][1][0]⊕ S18[2][1][0] = S′18[1][3][0]⊕ S′18[2][3][0],

S′18[0][1][0] = S18[0][3][0],

S′18[0][1][1] = S18[0][3][1],

S′18[0][1][2] = S18[0][3][2],

S′18[1][1][0]⊕ S′18[2][1][0] = S18[1][3][0]⊕ S18[2][3][0].

Similar to the 14-round distinguisher in [11], the following 4 relations always
hold for (S0,S′0): 

S0[0][0][8] = S0[0][2][8],

S0[1][0][23] = S0[1][2][23],

S′0[0][0][8] = S′0[0][2][8],

S′0[1][0][23] = S′0[1][2][23].

(2)

As a result, one could construct a distinguisher for 18 rounds of the Gimli
permutation, whose data and time complexity are both 2. Such a 18-round
distinguisher has been experimentally verified.

12



4.3 Probabilistic Hybrid ZID Distinguisher for 21-Round Gimli

Observing the above distinguisher on 18-round Gimli, it can be found that
the unknown relation between (S17[0][1], S17[0][3]) and (S′17[0][1], S′17[0][3])
prevents a longer distinguisher. Thus, the attacker can impose conditions on their
relation to obtain a longer distinguisher. Consider the case when the following
conditions on (S17[0][1], S17[0][3]) and (S′17[0][1], S′17[0][3]) hold.{

S17[0][1] = S′17[0][3],

S17[0][3] = S′17[0][1].
(3)

In this way, under the framework of the 18-round distinguisher, the following
relation between S17 and S′17 holds:

S17[0][1] = S′17[0][3],

S17[1][1] = S′17[1][3],

S17[2][1] = S′17[2][3],

S17[0][3] = S′17[0][1],

S17[1][3] = S′17[1][1],

S17[2][3] = S′17[2][1].

As shown in Figure 5, by tracing the evolution of the internal difference and
XOR difference for such a pair of (S17, S′17), one could obtain the following
relations between S21 and S′21.

S21[0][0] = S′21[0][3]⊕ c4,
S21[1][1] = S′21[1][3],

S21[2][1] = S′21[2][3],

S21[0][3] = S′21[0][0]⊕ c4,
S21[1][3] = S′21[1][1],

S21[2][3] = S′21[2][1].

(4)

For a random permutation, the above 32 × 6 = 192 bit relations hold with
probability 2−192. However, by choosing a pair of (S9,S′9) as in the 18-round
distinguisher, these 192 bit relations hold with probability 2−64. Specifically, for
the 64 bit relations in Equation 3, since (S17[0][1], S[17][0][3]) and (S′17[0][1],
S′17[0][3]) only depend on (S13[1][0], S13[2][0], S13[3][0], S13[0][2], S13[1][2],
S13[3][2]) and (S′13[1][0], S′13[2][0], S′13[3][0], S′13[0][2], S′13[1][2], S′13[3][2]) and
there are four times of the application of the SP-box from S13 to S17, it can
be assumed that each of 64 bit relations is independent, i.e. they hold with
probability 2−64. Consequently, for a random pair (S9,S′9) chosen in the same
way as in the 18-round distinguisher, if the computed values of (S17, S′17) satisfy
the 64 bit relations displayed in Equation 3, the 192 bit relations in Equation 4
must hold, thus distinguishing the 21-round Gimli permutation from a random
permutation.

13



S
17

S
18

S
19

S
20

S
20.5

S
21

A28

B28

C28

A29

B29

C29

SP SP

B SW

SP

SP

S SW

AC

A34

B34

C34

A35

B35

C35

A37

B36

C36

A36

B37

C37

A38

B38

C38

A39

B39

C39

A40

B40

C40

A41

B41

C41

A∗

40

B40

C40

A41

B41

C41

SP SP

B SW

SP

SP

S SW

AC

S
′17

S
′18

S
′19

S
′20

S
′20.5

S
′21

A29

B29

C29

A28

B28

C28

A35 A34

B35

C35

B34

C34

A37

B36

C36

A36

B37

C37

A39

B39

C39

A38

B38

C38

A40

B40

C40

A41

B41

C41

A∗

41

B41

C41

A40

B40

C40

Fig. 5: The ZID distinguisher for 21-Round Gimli

Complexity Evaluation. According to the construction of the pair of (S9, S′9),
there are in total 295+96 = 2191 possible pairs. Therefore, by testing 264

random pairs, one could expect to obtain an output pair of (S21, S′21) satisfying
Equation 4 in the forward direction. For the backward direction, any pair
of (S0, S′0) will satisfy Equation 2. Therefore, the data complexity and time
complexity of our distinguisher for 21 rounds of the Gimli permutation are both
265. It should be emphasized that the 192 bit relations in Equation 4 hold with
probability 2−192 for a random permutation.

4.4 Probabilistic Hybrid ZID Distinguisher for Full Gimli

In the same way as the extension from the 18-round distinguisher to the 21-round
one, we could extend the 21-round distinguisher to the full round. Similarly, one
could observe that the main obstacle to prevent a longer distinguisher exists
in the relations between (S21[0][1], S21[0][3]) and (S′21[0][1], S′21[0][3]). If the
64 conditions on (S21[0][1], S21[0][3]) and (S′21[0][1], S′21[0][3]) as shown in

14



Equation 5 hold, the 21-round distinguisher can then be extended to the full
Gimli permutation: {

S21[0][1] = S′21[0][3],

S21[0][3] = S′21[0][1].
(5)

Specifically, by choosing a pair of (S9, S′9) in a same way as in the 18-round
distinguisher, once the relations as shown in Equation 3 and Equation 5 hold,
the following relations on (S21, S′21) will hold:

S21[0][1] = S′21[0][3],

S21[1][1] = S′21[1][3],

S21[2][1] = S′21[2][3],

S21[0][3] = S′21[0][1],

S21[1][3] = S′21[1][1],

S21[2][3] = S′21[2][1].

S
21

S
22

S
23

S
24

A42

B40

C40

A43

B41

C41

SP SP

B SW

SPA44

B44

C44

A45

B45

C45

A47

B46

C46

A46

B47

C47

A48

B48

C48

A49

B49

C49

SP SP

B SW

SP

S
′21

S
′22

S
′23

S
′24

A43

B41

C41

A42

B40

C40

A45 A44

B45

C45

B44

C44

A47

B46

C46

A46

B47

C47

A49

B49

C49

A48

B48

C48

Fig. 6: The ZID distinguisher for full Gimli

As shown in Figure 6, by tracing the internal difference and XOR difference
for such a pair of (S21, S′21), the following 192 bit relations will exist in
(S24, S′24): 

S24[0][1] = S′24[0][3],

S24[1][1] = S′24[1][3],

S24[2][1] = S′24[2][3],

S24[0][3] = S′24[0][1],

S24[1][3] = S′24[1][1],

S24[2][3] = S′24[2][1].

(6)

15



Similar to the 21-round distinguisher, for a random permutation, the 192 bit
relations shown in Equation 6 will hold with probability 2−192. However, by
choosing a pair of (S9, S′9) as in the 18-round distinguisher, based on a similar
assumption in the 21-round distinguisher for bit conditions, these relations will
hold with probability 2−64−64 = 2−128, i.e. the 128 bit relations in Equation 3
and Equation 5 hold, thus distinguishing the full Gimli permutation from a
random one.

Complexity Evaluation. Since there are in total 2191 pairs of (S9, S′9) in our
construction, one could expect an output pair of (S24, S′24) satisfying Equation 6
in the forward direction after testing 2128 random pairs of (S9, S′9), while
Equation 6 holds with probability 2−192 for a random permutation. In the
backward direction, any pair of (S0, S′0) will satisfy Equation 2. Therefore, the
data complexity and time complexity of our distinguisher for the full Gimli
permutation are both 2129.

Remark. Although such a distinguisher cannot be a threat for the AE or hash
scheme of Gimli, it is the first attack on full Gimli. In addition, the ratio of
the time complexity of our distinguisher to the whole value space of the Gimli
state is 2129−384 = 2−255, which is much smaller than that of the zero-sum
distinguisher for 24-round (full) Keccak [13] with 1600-bit state, i.e. 21575−1600 =
2−25. Moreover, it should be mentioned that our distinguisher mainly exploits the
features of the linear layer and the constant addition operation, where the linear
layer of Gimli is a main strategy to help it outperform other primitives. However,
as shown by our distinguisher, there are unexpected properties underlying such
a design, even if these properties do not lead to an attack on the encryption or
hash mode.

5 Overview of Preimage Attacks on Gimli-Hash

As can be observed from the hybrid ZID distinguisher for full Gimli, we take
many advantages of the weak diffusion to construct the full-round distinguisher.
Different from Keccak [5], in which the diffusion is strong, the diffusion of Gimli
is rather weak. As pointed out by the designers, the avalanche effect requires 10
rounds of Gimli permutation. Exploiting such a feature of the Gimli permutation,
the divide-and-conquer method may work well to accelerate the preimage finding
procedure. In this section, we describe how the generic preimage attack on
Gimli-Hash works and give an overview of our preimage attack on reduced
Gimli-Hash.

5.1 The Generic Preimage Attack on Gimli-Hash

The generic preimage attack on Gimli-Hash is based on a meet-in-the-middle
method. Specifically, consider five message blocks (M0, M1, M2, M3, M4) and

16



utilize them to find a preimage for a given hash value. In other words, consider
the following sequence of state transitions:

S0
f−→ S1

f−→ S2
f−→ S3

f−→ S4
f−→ Sh0

f−→ Sh1. (7)

Given a hash value, (Sh0[0][0], Sh0[0][1], Sh0[0][2], Sh0[0][3], Sh1[0][0], Sh1[0][1],
Sh1[0][2], Sh1[0][3]) become known. As a result, the generic preimage attack can
be described as follows:

Phase 1: Randomly choose a value for the 256-bit capacity part of Sh0 and
compute the corresponding Sh1. Repeat it until the computed 128-bit
rate part of Sh1 is consistent with that in the given hash value.

Phase 2: At this phase, the full state of Sh0 becomes known. Thus, randomly
choosing 2128 values for (M3,M4) by taking the padding in S4 into
account, compute backward the corresponding 2128 values of the
capacity part of S2 and store them in a table denoted by T0.

Phase 3: Randomly choose a value for (M0,M1) and compute forward the
corresponding value of the capacity part of S2. Repeat it until the
computed value is in T0 and record the corresponding (Sh0, M0, M1,
M2, M3).

Phase 4: Compute S′2 = f(S1) and S2 = f−1(S3). Then, M2||0256 = S2 ⊕ S′2.

Complexity Evaluation. Obviously, the time complexity at Phase 1 is 2128 since a
128-bit value needs to be matched. For Phase 2, the time and memory complexity
are both 2128. At Phase 3, the time complexity is 2128 since 2256 pairs need to
be generated in order to match the 256-bit capacity part of S2. Consequently,
the time and memory complexity of the generic attack on Gimli-Hash are both
2128.

5.2 The Preimage Attack with Divide-and-Conquer Methods

Our attack procedure is slightly different from the generic one. To gain
advantages, Phase 1 has to be finished in less than 2128 time. In addition, at
Phase 2, we only choose 1 random value for (M3,M4) by considering the padding
in S4. In this way, the capacity part of S2 is fixed and only takes one value.
Then, at Phase 3, instead of only choosing 2128 values for (M0,M1), our aim
is to exhaust all the 2256 possible values of (M0,M1) in less than 2128 time to
match the 256-bit capacity part of S2 obtained at Phase 2. Finally, compute M2

in the same way as in the generic attack.
Since (M0,M1) can take 2256 possible values, it is expected that Phase 2 is

only performed once or twice. Obviously, the main obstacle in our method is
how to achieve Phase 1 and Phase 3 efficiently, i.e. in less than 2128 time. In
the following description of our preimage attacks on 2 and 5 rounds of Gimli-
Hash, Phase 1 is called Finding a Valid Capacity Part and Phase 3 is called
Matching the Capacity Part. If the two phases can be finished in less than
2128 time, advantages over the generic attack are obtained.

17



Specifically, when the Gimli permutation is reduced to n rounds, Finding a
Valid Capacity Part is equivalent to the following problem:

Given the rate part of S0 and Sn (n ≤ 24), how to find a solution of the
capacity part of S0 to match the given rate part of Sn?

For Matching the Capacity Part, since two message blocks need to be
considered, we distinguish the states by S0 and S1 as depicted in Figure 3 for
convenience. Then, it is equivalent to the following problem:

Given the capacity part of S0
0 and Sn

1 , how to find a solution of the rate part
of S0

0 and S0
1 to match the given capacity part of Sn

1 ?

6 The Preimage Attack on 2-Round Gimli-Hash

In this section, how to mount a preimage attack on 2-round Gimli-Hash with a
practical time complexity is given. As described above, we only focus on Phase
1 and Phase 3. It should be emphasized that like the generic preimage attack,
our preimage attack is over 5 message blocks.

6.1 Finding a Valid Capacity Part

For a better understanding of our attack, it is better to refer to Figure 7. The
corresponding attack procedure is described as follows.

SP

S SW

AC

SP

S0 S0.5 S1 S2

Known Guessed Known after guess

Fig. 7: Generate a valid capacity part for the preimage attack on 2-round Gimli-
Hash

Step 1: Choose a random value for (S0[1][0], S0[2][0]) and compute (S1[0][1],
S1[1][0], S1[2][0]). Check whether (S1[1][0], S1[2][0], S2[0][0]) is valid
based on Property 2. If it is, store (S0[1][0], S0[2][0]) in a table denoted
by T1. Otherwise, choose another value for (S0[1][0], S0[2][0]) and repeat
this step until about 232 random values are tried.

Step 2: Similarly, choose a random value for (S0[1][1], S0[2][1]) and compute
(S1[0][0], S1[1][1], S1[2][1]). Check whether (S1[1][1], S1[2][1], S2[0][1])
is valid based on Property 2. If it is, store (S0[1][1], S0[2][1]) in a table
denoted by T2. Otherwise, choose another value for (S0[1][1], S0[2][1])
and repeat this step until 232 random values are tried.

18



Step 3: Consider all possible combinations between T1 and T2. For each combina-
tion, (S0[1][0], S0[2][0], S0[1][1], S0[2][1]) are fully known. Therefore, it is
possible to compute (S2[0][0], S2[0][1]) and check whether it is consistent
with the given value. Once a solution of (S0[1][0], S0[2][0], S0[1][1],
S0[2][1]) is found to match (S2[0][0], S2[0][1]), output the solution and
move to Step 4.

Step 4: Similarly, we can first try 232 possible values for (S0[1][2], S0[2][2]) and
store the valid ones which can possibly match S2[0][2] in a table denoted
by T3. Then, try 232 possible values for (S0[1][3], S0[2][3]) and store
the valid ones which can possibly match S2[0][3] in a table denoted
by T4. Finally, exhaust all possible combinations between T3 and T4
and compute the corresponding (S2[0][2], S2[0][3]). Check whether the
computed one is consistent with the given value. If it is, output the
solution of (S0[1][2], S0[2][2], S0[1][3], S0[2][3]) and exit.

Complexity Evaluation. Obviously, the time complexity to compute the table
Ti (i ∈ {1, 2, 3, 4}) is 232 and the memory complexity is 232−15.5 ≈ 217 due to
the effect of Property 2. Since 264 random values of (S0[1][0], S0[2][0], S0[1][1],
S0[2][1]) are used to match the 64-bit (S2[0][0], S2[0][1]), it is expected there will
be one combination between T1 and T2 to match (S2[0][0], S2[0][1]). Similarly,
it is expected that there will be one combination between T3 and T4 to match
(S2[0][2], S2[0][3]). Based on Property 2, there will be 2(32−15.5)×2 = 233 possible
combinations between T1 and T2. Similarly, there are 233 combinations between
T3 and T4. Consequently, the time complexity and memory complexity to find a
valid capacity part are 233 and 217+1 = 218, respectively.

6.2 Matching the Capacity Part

S0

0
S0.5

0
S1

0
S2

0

S0

1
S0.5

1
S1

1
S2

1

SP

S SW

AC

SP

SP

S SW

AC

SP

0 0 0 0

0 0 0 0

?

?

?

??

?

?

?

Known Guessed Known after guess

=

0 0 0 0

Fig. 8: Illustration of the preimage attack on 2-round Gimli-Hash

As illustrated in Figure 8, the corresponding procedure to match a given
capacity part by utilizing two message blocks can be described as follows.

19



Step 1: Guess the value of S0
0 [0][0]. Based on Property 1, (S0

1 [1][0], S0
1 [2][0])

can be uniquely determined. According to Property 8, we can find
all the solutions of (S0

1 [0][0], S1
1 [0][0]) with the knowledge of (S0

1 [1][0],
S0
1 [2][0], S2

1 [1][0], S2
1 [2][0]). Once the solution is obtained, compute the

corresponding S1
1 [0][1] by using (S0

1 [0][0], S0
1 [1][0], S0

1 [2][0]) and store the
values of (S0

0 [0][0], S0
1 [0][0], S1

1 [0][0], S1
1 [0][1]) in a table denoted by T5.

Repeat this step until all 232 values of S0
0 [0][0] are traversed.

Step 2: Similarly, guess the value of S0
0 [0][1] and compute the corresponding

(S0
1 [1][1], S0

1 [2][1]). Based on Property 8, compute all the solutions of
(S0

1 [0][1], S1
1 [0][1]) which can match (S2

1 [1][1], S2
1 [2][1]). Then, compute

the corresponding S1
1 [0][0] by using (S0

1 [0][1], S0
1 [1][1], S0

1 [2][1]). Check
whether the computed (S1

1 [0][0], S1
1 [0][1]) exists in T5. If it does, record

the corresponding tuple (S0
0 [0][0], S0

0 [0][1], S0
1 [0][0], S0

1 [0][1]) and move to
Step 3. Otherwise, repeat guessing S0

0 [0][1] until all 232 values of S0
0 [0][1]

are traversed.

Step 3: Similarly, exhaust all 232 values of S0
0 [0][2] and store the corresponding

solutions of (S0
0 [0][2], S0

1 [0][2], S1
1 [0][2], S1

1 [0][3]) in a table denoted by T6.
Finally, exhaust all 232 values of S0

0 [0][3] and compute the corresponding
solutions of (S0

1 [0][3], S1
1 [0][2], S1

1 [0][3]). If the solution of (S1
1 [0][2],

S1
1 [0][3]) also exists in T6, record the corresponding (S0

0 [0][2], S0
0 [0][3],

S0
1 [0][2], )S0

1 [0][3]) and exit.

Complexity Evaluation. At Step 1, all 232 possible values of S0
0 [0][0] need to be

traversed. For each value, Property 8 is utilized to compute (S0
1 [0][0], S0

1 [0][0]).
Therefore, the time complexity at Step 1 is 232+10.4 = 242.4. Moreover, it is
expected that there will be 232 elements in T5 since each guess of S0

0 [0][0] can
correspond to 1 solution of (S0

1 [0][0], S1
1 [0][0]) on average based on Property 8.

Similarly, the time complexity at Step 2 is also 242.4. Since there are 232 solutions
of (S1

1 [0][0], S1
1 [0][1]) in T5 and there will be another 232 solutions of (S1

1 [0][0],
S1
1 [0][1]) at Step 2, it is expected there will be a match in (S1

1 [0][0], S1
1 [0][1]) after

traversing all 232 values of S0
0 [0][1]. Similarly, the time complexity and memory

complexity at Step 3 are 242.4 and 232, respectively. In a word, considering
the complexity to find a valid capacity part, the time complexity and memory
complexity of the preimage attack on 2-round Gimli-Hash are 242.4 and 232,
respectively.

Experiments. To verify the correctness of our attack, we provide a solution of
(M0,M1,M2,M3,M4) which can lead to an all-zero state in Table 2. Note that
with such a message, we can construct arbitrary second preimage and colliding
message pairs for 2-round Gimli-Hash with time complexity 1. Specifically,
given a message Mx, (Mx,M0||M1||M2||M3||M4||Mx) is a colliding message pair.
Moreover, given a message Mx and its hash value Hx, M0||M1||M2||M3||M4||Mx

is a second preimage of Hx.

20



Table 2: A message leading to an all-zero state for 2-round Gimli-Hash
M0 0x1c5c59da 0x41b61bb7 0 0
M1 0x9cf49a4e 0x9a80d115 0 0
M2 0xa31c3903 0x41e6e73c 0 0
M3 0x456723c6 0xdc515cff 0 0
M4 0x98694873 0x944a58ec 0 0

Full-state Value
0 0 0 0
0 0 0 0
0 0 0 0

7 The Preimage Attack on 5-Round Gimli-Hash

In this section, how to mount the preimage attack on 5-round Gimli-Hash will
be introduced. Similarly, we only focus on Finding a Valid Capacity Part
and Matching the Capacity Part.

7.1 Finding a Valid Capacity Part

As illustrated in Figure 9, the corresponding procedure can be divided into 4
steps, as shown below.

S0 S0.5 S1 S2 S3

S4S4.5S5

SP

S SW

AC

SP SP

B SW

SP

SP

S SW

AC

?

?

?

Known

Known after guessing

Match

Known after guessing

Fig. 9: Generate a valid capacity part for the preimage attack on 5-round Gimli-
Hash

Step 1: Randomly choose a value for (S0[1][0], S0[2][0], S0[1][1], S0[2][1]) and
compute the corresponding (S3[0][2], S3[0][3], S3[1][0], S3[2][0], S3[1][1],
S3[2][1]). Store the values of (S0[1][0], S0[2][0], S0[1][1], S0[2][1], S3[0][2],
S3[0][3], S3[1][0], S3[2][0], S3[1][1], S3[2][1]) in a table denoted by T7.
Repeat this step for 264 random values of (S0[1][0], S0[2][0], S0[1][1],
S0[2][1]).

21



Step 2: Randomly choose a value for (S5[1][0], S5[2][0], S5[1][1], S5[2][1]) and
compute the corresponding (S3[0][0], S3[0][1], S3[1][0], S3[2][0], S3[1][1],
S3[2][1]). Check whether the computed (S3[1][0], S3[2][0], S3[1][1],
S3[2][1]) is in T7. If it is, record the corresponding value of (S5[1][0],
S5[2][0], S5[1][1], S5[2][1], S3[0][0], S3[0][1], S3[0][2], S3[0][3]) and move
to Step 3. Otherwise, repeat trying different random values for (S5[1][0],
S5[2][0], S5[1][1], S5[2][1]).

Step 3: It should be emphasized that (S0[1][0], S0[2][0], S0[1][1], S0[2][1],
S3[0][0], S3[0][1], S3[0][2], S3[0][3]) is a fixed value at this step. Randomly
choose a value for (S5[1][2], S5[2][2]) and compute the corresponding
(S3[0][2], S3[1][2], S3[2][2]). Check whether the computed S3[0][2] is
consistent with the one obtained at Step 2. If it is not, repeat choosing
a random value for (S5[1][2], S5[2][2]). If it is, continue computing the
corresponding (S0.5[0][3], S0.5[1][2], S0.5[2][2]) with the knowledge of
(S3[0][0], S3[1][2], S3[2][2]). According to Property 3, (S0[0][2], S0.5[1][2],
S0.5[2][2]) is valid with probability 2−1. Once it is valid, compute
(S0.5[0][2][30 ∼ 0], S0[1][2], S0[2][2][30 ∼ 0]) and store the value of
(S5[1][2], S5[2][2], S0.5[0][2][30 ∼ 0], S0.5[0][3]) in a table denoted by
T8. Repeat this step until all the 264 values of (S5[1][2], S5[2][2]) are
traversed.

Step 4: Similar to Step 3, guess (S5[1][3], S5[2][3]) and compute (S3[0][3],
S3[1][3], S3[2][3]). If the computed S3[0][3] is not consistent with the one
obtained at Step 2, guess another value. Otherwise, continue computing
(S0.5[0][2], S0.5[1][3], S0.5[2][3]). Based on Property 3, we can compute
(S0.5[0][3][30 ∼ 0], S0[1][3], S0[2][3][30 ∼ 0]) to match S0[0][3]. Then,
check whether the computed (S0.5[0][2][30 ∼ 0], S0.5[0][3][30 ∼ 0]) is
contained in T8. If it is, record (S5[1][2], S5[2][2], S5[1][3], S5[2][3] )
and exit. Repeat this step until all 264 values of (S5[1][3], S5[2][3]) are
traversed.

Complexity Evaluation. At Step 1, the time and memory complexity are both
264. At Step 2, it is necessary to match a 256-bit value of (S3[1][0], S3[2][0],
S3[1][1], S3[2][1]) based on a meet-in-the-middle method. Therefore, it is required
to try 264 possible values of (S5[1][0], S5[2][0], S5[1][1], S5[2][1]). Thus, the time
complexity at Step 2 is also 264. At step 3, 264 values of (S5[1][2], S5[2][2])
are traversed and each of it will be first filtered by S3[0][2] and then filtered
according to Property 3. Thus, it is expected there will be 231 elements in T8.
Similarly, at Step 4, there will be 231 valid guesses of (S5[1][3], S5[2][3]) left after
filtering. For each valid guess, we need to manage a match in the 62-bit value of
(S0.5[0][2][30 ∼ 0], S0.5[0][3][30 ∼ 0]). Since there are in total 262 possible pairs,
one can expect one match. Consequently, the time and memory complexity to
find a valid capacity part are both 264.

22



7.2 Matching the Capacity Part

Before describing how to match a given capacity part by utilizing two message
blocks, we will pre-compute some tables in order to reduce the whole complexity.

0 0 0 0

0 0 0 0

SP

S SW

AC

SP

SP

B SW

SPSP

S SW

AC

S0

0
S0.5

0
S1

0
S2

0

S3

0
S4

0
S4.5

0
S5

0

0 0 0 0

S0

1
S0.5

1
S1

1
S2

1

S3

1
S4

1
S4.5

1
S5

1

SP

S SW

AC

SP

SP

B SW

SPSP

S SW

AC

? ???

=

Known

Known after guessing

Known after guessing

Fig. 10: Illustration of the preimage attack on 5-round Gimli-Hash

Pre-computing Tables. As shown in Figure 10, based on Property 1, the following
facts can be observed:

23



• (S0
1 [1][0], S0

1 [2][0], S0
1 [1][2], S0

1 [2][2]) only depend on (S0
0 [0][0], S0

0 [0][2]), thus
taking at most 264 possible values.

• (S0
1 [1][1], S0

1 [2][1], S0
1 [1][3], S0

1 [2][3]) only depend on (S0
0 [0][1], S0

0 [0][3]), thus
taking at most 264 possible values.

Consequently, it is feasible to construct some mapping tables via pre-
computation. Specifically, exhaust all 264 values of (S0

0 [0][0], S0
0 [0][2]) and

compute the corresponding (S0
1 [1][0], S0

1 [2][0], S0
1 [1][2], S0

1 [2][2]). Store the 264

values of (S0
0 [0][0], S0

0 [0][2], S0
1 [1][0], S0

1 [2][0], S0
1 [1][2], S0

1 [2][2]) in a table denoted
by T9, where the row number represents the value of (S0

1 [1][0] + S0
1 [2][0]× 232).

Similarly, by exhausting all 264 values of (S0
0 [0][1], S0

0 [0][3]), we can compute
all the 264 values of (S0

0 [0][1], S0
0 [0][3], S0

1 [1][1], S0
1 [2][1], S0

1 [1][3], S0
1 [2][3]) and

store them in a table denoted by T10, where the row number represents the value
of (S0

1 [1][1] + S0
1 [2][1]× 232).

Matching the Capacity Part. After preparing the tables, matching the capacity
part by utilizing two message blocks can be described as follows. The corre-
sponding illustration can be referred to Figure 10.

Step 1: Guess (S5
1 [0][1], S5

1 [0][3]) and compute the corresponding (S0.5
1 [0][1],

S0.5
1 [0][3], S0.5

1 [1][0], S0.5
1 [2][0], S0.5

1 [1][2], S0.5
1 [2][2]). If all the 264 values

of (S5
1 [0][1], S5

1 [0][3]) are traversed, move to Step 3. Otherwise, move to
Step 2.

Step 2: Further guess S0.5
1 [0][0] and compute (S0

1 [1][0], S0
1 [2][0]). Retrieve the

corresponding values of (S0
0 [0][0], S0

0 [0][2], S0
1 [1][2], S0

1 [2][2]) from the
(S0

1 [1][0] + S0
1 [2][0]× 232)-th row of T9. Based on Property 4, verify the

correctness of the tuple (S0
1 [1][2], S0

1 [2][2], S0.5
1 [1][2], S0.5

1 [2][2]). If it is
valid, compute the corresponding S0.5[0][2] according to Property 4 and
store the corresponding values of (S0

0 [0][0], S0
0 [0][2], S5

1 [0][1], S5
1 [0][3],

S0.5
1 [0][0], S0.5

1 [0][1], S0.5
1 [0][2], S0.5

1 [0][3]) in a table denoted by T11.
Otherwise, try another value of S0.5

1 [0][0]. If all the 232 values of S0.5
1 [0][0]

are traversed, go back to Step 1.
Step 3: Similarly, exhaust all the 296 values of (S5

1 [0][0], S5
1 [0][2], S0.5

1 [0][1]).
For each of its value, compute the corresponding (S0.5

1 [0][0], S0.5
1 [0][2],

S0
1 [1][1], S0

1 [2][1], S0.5
1 [1][3], S0.5

1 [2][3]). Retrieve (S0
0 [0][1], S0

0 [0][3], S0
1 [1][3],

S0
1 [2][3]) from the (S0

1 [1][1] + S0
1 [2][1] × 232)-th row of T10 and check

the validity of the tuple (S0
1 [1][3], S0

1 [2][3], S0.5
1 [1][3], S0.5

1 [2][3]) based
on Property 4. If it is valid, compute S0.5[0][3] and check whether the
obtained value of (S0.5

1 [0][0], S0.5
1 [0][1], S0.5

1 [0][2], S0.5
1 [0][3]) at Step 3

also exists in T11. If it does, exit and a solution of the rate part of S0
0

and S5
1 is found to match the given capacity part of S5

1 .

Complexity Evaluation. The time complexity at Step 1 is 264 since all the 264

values of (S5
1 [0][1], S5

1 [0][3]) need to be traversed. At Step 2, for each guessed
value of (S5

1 [0][1], S5
1 [0][3]), all the 232 values of S0.5

1 [0][0] will be traversed. After

24



the 232 values of S0.5
1 [0][0] are traversed, one can expect one valid solution of

(S0.5
1 [0][0], S0.5

1 [0][1], S0.5
1 [0][2], S0.5

1 [0][3]) due to the influence of Property 4.
As a result, Step 2 is will be carried out for 296 times and there will be 264

elements in T11. As for Step 3, since all the 296 values of (S5
1 [0][0], S5

1 [0][2],
S0.5
1 [0][1]) will be traversed and each guessed value is valid with probability of

2−32 based on Property 4, one can expect 264 solutions of(S0.5
1 [0][0], S0.5

1 [0][1],
S0.5
1 [0][2], S0.5

1 [0][3]) in total. Thus, it is expected that there will be one match
between the values of (S0.5

1 [0][0], S0.5
1 [0][1], S0.5

1 [0][2], S0.5
1 [0][3]) obtained at Step

3 and those stored in T11. As for the pre-computation, the time complexity and
memory complexity are 264 and 264+1 = 265, respectively. Consequently, taking
the complexity to find a valid capacity part into account, the time complexity
and memory complexity of the preimage attack on 5-round Gimli-Hash are 296

and 264 × 3 = 265.6, respectively.

8 Preimage Attacks on Round-Reduced Gimli-XOF-128

When the above preimage attack on Gimli-Hash is extended to more rounds,
we are faced with an obstacle caused by the degrees of freedom, i.e. at least
two message blocks are needed and should be traversed in less than 2128 time to
match a given hash value. As can be observed in our method, benefiting from the
weak diffusion of the linear layer of Gimli, we can efficiently exploit the divide-
and-conquer technique to divide the space of two message blocks into several
smaller ones and find solutions in each smaller space via exhaustive search.
Finally, the solutions in each smaller space are combined and further verified
to match the given hash value. When it comes to more rounds, it is difficult
to divide the space of two message blocks into smaller ones. Thus, turning the
exhaustive search into a smaller scale cannot be applied anymore. In addition, to
control two consecutive message blocks when the number of rounds of the Gimli
permutation is reduced to n, the difficulty is almost equivalent to an attack on
2n rounds of the Gimli permutation, by allowing the attacker to control a 128-bit
value in the intermediate state.

To test how far our divide-and-conquer method can go for reduced Gimli,
we consider another application of the Gimli permutation to hashing, namely
the ”extendable one-way function”, which has been specified in the submitted
Gimli document. Considering the existing preimage attacks on SHAKE-128 [8]
and Ascon-XOF-64 [7], we believe it meaningful to investigate the preimage
resistance of Gimli-XOF-128. In addition, since the size of one message block is
128 bits when neglecting the padding rule, the attacker only needs to focus on
how to efficiently exhaust one message block rather than two message blocks in
less than 2128 time. In other words, the attack on n rounds of Gimli-XOF-128 is
equivalent to an attack on n rounds of the Gimli permutation.

Similar to the method to turn the 6-round semi-free-start collisions into
collisions in [11], to efficiently mount the preimage attack on reduced Gimli-
XOF-128, some conditions will be added. Specifically, when the target is n rounds

25



of Gimli, an equivalent problem to find the preimage of Gimli-XOF-128 can be
described as below:

If 
(S0[1][0] ≪ 9) ∧ 0x1fffffff = 0,

(S0[1][1] ≪ 9) ∧ 0x1fffffff = 0,

(S0[1][2] ≪ 9) ∧ 0x1fffffff = 0,

(S0[1][3] ≪ 9) ∧ 0x1fffffff = 0,

(8)

how to find a solution of (S0[0][0], S0[0][1], S0[0][2], S0[0][3]) to match a given
value of (Sn[0][0], Sn[0][1], Sn[0][2], Sn[0][3])?

It should be emphasized that the initial value of Gimli-XOF-128 satisfies
Equation 8. In addition, due to the padding rule, there are at most 2128−8 = 2120

possible values of (S0[0][0], S0[0][1], S0[0][2], S0[0][3]). Therefore, to mount the
preimage attack on n rounds of Gimli-XOF-128, it is expected that 28 different
values of the capacity part of S0 are tried. For each of them, check whether
there is a solution of (S0[0][0], S0[0][1], S0[0][2], S0[0][3]) to match the given
hash value under the conditions as specified in Equation 8.

Consequently, our attack is divided into two phases. The first phase called
Fulfilling Conditions is to collect 28 different values of the capacity part which
can satisfy Equation 8. The second phase called Matching the Rate Part is
to exhaust the 2120 possible values of (S0[0][0], S0[0][1], S0[0][2], S0[0][3]) in
less than 2120 time under the conditions as specified in Equation 8. As will be
shown, the main idea to finish the two tasks is almost the same. Therefore, in
our description, we will start from Matching the Rate Part and then move
to Fulfilling Conditions.

8.1 The Preimage Attack on 9-Round Gimli-XOF-128

Due to the page limit, the preimage attack on 8-round Gimli-XOF-128 can be
referred to Appendix C. The two phases of the preimage attack on 9-round Gimli-
XOF-128 will be described in this section. Different from the preimage attack
on 8-round Gimli-XOF-128, a pre-computed table will be utilized to reduce the
whole time complexity. An illustration of our preimage attack on 9-round Gimli-
XOF-128 is shown in Figure 11.

Matching the Rate Part For the given value of (S9[0][0], S9[0][1], S9[0][2],
S9[0][3]), compute the corresponding (S8.5[0][0], S8.5[0][1], S8.5[0][2], S8.5[0][3])
by reversing the AC and S SW operations. Then, pre-compute four mapping
tables as follows:

Constructing T18. Exhaust all 296 possible values of (S7[0][0], S7[1][0], S7[2][0])
and compute the corresponding S8.5[0][0]. Check whether it is consistent with
the given value. If it is, store the corresponding (S7[0][0], S7[1][0], S7[2][0]) in a
table denoted by T18.

26



S SW

AC

SP SP

B SW

SP

SP

S SW

AC

SPSP

B SW

SPSP ?

S0 S1 S2 S3 S4

S5S6S7S8S8.5

Known Conditional Guessed Futher guessed Known after guess

SP

Fig. 11: Illustration of the preimage attack on 9-round Gimli-XOF-128

Constructing T19. Exhaust all 296 possible values of (S7[0][1], S7[1][1], S7[2][1])
and compute the corresponding S8.5[0][1]. Check whether it is consistent with
the given value. If it is, store the corresponding (S7[0][1], S7[1][1], S7[2][1]) in a
table denoted by T19.

Constructing T20. Exhaust all 296 possible values of (S7[0][2], S7[1][2], S7[2][2])
and compute the corresponding S8.5[0][2]. Check whether it is consistent with
the given value. If it is, store the corresponding (S7[0][2], S7[1][2], S7[2][2]) in a
table denoted by T20.

Constructing T21. Exhaust all 296 possible values of (S7[0][3], S7[1][3], S7[2][3])
and compute the corresponding S8.5[0][3]. Check whether it is consistent with
the given value. If it is, store the corresponding (S7[0][3], S7[1][3], S7[2][3]) in a
table denoted by T21.

Obviously, the time and memory complexity to construct the four tables are
296 and 264+2 = 266, respectively. It should be emphasized that it is possible
to construct each table with less time complexity via some algebraic methods,
i.e. constructing an equation system and solving it with a guess-and-determine
method. However, as will be shown, the time complexity of our preimage attack is
not dominated by this pre-computation phase. Therefore, the simplest approach
is exploited.

Matching the Rate Part. After this pre-computation phase, how to find a solution
of the rate part of S0 under the condition that S0 satisfies Equation 8 will be
described, as specified below.

Step 1: Exhaust all the 264 values of (S0[0][0], S0[0][2]). Since S0 satisfies
Equation 8, based on Property 1, for each guess of (S0[0][0], S0[0][2]),
(S5[0][1], S5[0][3], S5[1][0], (S5[2][0], S5[1][2], S5[2][2]) can be determined
and we move to Step 2. If all possible values of (S0[0][0], S0[0][2]) are
traversed, move to Step 4.

27



Step 2: Exhaust all the 232 values of S5[0][0]. For each guess of S5[0][0], (S7[1][0],
S7[2][0], S7[0][2]) become known. Retrieve S7[0][0] from T18 according
to the value of (S7[1][0], S7[2][0]). It is expected to obtain 232 solutions
of (S7[0][0], S7[0][2]) after exhausting S5[0][0] for each guessed value of
(S0[0][0], S0[0][2]). Store all the solutions of (S5[0][0], S7[0][0], S7[0][2])
in a table denoted by T22. After exhausting S5[0][0], move to Step 3.

Step 3: Similarly, exhaust all the 232 values of S5[0][2]. For each guess of S5[0][2],
(S7[1][2], S7[2][2], S7[0][0]) become known. Retrieve S7[0][2] from T20
according to the value of (S7[1][2], S7[2][2]). For solution of (S5[0][2],
S7[0][0], S7[0][2]), check whether (S7[0][0], S7[0][2]) exists in T22. If
it does, a solution of (S5[0][0], S5[0][2]) which can match (S8.5[0][0],
S8.5[0][2]) for the guessed value of (S0[0][0], S0[0][2]) is found. It is
expected that there will be one solutions of (S5[0][0], S5[0][2]) for each
guessed value of (S0[0][0], S0[0][2]) since one 64-bit value needs to
be matched. Consequently, after exhausting (S0[0][0], S0[0][2]), it is
expected to collect 264 possible values of (S0[0][0], S0[0][2], S5[0][0],
S5[0][1], S5[0][2], S5[0][3]). Store these values in a table denoted by T23.

Step 4: Exhaust all the 256 values of (S0[0][1], S0[0][3]). For each such guess, we
first further exhaust S5[0][1] to collect 232 solutions of (S7[0][1], S7[0][3])
according to T19 which can match S8.5[0][1] and store them in a table
denoted by T24. Then, exhaust S5[0][3] to collect another 232 solutions
of (S7[0][1], S7[0][3]) according to T21 which can match S8.5[0][3] and
check whether the obtained (S7[0][1], S7[0][3]) is in T24. For each guessed
value of (S0[0][1], S0[0][3]), it should be noted that (S5[0][0], S5[0][2]) are
determined. In addition, after exhausting S5[0][1] and S5[0][3], one can
expect a match in (S7[0][1], S7[0][3]), which will correspond to solution
of (S5[0][1], S5[0][3]). For each solution of (S5[0][0], S5[0][1], S5[0][2],
S5[0][3]) obtained in Step 4, check whether it also exist in T23. If it does,
output the corresponding value of (S0[0][0], S0[0][1], (S0[0][2], S0[0][3]).
Otherwise, repeat until all values of (S0[0][1], S0[0][3]) are traversed.

Complexity Evaluation. One can easily observe that the above description is
almost the same with that in the preimage attack on 8-round Gimli-XOF-128.
The only difference is that we compute S7[0][i] (i ∈ {0, 1, 2, 3}) via tale look-ups
in the 9-round preimage attack while it is based on Property 9 in the 8-round
preimage attack. Thus, the time and memory complexity at this phase are 2104

and 264, respectively.

Fulfilling Conditions Similarly, we can start from S0 satisfying Equation 8
and compute the solutions of (S0[0][0], S0[0][1], (S0[0][2], S0[0][3]) which can
also make the capacity part of S8.5 satisfy Equation 42. For convenience, the 29

28



bits of S8.5[1][i] (i ∈ {0, 1, 2, 3}) required to be 0 are called conditional bits.
(S8.5[1][0] ≪ 9) ∧ 0x1fffffff = 0,

(S8.5[1][1] ≪ 9) ∧ 0x1fffffff = 0,

(S8.5[1][2] ≪ 9) ∧ 0x1fffffff = 0,

(S8.5[1][3] ≪ 9) ∧ 0x1fffffff = 0.

(9)

The basic procedure is almost the same with that to find the rate part. Firstly,
constructing 4 tables as follows:

Constructing T25. Exhaust all 296 possible values of (S7[0][0], S7[1][0], S7[2][0])
and compute the corresponding S8.5[1][0]. Check whether the 29 bit conditions
on S8.5[1][0] hold. If it is, store the corresponding (S7[0][0], S7[1][0], S7[2][0]) in
a table denoted by T25.

Constructing T26. Exhaust all 296 possible values of (S7[0][1], S7[1][1], S7[2][1])
and compute the corresponding S8.5[1][1]. Check whether the 29 bit conditions
on S8.5[1][1] hold. If it is, store the corresponding (S7[0][1], S7[1][1], S7[2][1]) in
a table denoted by T26.

Constructing T27. Exhaust all 296 possible values of (S7[0][2], S7[1][2], S7[2][2])
and compute the corresponding S8.5[1][2]. Check whether the 29 bit conditions
on S8.5[1][2] hold. If it is, store the corresponding (S7[0][2], S7[1][2], S7[2][2]) in
a table denoted by T27.

Constructing T28. Exhaust all 296 possible values of (S7[0][3], S7[1][3], S7[2][3])
and compute the corresponding S8.5[1][3]. Check whether the 29 bit conditions
on S8.5[1][3] hold. If it is, store the corresponding (S7[0][3], S7[1][3], S7[2][3]) in
a table denoted by T28.

Obviously, it is expected that there will be 264+3 = 267 elements in Ti (25 ≤
i ≤ 28).

Fulfilling Conditions. The corresponding procedure can be simply summarized
as follows:

Step 1: Exhaust 264 values of (S0[0][0], S0[0][2]). For each guess, first exhaust
S5[0][0] and then exhaust S5[0][2]. When exhausting S5[0][0], by re-
trieving T25, collect all the solutions of (S7[0][0], S7[0][2]) and store the
values of (S7[0][0], S7[0][2], S5[0][0]) in a table denoted by T29, which is
expected to contain 235 values. When exhausting S5[0][2], by retrieving
T27, compute the solution of (S7[0][0], S7[0][2]) and check whether it is
in T29. Once it is, record the corresponding value of (S0[0][0], S0[0][2],
S5[0][0], S5[0][1], S5[0][2], S5[0][3]) in a table denoted by T30. After
exhausting (S0[0][0], S0[0][2]), one can expect 264+6 = 270 elements
stored in T30.

29



Step 2: Exhaust 264 values of (S0[0][1], S0[0][3]). For each guess, first exhaust
S5[0][1] and then exhaust S5[0][3]. When exhausting S5[0][1], by re-
trieving T26, collect all the solutions of (S7[0][1], S7[0][3]) and store
the values of (S7[0][1], S7[0][3], S5[0][1]) in a table denoted by T31,
which is expected to contain 235 values. When exhausting S5[0][3], by
retrieving T28, compute the solution of (S7[0][1], S7[0][3]) and check
whether it is in T31. Once it is, record the corresponding value of
(S0[0][0], S0[0][2], S5[0][0], S5[0][1], S5[0][2], S5[0][3]) and check whether
(S5[0][0], S5[0][1], S5[0][2], S5[0][3]) exists in T30. If it does, output
the corresponding solution of (S0[0][0], S0[0][1], S0[0][2], S0[0][3]). After
exhausting (S0[0][1], S0[0][3]), one can expect 2140−128 = 212 solutions
of (S0[0][0], S0[0][1], S0[0][2], S0[0][3]).

Complexity Evaluation. The time complexity and memory complexity to con-
struct Ti (25 ≤ i ≤ 28) are 296 and 267+2 = 269, respectively. Regarding the
time complexity to find a solution of (S0[0][0], S0[0][1], S0[0][2], S0[0][3]), it
can be evaluated as 296+3 = 299. For the memory complexity, it is dominated by
constructing T30 and therefore is 270. In a word, the time and memory complexity
to mount the preimage attack on 9-round Gimli-XOF-128 are 2104 and 270,
respectively.

9 Conclusion

Due to Gimli’s weak diffusion, a novel zero-internal-differential distinguisher
is constructed for the full Gimli permutation. Although such a distinguisher
can not threaten the security of the hash scheme or authenticated encryption
scheme based on Gimli, it implies that there exist undesirable properties inside
the design. Compared with the zero-sum distinguisher for full Keccak, our
distinguisher has a much smaller ratio of the time complexity to the value
space of the state, i.e. 2−255 V.S. 2−25. In addition, it does not rely on the
algebraic degree evaluation but much depends on the weak diffusion among the
four columns of the Gimli state, i.e. the feature of the design. To further exploit
the weak diffusion, we propose a divide-and-conquer method to accelerate the
preimage finding procedure for both Gimli-Hash and Gimli-XOF-128. Benefiting
from some new properties of the SP-box, we are able to mount a practical
preimage attack on 2-round Gimli-Hash and the theoretical attack can reach
up to 5 rounds of Gimli-Hash. As an extreme example, the preimage attack
on Gimli-XOF-128 can reach up to 9 rounds. To the best of knowledge, this is
the first distinguishing attack on the full Gimli permutation and our preimage
attacks on reduced Gimli-Hash and Gimli-XOF-128 are the best thus far.

References

1. https://csrc.nist.gov/projects/lightweight-cryptography/
round-2-candidates.

30

https://csrc.nist.gov/projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/projects/lightweight-cryptography/round-2-candidates


2. Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks, Pedro Maat Costa Massolino,
Florian Mendel, Kashif Nawaz, Tobias Schneider, Peter Schwabe, François-
Xavier Standaert, Yosuke Todo, and Benôıt Viguier. Gimli : A cross-platform
permutation. In Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017,
Proceedings, pages 299–320, 2017.

3. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On the
indifferentiability of the sponge construction. In Nigel P. Smart, editor, Advances
in Cryptology - EUROCRYPT 2008, 27th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Istanbul, Turkey, April 13-
17, 2008. Proceedings, volume 4965 of Lecture Notes in Computer Science, pages
181–197. Springer, 2008.

4. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Cryptographic sponge functions, 2011. http://sponge.noekeon.org/CSF-0.
1.pdf.

5. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. The Keccak
reference, 2011. http://keccak.noekeon.org.

6. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. As-
con v1.2, 2018. https://ascon.iaik.tugraz.at/files/asconv12-nist.
pdf.

7. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Preliminary analysis of Ascon-Xof and Ascon-Hash (version 0.1), 2019.
https://ascon.iaik.tugraz.at/files/Preliminary_Analysis_of_
Ascon-Xof_and_Ascon-Hash_v01.pdf.

8. Jian Guo, Meicheng Liu, and Ling Song. Linear structures: Applications to
cryptanalysis of round-reduced keccak. In Advances in Cryptology - ASIACRYPT
2016 - 22nd International Conference on the Theory and Application of Cryptology
and Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part
I, pages 249–274, 2016.

9. Mike Hamburg. Cryptanalysis of 22 1/2 rounds of gimli. Cryptology ePrint
Archive, Report 2017/743, 2017. https://eprint.iacr.org/2017/743.

10. Ting Li and Yao Sun. Preimage attacks on round-reduced keccak-224/256 via
an allocating approach. In Yuval Ishai and Vincent Rijmen, editors, Advances in
Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, May
19-23, 2019, Proceedings, Part III, volume 11478 of Lecture Notes in Computer
Science, pages 556–584. Springer, 2019.

11. Fukang Liu, Takanori Isobe, and Willi Meier. Automatic verification of differential
characteristics: Application to reduced Gimli. not published yet.

12. Pawel Morawiecki, Josef Pieprzyk, and Marian Srebrny. Rotational cryptanalysis of
round-reduced keccak. In Fast Software Encryption - 20th International Workshop,
FSE 2013, Singapore, March 11-13, 2013. Revised Selected Papers, pages 241–262,
2013.

13. Hailun Yan, Xuejia Lai, Lei Wang, Yu Yu, and Yiran Xing. New zero-
sum distinguishers on full 24-round keccak-f using the division property. IET
Information Security, 13(5):469–478, 2019.

14. Rui Zong, Xiaoyang Dong, and Xiaoyun Wang. Collision attacks on round-
reduced Gimli-Hash/Ascon-Xof/Ascon-Hash. Cryptology ePrint Archive, Report
2019/1115, 2019. https://eprint.iacr.org/2019/1115.

31

http://sponge.noekeon.org/CSF-0.1.pdf
http://sponge.noekeon.org/CSF-0.1.pdf
http://keccak.noekeon.org
https://ascon.iaik.tugraz.at/files/asconv12-nist.pdf
https://ascon.iaik.tugraz.at/files/asconv12-nist.pdf
https://ascon.iaik.tugraz.at/files/Preliminary_Analysis_of_Ascon-Xof_and_Ascon-Hash_v01.pdf
https://ascon.iaik.tugraz.at/files/Preliminary_Analysis_of_Ascon-Xof_and_Ascon-Hash_v01.pdf
https://eprint.iacr.org/2017/743
https://eprint.iacr.org/2019/1115


A Algorithm of Gimli

Algorithm 1 Description of Gimli permutation

Input: S = (S[i][j])
1: for R from 24 down to 1 inclusive do
2: for j from 0 to 3 inclusive do
3: IX ← S[0][j] ≪ 24 . SP-box
4: IY ← S[1][j] ≪ 9
5: IZ ← S[2][j]
6:
7: S[2][j]← IX ⊕ IZ � 1⊕ (IY ∧ IZ)� 2
8: S[1][j]← IY ⊕ IX ⊕ (IX ∨ IZ)� 1
9: S[0][j]← IZ ⊕ IY ⊕ (IX ∧ IY )� 3

10: end for
11:
12: if R mod 4 =0 then
13: S[0][0], S[0][1], S[0][2], S[0][3]← S[0][1], S[0][0], S[0][3], S[0][2] . Small-Swap
14: else if r mod 2 =0 then
15: S[0][0], S[0][1], S[0][2], S[0][3]← S[0][2], S[0][3], S[0][0], S[0][1] . Big-Swap
16: end if
17:
18: if R mod 4 =0 then
19: S[0][0]← S[0][0]⊕ 0x9e377900⊕ r . Constant Addition
20: end if
21: end for
22: return (S[i][j])

B Proof of Property 8

Property 8. Suppose (x1, y1, z1) = SP (x0, y0, z0) and (x′, y′, z′) = SP (x2, y1, z1).
Given a random value of (y0, z0, y

′, z′), all feasible solutions of (x0, x2) can be
recovered with time complexity of 210.4.

Proof. First of all, consider the generic time complexity to recover the pair
(x0, x2). For each guessed value of x0, (x1, y1, z1) can be determined. Since (y′, z′)
are known, based on Property 4, the correctness of the computed (y1, z1) can be
immediately checked without knowing x2. According to Property 4, the tuple
(y1, z1, y

′, z′) is valid with probability 2−32. Since there are at most 232 values
of x0, after all the possible values of x0 are traversed, one can expect only one
solution of x0 which can make the tuple (y1, z1, y

′, z′) valid. Once the tuple is
valid, x2 can be uniquely determined based on Property 4. Consequently, the
generic method is a simple exhaustive search for x0, which requires 232 time.

32



In our following method, x0 can be efficiently exhausted with the guess-and-
determine technique.

For simplicity, let v = x0 ≪ 24. First of all, consider the relations between
(x0, y0, z0) and (y1, z1):

z1 = v ⊕ z0 � 1⊕ ((y0 ≪ 9) ∧ z0)� 2,

y1 = (y0 ≪ 9)⊕ v ⊕ (v ∨ z0)� 1.

It can be easily observed that when (y0, z0) are constants, each bit of (z1, y1)
can be expressed as follows:

z1[i] = v[i]⊕ γi,
y1[i] = v[i]⊕ µiv[i− 1]⊕ λi,

where γi, µi and λi (0 ≤ i ≤ 31) are constants over GF (2), which can be
calculated according to (y0, z0).

For convenience, let y = y1 ≪ 9, z = z1, x = x2 ≪ 24. Then, each bit of
(z, y) can be expressed as follows:

z[i] = v[i]⊕ γi,
y[i] = v[i− 9]⊕ αiv[i− 10]⊕ βi,

where γi, αi and βi (0 ≤ i ≤ 31) are constants over GF (2), which can be
calculated according to (y0, z0).

Consider the relations between (x, y, z) and (y′, z′), as specified below:

z′ = x⊕ z � 1⊕ (yz)� 2,

y′ = y ⊕ x⊕ (x ∨ z)� 1 = y ⊕ x⊕ (xz ⊕ x⊕ z)� 1.

We rewrite the expression of y′ as follows:

y′ = y ⊕ x⊕ (xz ⊕ x⊕ z)� 1 = y ⊕ (x⊕ z � 1)⊕ (xz ⊕ x)� 1.

By involving z′ into the expression of y′, we can obtain that

y′ = y ⊕ (x⊕ z � 1)⊕ (xz ⊕ x)� 1

= y ⊕ z′ ⊕ (yz)� 2⊕ (xz)� 1.

⇓
y′ ⊕ z′ = y ⊕ (yz)� 2⊕ (xz)� 1.

Note that

x = z′ ⊕ z � 1⊕ (yz)� 2.

Thus, it can be derived that

y′ ⊕ z′ = y ⊕ (yz)� 2⊕ (z(z′ ⊕ z � 1⊕ (yz)� 2))� 1.

33



For simplicity, let Y = y′ ⊕ z′. Considering the expression from the bit level,
we can derive the following 32 equations:

Y [0] = y[0], (10)

Y [1] = y[1]⊕ z′[0]z[0], (11)

Y [2] = y[2]⊕ y[0]z[0]⊕ z[1](z′[1]⊕ z[0]), (12)

Y [3] = y[3]⊕ y[1]z[1]⊕ z[2](z′[2]⊕ z[1]⊕ y[0]z[0]), (13)

Y [4] = y[4]⊕ y[2]z[2]⊕ z[3](z′[3]⊕ z[2]⊕ y[1]z[1]), (14)

Y [5] = y[5]⊕ y[3]z[3]⊕ z[4](z′[4]⊕ z[3]⊕ y[2]z[2]), (15)

Y [6] = y[6]⊕ y[4]z[4]⊕ z[5](z′[5]⊕ z[4]⊕ y[3]z[3]), (16)

Y [7] = y[7]⊕ y[5]z[5]⊕ z[6](z′[6]⊕ z[5]⊕ y[4]z[4]), (17)

Y [8] = y[8]⊕ y[6]z[6]⊕ z[7](z′[7]⊕ z[6]⊕ y[5]z[5]), (18)

Y [9] = y[9]⊕ y[7]z[7]⊕ z[8](z′[8]⊕ z[7]⊕ y[6]z[6]), (19)

Y [10] = y[10]⊕ y[8]z[8]⊕ z[9](z′[9]⊕ z[8]⊕ y[7]z[7]), (20)

Y [11] = y[11]⊕ y[9]z[9]⊕ z[10](z′[10]⊕ z[9]⊕ y[8]z[8]), (21)

Y [12] = y[12]⊕ y[10]z[10]⊕ z[11](z′[11]⊕ z[10]⊕ y[9]z[9]), (22)

Y [13] = y[13]⊕ y[11]z[11]⊕ z[12](z′[12]⊕ z[11]⊕ y[10]z[10]), (23)

Y [14] = y[14]⊕ y[12]z[12]⊕ z[13](z′[13]⊕ z[12]⊕ y[11]z[11]), (24)

Y [15] = y[15]⊕ y[13]z[13]⊕ z[14](z′[14]⊕ z[13]⊕ y[12]z[12]), (25)

Y [16] = y[16]⊕ y[14]z[14]⊕ z[15](z′[15]⊕ z[14]⊕ y[13]z[13]), (26)

Y [17] = y[17]⊕ y[15]z[15]⊕ z[16](z′[16]⊕ z[15]⊕ y[14]z[14]), (27)

Y [18] = y[18]⊕ y[16]z[16]⊕ z[17](z′[17]⊕ z[16]⊕ y[15]z[15]), (28)

Y [19] = y[19]⊕ y[17]z[17]⊕ z[18](z′[18]⊕ z[17]⊕ y[16]z[16]), (29)

Y [20] = y[20]⊕ y[18]z[18]⊕ z[19](z′[19]⊕ z[18]⊕ y[17]z[17]), (30)

Y [21] = y[21]⊕ y[19]z[19]⊕ z[20](z′[20]⊕ z[19]⊕ y[18]z[18]), (31)

Y [22] = y[22]⊕ y[20]z[20]⊕ z[21](z′[21]⊕ z[20]⊕ y[19]z[19]), (32)

Y [23] = y[23]⊕ y[21]z[21]⊕ z[22](z′[22]⊕ z[21]⊕ y[20]z[20]), (33)

Y [24] = y[24]⊕ y[22]z[22]⊕ z[23](z′[23]⊕ z[22]⊕ y[21]z[21]), (34)

Y [25] = y[25]⊕ y[23]z[23]⊕ z[24](z′[24]⊕ z[23]⊕ y[22]z[22]), (35)

Y [26] = y[26]⊕ y[24]z[24]⊕ z[25](z′[25]⊕ z[24]⊕ y[23]z[23]), (36)

Y [27] = y[27]⊕ y[25]z[25]⊕ z[26](z′[26]⊕ z[25]⊕ y[24]z[24]), (37)

Y [28] = y[28]⊕ y[26]z[26]⊕ z[27](z′[27]⊕ z[26]⊕ y[25]z[25]), (38)

Y [29] = y[29]⊕ y[27]z[27]⊕ z[28](z′[28]⊕ z[27]⊕ y[26]z[26]), (39)

Y [30] = y[30]⊕ y[28]z[28]⊕ z[29](z′[29]⊕ z[28]⊕ y[27]z[27]), (40)

Y [31] = y[31]⊕ y[29]z[29]⊕ z[30](z′[30]⊕ z[29]⊕ y[28]z[28]). (41)

In the above equation system (Eq. 1∼32), (z′, Y ) are known and (y, z) are linear
in the unknown x0. Our aim is to recover (y, z) in order to recover the unknown
(x0, x2).

34



The procedure to solve the above equation system is described as follows:

Step 1: Guess (z[0], z[1], z[2], z[3], z[4]). For each such guess, v[i] (0 ≤ i ≤ 4)
becomes known. Based on Eq. 1∼6, we can also uniquely compute

(y[0], y[1], y[2], y[3], y[4], y[5]).

Note that we need to compute y[i] before computing y[i+1] (0 ≤ i ≤ 4).
Step 2: Note that the expression of y[i] is as follows:

y[i] = v[i− 9]⊕ αiv[i− 10]⊕ βi.

Since (y[0], y[1], y[2], y[3], y[4], y[5]) are known, we can uniquely deter-
mine v[i] (22 ≤ i ≤ 28) by guessing v[22].

Step 3: Guess (y[22], y[23], y[24]). Since v[i] (22 ≤ i ≤ 28) have been determined
at Step 2, we can compute the corresponding z[i] (22 ≤ i ≤ 28). Then,
based on Eq. 26∼30, we can uniquely compute

(y[25], y[26], y[27], y[28], y[29]).

Then

(y[22], y[23], y[24], y[25], y[26], y[27], y[28], y[29])

become determined. Therefore, we can uniquely determine v[i] (12 ≤
i ≤ 20) by guessing v[12].

Step 4: At this step, only v[i] (i ∈ {5, 6, 7, 8, 8, 10, 11, 21, 29, 30, 31}) are un-
known. We can compute (y[11], y[12], y[13]) according to the knowledge
of (v[1], v[2], v[3], v[4]). Observing Eq. 15, when z[13] = 1 or y[11] = 0,
we can uniquely compute y[14] since the unknown z[11] will not influence
the calculation of y[14] anymore. After y[14] is obtained, based on Eq.
16∼21, we can uniquely compute

(y[15], y[16], y[17], y[18], y[19], y[20]).

Then, the values of v[i] (i ∈ {5, 6, 7, 8, 8, 10, 11}) are determined.
If z[13] = 0 and y[11] = 1, which occurs with probability 2−2, similarly,
we simply guess z[11] and then obtain the value of

(y[14], y[15], y[16], y[17], y[18], y[19], y[20]),

which will correspond to a solution of v[i] (i ∈ {5, 6, 7, 8, 8, 10, 11}).
Compare the value of v[11] with its guessed value (we can obtain v[11]
from z[11]). If they are consistent, we find a correct solution of v[i]
(i ∈ {5, 6, 7, 8, 8, 10, 11}). Otherwise, it is wrong.
In conclusion, whatever the case is, we could only get one solution of
v[11] (i ∈ {5, 6, 7, 8, 8, 10, 11}). The average cost at this step can be
estimated as 3

4 + 1
4 × 2 ≈ 20.4.

35



Step 5: Since (v[5], v[6], v[7]) are determined, we can compute (z[5], z[6], z[7]).
Then, based on Eq. 7∼9, we can uniquely compute (y[6], y[7], [8]), thus
determining (v[29], v[30], v[31]) and (z[29], z[30], z[31]). Then, we can
compute y[30] based on Eq. 31 because z[29] becomes known. After y[30]
is computed, we can uniquely determine v[21]. Until this phase, (v, y, z)
are fully determined and we can check the correctness by checking the
validity of the tuple (y, z, y′, z′) according to Property 4.

The time complexity of our guess-and-determine method to solve the above
equation system can be evaluated in this way. At Step 1, (z[0], z[1], z[2], z[3], z[4])
are guessed. At Step 2, v[22] is guessed. At Step 3, (y[22], y[23], y[24], v[12])
are guessed. At Step 4, the cost of guessing can be evaluated as 20.4. As
a result, the time complexity to traverse all solutions of the above equation
system is 25+1+4+0.4 = 210.4. On the other hand, we do not construct any
coefficient matrix nor use Gauss elimination when solving the above equation
system. The unknown variables can be calculated step by step by considering
the corresponding expressions, which is very efficient.

As explained at the beginning of the proof, since x0 can be exhausted in
210.4 time, (x0, x2) can be recovered in 210.4 time and the expected number of
solutions is 1.

C The Preimage Attack on 8-Round Gimli-XOF-128

The corresponding two phases of the preimage attack on 8-round Gimli-XOF-128
will be specified below.

Matching the Rate Part The attack procedure to exhaust all the 2120 possible
values of (S0[0][0], S0[0][1], S0[0][2], S0[0][3]) to match a given 128-bit (S8[0][0],
S8[0][1], S8[0][2], S8[0][3]) is described as follows. The corresponding illustration
can be referred to Figure 12.

Step 1: Exhaust all the 264 values of (S0[0][0], S0[0][2]). Since S0 satisfies
Equation 8, based on Property 1, for each guess of (S0[0][0], S0[0][2]),
(S5[0][1], S5[0][3], S5[1][0], S5[2][0], S5[1][2], S5[2][2]) can be determined
and we move to Step 2. If all possible values of (S0[0][0], S0[0][2]) are
traversed, move to Step 4.

Step 2: Exhaust all the 232 values of S5[0][0]. For each guess of S5[0][0], (S7[1][0],
S7[2][0], S7[0][2]) become known. According to Property 9, it is expected
to obtain 232 solutions of (S7[0][0], S7[1][0], S7[2][0]) to match S8[0][0]
after traversing all values of S5[0][0]. Store all the solutions of (S5[0][0],
S7[0][0], S7[0][2]) in a table denoted by T12. After exhausting S5[0][0],
move to Step 3.

Step 3: Similarly, exhaust all the 232 values of S5[0][2]. For each guess of S5[0][2],
(S7[1][2], S7[2][2], S7[0][0]) become known. According to Property 9,
it is expected to obtain 232 solutions of (S7[0][2], S7[1][2], S7[2][2]) to

36



S0 S1 S2 S3 S4

S5S6S7S8

SP

S SW

AC

SP SP

B SW

SP

SP

S SW

AC

SPSP

B SW

SP

Known

Conditional

Guessed

Futher guessed

Known after guess

?

Fig. 12: Illustration of the preimage attack on 8-round Gimli-XOF-128

match S8[0][2] after traversing all values of S5[0][2]. For each feasible
value of (S5[0][2], S7[0][0], S7[0][2]) which can match S8[0][2], check
whether (S7[0][0], S7[0][2]) exists in T12. If it does, a solution of
(S5[0][0], S5[0][2]) which can match (S8[0][0], S8[0][2]) for the guessed
value of (S0[0][0], S0[0][2]) is found. It is expected that there will be
one solution of (S5[0][0], S5[0][2]) for each guessed value of (S0[0][0],
S0[0][2]) since one 64-bit value needs to be matched. Consequently,
after exhausting (S0[0][0], S0[0][2]), it is expected to collect 264 possible
values of (S0[0][0], S0[0][2], S5[0][0], S5[0][1], S5[0][2], S5[0][3]). Store
these values in a table denoted by T13.

Step 4: Exhaust all the 256 values of (S0[0][1], S0[0][3]). For each such guess, we
first further exhaust S5[0][1] to collect 232 solutions of (S7[0][1], S7[0][3])
which can match S8[0][1] and store them in a table denoted by T14. Then,
exhaust S5[0][3] to collect another 232 solutions of (S7[0][1], S7[0][3])
which can match S8[0][3] and check whether the obtained (S7[0][1],
S7[0][3]) is in T14. For each guessed value of (S0[0][1], S0[0][3]), it should
be noted that (S5[0][0], S5[0][2]) are determined. In addition, after
exhausting S5[0][1] and S5[0][3], one can expect a match in (S7[0][1],
S7[0][3]), which will correspond to solution of (S5[0][1], S5[0][3]). For
each solution of (S5[0][0], S5[0][1], S5[0][2], S5[0][3]) obtained in Step 4,
check whether it also exist in T13. If it does, output the corresponding
value of (S0[0][0], S0[0][1], (S0[0][2], S0[0][3]). Otherwise, repeat until
all values of (S0[0][1], S0[0][3]) are traversed.

Complexity Evaluation. At step 1, the time complexity is 264. For each guess of
(S0[0][0], S0[0][2]), S5[0][0] and S5[0][2] need to be exhausted at Step 2 and Step
3, respectively. As a result, the time complexity at Step 2 and Step 3 are both
296. As for Step 4, we need to exhaust 256 values of (S0[0][1], S0[0][3]). For each
of it, S5[0][1] and S5[0][3] needs to be exhausted, respectively. Thus, the time
complexity at Step 4 is 256+32 = 288.

37



Moreover, there will be 232 elements stored in T12, 264 elements stored in T13
and 232 elements stored in T14. Therefore, the memory complexity at this phase
is 264.

In addition, since there are only 264+56 = 2120 pairs of (S5[0][0], S5[0][1],
S5[0][2], S5[0][3]), a correct solution of (S0[0][0], S0[0][1], (S0[0][2], S0[0][3]) is
found with probability of 2−8, indicating that the whole time complexity to
match the given hash value is 296+8 = 2104 and the memory complexity is 264 if
there are 28 different values of the capacity part of S0 satisfying Equation 8.

Fulfilling Conditions As shown in the above time complexity evaluation, it is
expected that there are 28 different values of the capacity part of S0 satisfying
Equation 8 in order to match a given 128-bit hash value. In this part, how to
finish this task will be introduced.

First of all, it should be emphasized that the initial value of Gimli-XOF-
128 satisfies Equation 8. However, one such value is insufficient. Consequently,
it is necessary to overcome the obstacle of how to efficiently generate many
preferred capacity parts. By exploiting the fact that the initial value satisfies the
conditions, we can start from S0 satisfying Equation 8 and compute the solutions
of (S0[0][0], S0[0][1], (S0[0][2], S0[0][3]) which can also make the capacity part of
S8 satisfy Equation 42. For convenience, the 29 bits of S8[1][i] (i ∈ {0, 1, 2, 3})
required to be 0 are called conditional bits.

(S8[1][0] ≪ 9) ∧ 0x1fffffff = 0,

(S8[1][1] ≪ 9) ∧ 0x1fffffff = 0,

(S8[1][2] ≪ 9) ∧ 0x1fffffff = 0,

(S8[1][3] ≪ 9) ∧ 0x1fffffff = 0.

(42)

The corresponding attack procedure is almost the same with that to match
the rate part. Specifically, it can be summarized as follows:

Step 1: Exhaust all the 264 values of (S0[0][0], S0[0][2]). Since S0 satisfies
Equation 8, based on Property 1, for each guess of (S0[0][0], S0[0][2]),
(S5[0][1], S5[0][3], S5[1][0], S5[2][0], S5[1][2], S5[2][2]) can be determined
and we move to Step 2. If all possible values of (S0[0][0], S0[0][2]) are
traversed, move to Step 4.

Step 2: Exhaust all the 232 values of S5[0][0]. For each guess of S5[0][0], (S7[1][0],
S7[2][0], S7[0][2]) become known. According to Property 5, it is expected
to obtain 232+3 = 235 solutions of (S7[0][0], S7[1][0], S7[2][0]) to match
the 29 conditions bits of S8[1][0] after traversing all values of S5[0][0].
Store all the solutions of (S5[0][0], S7[0][0], S7[0][2]) in a table denoted
by T15. After exhausting S5[0][0], move to Step 3.

Step 3: Similarly, exhaust all the 232 values of S5[0][2]. For each guess of S5[0][2],
(S7[1][2], S7[2][2], S7[0][0]) become known. According to Property 5, it is
expected to obtain 232+3 = 235 solutions of (S7[0][2], S7[1][2], S7[2][2])
to match the 29 conditional bits of S8[0][2] after traversing all values

38



of S5[0][2]. For each feasible value of (S5[0][2], S7[0][0], S7[0][2]) which
can match the conditional 29 bits of S8[0][2], check whether (S7[0][0],
S7[0][2]) exists in T15. If it does, a solution of (S5[0][0], S5[0][2]) which
can match (S8[0][0], S8[0][2]) for the guessed value of (S0[0][0], S0[0][2])
is found. It is expected that there will be 26 solutions of (S5[0][0],
S5[0][2]) for each guessed value of (S0[0][0], S0[0][2]) since one 58-bit
value needs to be matched. Consequently, after exhausting (S0[0][0],
S0[0][2]), it is expected to collect 264+6 = 270 possible values of (S0[0][0],
S0[0][2], S5[0][0], S5[0][1], S5[0][2], S5[0][3]). Store these values in a table
denoted by T16.

Step 4: Exhaust all the 264 values of (S0[0][1], S0[0][3]). For each such guess,
we first further exhaust S5[0][1] to collect 235 solutions of (S7[0][1],
S7[0][3]) which can match the 29 conditional bits of S8[0][1] and store
them in a table denoted by T17. Then, exhaust S5[0][3] to collect another
235 solutions of (S7[0][1], S7[0][3]) which can match the 29 conditional
bits of S8[0][3] and check whether the obtained (S7[0][1], S7[0][3]) is in
T17. For each guessed value of (S0[0][1], S0[0][3]), (S5[0][0], S5[0][2]) are
determined. In addition, after exhausting S5[0][1] and S5[0][3], one can
expect 26 matches in (S7[0][1], S7[0][3]), which will correspond to 26

solutions of (S5[0][1], S5[0][3]). For each solution of (S5[0][0], S5[0][1],
S5[0][2], S5[0][3]) obtained in Step 4, check whether it also exist in T16.
If it does, output the corresponding value of (S0[0][0], S0[0][1], (S0[0][2],
S0[0][3]). Otherwise, repeat until all values of (S0[0][1], S0[0][3]) are
traversed.

Complexity Evaluation. As can be observed, the attack procedure is almost the
same with that to match the rate part. The only difference is that Property 5 is
utilized in Fulfilling Conditions while Property 9 is utilized in Matching the
Rate Part. It should be noted that there are in total 29×4 = 116 bit conditions
on S8 and there are 2128 possible values of the rate part of S0. Therefore,
after exhausting all the 2128 values, one can expect 2128−116 = 212 solutions
of (S0[0][0], S0[0][1], (S0[0][2], S0[0][3]) which can make the capacity part of
S8 satisfy Equation 42. The method to evaluate the time complexity is almost
the same with that to match the rate part. Obviously, the memory complexity
to exhaust all the 2128 values is 270 consumed by T16. The time complexity is
296+3 = 299 since only 29 bits of S8[1][i] (i ∈ {0, 1, 2, 3}) are conditional. In
conclusion, the time and memory complexity to mount the preimage attack on
8-round Gimli-XOF-128 are 2104 and 270, respectively.

D Illustrations of the Hybrid ZID Distinguisher for
18-Round Gimli

39



S
0

S
0.5

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
10

S
11

S
12

S
13

S
14

S
15

S
16

S
17

A0

B0

C0

A1

B1

C1

A0

B0

C0

A1

B1

C1

A2

B2

C2

A2

B2

C2

A3

B3

C3

A3

B3

C3

A4

B4

C4

A4

SP

S SW

AC

SP

SP

B SW

SPSP

S SW

AC

SP

SP

B SW

SP SP

S SW

AC

SP

SP

B SW

SPSP

S SW

AC

SP

SP

B SW

SP SP

S SW

AC

B4

C4

A5

B5

C5

A5

B5

C5

A6

B6

C6

A6

B6

C6

A7

B7

C7

A7

B7

C7

A∗

9
A8 A9 A8

B8

C8

B9

C9

B8

C8

B9

C9

A10

B10

C10

A11

B11

C11

A12

B12

C12

A12

B12

C12

A14

B13

C13

A13

B14

C14

A15

B15

C15

A15

B15

C15

A16

B16

C16

A17

B17

C17

A18

B18

C18

A18

B18

C18

A∗

21

B19

C19

A21

B20

C20

A19

B21

C21

A20

B21

C21

A22

B22

C22

A23

B23

C23

A25

B24

C24

A24

B25

C25

A26

B26

C26

A27

B27

C27

B28

C28

B29

C29

S
18

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

? ? ?

?

?

?

?

?

?

?

?

?

?

?

A30

B30

C30

B30

C30

A30 A31

B31

C31

A31

B31

C31

A32

B32

C32

A32

B32

C32

A33

B33

C33

A33

B33

C33

B33

C33

B33

C33

? ? ? ?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

SP

starting point

Fig. 13: Evolution of the internal difference for one input

40



S
′0

S
′0.5

S
′1

S
′2

S
′3

S
′4

S
′5

S
′6

S
′7

S
′8

S
′9

S
′10

S
′11

S
′12

S
′13

S
′14

S
′15

S
′16

S
′17

A0

B0

C0

A′

1

B′

1

C ′

1

A0

B0

C0

A′

1

B′

1

C ′

1

A2

B2

C2

A2

B2

C2

A′

3

B′

3

C ′

3

A′

3

B′

3

C ′

3

A4

B4

C4

A4

SP

S SW

AC

SP

SP

B SW

SPSP

S SW

AC

SP

SP

B SW

SP SP

S SW

AC

SP

SP

B SW

SPSP

S SW

AC

SP

SP

B SW

SP SP

S SW

AC

B4

C4

A′

5

B′

5

C ′

5

A′

5

B′

5

C ′

5

B6

C6

A6A′

7

B′

7

C7

A′

7

B′

7

C ′

7

A9 A8 A∗

9
A8

B8

C8

B9

C9

B8

C8

B9

C9

A11

B11

C11

A10

B10

C10

A12

B12

C12

A12

B12

C12

A13

B14

C14

A14

B13

C13

A15

B15

C15

A15

B15

C15

A17

B17

C17

A16

B16

C16

A18

B18

C18

A18

B18

C18

A∗

21

B20

C20

A21

B19

C19

A20

B21

C21

A19

B21

C21

A23

B23

C23

A22

B22

C22

A24

B25

C25

A25

B24

C24

A27

B27

C27

A26

B26

C26

B29

C29

B28

C28

S
′18

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

? ? ?

?

?

?

?

?

?

?

?

?

?

?

A′

30

B′

30

C ′

30

B′

30

C ′

30

A′

30
A′

31

B′

31

C ′

31

A′

31

B′

31

C ′

31

A′

32

B′

32

C ′

32

A′

32

B′

32

A′

33

B′

33

C ′

33

A′

33

B′

33

C ′

33

B′

33

C ′

33

B′

33

C ′

33

? ? ? ?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

SP

A6

B6

C6

C ′

32

starting point

Fig. 14: Evolution of the internal difference for another input

41


	Exploiting Weak Diffusion of Gimli:  A Full-Round Distinguisher and Reduced-Round Preimage Attacks
	Fukang Liu, Takanori Isobe, Willi Meier

