
The Round Complexity of Perfect MPC with Active
Security and Optimal Resiliency

Benny Applebaum∗ Eliran Kachlon∗ Arpita Patra†

Abstract

In STOC 1988, Ben-Or, Goldwasser, and Wigderson (BGW) established an important mile-
stone in the fields of cryptography and distributed computing by showing that every functionality
can be computed with perfect (information-theoretic and error-free) security at the presence of
an active (aka Byzantine) rushing adversary that controls up to n/3 of the parties.

We study the round complexity of general secure multiparty computation in the BGW
model. Our main result shows that every functionality can be realized in only four rounds of
interaction, and that some functionalities cannot be computed in three rounds. This completely
settles the round-complexity of perfect actively-secure optimally-resilient MPC, resolving a long
line of research.

Our lower-bound is based on a novel round-reduction technique that allows us to lift existing
three-round lower-bounds for verifiable secret sharing to four-round lower-bounds for general
MPC. To prove the upper-bound, we develop new round-efficient protocols for computing degree-
2 functionalities over large fields, and establish the completeness of such functionalities. The
latter result extends the recent completeness theorem of Applebaum, Brakerski and Tsabary
(TCC 2018, Eurocrypt 2019) that was limited to the binary field.

∗Tel-Aviv University, Israel bennyap@post.tau.ac.il, elirn.chalon@gmail.com
†Indian Institute of Science, Bangalore, India arpita@iisc.ac.in

1 Introduction

The round complexity of interactive protocols is one of their most important efficiency mea-
sures. Consequently, a huge amount of research has been devoted towards characterizing the
round complexity of various distributed tasks (e.g., Byzantine agreement [LF82, DR85, FM85],
coin flipping [Cle86, MNS16], zero-knowledge proofs [GK96, CKPR01], verifiable secret shar-
ing [GIKR01, KPR10] and secure multiparty computation [Yao86, BMR90, GS18, BL18] under
different security models. In this paper, we study the round complexity of general secure multi-
party computation (MPC) in the classical model of Ben-Or, Goldwasser, and Wigderson [BGW88].
That is, we strive for perfect (information-theoretic and error-free) security at the presence of an
active (aka Byzantine or malicious) rushing adversary that controls up to n/3 of the parties.

In more detail, in this setting n parties wish to compute a joint function f of their private inputs.
We assume that parties can communicate over secure point-to-point channels and, in addition,
have an access to a broadcast channel. An all-powerful, computationally-unbounded, adversary
actively corrupts up to a bounded number t of the parties, and may instruct the corrupted parties
to arbitrarily deviate from the protocol. Informally, perfect security essentially implies that the
honest parties will always get a valid output, and there is a zero probability of cheating by the
adversary.1 We focus on the most challenging setting in which the adversary may corrupt up
to t = dn/3e − 1 parties, which is known to be the best achievable resiliency threshold in this
setting [PSL80, BGW88].

The discovery of perfect MPC is no less than remarkable. It provides everlasting security un-
conditionally without relying on unproven intractability assumptions. In one of the most seminal
results in the area of cryptography and distributed computing, Ben-Or, Goldwasser, and Wigder-
son [BGW88] and Chaum, Crépeau and Damgård [CCD88] established the following completeness
theorem.

Theorem 1.1 (Feasibility of perfect MPC with active security). Every n-party functionality can be
computed with perfect security against a computationally-unbounded adversary that actively corrupts
up to t < n/3 of the parties.

The round complexity of information-theoretic MPC was extensively studied [BB89, BFKR90,
SYY99, IK00, GIKR01, GIKR02, IK02, PCRR09, IKP10, KPR10, IKKP15, ABT18, ACGJ18,
GIS18, ACGJ19, ABT19]. While it is known that perfect actively-secure MPC can be carried
in a constant number of rounds [IK02], the exact complexity has remained open. In this paper, we
resolve this question, and completely characterize the round complexity of perfect actively-secure
MPC.

Theorem 1.2 (Round Complexity of perfect actively-secure MPC). Four rounds are necessary and
sufficient for general MPC with perfect active-security and optimal resiliency of t < n/3.

To prove the theorem, we develop new lower-bound and upper-bound techniques. Before pro-
viding a detailed account of our results and techniques, let us describe some of the most relevant
previous results regarding the round-complexity of perfectly-secure MPC.

1Apart from being a natural goal, perfect security provides important and useful security advantages over protocols
that have a negligible probability of failure, see, e.g., [KLR06].

1

1.1 Previous Works

The classical approach for perfectly-secure MPC (e.g., Theorem 1.1) suffers from a large round
complexity. Loosely speaking, the idea is to represent the function f as an arithmetic circuit C
over some moderate-size finite field F of cardinality larger than n, and to distributively evaluate
this circuit in a gate by gate manner. At the beginning, each party uses a verifiable secret sharing
(VSS) sub-protocol [CGMA85] in order to share her input based on degree-t polynomials [Sha79].
The parties then evaluate the circuit over their shares. Addition is performed locally with no
interaction, whereas multiplication increases the degree of the underlying secret-sharing polynomial.
To compensate this, after every level of multiplication gates the parties employ a “degree-reduction”
step that is based again on VSS. Finally, the parties broadcast their shares for the output wires.
The resulting round complexity is therefore (d+ 1) ·Rvss + 1 where d is the multiplicative depth of
C and Rvss is the round complexity of the sharing a secret via perfect VSS with optimal resiliency.2

Several works have shown how to securely compute various functionalities in constant number of
rounds and with small error probability (e.g., [BB89, CD01]). In [IK00, IK02], Ishai and Kushilevitz
(IK) presented the randomizing polynomials methodology and showed that one can securely reduce,
in a round-preserving way, the computation of an arbitrary functionality to the computation of
a degree-3 functionality in which each output is a degree-3 polynomial in the inputs/randomness
of the parties. This technique, combined with the aforementioned protocols, allows to securely
compute an arbitrary functionality in a constant number of rounds. The overhead of the reduction
is polynomial in the formula-size (or branching program size) of f , and so the resulting protocol
has a polynomial complexity only for functions computable in NC1 or in (counting versions of)
log-space. Similar limitations apply to all known information-theoretic constant-round protocols
even in the case of statistical security against a passive adversary.

The discovery of constant-degree randomizing polynomials provides a tighter relation between
the round complexity of VSS and the round complexity of general functionalities. Motivated by this
connection, Gennaro et al. [GIKR01] studied the round-complexity of VSS, and proved that three
rounds are necessary and sufficient for (the sharing phase of) perfect VSS with optimal resiliency
of t = dn/3e − 1. A large number of follow-up works have established other bounds on the round-
complexity of VSS in different models (statistical and computational security), network setting and
under more refined metrics (minimizing broadcast rounds) [PCRR09, FGG+06, KKK09, KPR10,
BKP11, PR18]. Since the sharing functionality of VSS is by itself an MPC task, this yields a three-
round lower-bound for securely computing a general functionality perfectly. The lower bound of 3
rounds is also implied from the result of [GIKR02] for any t > 1.

Very recently, Applebaum et al. [ABT18, ABT19], inspired by breakthroughs in computational
MPC [GS18, BL18], presented a multiparty-variant of randomizing polynomials and used it to
securely reduce any functionality f to the computation of some degree-2 functionality g. Unlike the
IK constructions, this new completeness result is inherently limited to the binary field. That is, the
target functionality g is a degree-2 mapping over F2. As a result, g cannot be directly computed

2In fact, using more modern preprocessing tricks (e.g., due to [Bea91, DI05]) one can pay only a single round
of interaction per multiplication level at the expense of distributing at the beginning shares of many multiplication
triples (Ai, Bi, Ci) where Ai, Bi, Ci are random degree-t polynomials for which Ai(0) · Bi(0) = Ci(0). Since such a
sharing can be implemented by a degree-2 functionality, this leads to a round complexity of R2+d+1, where R2 is the
complexity of computing an arbitrary degree-2 polynomial. One can further collapse the initial sharing and the first
level of multiplication into a single degree-2 functionality, that can be performed in parallel to the triple-generation
step, and improve the round complexity to R2 + (d− 1) + 1. However, these optimizations do not help for quadratic
functions which will be our focus here.

2

via the polynomial-based protocols which require a field F of size at least n + 1. This seemingly
technical mismatch becomes a real issue in the setting of an active adversary. Naively, one can try
to replace g with its “arithmetic” version G, which is a degree-2 functionality over F that agrees with
g over binary inputs. However, a protocol for G does not translate into a protocol for g since the
adversary may use non-binary inputs.3 Applebaum et al. [ABT19] were not able to overcome this
difficulty in the general case, but were able to obtain new improved round-complexity upper-bounds
for weaker security notions (e.g., where honest parties are allowed to “abort”) or with sub-optimal
resiliency threshold. Specifically, they constructed a three-round perfectly-secure protocol against
an active adversary with threshold of t < n/4. The use of binary quadratic function significantly
complicates the protocol and its analysis [ABT19, Section 6.1, Appendix A]. For comparison, a
similar protocol for quadratic functionalities over a large field can be trivially constructed based on
existing techniques from [GIKR01].

1.2 Our Results

We prove the first four-round lower-bound for perfectly-secure MPC.

Theorem 1.3 (3-rounds are insufficient for perfect-MPC). Let n ≥ 4 and n/3 ≥ t ≥ n/4 be positive
integers. Then there exists an n-party functionality f that cannot be computed in three rounds with
perfect security and t-resiliency.

As an immediate corollary, we conclude that the three-round protocol of Applebaum et
al. [ABT19] that achieves a resiliency-threshold of dn/4e − 1 cannot be improved, and that at
least four rounds are necessary in order to achieve an optimal threshold. To prove the theorem, we
introduce a new round-reduction technique, and use it to show that the number of rounds needed
for general MPC is strictly larger than the number of rounds needed for VSS. (See Section 2.1 for
an outline.) We complement Theorem 3.1 by proving the following upper-bound.

Theorem 1.4 (4-rounds are sufficient for perfect-MPC). Every n-party functionality can be com-
puted in four rounds with perfect active-security and optimal resiliency of t < n/3. The complexity
of the protocol is polynomial in n and in the formula-size (or branching program size) of f .

Taken together, Theorems 1.3 and 1.4 completely characterize the round complexity of perfectly-
secure computation with optimal resiliency.

As usual in the context of constant-round information-theoretic MPC, our protocol is efficient
only for NC1 or log-space functionalities. Nevertheless, even for general functions, for which our
construction is inefficient, the result remains meaningful since the protocol resists computationally
unbounded adversaries.

The protocol from Theorem 1.4 is proven to be perfectly-secure via a black-box non-rewinding
simulator whose complexity is polynomial in the complexity of the adversary and the formula (or
branching program) size of f . These features (which are common in the information-theoretic
setting) have several useful corollaries. First, by [KLR06], this implies that the protocol is also uni-
versally composable (UC) [Can01], that is, security is preserved even when many arbitrary protocols
are run concurrently with our protocol. Moreover, when the protocol is efficiently computable (e.g.,
for f ∈ NC1), we can use public-key encryption to get rid of the private-channel assumption, at

3This transformation actually works when the adversary is passive. Indeed, by using this route [ABT18] con-
structed an optimal two-round MPC with passive perfect security at the presence of honest majority.

3

the expense of degrading perfect UC-security to computational UC-security. The resulting proto-
col can be implemented in the “authenticated channels model” without making use of any set-up
assumptions!

The proof of Theorem 1.4 is based on two components. Our first ingredient is an extension of
the degree-2 completeness result of [ABT19] to large fields of characteristic 2.

Theorem 1.5 (Completeness of quadratic functions, extending [ABT19]). Let f be an n-party
functionality, and let k ≥ 1 be an integer. Then there exists a non-interactive reduction from the
task of securely computing f to the task of computing a degree-2 functionality over the field F2k .
The reduction preserves perfect, statistical and computational active-security and provides optimal
resiliency.

This new completeness result can be used to significantly simplify some of the protocols
from [IKP10, ABT19]. We further believe that it will lead to new round-optimal protocols in other
settings. The proof is outlined in Section 2.3. (See also Theorem 5.23 for a full statement of the
theorem.) Theorem 1.5 is accompanied with a new four-round protocol for degree-2 functionalities.

Theorem 1.6 (Four-round protocol for quadratic functions). Every n-party degree-2 functionality
over a finite field F of size at least n, can be securely computed in four rounds with perfect active-
security and optimal resiliency of t < n/3.

Just like in the case of our lower-bound, the proof of Theorem 1.6 essentially establishes a (tight)
relation between the round complexity of MPC and VSS– it shows that MPC for quadratic functions
essentially needs only one additional round beyond what is needed for VSS. The proof (which is
outlined in Section 2.2 and fully appears in Section 4) introduces several novel techniques.

2 Technical Overview

In the following subsections, we outline the main ideas behind the proofs of our results.

2.1 Lower Bound

Our starting point is the intuition that computing a general functionality f , that mixes the inputs
of the parties, is a harder task than computing the VSS (sharing phase) functionality whose input
is taken from a single party. Following this (somewhat vague) intuition, we expect to pay more, in
terms of round complexity, for f than for VSS. Since the cost of perfectly-secure VSS with optimal
resiliency is 3 rounds [GIKR01], such a reasoning should yield a lower-bound of 4 rounds. A natural
way to formalize the above intuition is to show that a k-round protocol for f can be turned into a
(k−1)-round VSS protocol. We follow this route and present a novel “protocol-chopping” technique.
Details follow.

Chopping a protocol. Consider a k-round protocol π for some functionality f whose properties
will be specified later. In such a protocol, each party Pi starts with an input xi and at the end receives
an output yi. Using standard reductions, we may assume, without loss of generality, that only the
first round messages make use of the private point-to-point channels, and all other messages are sent
over the broadcast channel. Let us run the protocol π and halt the execution after k − 1 rounds.
At this point, each party holds the public broadcast values that were transmitted in the first k − 1

4

rounds, together a private view vi, that consists of the party’s private input/randomness and the
private incoming messages received at the first round. We collect all this information in a vector T ,
and analyze the properties of T that are induced by the security of π. For example, the privacy of the
protocol clearly implies that local parts of T that are available to a t-size coalition I of “corrupted”
parties, do not reveal any non-trivial information about the inputs of other “uncorrupted” parties.
(In fact, each such I induces an equivalence relation over realizable T ’s.) More importantly, the
fact that the protocol is secure against an active adversary implies that any k-th round extension
of T (i.e., a vector of broadcast values) cannot violate correctness even if an adversary controls an
I-subset of the parties. We will use these properties (and others) to argue that, when f is chosen
properly, the chopped-down protocol, π′, realizes VSS.

Extracting a VSS. Roughly speaking, we let one of the parties D play the role of the dealer,
and think of her f -input as the secret s. The other parties will choose their f -inputs uniformly
at random. The definition of f will guarantee that, under this choice of inputs, the input/output
values of any I-coalition (that does not contain the dealer) perfectly hide the value of s. The
chopped-down protocol π′ will be used as a sharing protocol where vi (together with the broadcast
values from the first k−1 rounds) plays the role of the i-th share of party Pi. At the reconstruction
phase, each party broadcasts its share vi, and the parties essentially emulate the last round of
π. Views which are clearly corrupted (e.g., inconsistent with too many other views) are excluded,
and the functionality f is defined with sufficient redundancy, so that, even in this case, the secret
can still be recovered based on the f -inputs/outputs of sufficiently many parties (and even at the
presence of corruptions). We further show that an undetected cheating corresponds to an adversarial
behaviour in π and is therefore protected by the security properties of the protocol. As one may
expect, the most challenging part is to show that after the sharing phase, the dealer is committed
to his input. Roughly, we show that a violation of the commitment property allows the dealer to
break the “independence of inputs” property in π and effectively correlates her input with the input
of an honest party. (Interestingly, this part strongly relies on the security of π against a rushing
adversary.)

The actual implementation of these ideas, including the exact definition of the functionality f ,
turns to be quite subtle, and the reader is referred to Section 3 for full details. As part of the proof,
we provide general tools for analyzing the state T of chopped-down protocols. We believe that these
tools and, more generally, our chopping technique, may lead to new lower-bounds in other contexts.

2.2 Computing Degree-2 Functionalities in Four-Rounds

Consider a degree-2 functionality f over some finite field F of size |F| ≥ n+1. For simplicity, assume
that the functionality f takes an input x ∈ F from P1, and an input y ∈ F from P2, and delivers
the product xy to all the parties.4

The classical protocols. The standard approach for computing such a functionality will be
roughly as follows. At the sharing phase, P1 and P2 secret-share their inputs via VSS. At the end
of this phase, party Pi holds the shares X(i) and Y (i) where X and Y are degree-t polynomials
whose free coefficients are x and y, respectively. Next, party Pi computes the product, X(i) · Y (i),

4This example is somewhat simpler than the actual complete degree-2 functionalities, and it is chosen for ease of
presentation.

5

of its shares which lie on the degree 2t polynomial Z = X · Y . The degree of this polynomial is too
high to allow noisy-interpolation (at the presence of t = dn/3e − 1 corrupted points), and therefore
the parties apply a degree-reduction sub-protocol which distributively transforms the shares Z(i)
into new shares Ẑ(i) that lie over a random degree-t polynomial Ẑ whose free coefficient equals to
Z(0). The latter step can be reduced to (many parallel calls of) VSS. Finally, the parties reveal
their Ẑ-shares. Using noisy interpolation, one can recover the free coefficient Ẑ(0) even if t of the
shares are corrupted. (Such a noisy interpolation is possible whenever the number of “honest points”,
(n− t), is two times larger than the number t of corrupted points.)

Letting Rvss = 3 denote the round complexity of VSS, we derive a protocol whose round com-
plexity is 2 ·Rvss +1 = 7. One may try to start the degree-reduction phase earlier, before the sharing
phase terminates, however, some of the honest-party shares become only available at the last round
of the VSS, and so it is not clear how to carry-out such an optimization.5

A more liberal coding scheme. We take a different route and deviate from the above blueprint.
Let us start by relaxing the role of degree-reduction. Recall that standard VSS generates, as a by-
product, second-level shares. That is, when x is shared, the i-th party gets a first-level share X(i)
and, in addition, gets, for every j ∈ [n], a share X(j, i) of the j-th first-level share X(j) where
X(j, 1), . . . , X(j, n) all lie on a degree-t polynomial. Our first insight is that instead of reducing the
degree of the product polynomial Z, it suffices to reduce the degrees of the second-level polynomials.
That is, while the product polynomial Z remains a degree-2t (re-randomized) polynomial that holds
xy as its free-coefficient, our degree-reduction protocol will generate a degree-t second-level sharing
for each Z(j). This means that the shares, Z(j, 1), . . . , Z(j, n), should lie on a degree-t polynomial.
Moreover, we require the existence of a public list G of at least n− t “good” parties, such that for
every Pj ∈ G the second-level shares Z(j, 1), . . . , Z(j, n) are at most t-noisy. Once we have such
n− t “good” points we can recover the degree-2t polynomial Z using standard interpolation (which
is possible since n− t > 2t.)6

Of course, one should still implement this second-level degree-reduction, and it is not clear
why this task is easier than the original one. In short, the difference is that the second-level
degree-reduction for a first-level share Z(j) will be lead by the j-th party Pj , and, unlike first-level
degree-reduction, our correctness requirements here are relatively modest. When a corrupted Pj
misbehaves, we do not care whether the process succeeds as long as this misbehavior is publicly
detected. In such a case, we simply remove Pj from the set G.

Second-level degree-reduction. We briefly explain how to implement the second-level degree
reduction. Let us assume for now that each party Pj shared, in some preprocessing phase, a triple of
degree t polynomials A,B and C with A(0) ·B(0) = C(0) such that each party Pi holds A(i), B(i)
and C(i). (The round-complexity of the preprocessing phase is ignored for now.) Beaver’s well
known reduction [Bea91] uses such a multiplicative-triple to obtain a single-round degree-reduction
(i.e., to transform shares of degree-t polynomials F and F ′ into degree-t shares of F (0) ·F ′(0)) that
involves a couple of reconstructions.

5One could try to use pre-computed secret-shared multiplicative triples [Bea91], however, in order to generate
such triples we need a protocol for degree-2 functionalities.

6Using the terminology of error-correcting codes, we essentially replace the standard degree-t Reed-Solomon code,
RS(n, t), that tolerates at most (n − t)/2 errors by the tensor code RS(n, 2t)

⊗
RS(n, t) that tolerates full erasures

of at most t columns together with errors in at most (n− t)/2 locations in every un-erased column.

6

We get rid of the preprocessing assumption by presenting a VSS-based centralized triple-sharing
protocol in which a single dealer chooses the polynomials A,B and C. (The fact that the protocol is
centralized saves the need for distributed degree-reduction.) The protocol requires 4 rounds where
the sharing is completed in the first 3 rounds and the verification of the product relation of the
secrets is completed in Round 4.

Earlier guided degree-reduction. At this point, we still face one final problem. The inputs to
Beaver-based round reduction, namely the second-level sharing of X(i) and Y (i) are ready only at
the end of Round 3 (upon conclusion of VSS instances). Therefore, one has to spend an additional
4-th round to complete the degree-reduction (even if the random multiplication triples were prepared
in an offline phase). This leads to a 5-round protocol. To resolve this issue, let us (naively) assume
for now that Pi receives the second-level polynomials X(i, ·) and Y (i, ·) already at the end of Round
2. Since Pi chose the random multiplication polynomials A,B,C by herself, this tuple is also ready
at this point. As a result, Pi has enough information to help the parties execute the additional
round needed for degree-reduction already at Round 3.

Of course, a corrupt Pi can cheat and mislead the computation leading to a faulty execution
of Beaver’s trick. To cope with this, we let each party verify, at Round 4, whether Pi’s guided
degree-reduction is consistent with the actual second-level shares that were finalized in Round 3. If
a misbehavior is detected, Pi is excluded from the set G. Yet again, having at least 2t + 1 honest
parties ensures that we will have enough values on the main 2t-degree polynomial Z even after
excluding the outcomes of Beaver’s trick corresponding to all corrupt Pis.

VSS in 2.5 rounds. To complete the description, we still have to come-up with a 3-round VSS
in which the second-level polynomials X(i) and Y (i) are available to Pi already after two rounds.
While we do not know how to satisfy this requirement, we show how to tweak the 3-round VSS
of [KKK09] in a way that guarantees a slightly weaker property: At the end of Round 2, each party
Pi holds some preliminary version X ′(i, ·) and Y ′(i, ·) of the second-level polynomials X(i, ·) and
Y (i, ·) with the guarantee that for any honest party Pi, the preliminary polynomials, X ′(i, ·) and
Y ′(i, ·), either fully agree with the final polynomials, or agree with the final polynomials on some
universal set of t+1 points that will become public later (in the end of round 3). This property still
suffices for the final reconstruction. As a side note, we present a simpler recipe for VSS through
a new building block, Weak Commitment Scheme, that offers a relatively simpler instantiation
compared to the traditional building block Weak Secret Sharing.

2.3 Completeness of Degree-2 Functionalities over Large Fields

As already mentioned, our starting point is the recent theorem of [ABT18, ABT19] that establishes
the completeness of degree-2 functionalities over the binary field. Their proof proceeds in two steps:
(1) Convert the target functionality f into a more friendly functionality F whose circuit is based on
a protocol for computing f with the desired security guarantees; (2) Use an “optimized version” of
the perfectly-secure garbled circuit (GC) of [IK00] in order to reduce F into a degree-2 functionality
g. Recall that the standard (non-optimized) GC-based reduction yields a randomized functionality
that has degree-1 in the inputs and degree-2 in the randomness, leading to an overall degree of 3.
In the optimized version, instead of jointly sampling each internal random-bit that is employed by
the GC, we carefully partition the random bits between the parties and grant each party full control
on his part of the randomness. Consequently, this randomness can be locally preprocessed in a way

7

that simplifies the residual computation into a degree-2 computation. In general, one cannot just
partition the randomness between the parties without violating security, however, [ABT18, ABT19]
show that such a partitioning can be safely applied since F itself is based on a secure protocol for
f . In order to handle the active setting, it is shown that any adversarial deviation at the local-
preprocessing stage can be mapped into a cheating strategy against the original protocol F , and so
such a behavior can be simulated based on the simulator of F .

Our goal is to obtain a large-field version of this result. For this purpose, one may try to employ
arithmetic variants of the perfectly-secure GC constructions. While such variants exist (see [AIK14,
App17]), they do not seem to allow for degree-2 reduction. (A straightforward adaptation of the
local preprocessing technique to the arithmetic setting either violates security or leads to large
degree of |F| > 2.) Another option is try to embed the binary degree-2 functionality into a degree-2
functionality over a larger field. As explained in the introduction, while this is trivial in the passive
setting, when the adversary honestly follows the protocol, this transformation fails at the presence
of an active adversary that may use non-binary inputs. Hence, one has to add a mechanism that
forces binary behavior. Designing such a non-interactive degree-2 mechanism is a challenging task,
especially in our perfect error-free setting. Indeed, our mechanism should not only detect non-binary
behavior, it should also correct the output delivered to honest parties (i.e., deliver a “good” output
to the honest parties which is consistent with some binary input for the corrupted parties), and
erase the output that corresponds to non-binary inputs (so that corrupted parties do not learn an
output that is induced by a non-binary input).7 We do not know how to directly obtain such a
mechanism for a general functionality.

Fortunately, the complete F2-quadratic functionality turns to satisfy several “nice” properties
that significantly simplify our task. In short, we make two main observations: (1) We can suc-
cessfully cope (“correct and erase”) with a non-binary x when x is a “public” variable that will be
revealed to everyone by the functionality; (2) Loosely speaking, the inputs to the Boolean perfectly-
secure GC functionality are either “arithmetic-friendly” or “publicly-available”. Let us elaborate on
these two points.

Coping with public inputs. Say that the input x is a public variable whose value will be known
to everyone. In this case, we can construct an ifBin gadget that releases a key B (for binary) if
and only if x ∈ {0, 1}. Similarly, we can construct an ifnotBin gadget that releases a key A (for
arithmetic) if and only if x /∈ {0, 1}. Moreover, both gadgets can be implemented by quadratic
functionalities that output a pair of elements:

ifBin(B, x;R1, R2) :=
(
x ·R1 +B, (1− x) ·R2 +B

)
,

ifnotBin(A, x;R1, R2) :=
(
x ·R1, (1− x) ·R2, R1 +R2 +A

)
,

where the “keys” A and B are field elements and R1 and R2 are fresh random field elements. Indeed,
if x equals to zero or one, the first or second output of ifBin reveals B, whereas for any other field
element x /∈ {0, 1} both outputs of ifBin reveal no information about B since the random elements
x·R1 and (1−x)·R2 act as one-time pads. (An analysis of similar flavor can be applied to ifnotBin as
well.) By using these gadgets one can achieve in principle both correction and erasure. For example,
if F (x, y) outputs (x, g(x, y)) for some degree-2 function g, we can replace it with the arithmetic

7Indeed, one can easily notify the parties whether an input x is binary or not, by appending the quadratic “flag”
y = x2−x to the output of the function. However, “correction” and “erasure” seem to require a degree-2 computation
in y which increases the overall degree to 3 or more.

8

functionality that outputs the tuple (x, g(x, y) + B, g(0, y) + A) together with ifBin(B, x;R1, R2)
and ifnotBin(A, x;R1, R2). When a non-binary input x is being used, the information g(x, y) is
being erased (since the key B is not released) and the alternative “corrected” output g(0, y) can be
computed (since the key A is being released).

Arithmetizing the Boolean GC functionality. The Boolean GC functionality employs two
types of random inputs: (a) keys that are used for encrypted gate-tables; and (b) wire masks that
are used for masking the value (aka signal) that propagates over each wire. The former are being
used only in degree-1 computations either as the keys to one-time pads or as the content that
is being encrypted. Correspondingly, there is no harm in taking these values to be general field
elements. The wire masks are in turn more sensitive. Each such mask is locally-manipulated via
degree 2 computation by some party who “owns” the wire. More importantly, the results of these
preprocessed values is being used as a “selector” s for one of two keys via an expression of the form
sK1 + (1− s)K0. Replacing such a selector with a general non-binary field element is problematic
both for privacy and for correctness. (Roughly, arithmetic selectors allow to run the circuit over a
linear combination of the inputs.) We therefore have to force these values to be binary.

Wire masks must be private, and so we cannot handle them via the ifBin and ifnotBin gadgets.
The crucial observation is that the masked signal of a wire, which is simply the sum of the wire’s
mask and signal, is actually public. Furthermore, one can tweak the GC construction so that instead
of enforcing binary behavior over masks, it suffices to enforce such a behavior on the masked signals.
Following this approach, we integrate the gadgets into the garbled table of each gate, while making
sure that a malicious non-binary execution leads to an effective choice of zeroes.

Several technicalities still arise, especially for gates that correspond to broadcast in the original
protocol F . In particular, in some cases the adversary may apply a non-binary mask to values
that are “owned” by different honest parties. The use of binary extension field guarantees that such
a non-binary mask will unanimously throw all these binary values outside {0, 1}, and is therefore
translated to a single binary broadcast message. The main details of the construction appear in
Sections 5.2 and 5.3, following relevant preliminaries from [ABT18] (in Section 5.1). The proof of
the completeness theorem appears in Sections 5.4 and 5.5.

3 Lower-Bound for Perfectly-Secure MPC

In this section we prove Theorem 1.3, restated here for the convenience of the reader.

Theorem 3.1 (Theorem 1.3 restated). Let n ≥ 4 and n/3 ≥ t ≥ n/4 be positive integers. Then
there exists an n-party functionality F which cannot be computed in 3 rounds with perfect security
tolerating t malicious corruptions.

Proof. By a party-partitioning argument (see [Lyn96]), it is enough to prove the theorem for the
case n = 4 and t = 1. We denote the parties by P1, P2, P3 and P4 and prove the lower-bound for
any 4-party functionality that is admissible as defined below.

Definition 3.2 (Admissible functionality). Let A and B be finite sets. A 4-party functionality

F : A× {0, 1} × {0, 1} × {⊥} → {⊥} ×B × {⊥} ×B

9

is admissible if it can be written as F (x, s, t,⊥) = (⊥, fs,t(x),⊥, fs,t(x)), where the functions
f0,0, f0,1, f1,0, f1,1 : A→ B satisfy the following properties for every s, t ∈ {0, 1}:

fs,t is injective (1)
Im(fs,t) = Bs⊕t where B0, B1 ⊂ B are disjoint sets (2)
fs,t(x) 6= f1−s,1−t(x), ∀x ∈ A (3)
(fs,t(x), f1−s,t(x)) 6= (f1−s,1−t(y), fs,1−t(y)),∀x, y ∈ A. (4)

We demonstrate with an example that admissible 4-party functionalities exist.

Example 3.3. Let A = Z5 = {0, 1, 2, 3, 4} be the group of integers modulo 5. Let B = Z5 ×Z2 and
let B0 = Z5 × {0} and B1 = Z5 × {1}. Take f0,0(x) = (x, 0), f1,1(x) = (x+ 1, 0), f0,1 = (x, 1) and
f1,0(x) = (x+ 2, 1) where addition is over Z5. The reader can verify that Eqs. (1)–(4) hold.

We now prove the theorem by reducing a perfectly-secure, 3-round, 4-party MPC that computes
an admissible function F to a perfectly-secure, 4-party VSS protocol with a 2-round sharing phase,
both tolerating one corruption. The latter is known to be impossible [GIKR01, Theorem 8 and
Lemma 5], leading to a contradiction. The proof of this theorem thus follows from Theorem 3.4
given below. We present the definition of a perfectly-secure VSS in Appendix A.1 and denote an
n-party VSS tolerating t corruption as (n, t)-VSS.

Theorem 3.4. If there exists a 3-round 4-party protocol π that computes an admissible functionality
F with perfect security against a single actively-corrupted party, then there exists a 4-party VSS with
2 rounds in the sharing phase and perfect security against a single actively-corrupted party.

To get some intuition, think of s as a secret and of P2 as the dealer, and consider the case
where x and t are uniformly chosen. Then, the properties of an admissible F guarantee that (a) the
view of every single party Pi 6= P2 does not reveal any information about the secret s and (b) the
input/output pair of every three-party coalition S ⊂ {P1, P2, P3, P4} completely reveals the secret
s. Of course, the main challenge is to show that a 3-round protocol π for F induces a 2-round VSS
protocol tolerating malicious behaviour, which is known to be impossible [GIKR01]. The following
section describes the transformation from π to a VSS π′, and the subsequent sections are devoted
to the analysis of the VSS. Lastly, we note that our transformation allows us to reduce any k-round
MPC computing F to a (k− 1)-round VSS. To keep the exposition simple, we continue with k = 3.

3.1 The Reduction

Let F be an admissible functionality defined via f0,0, f0,1, f1,0, f1,1. Assume towards contradiction
that there exists a protocol π that computes some F in 3 rounds. By standard use of one-time
pads, we may assume without loss of generality that at the first round each party sends a broadcast
message and a private message to each other party, and in all the other rounds, each party sends a
broadcast message (see [GIKR01, Lemma 2]). Accordingly, we will use the following notation.

Notation and Terminology. The private view vi of party Pi is a tuple (z, ri, (aj,i)j∈[4]\{i}) that
consists of an input z (possibly ⊥), randomness ri, and, for every j ∈ [4], j 6= i the private message
aj,i sent from Pj to Pi at the first round. Note that incoming broadcast messages are excluded from

10

the private view.8 We denote the input of Pi according to vi by inputπ(vi), and the randomness of
Pi according to vi by randπ(vi). For input z and randomness r, we define π1,i(z, r) := ((ai,j)j 6=i, ai)
to be the tuple of private messages ai,j that Pi has to send to Pj in the first round of π, and the
broadcast ai of Pi in the first round of π. For a view vi of Pi and broadcasts a = (a1, . . . , a4)
of the first round, we define π2,i(vi,a) := bi to be the broadcast of Pi in the second round of
π. For broadcasts b = (b1, . . . b4) of the second round, we define π3,i(v,a,b) := ci to be the
broadcast of Pi in the third round of π. For broadcasts c = (c1, . . . , c4) of the third round, we define
πo,i(vi,a,b, c) := yi to be the output of Pi in the protocol π.

We say that a private view vi of party Pi is self-consistent with respect to broadcast values
(a = (aj),b = (bj)) of π, if inputπ(vi) is a valid input of Pi, and the broadcast messages (ai, bi) of
Pi are consistent with its view and with the other broadcasts, i.e., ai = π1,i(inputπ(vi), randπ(vi))
and bi = π2,i(vi,a).

We say that a private view vi of party Pi is consistent with a view vj of party Pj if the private
message that Pi sends to Pj in the first round, as defined by π1,i(inputπ(vi), randπ(vi)), is the same
as the message that Pj received from Pi according to vj , and vice versa.

Overview. Consider the following 2-phase protocol π′ in which P2 is the dealer with input s.
At the sharing phase, P1 and P3 uniformly pick x ∈ A and t ∈ {0, 1} respectively, and then the
parties execute the first two rounds of π. During the reconstruction phase, the parties broadcast
their private views and subsequently locally emulate the third round and output computation of
π. If Pi’s private view is not self-consistent or is inconsistent with two other private views, then
a flag αi is raised and Pi is identified to be corrupt. If one of the parties other than dealer P2 is
identified to be corrupt or P2’s view has no inconsistency, then s is safely retrieved from the private
view of P2. The crux of our construction lies in retrieving s when P2 is identified to be corrupt or
has inconsistency with one of the remaining parties. The properties required from (fs,t)s,t∈{0,1} as
illustrated in Eqs. (1)–(4) are leveraged to identify and output the correct and unique secret s.

Inputs: P2 holds an input a secret s ∈ {0, 1}.

Sharing Phase (2 rounds): P1 samples x ← A and P3 samples t ← {0, 1} uniformly at random. In
addition, each party Pi samples randomness ri for the protocol π. All parties invoke the first two rounds
of π with inputs x, s, t, and ⊥, and randomness r1, r2, r3 and r4, respectively. Let a = (a1, . . . , a4)
denote the broadcast messages of the first round of π, and let b = (b1, . . . , b4) denote the broadcast
messages of the second round of π.

Reconstruction Phase (one round): Each Pi broadcasts its private view vi. Recall that vi consists
only of the input (if any), the randomness ri, and the private messages received at the first round.

Local Computation: Given the public values a,b and (v1, v2, v3, v4), every party computes the output
s as follows.

Protocol π′

8Our definition of private view is purely syntactic, and does not necessarily correspond to an actual invocation of
π. Of course, when the protocol is invoked (possibly with some malicious party) it naturally induces private views
for the honest parties, and we will be typically interested in this case.

11

1. For i ∈ {1, 2, 3, 4} do:
(a) If vi is not self-consistent (with respect to a and b) or if the view vi is inconsistent with at least

two other views vj , vk, j 6= k, set αi = 1. Otherwise, set αi = 0.
(b) Define the broadcast message ci of Pi in the third round of π as follows. If αi = 1 (party Pi is

known to be malicious), set ci := 0. Otherwise (if αi = 0), set ci := π3,i(vi,a,b). We denote those
broadcast values by c = (c1, . . . , c4).

2. If ∃i for which αi = 1 then:

(a) If α2 = 1, compute the output y4 := πo,4(v4,a,b, c) of P4 in π and output the unique s∗ for which
fs∗,t(x) = y4, where t is the value that P3 sampled according to v3 and x is the value that P1

sampled according to v1.
(b) If αi = 1 for i 6= 2, the parties output the value s that appears in v2.

3. Otherwise (αi = 0 for all i), if the view v2 is consistent with all other views, extract the input s of
P2 from v2, and output s. Otherwise, let y4 := πo,4(v4,a,b, c) be the output of P4 in π, let x be the
value that P1 sampled according to v1, and let t be the value that P3 sampled according to v3. We
distinguish between the following cases:

(a) If v1 is inconsistent with v2, output zero if there exists some x∗ for which f0,t(x∗) = y4. Otherwise,
output one.

(b) If v2 is inconsistent with v3, output the unique s∗ for which there exists t∗ such that fs∗,t∗(x) = y4.
(c) If v2 is inconsistent with v4, output the unique s∗ such that fs∗,t(x) = y4.

Figure 1: Protocol π′

The following lemmas show that π′ is a (4, 1)-VSS protocol.

Lemma 3.5. Protocol π′ is a private (4, 1)-VSS.

Lemma 3.6. Protocol π′ is a correct (4, 1)-VSS.

Lemma 3.7. Protocol π′ satisfies the commitment property of a (4, 1)-VSS.

The privacy proof (that depends only on the sharing phase) appears in Section 3.2. In Section 3.3,
we collect some useful facts regarding the sharing phase and use them in Sections 3.4 and 3.5 to
establish the correctness and commitment properties.

3.2 Privacy (Proof of Lemma 3.5)

Assume that P2 is honest and fix any adversary A. If A corrupts P1 or P3, then privacy of π′

follows from the security of π. (Since the functionality F delivers no output to P1 and P2, their
views in π must be independent of the inputs of the other parties.) We can therefore focus on the
case where A corrupts P4. Denote by Ds the distribution of all the information that is available to
the adversary (aka full view) that consists of his private view (defined by the incoming messages in
the first round) together with all the broadcasts in the sharing phase of an execution of π′(s). We
need to show that the distributions D0 and D1 are identical.

Let us denote by Ds(x, t) the distribution Ds conditioned on the event that at the first round
P1 and P3 chose the inputs x ∈ A and t ∈ {0, 1}, respectively. Recall that under this fixing of
x and t, the sharing phase of π′(s) is distributed exactly like the first two rounds of π(x, s, t,⊥).
The perfect security of π therefore guarantees that Ds(s, t) reveals nothing on the inputs except for
fs,t(x), leading to the following claim.

12

Claim 3.8. For any pair of input tuples (x1, s1, t1) and (x2, s2, t2) for which fs1,t1(x1) = fs2,t2(x2),
the distribution Ds1(x1, t1) is identical to the distribution Ds2(x2, t2).

Proof. Let B be an adversary against π who corrupts P4 and acts like A in the first two rounds
(that correspond to the sharing phase) and in the third round acts arbitrarily, e.g., broadcasts 0.
Let us denote by D′s(x, t) the full view of B in an execution of π with honest P1, P2 and P3 whose
inputs are x, s and t respectively. Since Ds(x, t) can be extracted from D′s(x, t) (by removing the
messages sent in the last round), it suffices to show that D′s1(x1, t1) and D′s2(x2, t2) are identically
distributed. Indeed, by perfect privacy, there exists an ideal-model simulator S that given fs,t(x)
perfectly samples D′s(x, t). Since fs1,t1(x1) = fs2,t2(x2), we conclude that D′s1(x1, t1) is distributed
identically to D′s2(x2, t2).

Define the mapping δ : A × {0, 1} → A × {0, 1} that takes (x, t) to (x′, 1 − t) where x′ is the
unique element of A for which f0,t(x) = f1,1−t(x

′). By Claim 3.8 the distributions D0(x, t) and
D1(δ(x, t)) are identical. Moreover, by Eqs. (1)–(4), the mapping δ forms a bijection. Recalling
that Ds is a uniform mixture of the distributions {Ds(x, t) : x ∈ A, t ∈ {0, 1}} we get that

D0 =
∑

x∈A,t∈{0,1}

1

2|A|
D0(x, t) =

∑
x∈A,t∈{0,1}

1

2|A|
D1(δ(x, t)) =

∑
x∈A,t∈{0,1}

1

2|A|
D1(x, t) = D1,

and the lemma follows.

3.3 Basic Properties

In this section we relate some of the properties of π′ to those of π. Except for Claim 3.16, the
observations in this section do not make use of the concrete properties of the functionality F .
Accordingly, we use a general notation and let zi denote the input that Pi sends to F and let Fi
denote the output that F sends to Pi. (In our case, z1 = x ∈ A, z2 = s ∈ {0, 1}, z3 = t ∈ {0, 1},
z4 = ⊥, F2 = F4 = fs,t(x) ∈ B and F1 = F3 = ⊥.)

Recall that once the first step of the reconstruction protocol ends, all the parties agree on a
reconstruction transcript (RT) T = (v,a,b) where v = (vi)i∈[4],a = (ai)i∈[4] and b = (bi)i∈[4]).
By applying the local computation step to this vector T , we can define all the intermediate values
(e.g., (αi, ci)i∈[4], y4). We refer to these values as the values induced by T , and sometimes, when the
context is clear, we just treat them as part of the vector T . We use the notation inputπ′(vi) and
randπ′(vi) to denote the input and randomness of Pi according to vi in the simulation of π in π′.

Definition 3.9 (i-realizable in π′). We say that an RT T is i-realizable in π′ with respect to inputs
(zj , rj)j 6=i∈[4] if the transcript can be generated by an adversary P ∗i that corrupts Pi when interacting
with the honest parties whose inputs/randomness in the emulation of π are (zj , rj)j∈[4],j 6=i.

Clearly, if T is generated by an execution of π then the views of honest parties are self-consistent
and consistent with each other. Recalling that the flag αi is raised if Pi is either not self-consistent
or inconsistent with at least two parties, we get the following observation.

Observation 3.10. Suppose that the RT T is i-realizable in π′ with respect to inputs (zj , rj)j∈[4],j 6=i.
Then, exactly one the following holds for the malicious party:

1. (detection) αi = 1;
2. (single inconsistency) αi = 0 and there exists a single inconsistency between vi and some vj.

13

3. (consistent transcript) αi = 0 and there are no self-inconsistencies or pairwise inconsistencies.

In addition, for every honest party Pj, the values induced by T satisfy αj = 0 and (inputπ′(vi),
randπ′(vi)) = (zj , rj).

By Observation 3.10, if a transcript T is i-realizable in π′ then we do not have to specify the
inputs and randomness of the honest parties for which the transcript is generated since these are
already defined by T . In order to analyze the correctness and commitment properties, we will have
to relate adversarial behavior in π′ to adversarial behavior in π.

Definition 3.11 (i-realizable in π). We say that an RT T is i-realizable in π if there exists an adver-
sary P ∗i such that in an execution of π in which Pi is corrupted by P ∗i and the other parties Pj , j 6= i
play honestly with inputs/randomness that correspond to the T -induced values, (zj , rj)j∈[4],j 6=i, the
following hold: the view of each honest party Pj in π is vj, the broadcasts of the first round of π are
a, the broadcasts of the second round of π are b, and the broadcasts of the third round of π are c,
where vj ,a,b, c are computed according to the transcript T .

The following observation follows from the perfect correctness of π.

Observation 3.12. Suppose that the RT T is i-realizable in π and let v,a,b, c be the values included
in and induced by T . Then, there exists some input z′i such that for every honest party Pj it holds
that πo,j(vj ,a,b, c) = Fj(z

′), where the i-th entry of z′ is z′i and, for j 6= i, the j-th entry of z′

equals to the input of Pj in T .

It can be shown that if T is i-realizable in π′ then it is also i-realizable in π. The proof is
deferred to Appendix A.2. Next, we use the following claim that deals with a RT that has a single
inconsistency between vi and vj (hereafter referred to as (i, j)-inconsistency) and each of its views
is self-consistent. We refer to such an RT as an (i, j)-almost consistent RT.

Claim 3.13 (symmetry of almost-consistent RTs). Every (i, j)-almost consistent RT T is both
i-realizable and j-realizable in π.

Proof. Since (i, j)-almost consistent RT is also (j, i)-almost consistent RT, it suffices to prove that
T is i-realizable in π. Consider an execution of π in which every party Pk 6= Pi, plays honestly with
the input/randomness (zk, rk) that are taken from T , and the adversary corrupts Pi and behaves as
follows. The adversary behaves honestly according to the input/randomness in vi (and according to
the messages that he receives), except that, at the first round, he sends to Pj the private message
ai,j that appears in T (as part of Pj ’s view). We claim that such an execution realizes T .

First, since each view is self-consistent the first-round broadcast in the execution agree with
a. Next, observe that in the first-round of the execution, every honest party Pk receives a private
message from a party P` whose value is exactly a`,k. Indeed, for (`, k) = (i, j) this holds by definition,
and for all other (`, k) 6= (i, j) this holds since the corresponding views are not in a conflict. All the
remaining values are consistent with the transcript T since each view is self-consistent with T .

Definition 3.14 (i-equivalence and i-siblings). The i-part of a transcript T consists of vi, a,b and
the induced value c. (Intuitively, this is all the information available to a party Pi.) In the following
we say that T = (v,a,b) is i-equivalent to T ′ = (v′,a,b) (denoted T =i T

′) if their i-parts are
equal. The transcript T and T ′ may disagree on private inputs/randomness of party Pj for j 6= i,
and on the private messages sent from Pk to Pj for k, j 6= i. We say that a pair of input tuple

14

z = (z1 . . . , z4) and z′ = (z′1 . . . , z
′
4) are i-siblings if F (z) = F (z′) and where zi = z′i. (Intuitively,

such a pair is indistinguishable from the point of view of an adversary Pi that attacks the ideal model
by sending zi.)

The following claim follows from the perfect privacy of π.

Claim 3.15 (sibling transcripts). Suppose that T is i-realizable in π and let z = (z1 . . . , z4) denote
the inputs of the parties according to T . Then, for any i-sibling z′ = (z′1 . . . , z

′
4) of z, there exists an

i-realizable RT T ′ whose inputs are z′ for which T =i T
′. Moreover, if T is (i, j)-almost consistent

then so is T ′ and if the output of Pi in π according to T is well defined, then it is equal to its output
according to T ′.

Proof. Let P ∗i be a π-adversary that realizes T . Consider the the following executions of π with
P ∗i : (1) The inputs of the honest party are chosen according to z and their randomness is chosen
uniformly; and (2) The inputs of the honest party are chosen according to z′ and their randomness
is chosen uniformly.

Let D,D′ denote the distribution of the complete view of P ∗i in experiment (1) and (2) respec-
tively. That is, D (or D′) consists of all the incoming messages that P ∗i sees including broadcast
values. By perfect security of π, D is identically distributed to D′. Since the transcript T is gen-
erated by P ∗i , the i-part of T is in the support of D. It follows that in D′, there exists a fixing
(r′j)j 6=i of the honest parties randomness, that generates a transcript T ′ with the i-part of T (that
is, T ′ =i T). We can therefore define T ′ to be the corresponding transcript.

The “moreover” part, actually holds for every pair of i-realizable transcripts T, T ′ which are
i-equivalent. Indeed, i-realizability implies that the party Pj , j 6= i is honest and so its view vj is
self-consistent with T (resp., T ′). Also, the only pair-wise inconsistencies must be with vi, and since
T =i T

′, any (i, j) inconsistency in T must holds in T ′ and vice versa. Finally, since T =i T
′, the

π-output of Pi must be equal to its output according to T ′.

Finally, the following claim will be used extensively in the correctness and commitment proofs.

Claim 3.16. For any (2, i)-almost consistent transcript T , it holds that πo,2(v2,a,b, c) =
πo,4(v4,a,b, c) = fs,t(x), where x, s and t are the inputs according to T , and a,b, c are the broadcast
values according to or induced by T .

Proof. We split into two cases.

– If i ∈ {1, 3}, then T is i-realizable (Claim 3.13), and we can think of P2 and P4 as honest parties.
Therefore, by Observation 3.12, it holds that πo,2(v2,a,b, c) = πo,4(v4,a,b, c) = fs,t∗(x

∗), where
either t∗ = t (if i = 1) or x∗ = x (if i = 3). On the other hand, since T is 2-realizable,
πo,4(v4,a,b, c) = fs∗,t(x) for some s∗. If i = 1, then the outputs of P2 and P4 equal to both
fs,t(x

∗) and fs∗,t(x) for some x∗, s∗. This implies that s = s∗ since Im(fs,t) ∩ Im(f1−s,t) = ∅ and
x = x∗ since the function fs,t is injective. Similarly, if i = 3, then the outputs of P2 and P4 equal
to both fs,t∗(x) and fs∗,t(x) for some s∗, t∗. It is not hard to verify that Eqs. (1)–(4)) imply that
this can happen only when s∗ = s and t∗ = t. In summary, the properties of the functionality F
guarantee that s∗ = s, x∗ = x and t∗ = t.

– If i = 4, then T is 4-realizable, by Observation 3.12, it holds that πo,2(v2,a,b, c) = fs,t(x). We
now show that πo,4(v4,a,b, c) = fs,t(x). By Claim 3.13, T is 2-realizable in π (i.e., we can think
of P2 as the malicious party). Therefore, by Observation 3.12, the output y4 of the honest party

15

P4 is well defined, and equals to fs∗,t(x) for some s∗. Let us assume, towards a contradiction, that
s∗ = 1− s and so y4 = f1−s,t(x).

First, we use Claim 3.13 again, this time to conclude that T is 4-realizable in π. Recall that
(x, s, t,⊥) are the π-inputs in T , and let x′ ∈ A be an input that satisfies

fs,t(x) = f1−s,1−t(x
′).

(The existence of such an input follows by the fact that Im(fs,t) = Im(f1−s,1−t).) The input
tuple (x′, 1 − s, t′ = 1 − t,⊥) is therefore a 4-sibling of the input (x, s, t,⊥), and therefore, by
Claim 3.15, there exists a corresponding (2, 4)-almost consistent transcript T ′ in which the inputs
are (x′, 1− s, t′ = 1− t,⊥), and for which the induced output y′4 of P4 equals to the output of T
i.e. y4 = f1−s,t(x).

Since the transcript T ′ is (2, 4)-almost consistent, it is also 2-realizable (by Claim 3.13), and
therefore, by Observation 3.12, the output y′4 of the “honest” party P4, must be equal to fs∗,1−t(x′)
for some s∗. It follows that y4 = f1−s,t(x) = fs∗,1−t(x

′), for some s∗ ∈ {0, 1}. We show that this is
impossible, and derive a contradiction. Indeed, if s∗ = 1− s, then f1−s,t(x) = f1−s,1−t(x

′) cannot
hold since Im(f1−s,t) ∩ Im(f1−s,1−t) = ∅. On the other hand, if s∗ = s, we recall that x′ satisfies
fs,t(x) = f1−s,1−t(x

′), and therefore, by Property (4) of the fa,b functions, f1−s,t(x) = fs,1−t(x
′)

cannot hold.

The claim follows.

3.4 Correctness (Proof of Lemma 3.6)

Consider an execution of π′(s) in which P2 is honest and some other party Pi is malicious. Let us
denote the resulting RT by T = (v,a,b) where v = (vi)i∈[4],a = (ai)i∈[4] and b = (bi)i∈[4]. Let
rj := randπ′(vj), x := inputπ′(v1), t := inputπ′(v3) and s := inputπ′(v2) be the π-inputs induced
by T and let c = (c1, . . . , c4) and (y1, . . . , y4) be the third-round broadcasts and outputs that are
induced by T . We will show that the output of the reconstruction phase on T must be s.

By definition, T is i-realizable in π′ (and hence in π by Claim A.2). Therefore, by Observa-
tion 3.10, all the flags αj , j 6= i of the honest parties (induced by T) equal to zero including α2.
If the adversary Pi’s flag αi equals to 1, or if P2 is consistent with everyone else, then the honest
parties simply output s from v2, and we are done. Otherwise, by Observation 3.10, all views are
self-consistent and P2 is inconsistent with Pi, and this is the only inconsistency. Namely, T is
(2, i)-almost consistent. We distinguish between the following three cases.

P2 is inconsistent with P1. In this case, the output of the reconstruction (Step 3a) is 0 iff
y4 ∈ Im(f0,t) where y4 is the output of the honest party P4, induced by T . We will show that the
output of the reconstruction equals to s. Since Im(f0,t) ∩ Im(f1,t) = ∅, it suffices to show that
y4 ∈ Im(fs,t). This follows from Claim 3.16

P2 is inconsistent with P3. In this case, the output of the reconstruction (Step 3b) is the
unique s∗ for which there exists t∗ such that fs∗,t∗(x) = y4. By Claim 3.16, it follows that y4 =
πo,4(v4,a,b, c) = fs,t(x). Note that s is unique since Im(fs,t) ∩ Im(f1−s,t) = ∅ and fs,t(x) 6=
f1−s,1−t(x). Therefore the output is s, as required.

16

P2 is inconsistent with P4. In this case, the output of the reconstruction (Step 3c) is the unique
s∗ for which fs∗,t(x) = y4. By Claim 3.16 it follows that y4 = πo,4(v4,a,b, c) = fs,t(x). Note that s
is unique since Im(fs,t) ∩ Im(f1−s,t) = ∅.

This completes the proof of correctness.

3.5 Commitment (Proof of Lemma 3.7)

Assume, towards contradiction, that the commitment property is violated. That is, there exists a
malicious P ∗2 that, after the execution of the sharing phase with honest parties, can broadcast either
v2,0 or v2,1 in the reconstruction phase so that the honest parties will output 0 or 1, respectively. We
will show that such adversary P ∗2 allows us to attack the protocol π and violate the “independence
of inputs” property.

Notation. Let us denote the corresponding 2-realizable RTs by T0 and T1. Observe that these
RTs agree on the private views, vj , for every honest Pj with j 6= 2. Let us extract from these views
the private randomness, rj := randπ′(vj),∀j 6= 2, the inputs, x := inputπ′(v1) and t := inputπ′(v3),
and the private messages, a2,1, a2,3, and a2,4, that P2 sent at the first round of π′. Being 2-realizable,
the RTs T0 and T1 also agree on the first-round broadcast values a = (a1, . . . , a4), the second round
broadcast values b = (b1, . . . , b4) and the transcript-induced third-round broadcasts of the honest
parties (c1, c3, c4). Let us denote by v2,0 the private view of P2 under T0 and by and v2,1 the
private view of P2 under T1. These views may differ, and accordingly they may lead to different
third-round broadcast values, c2,0 and c2,1, for P2. Let c0 := (c1, c2,0, c3, c4) denote the T0-induced
third-round broadcast vector, and by c1 := (c1, c2,1, c3, c4) the T1-induced third-round broadcast
vector, respectively.

Observe that at least one of the views, v2,0, v2,1, must be self-consistent with its transcript, and
consistent with at least two of the other three views. Otherwise, the flag α2 is raised to 1 in both
cases and c2,0 = c2,1 = 0, and so the final reconstructed value defined by y4 := πo,4(v4,a,b, c), will
be the same for both T0 and T1 (leading to no violation of commitment). Fix s ∈ {0, 1} such that
v2,s is self-consistent and inconsistent with at most one other party in Ts. We distinguish between
the case where Ts is fully consistent and the case where Ts is (2, i)-almost consistent. In both cases,
we will prove the following lemma that shows violation of “independence of inputs” in π.

Lemma 3.17. There exists an adversary B against π for which the following holds. Consider an
execution of π in which P2 is corrupted by B and the other parties play honestly with inputs x for
P1 and t′ ∈ {0, 1} for P3.

1. If t′ = t then, with positive probability, the output of P4 will be f1−s,t(x).
2. If t′ = 1− t then, with probability 1, the output of P4 will be fs,1−t(x).

The lemma implies that B can effectively choose its input based on the input t. Formally, we
show that B cannot be perfectly simulated in the ideal model of F computation. Assume towards
a contradiction, that there exists an ideal-model adversary S that corresponds to B. Since the
distribution of the output of P4 in the real model has the same distribution as in the ideal model
for any fixing of the inputs of the honest parties, it must be the case that the ideal adversary sends
1−s to the ideal functionality with positive probability. Otherwise, by the first part of Lemma 3.17,
S fails to perfectly simulate B when the honest inputs are x, t. However, this means that when the
honest inputs are x, 1− t, the simulator S sends 1− s with positive probability, and so the output

17

of P4 will be f1−s,1−t(x) 6= fs,1−t(x). By the second part of Lemma 3.17, this means that S fails to
perfectly simulate B when the honest inputs are x and 1− t.

We prove Lemma 3.17 in the following subsections where Section 3.5.1 is devoted to the case
where v2,s is consistent with all parties, and Section 3.5.2 is devoted to the case where v2,s is
inconsistent with one party.

3.5.1 Case 1: v2,s is self-consistent and consistent with all parties

Since v2,s is consistent with all parties, and all other parties are honest, it follows, by the definition
of the reconstruction phase, that the output of the honest parties in Ts is inputπ′(v2,s) = s. We
define the following adversary B who corrupts P2 in the protocol π.
• In the first round, the adversary plays according to π1,2(s, r2), where r2 = randπ′(v2,s).
• In the second round, the adversary B sends the message π2,2(vi,a

′) where vi denotes its private
view and a′ denotes the broadcast values of the first round.

• At the last round, the adversary B first sees all broadcasts c′1, c′3 and c′4.9 The adversary then
checks what her output y2 will be if she continues to play honestly. Formally, she computes
c′2 = π3,2(vi,a

′,b′), sets c′ = (c′1, c
′
2, c
′
3, c
′
4) and computes y2 := πo,2(vi,a

′,b′, c′), where b′

denotes the broadcasts of the second round. If the predicted output, y2, equals to fs,t(x), the
adversary broadcasts the message c2,1−s taken from T1−s, and otherwise she plays honestly
with π3,2(vi,a

′,b′).

Observe that the adversary is well defined. Indeed, in the first two rounds the adversary plays
honestly as if it has input s and randomness r2, and so π1,2(s, r2), π2,2(vi,a

′) and π3,2(vi,a
′,b′) are

well defined. We will prove Lemma 3.17 for the adversary B.

Proof of Lemma 3.17. Consider an honest execution of π(x, s, t,⊥) in which the randomness of Pj
is chosen to be rj for every j (exactly as in π′). This event happens with positive probability, and
it would generate the RT Ts if B continues to play honestly. So the output of P2 will be equal to
fs,t(x), i.e., y2 := πo,2(v2,a

′,b′, c′) = πo,2(v2,s,a,b, cs) = fs,t(x). Consequently, B will broadcast
c2,1−s taken from T1−s. It is easy to note that in this case the values v4, x, t,a,b and c1−s are
consistent with T1−s, because Ts and T1−s agree on the views of the honest parties and all the
broadcasts except the round-3 broadcast of P2. We will show in Claim 3.18 below, that the output
of P4 will be πo,4(v4,a,b, c1−s) = f1−s,t(x), as required for the first part of Lemma 3.17.

Next, consider an execution of π with the adversary B in which the party P3 has input 1− t and
party P1 has input x. If this execution is completed honestly, then, by correctness, the output of P4

and P2 will always be fs,1−t(x). Consequently, the adversary B will predict the value y2 = fs,1−t(x)
which is never equal to fs,t(x) (since Im(fs,1−t) and Im(fs,t) are disjoint), and so B will continue to
play honestly, and the final output of P4 will be fs,1−t(x), as required.

Claim 3.18. It holds that πo,4(v4,a,b, c1−s) = f1−s,t(x), where v4, x, t,a,b and c1−s are the values
induced by T1−s.

Proof. By definition, the RT T1−s is 2-realizable in π, and therefore, by Observation 3.12, it holds
that πo,4(v4,a,b, c1−s) = fs∗,t(x) for some s∗ ∈ {0, 1}.

If v2,1−s is not self-consistent with T1−s or v2,1−s is inconsistent with some other view in T1−s,
then the output of the honest parties in π′ is determined by πo,4(v4,a,b, c1−s) which must be

9Here we rely, for the first time, on the security of π against a rushing adversary.

18

f1−s,t(x) (since T1−s leads to the reconstruction of 1 − s) and so s∗ = 1 − s. This implies that
πo,4(v4,a,b, c1−s) = f1−s,t(x).

Otherwise, v2,1−s is self-consistent, and is also consistent with all parties, and so the honest
parties output inputπ′(v2,1−s) which, by assumption, must be 1− s. Consider an honest execution
of π(1−s, t, x,⊥) and note that if each party Pj picks up randomness rj , and P2 picked randomness
randπ′(v2,1−s), then the view of P2 will be v2,1−s, the view of the honest party Pj , for j 6= 2, will
be vj , and the broadcasts would be a,b and c1−s. Since the protocol is correct, the output of P4

would be πo,4(v4,a,b, c1−s) = f1−s,t(x), as required.

3.5.2 Case 2: v2,s is self-consistent and inconsistent with Pi

In this case, Ts is (2, i)-almost consistent and the final output of the reconstruction over the RT Ts
is s. Following Claim 3.16, it holds that y4 := πo,4(v4,a,b, cs) = fs,t(x), y2 := πo,2(v2,a,b, cs) =
fs,t(x) and inputπ′(v2,s) = s.

We will prove Lemma 3.17 with respect to the following adversary B who corrupts P2. Recall
that ai,2 (resp., a2,i) denotes the first-round message that P2 received from Pi (resp., sent to Pi)
according to Ts and let r2 = randπ′(v2,s) be P2’s randomness according to Ts.
• In the first round, the adversary acts according to π1,2(s, r2), except that a2,i is taken as per

Ts. (Note that since v2,s is inconsistent with Pi, the message a2,i may not be consistent with
π1,2(s, r2).)

• P2 collects her current private view (s, r2), (a′j,2)j 6=2 and modifies it by replacing the i-th in-
coming message a′i,2 with the message ai,2 taken from Ts. We denote the modified view by
v2. Let a′ = (a′1, a

′
2, a
′
3, a
′
4) denote the broadcasts of the first round. In the second round P2

broadcasts π2,2(v2,a
′).

• Let b′ = (b′1, . . . , b
′
4) be the broadcasts of the second round. At the third round, after

seeing the broadcast c′1, c′3, c′4 the adversary computes c′2 = π3,2(v2,a
′,b′) and a “prediction”

y2 := πo,2(v2,a
′,b′, c′), where c′ = (c′1, c

′
2, c
′
3, c
′
4). If y2 = fs,t(x) then P2 broadcasts c2,1−s

taken from T1−s. Otherwise P2 broadcasts c′2.

Proof of Lemma 3.17. Consider an execution of π(x, s, t,⊥) in which B corrupts P2 and the ran-
domness of every honest party Pj , j 6= 2 is chosen to be rj . This event happens with positive
probability, and so, such an execution generates the RT Ts if B chooses to act honestly in the third
round. From Claim 3.16 it follows that y2 = πo,2(v2,a

′,b′, c′) = πo,2(v2,a,b, c) equals to fs,t(x).
Consequently, in our execution, B broadcasts c2,1−s and so the broadcasts are a,b and c1−s. By
Claim 3.18, we conclude that in this case the output of P4 will be πo,4(v4,a,b, c1−s) = f1−s,t(x).

We move on and prove the second case of the lemma. Consider an execution of π with the
adversary B in which P3 has input t′ = 1 − t and P1 has input x. Let us denote the RT that
is generated by the first two rounds by T . Observe that T is either fully-consistent or (2, i)-
almost consistent transcript (the latter since Ts was (2, i)-almost consistent). In either case, we
need to show that the output of P4 is fs,1−t(x). If T is fully consistent then, by correctness,
y2 := πo,2(v2,a

′,b′, c′) = fs,1−t(x). Since P2 behaves honestly in Round 3, y4 := πo,4(v4,a
′,b′, c′) =

fs,1−t(x), as required. The case of almost-consistent transcript, follows from Claim 3.16.
This completes the proof of Lemma 3.17.

19

4 Perfectly-secure Degree-2 Computation in Four Rounds

In this section, we prove Theorem 1.6. We begin with a set of definitions.

4.1 Definitions

Definition 4.1. A value s is said to be committed amongst P, denoted as bse, if there exists a
polynomial f(x) of degree at most t with f(0) = s such that every honest party Pi either holds f(i)
or ⊥ and at least t+ 1 honest parties hold non-⊥ values.

Definition 4.2. A value s is said to be t-shared amongst P, denoted as [s], if there exists a poly-
nomial f(x) of degree at most t with f(0) = s such that every honest party Pi holds f(i).

Definition 4.3. A value s is said to be doubly t-shared amongst P, denoted as [[s]], if there
exist polynomials f(x), {fi(x)}i∈{1,...,n}, all of degree at most t with f(0) = s and f(i) = fi(0) for
i ∈ {1, . . . , n} such that f(0), {fi(0)}i∈{1,...,n} are t-shared via polynomials f(x), {fi(x)}i∈{1,...,n} and
every honest Pi holds fi(x).

Definition 4.4. A value s is said to be doubly 2t-shared amongst P, denoted as 〈s〉, if there exist a
degree-2t polynomial f(x) and degree-t polynomials {fi(x)}i∈{1,...,n} with f(0) = s and f(i) = fi(0)
for every honest party Pi such that {fi(0)}i∈{1,...,n} are t-shared via polynomials {fi(x)}i∈{1,...,n} and
every honest Pi holds f(i) and fi(x).

In the double secret sharing definitions, the sharings done for the shares of the secret are referred
as second-level sharings and the shares of the shares are termed as share-shares. The ith share of s
is denoted as si (the context will make it clear whether the shares correspond to t or 2t sharing).
The jth share-share of the ith share si of s is denoted as sij .

The sharings [·], [[·]] and 〈·〉 are linear i.e. local addition of the shares of [a] and [b] results in
[a + b] (similarly for the other types of sharing). Furthermore, addition of 〈a〉 and [[b]] results in
〈a+ b〉.

4.2 The High-level Idea

Our goal is to build a perfectly-secure MPC protocol that can evaluate any n-party degree-2 func-
tionality (over a field larger than n) with optimal round complexity of 4. The following proposition
shows that it suffices to focus on a special family of such functions.

Proposition 4.5. Let f be an n-party functionality that each of its output can be written as a
degree-2 polynomial in the inputs over some finite field F. Then, the task of securely-computing f
non-interactively reduces to the task of securely-computing a degree-2 functionality g over F that
each of its outputs is of the form

xαxβ +
n∑
j=1

rj , (5)

where xα and xβ are the inputs of party Pα and Pβ respectively and rj is an input of party Pj
for j ∈ {1, . . . , n}. The reduction preserves active perfect-security and the resiliency threshold.
Moreover, the complexity of the the function g (e.g., its formula-size) is polynomial in n and in the
total input length of f .

20

The proof follows immediately from the locality lemma of randomized encodings [AIK04] and
the standard transformation from randomized functionalities to deterministic ones.

By Proposition 4.5, it suffices to focus on functionalities whose output can be written as (5). For
simplicity, we will discuss computation of one degree-2 term as above. The extension, guaranteeing
that the same x values are used across different degree-2 terms, will follow easily.

Traditionally, evaluating a degree-two function would involve secret-sharing the values and mul-
tiplying them distributedly. With t corrupt parties in the system, the secret sharing takes the form
of t-sharing and the share-wise multiplication results in a non-random 2t-sharing of the product.
The latter is transformed to a t-sharing via degree-reduction and randomization, and lastly the
t-shared product is reconstructed robustly to complete degree-two function evaluation. The degree-
reduction in each step of multiplication seems necessary to keep the degree inflation in check when
a sequence of multiplications needs to be performed. With degree-two functions as the end goal, we
ditch full-fledged round-expensive degree-reduction. Rather we settle for generating a randomized
double 2t-sharing of the product which enables robust reconstruction via the second-level t-sharings.
That is, we perform one-time degree reduction for the second-level sharings alone.

At a high level, the aim of our upper bound, taking 4 rounds, is to compute 〈xαxβ +
∑n

j=1 r
j〉 in

the first 3 rounds. Denoting xαxβ+
∑n

j=1 r
j as y, the last round is used to reconstruct the underlying

(randomized) 2t-degree polynomial of 〈y〉 via robust reconstruction of the n second-level t-sharings
and to identify n− t of them that correspond to correct values on the 2t-degree polynomial. Since
n > 3t, the n− t points are enough to interpolate the underlying 2t-degree polynomial and recover
y. To generate 〈y〉 and reconstruct y, we build a series of building blocks– (a) weak commitment
scheme (WC) that generates the most primary type of sharing b·e; (b) VSS that uses WC as an
building block and generates [[·]]-sharing of a party’s secret; (c) a triple-sharing protocol that uses
VSS as a building block and verifiably generates [·]-sharing of a party’s triple secrets a, b, c satisfying
the multiplication relation c = ab. While WC and VSS requires 3 rounds each, the triple sharing
protocol requires 4 rounds where the sharing is completed in first 3 rounds and the verification of
the product relation of the secrets is completed in Round 4.

With the above tools, we follow the following route at a high level. The VSS is used to generate
[[·]]-sharing of the secrets xα, xβ and rjs. A local multiplication over the shares generates a non-
random 2t-sharing of the product xαxβ . A double 2t-sharing of the product is then completed
in two steps. First, every party Pi is required to produce an independent triple sharing which is
then used to turn the t-sharing of the ith share of xα and xβ to a t-sharing of their product via
Beaver’s trick [Bea91]. The correctness of this computation relies on the correctness of the triple
which is confirmed in Round 4. With n − t honest parties, at least 2t + 1 t-sharings are correctly
computed. Second, the underlying 2t degree polynomial holding the product is randomized using
a known trick. Assuming both these steps can be concluded in 3 rounds, Round 4 is used to sum
up 〈xαxβ〉 and [[rj]] (for j ∈ {1, . . . , n}) to obtain 〈y〉 (thanks to linearity) and reconstruct all the
t-sharings (which in turn reveal the values on the randomized 2t-degree polynomial sharing y) and
verifying the correctness of the triple sharing (which identifies the correct points on the 2t-degree
polynomial).

The second step of randomizing the 2t degree polynomial requires generating t double t-sharings
and can be achieved in 3 rounds using VSS. However, the first step of realizing Beaver’s trick brings
an additional challenge. The inputs to the Beaver’s trick, namely all the t-sharings, themselves are
ready only in the end of Round 3 (upon conclusion of VSS instances), leaving no time for the couple
of parallel reconstructions needed for Beaver’s trick. We resolve this issue by noting that Pi holds

21

complete information about the triple (for which she herself is the dealer), the tentative ith share
of xα and xβ as well as their tentative share-shares by the end of Round 2 itself. As a result, Pi
can guide the reconstruction of the secrets needed for Beaver’s trick in Round 3. A corrupt Pi can
mislead, leading to a faulty execution of Beaver’s trick. Reconstructing these secrets yet again in
Round 4 after their t-sharing are finalized in Round 3 and checking against the ones reconstructed in
Round 3 (with the aid of Pi), allows us to identify any misbehaviour done by Pi. Yet again, having
at least 2t + 1 honest parties ensure that we will have enough values on the 2t-degree polynomial,
excluding the outcomes of Beaver’s trick corresponding to all corrupt Pis.

For the degree-2 completeness, we need to output different y values (yet with the same form).
To ensure that the same x inputs are used for computation of all the y values, the same secret
sharing of the x values needs to be used for computation of 〈y〉 as above for all y values. With the
above high-level idea, we proceed to describe the building blocks and the final protocol.

4.3 Verifiable Secret Sharing

We begin by describing a VSS protocol, tweaking the construction of [KKK09], in which the tentative
share and the tentative share-shares are known to a party already at the end of the second round
of computation. Either the tentative share or t+ 1 of the tentative share-shares should turn correct
(a party need not know which one between the two and which t+ 1 in the latter case before Round
3). This property is essential for reconstructing the values needed for Beaver’s trick in the third
round of our final 4-round construction and is not offered straightaway by the known VSS protocols
including [KKK09]. On the downside, our new VSS protocol uses broadcast in two rounds (Round
2 and 3), compared to one round of broadcast (Round 3) in the VSS of [KKK09].

As a stepping stone towards VSS, we first build a weaker primitive called weak commitment
(WC). WC and opening are distributed information-theoretic variant of cryptographic commitment
schemes. It also can be viewed as a (weaker) variant of the typical building block of VSS, known
as Weak Secret Sharing (WSS). WC has a clean goal of ensuring that– for a unique secret s, at
least t + 1 honest parties must hold the shares of the secret. WSS, on the other hand, ensures
that a unique secret must be committed in the sharing phase so that either the secret or ⊥ will
be reconstructed latter during the distributed reconstruction phase. It is noted that a committed
secret in WC needs the help of the dealer for its opening, unlike the secret committed in WSS. With
a simpler instantiation, weak commitment and opening are sufficient to build a VSS scheme.

Interestingly, our new recipe for 3-round VSS via WC does not demand two rounds of broadcast,
if it is not pressed to offer the above property (of making the tentative share and share-share
available). In the respective sections below, we remark how Round 2 broadcasts can be avoided
following the footsteps of [KKK09].

4.3.1 Weak Commitment.

We start with the definition of WC. The dealer D starts with a polynomial of degree at most t and
generates b·e-sharing of its constant term using the input polynomial. For an honest D, WC in fact
produces [·]-sharing of the constant term. Primitives with similar spirit had been used to build VSS
in different network settings [PR18]. We abstract out the need in terms of a functionality Fwc given
in Fig 2 and present the protocol realizing the functionality below. The dealer sends a polynomial
g(x) and a set P ′, indicating who should receive a share, to the functionality. An honest D will
send g(x) of degree at most t and P ′ = P. When a corrupt D sends either a polynomial which is of

22

degree more than t or a set of size less than n− t (denying shares to at least t+ 1 honest parties),
all the parties receive ⊥ from the functionality.

Fwc receives g(x) and a set P ′ from D ∈ P.

– If g(x) has degree more than t or |P ′| < n− t, it sends ⊥ to every Pi.

– Else it sends g(i) to every Pi ∈ P ′ and ⊥ to everyone else.

Functionality Fwc

Figure 2: Functionality Fwc

At a high level, D, on holding a polynomial g(x) of degree at most t, initiates the protocol by
picking a symmetric bivariate polynomial G(x, y) of degree t in both variables uniformly at random
over F such that G(x, 0) and G(0, y) are the same as the input polynomial g(x) (with change
of variable for G(0, y)). Following some of the existing WSS/VSS protocols based on bivariate
polynomials [KKK09], the protocol goes as follows: D sends gi(x) = G(x, i) to party Pi and in
parallel the parties exchange random pads to be used for pairwise consistency checking of their
common shares. When a bivariate polynomial is distributed as above, a pair of parties (Pi, Pj)
will hold the common share G(i, j) via their respective polynomials gi(x) and gj(x). Namely,
gi(j) = gj(i) = G(i, j). For any mismatch, say between (Pi, Pj) during padded consistency check
in Round 2, the relevant parties and the dealer disclose their version of the disputed common value
in Round 3. The parties, in addition, also discloses the pads that they had used. A conflicting pair
is defined as the one that agrees on the pad, but disagrees on the common point on G(x, y). A
party in a conflicting pair becomes unhappy when its version mismatches with D’s version of the
common value. Let W denote the set of happy parties and note that two conflicting honest parties
cannot belong to W, implying all the honest parties in W are pairwise consistent and together
define a unique symmetric bivariate polynomial, say G′(x, y) and an underlying degree t univariate
polynomial g′(x) = G′(x, 0), the latter of which is taken as D’s committed input. The honest parties
in W output the constant term of their gi(x) polynomials received from D as the share of g′(x).
The remaining parties who lie outside W sets their share to ⊥. For an honest D, all the honest
parties belong to W and hold non-⊥ shares. Protocol wcom is described in Fig. 3, which we prove
realizes functionality Fwc (Lemma 4.6) in Appendix B.1.

Inputs: D has input g(x).

Output: The parties output [g(0)] if D is honest and bg′(0)e otherwise for some g′(x) of degree at most
t. The parties output ⊥, if D is discarded.

R1: D and every party Pi do the following in parallel.

- D chooses a random symmetric bivariate polynomial G(x, y) of degree at most t in each variable such
that G(x, 0) = g(x). D sends to each Pi the polynomial gi(x) = G(x, i).

- Each Pi picks a random polynomial ri(x) of degree at most t and sends rij = ri(j) to every Pj .

Protocol wcom

23

R2: Each Pi sets its share si = gi(0). Each pair of ordered pair (i, j), the parties Pi and Pj broadcast
mi(x) = gi(x) + ri(x) and mij = rij + gj(i) respectively.

R3: For each pair of ordered pair (i, j) such that mi(j) 6= mij , the parties (Pi, Pj) and D broadcast
(gi(j), ri(j)), (gj(i), rij) and G(i, j) respectively.

Local Computation: An ordered pair (Pi, Pj) is called conflicting pair if (gi(j), ri(j)) and (gj(i), rij)
broadcasted by Pi and Pj respectively satisfy (a) ri(j) = rij and (b) gi(j) 6= gj(i). In a conflicting
pair (Pi, Pj), Pi (respectively Pj) is said to be unhappy if G(i, j) broadcasted by D is not equal to gi(j)
broadcasted by Pi. Let W denote the set of happy parties. If |W| < n − t, then D is discarded and W
is reset to ∅. Every Pi 6∈W resets its share si to ⊥.

Figure 3: Protocol wcom

Lemma 4.6. Protocol wcom realises functionality Fwc tolerating a static adversary A corrupting t
parties, possibly including the dealer D.

While we never need to reconstruct a b·e-shared secret, non-robust reconstruction can be enabled
by allowing D to broadcast the committed polynomial and the parties their shares. The D’s
polynomial is taken as the committed one if n − t parties’ share match with it. Clearly an honest
D’s opened polynomial will be accepted and a non-committed polynomial will always get rejected.

Remark 4.7 (Minimizing broadcast rounds). We note that the use of broadcast in Round 2 of
wcom can be avoided. Similar to the steps of WSS in [KKK09], in Round 1, Pi sends the pad ri(x)
to D via private communication in addition to the current steps. In Round 2, for an ordered pair
(Pi, Pj), Pi sends gi(j) to Pj, and Pj sends gj(i) to Pi and its received pad ri(j) to D, all via private
communication. In Round 3, Pi says ‘disagree’ when gi(j) 6= gj(i) and broadcasts gi(j) and pad
ri(j). Otherwise, Pi broadcasts padded value gi(j) + ri(j). A similar step is executed by Pj. D
checks if ri(j) sent by Pi is same as ri(j) sent by Pj. If not, it broadcasts ‘not equal’ and G(i, j).
Otherwise, it broadcasts G(i, j) + ri(j). With these changes, the local computation has the same
information as the current version of WC and it goes on exactly as is.

4.3.2 Verifiable Secret Sharing.

VSS allows a dealer to distributively commit to a secret in a way that the committed secret can
be recovered robustly in a reconstruction phase. Our VSS protocol vsh allows a dealer D to gen-
erate double t-sharing of the constant term of D’s input bivariate polynomial F (x, y) of degree at
most t and therefore allows robust reconstruction via Read-Solomon (RS) error correction, unlike
the weak commitment scheme wcom. The need is abstracted out as a functionality described in
Fig 4.

Fvsh receives F (x, y) from D ∈ P. If F (x, y) is not a symmetric bivariate polynomial of degree less than
or equal to t in both x and y, then it replaces F (x, y) with a default choice of such polynomial. Lastly, it
sends fi(x) = F (x, i) to every Pi.

Functionality Fvsh

Figure 4: Functionality Fvsh

24

At a high level, protocol vsh proceeds in the same way as the weak commitment scheme wcom,
except that each blinder polynomial is now committed via an instance of wcom. A happy set, V, is
formed in the same way. Two conflicting honest parties cannot belong to V, implying all the honest
parties in V are pairwise consistent and together define a unique symmetric bivariate polynomial,
say F ′(x, y) and an underlying degree t univariate polynomial f ′(x) = F ′(x, 0), the latter of which
is taken as D’s committed input. A crucial feature that vsh offers by enforcing the W set of every
party in V to have an intersection of size at least n − t with V, is that the blinded polynomial
of a corrupt party from V is consistent with F ′(x, y). This follows from the fact that the shares
(pads) that the parties in W receive as a part of wcom remain unchanged, implying n− 2t ≥ t+ 1
of the honest parties in V ensure the consistency of the blinded polynomial of the corrupt party.
This feature crucially enables an honest party Pi that lies outside V (in case of a corrupt dealer) to
extract out her polynomial f ′i(x) = F ′(x, i) and thereby completing the double t-sharing of f ′(0).
To reconstruct f ′i(x), Pi looks at the blinded polynomial of all the parties in V who kept her happy
in their respective weak commitment instances (implying her share did not change). For each such
party, the blinded polynomial evaluated at i and subtracted from Pi’s share/pad from the underlying
wcom instance, allows Pi to recover one value on f ′i(x). All the honest parties in V (which is at
least t+ 1) contribute to one value each, making sure Pi has enough values to reconstruct f ′i(x). A
corrupt party in V, being committed to the correct polynomial as per F ′(x, y), with respect to the
parties in its W set, cannot inject a wrong value. Protocol vsh is now described in Fig. 3 which we
prove realizes functionality Fvsh (Lemma 4.8) in Appendix B.2.

Inputs: D has input F (x, y), a symmetric bivariate polynomial of degree at most t.

Output: The parties output [[F (0, 0)]] when D is honest and [[F ′(0, 0)]] otherwise where F ′(x, y) is a
bivariate polynomial of degree at most t.

R1 D and every party Pi do the following in parallel.

- D sends to each Pi the polynomial fi(x) = F (x, i).

- Each party Pi picks a random polynomial hi(x) of degree at most t and initiates an instance of wcom,
denoted as wcomi as a dealer with polynomial hi(x).

R2 Each pair of ordered pair (i, j), the parties Pi and Pj broadcast pi(x) = fi(x) + hi(x) and pij =
hij + fj(i) respectively, where hij is the share of Pj in wcomi. In parallel, parties execute R2 of wcomi

for all i ∈ {1, . . . , n}.

R3 For each pair of ordered pair (i, j) such that pi(j) 6= pij , the parties (Pi, Pj) and D broadcast
(fi(j), hi(j)), (fj(i), hij) and F (i, j) respectively. In parallel, parties execute R3 of wcomi for all i ∈
{1, . . . , n}.

Local Computation An ordered pair (Pi, Pj) is called conflicting pair if (a) hi(j) = hij and (b) fi(j) 6=
fj(i), as broadcasted in R3. In a conflicting pair (Pi, Pj), Pi (respectively Pj) is said to be unhappy if
F (i, j) broadcasted by D is not equal to fi(j) broadcasted by Pi. Let V denote the set of happy parties.
The parties execute local computation step for every wcomi for i ∈ {1, . . . , n}. Let Wi denote the set
of happy parties in wcomi. Remove Pj from Wi if pi(j) 6= pij and hi(j) 6= hij . Remove a party Pi
from V if |V ∩Wi| < n − t or if there exists some j such that pi(j) that was broadcasted in R2 is not

Protocol vsh

25

equal to fi(j) + hi(j) that were broadcasted in R3. If |V| < n− t, then discard D and assume a default
sharing and reset V = P. Otherwise, every Pi 6∈ V resets polynomial fi(x) to the degree t polynomial
interpolated over the values {pj(i)− hji}Pj∈V;Pi∈Wj

(where pj(x) was broadcasted by Pj in R2 and Pi
has its share hji from wcomj). Finally, every Pi outputs fi(0) and fi(x).

Figure 5: Protocol vsh

Lemma 4.8. Protocol vsh realises functionality Fvsh tolerating a static adversary A corrupting t
parties, possibly including the dealer D.

It is easy to note that vsh generates [[F (0, 0)]] via the set of polynomials{
F (x, 0), {fi(x)}i∈{1,...,n}

}
. We define tentative share and share-share below which are deter-

mined by Round 2 itself and are used in the place of final share and share-shares to allow
parallelization and maintain the given round constraint in our final construct.

Definition 4.9 (Tentative share and share-share). We denote fi(0) received by Pi in Round 1 as
the ith tentative share of the committed secret, say s and denote it by s̄i. We denote pj(i)−hj(i) by
jth tentative share-share of the ith share of the committed secret s and refer it by s̄ij. s = F (0, 0) if
D is honest, and s = F ′(0, 0) otherwise for some bivariate polynomial F ′(x, y) of degree at most t.

We state the following observation which can be checked easily and is used crucially in our final
construction

Observation 4.10. The tentative share of a party Pi turns to the actual one if Pi ∈ V in Round 3
and is recomputed via selected tentative share-shares otherwise. The tentative share-share s̄ij turns
actual one if Pj ∈ V and Pi ∈Wj hold true in Round 3 and are used to compute the actual share of
s when Pi 6∈ V. Importantly, Pi learns all the tentative share-shares in the end of Round 2 itself.

With an aim to reduce the number of rounds in which broadcast is invoked, the existing VSS of
[KKK09] does not broadcast the blinded polynomials in the second round and this bars a party to
determine the tentative share-shares by the end of Round 2. Looking ahead this early finding plays
a very crucial role for our final 4-round construction.

Remark 4.11 (Minimizing broadcast rounds). We conclude this section noting that Round 2 broad-
casts in vsh can be avoided. First, we employ the WC, with broadcast round minimized, as specified
in Remark 4.7. Next, similar to [KKK09] and WC, in Round 1, every party sends their chosen
pad polynomial hi(x) to D via private communication. In Round 2, for an ordered pair (Pi, Pj),
the common points are privately exchanged, and Pj reports its received pad from Pi privately to D.
Round 2 is now completely devoid of any broadcast call. Round 3 broadcasts are decided similar
to Remark 4.7. That is, Pi says ‘disagree’ when fi(j) 6= fj(i) and broadcasts fi(j) and pad hi(j).
Otherwise, Pi broadcasts padded value pi(j) = fi(j) + hi(j). A similar step is executed by Pj. D
checks if hi(j) sent by Pi is same as hi(j) sent by Pj. If not, it broadcasts ‘not equal’ and F (i, j).
Otherwise, it broadcasts F (i, j) + hi(j). The local computation of vsh remains the same. This leads
to a somewhat simpler variant of VSS (compared to [KKK09]) that achieves the same (optimal)
round complexity together with a single round of broadcast. However, this protocol does not offer the
property mentioned above regarding tentative shares and share-shares.

26

4.3.3 Reconstruction of [s].

We recall a known protocol to reconstruct a t-shared secret. We define two variants– rec for public
reconstruction and recj for private reconstruction to party Pj . recj is given below and rec can be
realized by running n copies of recj for every Pj .

Inputs: Each Pi has si (alternatively the parties hold [s]).

Output: Party Pj outputs s where s = f(0) and f(x) is the polynomial that is consistent with the shares
of the honest parties.

R1 Each Pi sends its share si to Pj who applies RS error correction to correct t errors and reconstruct
f(x) and output f(0).

Protocol recj

Figure 6: Protocol recj

4.4 Multiplication Triple Sharing

The goal of this protocol is to allow a dealer to share three values (a, b, c) via VSS such that c = ab
holds. We abstract out the need in a functionality Fmsh given in Fig 7 and present our protocol
subsequently.

Fmsh receives fa(x), f b(x), f c(x) from D ∈ P. If any of the polynomials is not a polynomial of degree less
than or equal to t or f c(0) 6= fa(0)f b(0), then it sends ⊥ to every Pi and fa(i), f b(i), fc(i) otherwise.

Functionality Fmsh

Figure 7: Functionality Fmsh

Following the idea proposed in [BGW88] and recalled in [AL17], the dealer chooses two poly-
nomials of degree at most t, fa(x) and f b(x) with fa(0) = a and f b(0) = b. It then picks a
sequence of t polynomials f1(x), . . . , f t(x), all of degree at most t such that f c(x) which is equal
to fa(x)f b(x)−

∑t
α=1 x

αfα(x) is a random polynomial of degree at most t with the constant term
equalling ab. Both [BGW88, AL17] elucidate the idea of choosing the coefficients of f1(x), . . . , f t(x)
in a way that simultaneously cancels out the higher order coefficients and randomizes the remaining
coefficients of the product polynomial fa(x)f b(x). The dealer hides these t+ 3 polynomials in sym-
metric bivariate polynomials and invokes t+ 3 instances of VSS. The check for the product relation
c = ab is enabled by letting every party Pi verify if fa(i)f b(i) −

∑t
α=1 x

αfα(i) equals to f c(i). Pi
raises a complaint in Round 2 if the check fails. Further, every Pi that lies outside a common happy
set V, for all the t+ 3 instances of VSS is taken to be unhappy with the dealer and its verification
is nullified due to the fact that its final shares from the VSS instances get recomputed. Therefore,
for such Pi, the equality is verified publicly in Round 4 after reconstruction which is enabled via
the second-level t-sharing. If any of the public check fails, the dealer is concluded to be corrupt
and c 6= ab. Protocol msh is now described in Fig. 8 which we prove realizes functionality Fmsh

(Lemma 4.12) in Appendix B.3.

27

Inputs: D has inputs (a, b, c) such that c = ab.

Output: By the end of R3, the parties output [[a]], [[b]], [[c]] or discards D. If D is not discarded, then
by the end of R4, the parties output [a], [b], [c] where c = ab holds or output ⊥.

R1 D chooses t+3 random polynomials fa(x), f b(x), fc(x), f1(x), . . . , f t(x), each of degree t such that (a)
fa(0) = a, f b(0) = b, f c(0) = c and (b) f c(x) = fa(x)f b(x)−

∑t
α=1 x

αfα(x) as discussed in [BGW88,
AL17]. D picks t+ 3 symmetric bivariate polynomials F a(x, y), F b(x, y), F c(x, y), F 1(x, y), . . . , F t(x, y)
with F a(x, 0) = F a(0, y) = fa(x), F b(x, 0) = F b(0, y) = f b(x), F c(x, 0) = F c(0, y) =
f c(x) and Fα(x, 0) = Fα(0, y) = fα(x) for every α ∈ {1, . . . , t}. It then runs t + 3
vsh instances

{
vsha, vshb, vshc, {vshα}α∈[t]

}
, with these polynomials as inputs. Let Pi receive

fai (x), f bi (x), f ci (x), {fαi (x)}α∈{1,...,t} from these instances.

R2 The parties run R2 of
{
vsha, vshb, vshc, {vshα}α∈[t]

}
. If f ci (0) = fai (0)f bi (0)−

∑t
α=1 i

αfαi (0) does not
satisfy, then Pi broadcasts its complain.

R3 The parties run R3 of
{
vsha, vshb, vshc, {vshα}α∈[t]

}
. The parties run Local Computation of{

vsha, vshb, vshc, {vshα}α∈[t]
}

to compute
{
Va,Vb,Vc, {Vα}α∈[t]

}
. If a party Pi complains in R2, re-

move it from all V and then assign V = Va ∩ Vb ∩ Vc ∩tα=1 V
α . If |V| < n − t, discard D. Otherwise,

every Pi 6∈ V in the execution of each instance in
{
vsha, vshb, vshc, {vshα}α∈[t]

}
resets its polynomial and

share as done in the Local computation of vsh. At this point, we have [[a]], [[b]], [[c]] ready.

R4 For every Pi 6∈ V, the parties reconstruct
{
fai (0), f bi (0), f bi (0), {fαi (0)}α∈[t]

}
publicly via running

t + 3 instances of rec on [fai (0)], [f bi (0)] [f bi (0)], {[fαi (0)]}α∈[t]. D is discarded if f ci (0) = fai (0)f bi (0) −∑t
α=1 i

αfαi (0) is not satisfied, in which case every Pi outputs ⊥. Otherwise, parties output [a], [b], [c]
ignoring the second-level sharing.

Protocol msh

Figure 8: Protocol msh

Lemma 4.12. Protocol msh realises functionality Fmsh tolerating a static adversary A corrupting t
parties, possibly including the dealer D.

4.5 Degree-2 Computation

Here we show how to compute a degree-2 computation of the following form: y = xαxβ +
∑n

j=1 r
j ,

where xα and xβ are the inputs of Pα and Pβ respectively and rj is an input of Pj for j ∈ {1, . . . , n}.
Assuming y is the output of Pγ alone, it is easy to extend our protocol to one where every Pγ
outputs different y (yet having the same form), while ensuring the same x values are used in the
computation of all y. This extended computation was proven to be complete for any polynomial-
time computation. The goal is abstracted as a functionality Fd2c below and the protocol appears
subsequently for the computation of a single y. We assume the output is given to everyone for
simplicity. The functionality can be modified to take a random input from the rightful recipient Pγ
and y can be sent out in blinded form using the randomness as the blinder. The realisation of this
slightly modified functionality can be obtained relying on the realisation of the below functionality
and additionally asking Pγ to run a VSS on a random polynomial (with a uniform random element
mγ in the constant term). The value y is then reconstructed in blinded form to everyone with mγ

as the blinder, which only Pγ can unblind. Thus, we assume y be dispatched to all in Fd2c.

28

Fd2c receives xα from Pα, xβ from Pβ and rj from Pj ∈ P. It computes y = xαxβ +
∑n
j=1 r

j and returns
y to every party.

Functionality Fd2c

Figure 9: Functionality Fd2c

At a high level, our protocol generates 〈xαxβ +
∑n

j=1 r
j〉 from [[xα]], [[xβ]], {[[rj]]}j∈{1,...,n} in

first 3 rounds and reconstructs the resultant sharing in Round 4 towards Pγ . The major task is
to generate 〈xαxβ〉, as the final sharing can be obtained from this sharing by simply summing up
with

∑n
j=1[[rj]], thanks to linearity. Also all the [[·]]-sharing can be generated via VSS instances

in 3 rounds. Generating 〈xαxβ〉 from [[xα]] and [[xβ]] involves two tasks– (a) randomizing the 2t
degree product polynomial sharing xαxβ that is defined from the local product of the shares of xα

and xβ and (b) turning the second-level 2t sharings resulted from local product of the share-shares
to t-sharing i.e. degree-reduction of the shares of xαxβ . The challenge lies in achieving the above
tasks in the same 3 rounds which also produces the double t-sharing of the inputs.

The former task is easier to tackle, assuming the latter one is taken care. It needs generating
〈0〉 and adding the same to 〈xαxβ〉 which ensures the constant term remains unaffected. Since
generating 〈0〉 reduces to a bunch of VSS executions and local computations subsequently, the first
task is realizable in 3 rounds. We capture the generation of 〈0〉 as a functionality F〈0〉 which can
be realized by running n instances of VSS, the ith one dealered by Pi with a polynomial of degree t
chosen uniformly at random and then extracting t [[·]]-sharing from them such that the secrets are
privy to the adversary and the underlying polynomials are uniformly random. While we can extract
n − t ≥ 2t + 1 such sharing using standard extraction techniques (such as via Hyper-invertible
matrix [BH08]), t are enough to generate a 〈0〉 as follows. Define F (x, y) =

∑t
δ=1 x

δF (δ)(x, y),
f(x) = F (x, 0) (this is a 2t degree polynomial with constant term as 0), fi(x) = F (i, y) (these are
t degree polynomials) where {F (δ)(x, y)}δ∈{1,...,t} are the underlying bivariate polynomials of the
extracted [[·]]-sharings. The set {f(x), f1(x), . . . , fn(x)} defines 〈0〉. This functionality needs to be
corruption-aware [AL17] for the construct above to realize it.

Given a set of parties I ⊂ P that are controlled by ideal adversary A, F〈0〉 receives {si}i∈I and
{sij}i∈{1,...,n};j∈I . It picks a random polynomial of degree at most 2t, f(x), such that– (i) f(0) = 0
and (ii) f(i) = si for i ∈ I. It further picks a set of random polynomials {fi(x)}i∈{1,...,n} of degree at
most t such that for each fi(x)– (a) fi(0) = f(i) and (ii) fi(j) = sij for all j ∈ I. It sends (f(i), fi(x)) to
every Pi.

Functionality F〈0〉

Figure 10: Functionality F〈0〉
To achieve the latter task, every Pi generates ([ai], [bi], [ci]) such that (ai, bi, ci) are random and
independent of the actual inputs and satisfy ci = aibi. This is done in 3 rounds via VSS instances
as in Protocol msh. We then invoke Beaver’s trick to transform the t-sharings of ith share of xα

and xβ , xαi and xβi respectively, to a t-sharing of their product. The correctness of this relies on
whether the shared triple is a multiplication triple or not. The correctness of the triple is concluded
in Round 4 and the product of Pi’s shares are ignored if the check fails. These exclusions do not
hinder recovery of 〈y〉, where the underlying polynomial is of degree 2t and at least 2t + 1 honest
parties are available. However, the major obstacle in completing Beaver’s trick arises because the

29

procedure needs interaction in the form of reconstructing values (xαi − ai) and (xβi − bi), which
seems can be run in Round 4 at the earliest after the input sharings are concluded in Round 3.
This drags the preparation of 〈y〉 to 4 rounds, requiring another round for the reconstruction. We
get around the problem by allowing a guided reconstruction of the above values in Round 3 itself,
bypassing the traditional reconstruction of a t-shared secret which can be run only after the sharings
of xαi , x

β
i , a

i, bi, ci are completed. To be specific, party Pi guides the reconstruction of (xαi − ai) and
(xβi − bi) on holding the tentative shares and share-shares of xα and xβ in the respective VSS
instances and the complete knowledge about its dealt sharings of ai, bi. The guided-reconstruction
ensures that correct values are reconstructed when the guide Pi is honest, leveraging the conditions
under which the tentative shares and share-shares turn the actual ones. A corrupt guide Pi can
mislead in Round 3, only to be caught in Round 4 when these values are reconstructed yet again
via the standard reconstruction. Leveraging super-honest majority, we can ignore the share yi for
the reconstruction of y. The protocol appears in Fig 11 and the proof that it realizes functionality
Fd2c (Theorem 4.13) in Appendix B.4.

Inputs: Pα and Pβ input xα and respectively xβ . In addition, Pj inputs rj for j ∈ {1, . . . , n}.

Output: Every party outputs y = xαxβ +
∑n
j=1 r

j .

R1 The parties do the following in parallel

- Pα picks a symmetric bivariate polynomial of degree at most t in each variable Xα(x, y) with
Xα(0, 0) = xα and initiates an instance of vsh, denoted as vshα. Pβ picks Xβ(x, y) with Xβ(0, 0) = xβ

and initiates an instance of vsh, denoted as vshβ . Each Pj picks Rj(x, y) with Rj(0, 0) = rj and
initiates an instance of vsh, denoted as vshj with input Rj(x, y).

- Every Pi initiates an instance of msh, denoted as mshi, with inputs (ai, bi, ci), randomly chosen, yet
satisfying product relation ci = aibi.

- The parties invoke F〈0〉.

R2 The parties run R2 of vshα, vshβ , {vshi,mshi}i∈{1,...,n} .

R3 Pi broadcasts
(
(x̄αi − ai), {x̄αik − aik}k∈{1,...,n}

)
and

(
(x̄βi − bi), {x̄

β
ik − bik}k∈{1,...,n}

)
, where x̄αi and x̄αik

denote ith tentative share of xα and kth tentative share-share of xαi (and similarly x̄βi and x̄βik are defined).
The parties run R3 and subsequently the local computation steps of vshα, vshβ , {vshi,mshi}i∈{1,...,n} .
Let Vα,Vβ and Vi denote the happy sets in the vsh instances with the corresponding superscripts. The
W sets inside vshα are denoted as Wα

k for k ∈ {1, . . . , n}. Similarly, we denote the W sets inside the
remaining VSS instances.

Local Computation

◦ If both Pα and Pβ are discarded, default values of xα and xβ and default 〈·〉-sharing of their product
is assumed.

◦ If Pα is discarded, a default value of xα is assumed and [[xβ]] is transformed to [[xαxβ]] via linear
transformation. In a similar way, the case when Pβ is discarded is taken care. In either case, [[xαxβ]]
is taken as 〈xαxβ〉.

Protocol d2c

30

◦ Otherwise, the ith second-level sharing of 〈xαxβ〉 is computed as follows. If Pi is discarded, as a
dealer, in mshi, assume a default [·]-sharing for the ith second-level sharing and exclude Pi from a
set L that is initiated to P. Otherwise, run an instance of Beaver’s trick, given ([ai], [bi], [ci]) and
[xαi], [xβi], to locally compute [xαi x

β
i] as follows:

- Compute (xαi − ai) as (x̄αi − ai) if Pi ∈ Vα and as the constant term of the degree t polynomial
interpolated over {x̄αik− aik}Pk∈Vα∧Pi∈Wα

k
otherwise. If no such t degree polynomial exist, remove Pi

from L and a default [·]-sharing for the ith second-level sharing is assumed.
- In a similar way, compute (xβi − bi).
- Compute [xαi x

β
i] = (xαi − ai)(x

β
i − bi) + (xαi − ai)[bi] + (xβi − bi)[ai] + [ci].

◦ Compute 〈y〉 = 〈xαxβ +
∑n
j=1 r

j〉 = 〈xαxβ〉+ 〈0〉+
∑n
j=1[[rj]], where 〈0〉 is returned by F〈0〉.

R4 For every Pi ∈ L, the parties run R4 of mshi and run two instances of rec for [xαi − ai] and [xβi − bi].
If Pi is discarded in mshi or the reconstructed values do not match with the ones used in Beaver’s trick
in the previous step, remove Pi from L. For every Pi ∈ L, run an instance of rec on the ith second-level
sharing [yi] of 〈y〉 to reconstruct yi. Every party uses the shares to interpolate the 2t-degree polynomial
holding y in the constant term and outputs y.

Figure 11: Protocol d2c

Theorem 4.13. Protocol d2c realises functionality Fd2c tolerating a static adversary A corrupting
t parties.

5 Completeness of Degree-2 Functionalities over Large Fields

Overview. In this section, we prove Theorem 1.5 and securely reduce the computation of a general
functionality f to the computation of degree-2 arithmetic functionalities. The reduction will have
the following form: first the parties apply some local preprocessing step pre, then the outputs of
the preprocessing step will be fed into a degree-2 arithmetic functionality enc whose output will be
delivered to all parties, and finaly each party will apply some local post-processing step dec.

As mentioned in the introduction, the reduction is obtained by garbling a protocol Π for f .
Following [ABT19], we represent the protocol Π by a Boolean circuit C. Roughly, the reader should
envision a protocol as a huge Boolean circuit composed of local computation gates (that belong to
a specific party), standard transmission gates (that copy a bit from the output of a local gate of
party i to the input of a local gate of party j) and broadcast gates that deliver a bit from party i
to all other parties. (See Section 5.1.5 for a formal definition.)

While standard garbling is composed of two procedures: encoding and decoding, we, again
follow the outline of [ABT19] and partition the encoding procedure into a preprocessing algorithm
pre and an encoding algorithm enc. As the names suggest, these algorithms will be used in the
reductions, together with the decoder algorithm dec that will be essentially used as (part of) the
post-processing step. In the preprocessing phase, the truth-tables of the gates of C are permuted
according to random mask values. Each party chooses the masks for the wires that are controlled
by her in the protocol C, and honest parties should use binary masks. The preprocessing function
delivers the permuted gates together with the inputs for the input gates (which are again supposed
to be binary values).

In the encoding phase, the outputs of the preprocessing algorithm are being used in order to
generate the encrypted gate tables. This step uses keys (as well as additional random values) that

31

are uniformly chosen from the large field F (taken to be an extension field of the binary field). In
each row of a gate table one has to choose which plain-text to encrypt out of two possible options,
labeled by zero and one. Since the “selection bit” may be non-binary (due to malicious behavior in
the preprocessing step), we implement the selection mechanism via a special “key-selection” gadget
select, that will essentially force a binary selection. (A non-binary selection will be translated into a
zero-selection.) A more complicated “triple-selection” gadget will be needed in order to handle the
case of transmission gates in which a party sends his input to several other parties. The analysis also
becomes more complicated, and in order to model a faulty preprocessing we will have to consider a
new type of Boolean gates referred to as generalized transmission gates. (Notably, this issue does
not arise in the binary setting and transmission gates are handled seamlessly.) These modifications,
which appear in Sections 5.2 and 5.3, form the main difference compared to [ABT19].

Eventually, we will show that enc can be implemented by a degree-2 mapping, and that the
reduction remains secure even in the presence of misbehavior in the preprocessing phase. Roughly,
speaking we will show that when an adversary that corrupts a coalition I misbehaves at the pre-
processing stage (i.e., sends corrupted inputs and uses corrupted wire masks), the enc function
essentially reveals only the information that is released by a circuit Ĉ in which the gates corre-
sponding to I were modified. Since Ĉ forms a cheating strategy by I against the protocol Π, the
reduction remains secure. Again the argument follows [ABT19] with the technical modifications
induced by the need to cope with non-binary inputs. As a side note, we state and analyze the
security of our construction (Lemma 5.20) at the level of circuits using the randomized-encoding
terminology [IK00, AIK04] without making a direct reference to MPC, we hope that this formulation
may turn to be useful in other contexts.

Organization. This section starts with a preliminaries (Section 5.1), setting the stage with the
required definitions. It then moves on to describe the key-selection gadgets (Section 5.2) which are
used in the construction of the garbled circuit (Section 5.3). Based on this, we derive, in Section 5.4,
a general master theorem that reduces general secure computation in various settings (perfect,
statistical, computational) into degree-2 arithmetic secure computation. The general completeness
theorems are then derived in Section 5.5.

5.1 Preliminaries

In this section, we define Boolean circuits (Section 5.1.1), randomized encoding of functions (Sec-
tion 5.1.2), multi-party (oracle-aided) protocols (Section 5.1.3), security for multi-party computation
(Section 5.1.4) and circuit representation of protocols (Section 5.1.5). Large parts of the texts (and
in particular the MPC sections) are taken, with minor changes, from [ABT19].

An expert reader may choose to skip most of the preliminaries, except for Section 5.1.1, while
keeping in mind that, by default, we consider an active non-adaptive rushing adversary that is com-
putationally unbounded and assume a fully connected network with point-to-point private channels
and a broadcast.

Notation. We denote by [n] the set {1, . . . , n}. We denote by F2 the finite field of size 2, and
by F a finite field of characteristic 2. For any set S ⊆ [n], we denote S = [n]/S. For any sequence
x = (x1, . . . , xn) and any S ⊆ [n] let x[S] denote the ordered set {xi}i∈S .

32

5.1.1 Boolean Circuits

In this work, we consider Boolean circuits containing the following types of gates:

• An input gate that has no incoming wires and one outgoing wire and is labeled by a unique
formal variable Xi. Similarly, an output gate has no outgoing wires and a single incoming
wire and it is labeled by a unique formal variable Yi. A wire that is incident to an input gate
(resp., output gate) is referred to as an input wire (resp., output wire).

• A local computation gate (or local gate in short) has two (ordered) input wires and one output
wire. The gate is labeled by some arbitrary function G : {0, 1}2 → {0, 1} (that can vary from
one gate to the other). The value of the outgoing wire is computed by applying G to the
values of the input wires.

• A simple transmission gate (or transmission gate, in short), that has a single input and an
arbitrary number, p, of outputs. The gate simply copies its input to all outputs (and is also
referred to as fan-out gate).

• A generalized transmission gate that has a single input and an arbitrary number, p, of outputs,
and is labeled by p pairs of bits (aj , bj)j∈[p] ∈ ({0, 1}2)p. On input β ∈ {0, 1} to the gate,
the output of wire j is aj · β + bj , where the computation is over F2. For example, when
a1 = . . . = ap = 1 and b1 = . . . = bp = 0 the gate becomes a simple transmission gate. (In
general, however, different output wires of the gate can have different output values.)

A circuit with n inputs and ` outputs computes a function from {0, 1}n to {0, 1}` in the natural
way.

Complexity. For purposes of analysis, we define the depth of a p-ary simple/generalized trans-
mission gate to be dlog pe, and the depth of an input gate or a local gate to be 1. The depth of
a circuit C is the computed by considering the cumulative depth of gates along each path from
an input wire to an output wire in C, and taking the maximum among all paths. The size of a
circuit, m, is the number of wires in the circuit (including input and output wires). We assume a
topological ordering of the wires in [m].

Two Boolean circuits C and C ′ are topologically equivalent if the directed acyclic graphs that
represent the circuit are isomorphic.

Remark 5.1. We make two simplifying assumptions.

• We assume that the fan-out of input-gates and local-gates is always 1. This is without loss
of generality since we can use fan-out gates in order to increase the fan-out to some constant
greater than 1, at the cost of multiplying the size and depth of the circuit by a constant.

• We assume that transmission gates and generalized transmission gates are only adjacent to
local computation gates. This is without loss of generality because we can always insert a
dummy local-computation “copy” gates before and after every transmission gate.

33

5.1.2 Randomized Encoding of Functions

We use randomize encoding of functions [IK00, AIK04] to replace a high-degree function f(x) with
a low-degree randomized function f̂(x; r), whose output reveals only the value f(x) and hides any
other information about x.

Definition 5.2 (Randomized encoding). Let f : Fn → Fs be a function. A function f̂ : Fn×Fm →
Ft (perfectly) encodes f is there exists a deterministic algorithm D (decoder) and a randomized
algorithm S (simulator) such that for every input x ∈ Fn, the distribution f̂(x; r) induced by a
uniform choice of r ← Fm, encodes the value f(x) in the following sense:

• (Perfect correctness) Prr[D(f̂(x; r)) 6= f(x)] = 0.

• (Perfect privacy) The simulator S(f(x)) perfectly samples the distribution f̂(x; r).

The randomness complexity and the output complexity of the encoding are m and t, respectively.
We say that the encoding has an arithmetic complexity of T if f̂ , D and S can be computed by
making at most T arithmetic operations over F. (For concreteness, we measure T as the size of the
corresponding arithmetic circuits; this guarantees that T always upper-bounds m and t.) We say
that f̂ is of degree d if each of its outputs can be written as a degree-d polynomial in the inputs x, r
over F.

Randomized encodings satisfy several useful closure properties that we summarize in the follow-
ing lemmas (see [AIK04, AIK14, App17] for proofs).

Lemma 5.3 (Composition). Suppose that g(x; rg) is an encoding of f(x) with decoder Dg and sim-
ulator Sg, and that h((x, rg); rh) is an encoding of the function g(x, rg), viewed as a single-argument
function, with decoder Dh and simulator Sh. Then the function f̂(x; (rg, rh)) = h((x, rg); rh) to-
gether with the decoder D(·) = Dg(Dh(·)) and the simulator S(·) = Sh(Sg(·)) forms an encoding of
f(x).

Lemma 5.4 (Concatenation). Suppose that, for every i ∈ [c], the randomized function f̂i(x; ri)
encodes the function fi : {0, 1}n → {0, 1}`i with decoder deci and simulator simi. Then the
function f̂(x; (r1, . . . , rc)) = (f̂1(x; r1), . . . , f̂c(x; ri)) together with the decoder D(ŷ1, . . . , ŷc) =
(D1(ŷ1), . . . , Dc(ŷc)) and simulator S(y1, . . . , yc) = (S1(y1), . . . , Sc(yc)) encodes the function f(x) =
(f1(x), . . . , fc(x)).

Lemma 5.5 (Substitution). Suppose that the function f̂(x; r) is an encoding of f(x) with decoder
D and simulator S. Let h(z) be a function of the form f(g(z)) where z ∈ {0, 1}k and g : {0, 1}k →
{0, 1}n. Then, the function ĥ(z; r) = f̂(g(z); r) is an encoding of h with the same simulator and the
same decoder.

5.1.3 Functionalities and Protocols

It will be convenient to treat functionalities and protocols as finite (fixed length) objects. The
infinite versions of these objects will be defined and discussed latter in Section 5.1.4. We continue
with a formal definition.

34

Definition 5.6 (multi-party functionality). An n-party functionality f : ({0, 1}∗)n → ({0, 1}∗)n is
a (possibly randomized) function that maps a sequence of n inputs x = (x1, . . . , xn) to a sequence
of n outputs y = (y1, . . . , yn). If f sends the same output to all parties then we denote its output as
a scalar, i.e. we use the shorthand f : ({0, 1}∗)n → {0, 1}∗ and y = f(x1, . . . , xn).

Next we define a multi-party protocol in a non-asymptotic setting.

Definition 5.7 (multi-party protocol, oracles). An n-party, r-round protocol Π is a tuple of n(r+1)
simple Boolean circuits {Cj,i}j∈[r+1],i∈[n] that correspond to the computation that party i in the
protocol performs before the j-th communication round (or after the last round if j = r + 1). Each
Cj,i (except for j = 1 and j = r + 1, see below) takes n input strings, and outputs n output strings.
The i′-th output of Cj,i is the message sent from party i to party i′ at round j of the protocol. If
i = i′ then the respective output is the state of party i after the j-th round of communication. We
therefore require that for all i, i′, j the i′-th output of Cj,i has the same length as the i-th input string
of Cj+1,i′ . In the first round of communication C1,i only takes one input xi to be interpreted as
party i-th input for the protocol, and possibly an additional random string. In the last round of
communication Cr+1,i only has one output which should be interpreted as the output of party i in
the protocol, sometimes denoted yi. We let Mi denote the collection of circuits associated with party
i, i.e. Mi = (C1,i, . . . , Cr+1,i) and thus denote Π = (M1, . . . ,Mn). The view of the party in the
protocol contains its input, randomness and all messages it received during the execution.

Let h be an n-party functionality. A protocol Π with oracle h, which we denote by Πh, is one
that allows to replace some of the communication rounds with calls to the functionality h (i.e. the
circuits respective to this round each produce one output that is sent to the oracle h as input, the
outputs of h is then fed as a single input to the next round circuit).

A protocol with broadcast is one with access to the broadcast functionality that on input x =
(x1, . . . , xn) outputs x to all parties. More generally, the framework in this paper can handle any
oracle functionality that delivers the same output (originating from a designated party) to a subset
of parties. We note that in circuit terminology this can be described as Cj,i producing an output
associated with sets of parties.

A non-interactive h-oracle-aided protocol is one that consists only of a single round of oracle
call, and no other communication between the parties.

Consistently with the above formal description, we often refer to Mi as an interactive circuit
that sends and receives messages (and maintains a state throughout the execution), until finally
producing an output after the r-th round of communication.

5.1.4 Correctness and Security of Protocols

Security of multi-party computations is analyzed via the real vs. ideal paradigm. The real model
captures the information that can be made accessible to the adversary in an actual execution of
the protocol, which includes an arbitrary function of the view of the corrupted parties, as well as
honest parties’ input and output (but not their internal state during the execution). The ideal
model considers a case where the target functionality is computed using oracle access. The protocol
is secure if the view of every real adversary can be simulated by an ideal adversary.

We first define the notion of an adversary, note that we slightly deviate from the standard
notation and explicitly include the description of the set of corrupted parties as a part of the
definition of the adversary. This will be useful for stating our results. We also note that the current
definition is syntactic and non-asymptotic and does not address the efficiency of the adversary.

35

Definition 5.8 (adversaries, the real model, ideal model). An adversary (A, J) for an n-party
protocol Π = (M1, . . . ,Mn) consists of an interactive circuit A (sometimes called the adversarial
strategy), and a set J ⊆ [n]. The parties in J (resp. J) are the dishonest (resp. honest) parties.

The execution of Π with input x under (A, J) is as follows. The input to A is the set of inputs
x[J] (the inputs for the parties in J). In each round, A first receives all messages sent to parties
in J from parties in J , and then outputs messages to be sent to the parties in J from the parties in
J (i.e. A is rushing). At the end of the protocol, A produces outputs on behalf of all parties in J .
The parties in J execute according to their respective prescribed Mi algorithms.

The ordered sequence of outputs of all parties in the execution above is called the output of the
real-model execution and denoted as RealΠ,J,A(x). The ideal-model is defined by considering the
trivial non-interactive f -oracle-aided protocol Υf in which each party simply sends its input xi to
the f -oracle, gets the output yi from the oracle, and terminates with this output. For an adversary
(A, J) and vector of inputs x, we denote the output of the ideal-model execution by Idealf,J,A(x).

Asymptotic versions. A sequence of functionalities F = {fκ}κ∈N is efficiently generated if there
exists a PPT algorithm that on input 1κ outputs a circuit that computes the n(κ)-party function-
ality fκ. A sequence of protocols Π = {Πκ} is efficiently generated if there exists a polynomial
time algorithm that takes 1κ as input and outputs all circuits Cj,i associated with Πκ. A sequence
of adversaries A = {Aκ} is (non-uniformly) efficient if there exists a polynomial p(·) such that
for every κ the size of the circuit Aκ is at most p(κ). We often abbreviate “efficient functional-
ity/protocol/algorithm” and not refer to the sequence explicitly. Throughout this work, we will
be concerned with constructing efficiently generated protocols for efficiently generated function en-
sembles. In fact, our results (implicitly) give rise to a compiler that efficiently converts a finite
functionality into a finite protocol.

Definition 5.9 (correctness and security of protocols). Let f = {fκ} be an n(κ)-party functionality
and Π = {Πκ} a (possibly oracle-aided) n(κ)-party protocol. We say that Π t(κ)-securely computes
f if for every probabilistic non-uniform algorithm A = {Aκ} and every infinite sequence of sets {Jκ}
where Jκ ⊆ [n(κ)] is of cardinality at most t(κ), there exists a probabilistic non-uniform algorithm
B = {Bκ} and a polynomial p(·) so that the complexity of Bκ is at most p(|Aκ|), such that for every
infinite sequence of inputs {xκ}, the distribution ensembles (indexed by κ)

Idealfκ,Jκ,Bκ(xκ) and RealΠκ,Jκ,Aκ(xκ)

are either identical (this is called perfect security), statistically close (this is called statistical secu-
rity), or computationally indistinguishable (this is called computational security). In the latter case,
A is assumed to be asymptotically efficient.

Note that for an efficiently generated protocol it follows from the definition that the number of
parties n, and the input lengths are polynomial in the security parameter κ.

Definition 5.10 (secure reductions, non-interactive reductions). If there exists a secure h-oracle-
aided protocol for computing f , we say that f is reducible to h. If the aforementioned oracle-aided
protocol is non-interactive (i.e. only consists of non-adaptive calls to h) we say that the reduction is
non-interactive.

Appropriate composition theorems, e.g., [Gol04, Thms. 7.3.3, 7.4.3], guarantee that the call to
h can be replaced by any secure protocol realizing h, without violating the security of the high-level

36

protocol for f . (In the case of computational security the reduction is required, of course, to be
efficient.)

5.1.5 Circuit Representation of a Protocol

Recall that a protocol Π = (M1, . . . ,Mn), is a sequence of interactive circuits. It will be convenient
to collapse all these circuits to a single “circuit representation” of a protocol. Informally, we consider
the computation of all parties throughout the protocol as parts of one large computation. Each
wire of the new circuit is associated with an index corresponding to the party in the protocol that
computes this value. This includes the local computations performed by parties throughout the
protocol, which are represented as gates whose inputs and outputs are associated with the party
who is performing the local computation, and also message transmissions between parties, that are
modeled as gates that simply copy their input to the output, where the inputs are associated with
the sender and outputs are associated with the receiver. (In this context, we may assume without
loss of generality that the circuit employs only transmission gates and there is no need to employ
generalized transmission gates.)

Our definition only considers circuits corresponding to deterministic protocols. This is both for
the sake of simplicity (since we can always consider parties’ randomness as a part of their input)
and since we will only apply this definition to deterministic protocols in our results.

Definition 5.11 (Circuit Representation of a Protocol). The circuit representation of a deter-
ministic n-party protocol Π is a pair (C,P), where C is a Boolean circuit of size m as defined in
Section 5.1.1, and P : [m]→ [n] is a mapping from the wires in C to the n parties. Given a protocol
Π = (M1, . . . ,Mn), the circuit C and the mapping P are defined as follows.

1. Recalling Definition 5.7, Π consists of a sequence of circuits Cj,i which represent the local
computation of party i before the j-th round of communication (and a final circuit Cr+1,i for the
local computation after the last round of communication), we call this the j-th computational
step of the protocol.

2. All input gates of sub-circuits that correspond to the first step in the protocol are defined as
input gates of C. All output wires of sub-circuits that correspond to the last step in the protocol
are defined as outputs wires of C.

3. The input wires representing the input state of Cj,i are connected to the wires representing
the output state of Cj−1,i via a unary transmission gate. That is, the state of party i in the
beginning of computation step j is identical to its state in the end of computation step j − 1.

4. If party i expects a message in step j from party i′, then the respective output wire of Cj−1,i′

is connected to the respective input wire of Cj,i via a unary transmission gate. If party i0 was
supposed to send some value via broadcast to multiple parties i1, . . . , ip then a p-ary trans-
mission gates connects the respective output wire in Cj−1,i0 to the respective input wires in
Cj,i1 , . . . , Cj,ip .

5. Note that by the description above, the set of wires in C is exactly the union of wires of all
circuits Cj,i. The mapping P associates with party i the wires of circuits Cj,i, for all j.

We note that this description implies that for any local gate, all inputs and outputs have the same
association. We say that a gate g belongs to party i if all incoming wires are associated with i. This

37

means that all gates in Cj,i belong to i, and that the transmission gates that correspond to output
wires of Cj,i belong to i.

5.2 Key-selection Gadgets

In this section we present two degree-2 randomized gadgets that will be useful for our garbled
circuits. Both gadgets take as input one or more selector inputs (scalars from the field) and a
pair of keys (vectors over the field), the gadgets release only one of the keys (and some of the
selector scalars) depending on the value of the selectors. The notion of “releasing” information will
be formalized via the mechanism of perfect randomized encoding of functions (see Section 5.1.2 for
formal definition of randomized encoding of functions).

The key-selection function gselect takes as input a field element γ ∈ F referred to as selector, and
a pair of keys s0, s1 ∈ Fω labeled by “zero” and “one”, respectively. The function outputs γ together
with sγ′ where γ′, referred to as the effective selector, is taken to be γ if γ equals to zero or one, and
otherwise, γ′ is taken to be 0. Formally, the function is implicitly parameterized by the key-length
parameter ω and by a finite field F. (While the gadgets will be used only over fields of characteristic
two, all the statements in this subsection hold over an arbitrary finite field.)

Lemma 5.12 (key-selection gadget). The function gselect(γ, s
0, s1) admits a degree-2 encoding

select(γ, s0, s1;R) with randomness complexity of 4ω, output complexity of (1 + 5ω), and compu-
tational complexity O(ω).

Our second gadget encodes the following, slightly more complicated triple-selection function,
gtselect, that will be employed in transmission gates. (The name tselect stands both for triple-
selection and for transmission gate.) The input now consists of three sectors γ1, γ2, γ3 ∈ F and
again a pair of keys (s0, s1) ∈ Fω × Fω, labeled by zero and one. Let us define a dummy input
γ4 = 0. The function finds the first binary γi ∈ {0, 1}, denoted as the effective selector, and outputs
γ1, . . . , γi together with the corresponding key sγi . In more detail, the output is computed according
to the following short program:

• output γ1.

• If γ1 ∈ {0, 1} output the corresponding key sγ1 and terminate.

• Append to the output the value γ2 and if γ2 ∈ {0, 1} output sγ2 and terminate.

• Append to the output the value γ3 and if γ3 ∈ {0, 1} output sγ3 otherwise output s0.

Lemma 5.13 (triple-selection gadget). The function gtselect(γ1, γ2, γ3, s
0, s1) admits a degree-2 en-

coding tselect(γ1, γ2, γ3, s
0, s1;R) with computational complexity O(ω). Specifically, the randomness

complexity is 74ω + 15 and the output complexity is 75ω + 18.

The constants in the lemma were not optimized. In the rest of the section we prove the above
lemmas based on several simpler gadgets.

5.2.1 Binary Gadgets

We begin by presenting degree-2 randomized encodings for the functions gbinSel and gifnotBin. The
function gbinSel gets as an input a scalar γ ∈ F and two secret vectors, s0, s1 ∈ F`, and outputs

38

(γ, sγ) if γ ∈ {0, 1}, and (γ,⊥) otherwise. The function gifnotBin gets as an input a scalar γ ∈ F
and a secret vector δ ∈ F`, and outputs (γ, δ) if γ ∈ F \ {0, 1} and (γ,⊥) otherwise. The following
encoding are closely related to the ones presented in Section 2.3.

Claim 5.14 (Binary gadgets). For a length parameter `, let R1, R2 ∈ F` and define the degree-2
randomized functions

binSel(γ, s0, s1;R1, R2) :=
(
γ, γ ·R1 + s0, (1− γ) ·R2 + s1

)
,

ifnotBin(γ, δ;R1, R2) :=
(
γ, γ ·R1, (1− γ) ·R2, R1 +R2 + δ

)
.

Then, binSel encodes gbinSel and ifnotBin encodes gifnotBin with arithmetic complexity of O(`). Specif-
ically, the output complexity of binSel is 2`+ 1, the output complexity of ifnotBin is 3`+ 1, and, in
both cases, the randomness complexity is 2`.

Proof. For each gadget we present a decoder and simulator. It is not hard to verify that the decoders
are perfectly correct, and that the simulators imply the perfect privacy.

The binSel gadget. The decoder receives a triple (γ, a, b), where γ ∈ F and a, b ∈ F`. If γ = 0
then the decoder outputs (γ, a). If γ = 1 then the decoder outputs (γ, b). If γ /∈ {0, 1} the decoder
outputs (γ,⊥).

The simulator receives a pair (γ, δ), where either (1) γ ∈ {0, 1} and δ ∈ F`, or (2) γ ∈ F \ {0, 1}
and δ = ⊥. In case (1), if γ = 0 the simulator outputs binSel(γ, δ,~0;R1, R2), and if γ = 1 the
simulator outputs binSel(γ,~0, δ;R1, R2) where R1 and R2 are sampled from F` and ~0 is the all-zero
vector of length `. In case (2) the simulator outputs binSel(γ,~0,~0;R1, R2), where R1 and R2 are
sampled from F` and ~0 is the all-zero vector of length `.

The ifnotBin gadget. The decoder receives a tuple (γ, a, b, c), where γ ∈ F and a, b, c ∈ F`.
If γ ∈ {0, 1} then the decoder outputs (γ,⊥). Otherwise, if γ /∈ {0, 1}, the decoder outputs
(γ, c− γ−1a− (1− γ)−1b).

The simulator receives a pair (γ, δ), where either (1) γ ∈ F \ {0, 1} and δ ∈ F`, or (2) γ ∈ {0, 1}
and δ = ⊥. In case (1) the simulator outputs ifnotBin(γ, δ;R1, R2) and in case (2) the simulator
outputs ifnotBin(γ,~0;R1, R2), where R1, R2 are sampled from F` and ~0 is the all-zero vector of
length `.

5.2.2 Generalized-selection Gadget

Our next building block is a slightly more generalized version of the key-selection gadget. The
function ggselect (“g” stands for generalized) takes a selector γ ∈ F, pair of zero/one keys, s0, s1 ∈ Fω
and an additional “arithmetic key”, δ ∈ F`, of length `. The function g always outputs γ together
with a single key: sγ if γ is binary, and δ otherwise.

Claim 5.15 (generalized key-selection gadget). For length parameters ω and `, there exists a degree-
2 randomized function gselect that perfectly encodes ggselect with output complexity 2ω + 3` + 1,
randomness complexity of 2ω + 2`, and computational complexity of O(ω + `).

Proof. Let R = (R1, . . . , R4) where R1, R2 ∈ Fω and R3, R4 ∈ F` and define the randomized
function

gselect(γ, s0, s1, δ;R) :=
(
binSel(γ, s0, s1;R1, R2), ifnotBin(γ, δ;R3, R4)

)
.

39

Since, by Claim 5.14, binSel and ifnotBin are of degree-2, then gselect is also of degree-2. By
the concatenation property of randomized encoding (Lemma 5.4) and Claim 5.14, gselect perfectly
encodes the (deterministic) function

gselect′(γ, s0, s1, δ) :=
(
gbinSel(γ, s

0, s1), gifnotBin(γ, δ)
)
.

By composition (Lemma 5.3) it suffices to show that the function gselect′ encodes ggselect.
Correctness is established via the following decoder: (1) Retrieve γ from the output of gbinSel.

(2) If γ is binary, retrieve sγ from gbinSel, and output the result. (3) Otherwise, retrieve δ from
the output of gifnotBin and output the rseult. It is not hard to verify that the decoder is perfectly
correct.

Since the function gselect′ is deterministic, all we need to do in order to prove the privacy is to
show how to compute ggselect(γ, s0, s1, δ) given gselect′(γ, s0, s1, δ). The simulator takes γ and a key
K, and outputs ((γ,K), (γ,⊥)) if γ ∈ {0, 1} and ((γ,⊥), (γ,K)) otherwise. It is not hard to verify
that the simulator computes gselect′(γ, s0, s1, δ).

The output length of the encoding is 2ω + 3` + 2. We reduce it to 2ω + 3` + 1, by removing
γ from the output of ifnotBin gadget. Since γ is also outputted by binSel this modified encoding
still encodes ggselect. (Formally, this optimized version deterministically encodes the un-modified
version, and so the claim follow by composition.)

5.2.3 Proofs of Lemma 5.13 and Lemma 5.12

We can now prove Lemmas 5.12 and 5.13.

Proof of Lemma 5.12. We derive Lemma 5.12 by setting δ = s0 in the generalized key-selection
gadget. That is, we set the parameter ` to ω and define select(γ, s0, s1;R) := gselect(γ, s0, s1, s0;R).
By the substitution property (Lemma 5.5), the resulting function encodes gselect. The complexity
statements follow from the complexity of gselect. Moreover, since gselect is of degree-2, so is select,
and Lemma 5.12 follows.

Proof of Lemma 5.13. The encoding uses randomness R that will be parsed into 5 vectors R =
(K1,K2, R1, R2, R3) whose length will be defined later. The encoding tselect(γ1, γ2, γ3, s

0, s1, δ;R)
is defined by(

gselect(γ1, s
0, s1,K1;R1),K1 + gselect(γ2, s

0, s1,K2;R2),K2 + select(γ3, s
0, s1;R3)

)
.

Let us start by analyzing the output complexity and randomness complexity starting from the last
entry and going backward to the first one. The randomness R3 for the last select gadget is of length
4ω, and, since the output length of this gadget is ` = 5ω+1, the length ofK2 (which blinds it) is also
`. The second gselect gadget is therefore employed with length parameters ω and ` and therefore
it employs 2ω + 2` random elements, i.e., R2 ∈ F2ω+2`, and its output length is `′ = 2ω + 3` + 1.
Consequently, K1 is of length `′ and so the first gselect gadget is employed with length parameters
ω and `′. This means that the randomness R1 is of length 2ω + 2`′ and the output length of the
first entry is 2ω + 3`′ + 1. Overall the output length is (2ω + 3`′ + 1) + `′ + ` = 75ω + 18 and the
randomness complexity is (2ω + 2`′) + `′ + (2ω + 2`) + `+ 4ω = 74ω + 15. Since gselect and select
are of degree-2, so is tselect.

40

We prove that tselect perfectly encodes gtselect. By the concatenation property of randomized
encoding (Lemma 5.4), and by Claim 5.14 and Lemma 5.12, tselect perfectly encodes the (deter-
ministic) function tselect′(γ1, γ2, γ3, s

0, s1, δ,K1,K2) defined via(
ggselect(γ1, s

0, s1,K1),K1 + ggselect(γ2, s
0, s1,K2),K2 + gselect(γ3, s

0, s1)
)
.

Note that K1 is longer than ggselect(γ2, s
0, s1,K2) (and similarly K2 is longer than gselect(γ3, s

0, s1)).
We resolve this syntactic mismatch via concatenation of zeroes. That is, we use the convention that
whenever an L-long vector v is added to a vector u whose length is only L− k, the sum is defined
to be v + (u ◦ 0k).

By the composition lemma (Lemma 5.3) it suffices to show that tselect′, viewed as a randomized
function with randomness K1,K2, perfectly encodes the function gtselect. We begin by correctness.
The decoder retrieves the value γ1 and a key K from the first output (of ggselect). If γ1 is binary,
the decoder outputs (γ1,K), where K, by the definition of ggselect will indeed be sγ1 . Otherwise (if
γ1 is non-binary), the decoder learns K = K1 and uses it to un-pad the second entry. The decoder
now holds the pair (γ2,K

′) = ggselect(γ2, s
0, s1,K2). If γ2 is binary, the decoder outputs (γ1, γ2,K

′),
where K ′, by the definition of ggselect, will be sγ2 . Otherwise, (if γ2 is non-binary) the decoder
holds K ′ = K2 and can use it to un-pad the last entry (γ3, s

′) = gselect(γ3, s
0, s1) where s′ equals

to s1 if γ3 = 1, and equals to s0 otherwise. The decoder outputs (γ1, γ2, γ3, s
′). This completes the

description of the decoder. Perfect correctness follows directly.
To prove perfect privacy, we describe a simulator. The input to the simulator can be either (1)

(a, s) where a ∈ {0, 1} and s ∈ Fω, or (2) (a, b, s) where a ∈ F \ {0, 1}, b ∈ {0, 1} and s ∈ Fω, or
(3) (a, b, c, s) where a, b ∈ F \ {0, 1}, c ∈ F and s ∈ Fω. The simulator samples keys K1 ∈ F`′ and
K2 ∈ F` and does the following: In case (1), the simulator outputs the tuple ((a, s),K1,K2), in case
(2) the simulator outputs the tuple ((a,K1),K1 + (b, s),K2), and in case (3) the simulator outputs
the tuple ((a,K1),K1 + (b,K2),K2 + (c, s)). It is not hard to verify that the simulator perfectly
samples the desired distribution. The lemma follows.

5.3 The Garbled Circuit

In this section, we describe and analyze a new garbling technique for Boolean circuits that works
natively over a binary extension field F. The garbled circuit scheme employs the key-selection and
triple-selection gadgets that appear in Section 5.2, and it consists of three algorithms: pre, enc and
dec. All three algorithm take as an input a Boolean circuit C, consisting of ninp input gates, ncmp

local computation gates and ntrns transmission gates, with m wires in total, together with several
additional values. When the circuit is clear from the context we omit it from the input. Otherwise,
we use the notation encC and preC to denote that C is the input circuit to enc and pre. We further
note that enc and dec depend only the topology of C. The following subsections are devoted to the
descriptions of each of these subroutines. The analysis appears in Section 5.3.2 and some of the
proofs are deferred to Appendix C.

5.3.1 Description of the Garbled Circuit

In the following section we describe the three algorithms pre, enc and dec. We begin with the
description of the preprocessing algorithm pre.

41

Inputs: The function pre is parameterized by the circuit C, and, in addition, pre receives an input vector
x ∈ Fninp for the circuit C, and a vector of wire-masks α = (αj)j∈[m] ∈ Fm that consists of a mask
αj ∈ F for each wire j ∈ [m].

Output: The output of preC(x,α) is a vector of ninp + 4ncmp +m field elements.

Computation: For every input gate g in C, with input-value xg, define

Γg := xg.

For every local computation gate g in C, computing a function G : {0, 1}2 → {0, 1}, with incoming wires
c, d ∈ [m], outgoing wire k ∈ [m], define

Γg = (γ0,0g , γ0,1g , γ1,0g , γ1,1g) ∈ F4 where γβc,βdg := G(βc − αc, βd − αd), ∀βc, βd ∈ {0, 1}.

The output of pre is Γ := (Γg)g∈C ◦ α, the concatenation of all Γg together with the vector α of wire
masks.

Algorithm pre

Figure 12: Algorithm pre

Observe that preC can be computed by making O(m) arithmetic operations.

Remark 5.16 (locality of pre). It is important to note that pre is a local function. That is, when
g is an input gate, Γg depends only on the corresponding input, and when g is a local computation
gate, Γg depends only on the wire-masks of the incoming wires. Moreover, Γg only depends on the
circuit C locally, i.e., it can be computed based on the description of the gate g which consists of the
indices of the incoming wires and the Boolean operator that the gate computes. It is also useful to
keep in mind that when these masks are binary, then so are the entries of Γg.

Encoding function. The input to the enc function (in addition to the circuit C) is a vector of
ninp+4ncmp+m field elements that we parse into (Γg)g∈C and (αj)j∈[m] according the output format
of pre. The enc function will also employ random field elements (that should be viewed as internal
randomness). As in “standard” garbled circuits, this randomness includes a vector of wire-keys
s = (s0

j , s
1
j)j∈[m] that contains, for each wire j ∈ [m], a pair of keys (s0

j , s
1
j) of length ωj each. Each

of these keys sbj is partitioned into two halves, denoted by sbj [0] and sbj [1]. The key-length ωj will
be defined later in a recursive manner starting from the output wires whose keys will be the empty
strings (i.e., ωj = 0 for an output wire j). We will also employ additional randomness that will be
used as internal randomness for the key-selection and the triple-selection gadget. Semantically, the
output of enc should allow us to learn, for each wire j, a masked value vj + αj , where vj denotes
the value of the j-th wire under the input x (implicitly given as part of Γ vector), together with
the wire’s key svj+αj . Formally, the randomized function encC(Γ) creates a gate table Qg for every
non-output gate g and outputs Q = (Qg)g∈C . The gate tables are computed differently for input
gates, computation gates, and transmission gates according to the following subroutines.

Inputs: The function enc is parameterized by the circuit C, and, in addition, enc receives an input
vector of ninp + 4ncmp +m field elements, parsed as Γ = (Γg)g∈C and α = (αj)j∈[m].

Algorithm enc

42

Randomness: A vector of wire keys s = (s0j , s
1
j)j∈[m] and a vector of randomness R to the key-selection

and triple-selection gadgets.

Output: The ouptut of encC(Γ,α; s,R) is a sequence (Qg)g∈C of gate tables for every non-output gate
in C.

Computation: For a (non-output) gate g the table Qg is defined as follows.

• Input gate. Let xg denote the input-gate value (extracted from Γg), let k denote the index of the
outgoing wire, and let αk denote the corresponding mask. Our goal is to view xg + αk as a public
selector and release the value sxg+αkk if the selector is binary, and to release s0k otherwise. We therefore
define the gate table Qg as:

Qg :=select(xg + αk, s
0
k, s

1
k; Rg),

where Rg is random vector of length 5ωk (since the key length of s0k, s
1
k is ωk). The total length of

Qg is therefore 5ωk + 1.

• Local gate. For every local computation gate g in C, with incoming wires c, d and outgoing wire
k, let (γ0,0g , γ0,1g , γ1,0g , γ1,1g) and (αc, αd, αk) be the corresponding gate-values and wire-masks from
Γ. Semantically, our goal is to map the keys of the incoming wires sβcc and sβdd , for any given

βc, βd ∈ {0, 1}, to the corresponding key sγ
βc,βd
g +αk
k of the outgoing wire. We will make sure that

this will be the case only when the masked value γβc,βdg +αk is binary, and otherwise will release the
zero-key s0k. Formally, for every βc, βd ∈ {0, 1}, we define

qβc,βdg := select(γβc,βdg + αk, s
0
k, s

1
k; Rg,βc,βd), where Rg,βc,βd ← F5ωk ,

and construct the entry Qβc,βdg as a one-time pad encryption of qβc,βdg with key sβcc [βd] + sβdd [βc]:

Qβc,βdg := qβc,βdg +
(
sβcc [βd] + sβdd [βc]

)
.

Finally, we define Qg := (Q0,0
g , Q0,1

g , Q1,0
g , Q1,1

g). The length of qβc,βdg is 6ωk + 1, and so the required
length for each half of sc and sd, is 5ωk + 1. Accordingly, the full length of these keys, ωc = |sc| and
ωd = |sd|, is 2(5ωk + 1).

• Generalized transmission gate. For every transmission gate g with incoming wire c, outgoing wires
k1, . . . , kp, that are labeled by (aj , bj)j∈[p], the table Qg, of g consists of two parts (Q0

g, Q
1
g), each of

which further constitutes of p sub-parts. For every βc ∈ {0, 1}, we define an entry Qβcg as follows.
(See intuition in Remark 5.17 below.) Let δc := βc − αc and δj := aj · δc + bj and let

qβcg [j] := tselect(δj + αkj , αkj , δj , s
0
kj , s

1
kj ; R

j
g),

qβcg := (qβcg [1], . . . , qβcg [p])

Qβcg := qβcg + sβcc .

The entries of the vector Rj
g are chosen uniformly from F and its length is defined by the specification

of the tselect gadget. Recall that the randmness/output complexity of the gadget is K · ωkj +K ′ for
some constants K,K ′. It follows that the length ωc, of both s0c and s1c , is |qβcg | ≤

∑
i∈[p]K ·ωki +K ′ ≤

K · (maxi∈[p] ωki) +K ′.
We emphasize that the labels (aj , bj)j∈[p] are fixed constants that are given as part of the description
of the circuit C. Therefore, δj is a linear function of the input αc and the expression Qg is a degree-2
function in the α’s and the internal randomness.

43

The output of enc is the sequence (Qg)g∈C of gate tables for every non-output gate in C.

Figure 13: Algorithm enc

Remark 5.17 (Generalized transmission gate: intuition.). Let us briefly explain the construction
of transmission gates. For simplicity, we assume that aj = 1 and bj = 0 for all j ∈ [p] (this is the
case where g is a simple transmission gate).

For every βc ∈ {0, 1} the ciphertext Qβcg should allow us to map the key sβcc of the incoming wire

to a corresponding key s
βc−αc+αkj
kj

of the j-th output wire. Recall that δc = δj = βc − αc, and so,

under this notation, we should encrypt the outgoing key s
δj+αkj
kj

under the incoming key sβcc . Note

that Qβcg encrypts qβcg under the incoming key sβcc , and so the entry qβcg [j] should release the key

s
δj+αkj
kj

if the masks are all binary, and should release some default values otherwise. Specifically,

the definition of qβcg [j] should take into account the case where either the mask αc of the input wire
or the mask αkj of the outgoing wire are non-binary. In the former case, we would like to effectively
fix αc to zero (or to any other canonical value that is known to the adversary), and in the latter
case to fix αkj to zero. Things get complicated since these values should be hidden and so we cannot
use them as public-selectors to our gadgets. Instead, we apply our gadget on the masked values in a
way that guarantees essentially the same result.

Recall that F is an extension field of the binary field, and therefore the value δc is binary if and
only if αc is binary. Also, δj +αkj is binary if and only if either (a) both, αc and αkj , are binary or
(b) both values are non-binary, but their sum is binary. In the latter case both wires are essentially
controlled by the adversary, and so this scenario is less interesting and will be ignored for now. Let
us now take a close look at qβcg [j]. If δj + αkj ∈ {0, 1} (essentially both masks are binary as per

option (a) above) the wire-key s
δj+αkj
kj

can be extracted. On the other hand, if δj + αkj /∈ {0, 1},
i.e., at least one of the masks is non-binary, then the tselect gadget moves on to the selector αkj .
If, in addition, αkj ∈ {0, 1} (i.e., the outgoing wire-mask is binary) then the wire-key s

αkj
kj

is being
released, effectively setting the real value of the outgoing wire to zero. Jumping a head, this is fine
since the adversary controls the input to the transmission gate anyway and so he can set the output
to zero. (Also note that αkj is being leaked by the gadget but again this will be fine since the real
value of this wire is known to the adversary anyway.) Otherwise, (i.e., the mask of the outgoing
wire is non-binary) the gadget proceeds to the third selector δj. If δj is binary it releases the wire-key
s
δj
kj

(effectively setting the mask of the outgoing wire to zero), and if δj is also non-binary then s0
kj

is being released.

Complexity of enc. The arithmetic complexity of computing the table of a gate g is linear in the
length ωj of the longest wire-key j that is adjacent to g. (For input gate j is the outgoing wire, and
for other gates j can be taken to be any of the two incoming wires.) The length of each such key is
at most exponential in the depth of the circuit. (Recall that for depth computation, the cost of a
p-transmission gate is log p). Hence, the total arithmetic complexity is poly(m, 2d). Consequently
the bit-length of the output and randomness is poly(m, 2d, log |F|). Furthermore, each gate table is
a degree-2 function in the input and the randomness.

44

Decoding procedure. The decoding procedure dec takes as input the circuit C (or actually its
topology) and a sequence of gate tables Q, and outputs a binary vector (vj)j∈[m].

Inputs: The function dec is parameterized by the circuit C, and, in addition, dec receives a sequence of
gate tables Q = (Qg)g∈C .

Output: The output of dec(Q) is a binary vector (vj)j∈[m].

Computation: The computation is done by traversing the gates of the circuit from the inputs to the
outputs in topological order, and for each wire j computing a pair (vj , s

vj
j), where svjj ∈ Fωj , as follows.

• Input gate. For a wire k coming out of an input gate g, apply the decoder of the select gadget to Qg,
extract from the output the effective selector γ ∈ {0, 1} and the selected key s and set vk = γ and
svkk = s. (Recall that the effective selector can be recovered given the output of the gselect-decoder.)

• Local gate. For a wire k that is an output wire of a local gate g with incoming wires c and d, for
which the values (vc, s

vc
c) and (vd, s

vd
d) were already computed, do the following. Retrieve Qvc,vdg from

the gate table Qg, and set
qvc,vdg := Qvc,vdg − (svcc [vd] + svdd [vc]),

then apply the decoder of the select gadget to qvc,vdg , extract from the output the effective selector
γ ∈ {0, 1} and the selected key s and set vk = γ and svkk = s.

• Generalized Transmission gate. For wires k1, . . . , kp that are outputs of a transmission gate g with
incoming wire c, for which the pair (vc, s

vc
c) was already computed, we do the following. Retrieve Qvcg

from the gate table Qg, and set
qvcg := Qvcg − svcc ,

parse qvcg as (qvcg [1], . . . , qvcg [p]) and, for each i ∈ [p], apply the decoder of the tselect gadget to qvcg [i],
extract from the output the effective selector γ ∈ {0, 1} and the selected key s and set vki = γ and
s
vki
ki

= s. (Recall that the effective selector can be recovered given the output of the gtselect-decoder.)

The output of dec is the binary vector (vj)j∈[m].

Algorithm dec

Figure 14: Algorithm dec

The total arithmetic complexity of dec is linear in
∑

j ωj , which is poly(m, 2d), as we showed in
the analysis of enc.

5.3.2 Analysis of the Garbled Circuit

Let us start by summarizing the syntactic properties of pre, enc and dec.

Proposition 5.18. For a circuit C of size m and depth d, the arithmetic complexity of pre, enc, dec
is poly(m, 2d). In addition, the randomized function enc is of degree 2.

The standard security of information-theoretic garbled circuit [IK02] essentially says that for
binary inputs x, the function C(x) is perfectly encoded by the randomized function C ′(x) which
samples uniform wire masks α ∈ {0, 1}m, and outputs enc(pre(x,α)) together with the masks of
the output wires. In fact, as implicitly observed in [ABT18], this can be extended to the case where
α ∈ {0, 1}m is treated as part of the input. That is, the randomized function enc(pre(x,α)) defined
over binary inputs (x,α), perfectly encodes the “garbled evaluation” function gEvalC(x,α) that

45

applies C to x, computes, for each wire i, the intermediate value ui (induced by the input x) and
outputs the masked values (ui + αi)i∈[m].

Below, we show that even when, for some subset of the gates I, the value of pre is maliciously set
to some arbitrary ΓI , the residual function enc(ΓI , pre(x[Īinp],α[Īwire])) restricted to inputs x[Īinp]
of the input gates Īinp outside I and masks α[Īwire] of the wires Īwire that do not enter the I-gates,
still encodes a related function gEvalĈ((x̂[Iinp],x[Īinp]), (α̂[Iwire],α[Īwire])) where Ĉ is obtained from
C by corrupting the gates in I and x̂[Iinp] and α̂[Iwire] are “synthetic” binary inputs/masks for the
I input gates Iinp and for the wires Iwire that enter I-gates. (The modified circuit and the syntectic
values are induced by ΓI .) Such a statement implicitly appears in [ABT19] for a binary version of
the construction, and we extend it to the arithmetic setting via the above construction.

In order to formalize the above, we need several definitions and notational conventions.

Notation. The following definitions hold with respect to some fixed circuit C. Fix a set of gates
I. The set of wires associated with I, denoted by Iwire, consist of all wires that go into a gate in I.
We denote the set of input wires that are associated with I by Iinp, and the set of output wires that
are associated with I by Iout. An I-input vector, denoted x[Iinp], is a tuple of field elements that
contains an element xg for each input gate g in I. An I-mask vector, denoted, α[Iwire], is a tuple of
mask elements that contains an element αi for each wire i in Iwire. An I-gate vector, ΓI , is a vector
of field elements that consists of an I-input vector, an I-mask vector, and a tuple Γg ∈ F4 for every
local computation gate g in I. We let preI denote the restriction of pre to I. That is, preI takes an
I-input vector and an I-mask vector, and outputs the corresponding I-gate vector ΓI . The locality
of pre (Remark 5.16), ensures that preI is well-defined. We let Ī = {g /∈ I} denote the complement
of I and note that Īwire is the complement of Iwire.

Admissible set of gates. The set I typically denotes the set of gates that are controlled by the
adversary. Such a set must be admissible in the following sense. Consider the graph G obtained by
cutting the outgoing wires of all (possibly generalized) transmission gates, then I is admissible if it
contains a subset of the connected components of the graph. Equivalently, the set I is admissible
if for every wire connecting a gate g ∈ Ī to a gate g′ ∈ I, the gate g is a (possibly generalized)
transmission gate and the gate g′ is a local gate, and, for every wire connecting a gate g ∈ I to a
gate g′ ∈ Ī, the gate g is a (possibly generalized) transmission gate and the gate g′ is a local gate.
(Recall that a transmission gates and generalized transmission gates are always connected to local
computation gates.)

Remark 5.19 (Admissible sets.). The definition of admissible sets is motivated by the fact that in
a circuit representation of a protocol (see Definition 5.11), the set of all gates that belong to the
adversary is always an admissible set.

The definition of admissible sets implies that all wires connected to local-gates and input-gates in
I are in Iwire, and all wires connected to local-gates and input-gates in Ī are in Īwire. Furthermore,
an incoming wire to a transmission gate in I is necessarily in Iwire (however, an outgoing wire might
belong to Īwire), and an incoming wire to a transmission gate in Ī is necessarily in Īwire (however
an outgoing wire might belong to Iwire).

I-corrupted circuit. We say that a circuit Ĉ is an I-corrupted version of C if Ĉ is a Boolean
circuit that differs from C only with respect to gates that belong to I. Specifically, the topology

46

of the circuit remains unchanged (which also means that the input gates remains unchanged).
Every local computation gate g ∈ I may be changed to compute an arbitrary Binary operator
G : {0, 1} × {0, 1} → {0, 1}. Finally, every simple/generalized transmission gate g can be modified
to a different generalized transmission gate with the following important restriction: If g is Ī-
consistent then so is the modified gate g′. Here we say that a transmission gate is Ī-consistent if the
labels of all outgoing wires that are associated with Ī are the same. Specifically, this means that
if g is a broadcast gate then the gate still broadcasts a single value to all the outgoing wires that
are not associated with I. (We emphasize that a simple transmission gate g can be replaced by a
generalized transmission gate g′.)

For an admissible set of gates I, and an arbitrary I-gate vector ΓI , the following lemma captures
the information that is given by the outcome of enc(ΓI , preI(x[Īinp],α[Īwire])) where x[Īinp] is a binary
Ī-input vector and α[Īwire] is a binary mask vector.

Lemma 5.20 (Main lemma). Let I be an admissible set of gates. There exists mapping
T , with arithmetic complexity poly(m), that takes an I-gate vectors ΓI and outputs a triple
(x̂[Iinp], α̂[Iwire], Ĉ) of a binary I-input vector x̂[Iinp], a binary I-mask vector α̂[Iwire], and an I-
corrupted circuit Ĉ of C such that the following hold.

1. For every fixed ΓI , the deterministic function gΓI , that given a binary Ī-input vector x[Īinp]
and a binary Ī-mask vector α[Īwire] outputs the value

gEvalĈ
(
(x̂[Iinp],x[Īinp]), (α̂[Iwire],α[Īwire])

)
, where (x̂[Iinp], α̂[Iwire], Ĉ) = T (ΓI),

is perfectly encoded by the randomized function ĝΓI (x[Īinp],α[Īwire]) that outputs

encC
(
ΓI , pre

C
Ī (x[Īinp],α[Īwire])

)
.

The arithmetic complexity of the encoding is poly(m, 2d), the decoder is the one presented in
Section 5.3 and can be computed in time poly(m, 2d) independently of ΓI , and the simulator
can be computed with arithmetic complexity of poly(m, 2d), given the parameters (I,ΓI).

2. Moreover, if ΓI is honestly generated via preCI (x[Iinp],α[Iwire]) for some binary I-input vector
x[Iinp] and binary I-mask vector α[Iwire], then T (ΓI) outputs (x[Iinp],α[Iwire], C).

Recall that the garbled-evaluation function gEvalĈ takes a binary input-vector x and a binary
vector of mask values α, computes, for each wire i of Ĉ, the intermediate value ui (induced by the
input x) and outputs the masked values (ui + αi)i∈[m].

The proof of Lemma 5.20 is deferred to Section C.

5.4 The Master Theorem

Our master theorem closely follows that of [ABT19], with F2 now replaced with F.

Theorem 5.21 (Master theorem). For every n-party protocol Π whose circuit representation is of
size m and depth d, there exists an n-party non-interactive oracle aided protocol Π̂h over finite field
F of characteristic 2 with the following properties.

1. Efficiency. The communication and computational complexity of Π̂h is at most L =
poly(2d, n,m, log |F|) times larger than that of Π.

47

2. Quadratic Oracle. The randomized oracle h can be written as a quadratic function over F
in the inputs and in the internal randomness.10

3. Simulation. For every strategy Â acting on Π̂h, there exists a strategy A of complexity at
most L = poly(2d, n,m, log |F|) times larger acting on Π, such that for all J ⊆ [n] and for all
x = (x1, . . . , xn), the distribution of RealΠ,J,A(x) and RealΠ̂h,J,Â(x) are identical. Furthermore,
if Â is semi-honest (i.e. follows the protocol) then so is A.

Remark 5.22 (constructiveness). We mention that Theorem 5.21 is constructive in the sense that
given a description of Π (and the size of F) one can generate a description of Π̂ and h in time L
(as defined above). Moreover, given the code of Â (and the code of Π) can generate the code of A
in time Lpoly(|Â|). (In fact, A makes a black-box use of Â.)

The protocol Π̂h essentially computes the garbled-circuit encoding (Section 5.3) of the circuit
representation of Π (Section 5.1.5). The Γ values are precomputed by the parties and are then
delivered to the oracle h that corresponds to the procedure enc. Given the output of enc, each party
recovers the garbled evaluation of Π via the decoder dec and then unmasks the values of her own
wires. The security is based on Lemma 5.20. Details follow.

Proof. It suffices to prove the theorem only for deterministic protocols Π, since for a randomized
protocol we can always consider Π to be the induced deterministic protocol where the parties’ coins
are treated as part of their input. Since our theorem quantifies over all inputs x, this will also
capture the case where part of the input (corresponding to the random tapes of the randomized
protocol) is uniformly sampled.

Let (C,P) be the circuit representation of Π. (Recall that C is Boolean circuit of size m that
is obtained by gluing together the circuits of the next-round functions of each party via simple
transmission gates, and that P : [m] → [n] is a mapping from the wires in C to the n parties;
see Section 5.1.5.) The protocol Π̂h is a non-interactive oracle-aided protocol, i.e., it contains a
pre-processing step where each party locally computes a message to be sent to the oracle, followed
by an oracle response and local post-processing.

• Preprocessing. Every party i samples random binary masks αi = (αj)j:P (j)=i for each wire
j that belongs to i, and for each of her input/local gates g computes the value Γg based on
her input xi and randomness αi as in Section 5.3. The party sends `i = (αi, (Γg)) to the
oracle h.

• Oracle. The oracle h takes all messages `i = (αi,Γi), concatenate them into Γ = (Γg)g∈C ◦α,
where α = (αi)i∈[m], and applies enc on Γ (and on a fresh random vector of field elements of
appropriate length). The oracle sends the output Q = encC(Γ) to all parties as a response to
their query.

• Post-processing. Upon receiving Q, each party i applies dec(Q) to obtain the sequence
(vj)j∈[m], where dec is the decoding algorithm, as described in Section 5.3. Then, for any
output wire j belonging to party i, it computes vj − αj to obtain the output value (recall

10One can always replace h by a deterministic degree-2 function by applying the standard reduction [Gol04,
Prop. 7.3.4] in which each random field element r is replaced by the sum

∑
i ri where ri is a random field ele-

ment selected by the i-th party as part of the preprocessing step. The resulting element r is uniformly distributed as
long as at least one party is honest, and the transformation preserves the degree of the oracle.

48

that for a wire j belonging to party i, the value αj was locally generated by party i and is
therefore available for post-processing). Its output contains the collection of values on these
output wires.

Properties 1 and 2 in the theorem follow immediately from the properties of the garbled-circuit
encoding (Proposition 5.18). It remains to prove property 3.

Let (Â, J) be an adversary for Π̂h, where J ⊆ [n] is the set of malicious parties. Since Π̂h is
non-interactive, then Â only gets to choose the values `[J] = {`i}i∈J based on the inputs x[J],
and then post-process the oracle response Q. We can further simplify and consider without loss of
generality only adversaries Â that are deterministic (since our simulation is perfect and therefore
holds even conditioned on any random string) and do not perform any post-processing but instead
just output Q (since any post-processing results in a deterministic function of Q, thus simulating
Q allows to simulate any such value).

The simulator: overview. Our task is to produce an adversary (A, J) for the original protocol
Π with the same real-model distribution as our (deterministic, no-post-processing) Â. We assume
throughout that J 6= [n] (i.e. there exists some honest parties), or otherwise the result is trivial. In
short, we use A to generate an I-gate vector ΓI where I is the set of gates in C that belong to the
coalition J . Then, invoke Lemma 5.20 to compute an effective I-corrupted circuit Ĉ together with
effective inputs and masks (x̂[Iinp], α̂[Iwire]). These values naturally define a cheating strategy for Π
that will be played by A. As a result, A learns the value gΓI (x[Īinp],α[Īwire]) where x[Īinp],α[Īwire]
are the inputs of the honest players (and gΓI is defined in Lemma 5.20). This output is mapped to
an h-output Q′ via the simulator that is promised by Lemma 5.20. Details follow.

The admissible set I. For a malicious party p and round r, recall that Cr,p is the set of gates
corresponding to the computation of party p in the r-th round. Let I be the set of all gates in Cr,p
and transmission gates corresponding to the outputs of Cr,p, for all p ∈ J and r ∈ [R+1] where R is
the number of rounds of the protocol. That is, I is the set of all gates that belong to the malicious
parties. First note that I is an admissible set (see Section 5.3.2 for the definition). Indeed, every
wire connecting a gate g ∈ Ī to a gate g′ ∈ I goes from transmission gate of round r − 1 to a local
gate of round r, and every wire connecting a gate g ∈ I to a gate g′ ∈ Ī goes from a transmission
gate of round r − 1 to a local gate of round r. Furthermore, note that the set of wires Iwire that
are associated with I (see Section 5.3.2 for the definition) is exactly the set of all wires j such that
P (j) ∈ J , i.e., all wires that belong to parties controlled by the adversary.

The adversary A: Pre-execution. The adversary A first simulates Â on x[J] to obtain the
values `[J] which define an I-gate vector ΓI . Then it applies the mapping T promised by Lemma 5.20
to ΓI and gets a triple (x̂[Iinp], α̂[Iwire], Ĉ) of a binary I-input vector x̂[Iinp], a binary I-mask vector
α̂[Iwire], and an I-corrupted circuit Ĉ of C.

The adversary A: Executing Ĉ. The next step is to simulate the computation of
Ĉ(x̂[Iinp],x[Īinp]) by simulating the circuit representation C of the protocol with some malicious
strategy. (Recall that we denote by x[Īinp] the vector of all inputs in x that correspond to input
gates in Ī. In our context x[Īinp] is the same as x[J].) Since Ĉ is an I-corrupted version of I, the
emulation is straightforward. Whenever the protocol Π represented by C instructs the adversary

49

to use the i-th input in some input gate g ∈ I, the adversary uses the effective bit x̂[i]. Whenever
the protocol Π instructs the adversary to make a local computation step that corresponds to a
gate g, the adversary follows the corresponding (modified) gate g in Ĉ. Finally, when the protocol
instructs the adversary to transmit a message uc (either a private message or a broadcast message)
according to a transmission gate g ∈ I with an incoming wire c, the adversary acts according to the
corresponding generalized transmission gate in Ĉ. That is, for an out-going wire w the adversary
sends the value uw = â · u + b̂ where â, b̂ are the values that appear next to the wire w in the
generalized transmission gate of Ĉ. Since the generalized transmission gates are Ī-consistent all
honest parties get the same value and so this step is realizable even when the protocol Π makes use
of a broadcast channel.

The adversary A: Post-execution. After the execution, the adversary collects the binary values
of all wires that belong to the adversary, denoted by u[Iwire], masks them with the vector α̂[Iwire] that
was generated before the execution, and generates the masked vector v[Iwire] = u[Iwire] + α̂[Iwire].
Then, the adversary uniformly samples a binary vector v[Īwire] of binary (masked) values for wires
in Īwire, feeds the vector (v[Iwire],v[Īwire]) to the simulator SΓI of the randomized encoding promised
in Lemma 5.20, and terminates with the resulting output.

Analyzing A. The efficiency of A follows from Lemma 5.20. Moreover, the second item of
the lemma implies that a semi-honest adversary Â that uses inputs x[Iinp] induces a semi-honest
adversary A since Ĉ = C and x̂[Iinp] = x[Iinp]. It remains to show that RealΠ,J,A(x) ≡ RealΠ̂h,J,Â(x)
for every x. Recall that each of these random variables consist of two parts: (1) The adversary’s
output which is a vector of garbled gate tables of the same syntax as the output of enc; and (2) The
output vector of the honest parties in which each entry corresponds to an output wire in C that
belongs to an honest party. Recall that this set of output wires is denoted by Īout ⊂ Īwire.

Let us fix the value x throughout the proof. Since Â is deterministic, this also fixes the vector
ΓI , the effective input x̂[Iinp], the masks α̂[Iwire] and the effective circuit Ĉ. Let us take a closer
look at RealΠ,J,A(x). Denote by u = (ui)i∈[m] the vector of all intermediate wire values induced
by the evaluation of Ĉ(x̂[Iinp],x[Īinp]). Since the adversary A executes the protocol represented
by Ĉ(x̂[Iinp],x[Īinp]), the output of the honest parties is u[Īout]. Let α[Īwire] = v[Īwire] − u[Īwire]
where v[Īwire] is the vector chosen by the simulator in the post-execution step. We can now write
RealΠ,J,A(x) as (

v[Īout]−α[Īout], SΓI (v)
)
,

where
v = gEvalĈ

(
(x̂[Iinp],x[Īinp]), (α̂[Iwire],α[Īwire])

)
,

and gEvalĈ is the garbled-evaluation function.
On the other hand, the distribution RealΠ̂h,J,Â(x) can be written as(

dec(Q)[Īout]−α[Īout],Q
)
,

where
Q = encC

(
ΓI , pre

C
Ī (x[Īinp],α[Īwire])

)
,

and α[Īwire] is uniformly chosen. Observe that the marginal distribution of α[Īwire] in both exper-
iments is uniform. Let us condition on the event that these two random variables take the same

50

fixed value. Then, RealΠ,J,A(x) is distributed identically to RealΠ̂h,J,Â(x) since, by Lemma 5.20, Q
perfectly encodes v. The theorem follows.

5.5 Completeness Theorems

In this section we show that degree-2 functionalities are complete under non-interactive reductions.
We say that a protocol has a security loss of L if any viable real-world adversary A can be simulated
by an ideal-world adversary B whose complexity is at most L times larger than the complexity of
A. We prove the following completeness theorem (whose informal version appears as Theorem 1.5).

Theorem 5.23 (Completeness of quadratic functions). Let f be an n-party functionality computable
by a Boolean circuit of size S and depth D and let k > 1 be an integer. Then there exists a non-
interactive reduction from the task of securely computing f to the task of computing a degree-2
functionality over the field F2k . The reduction can take any of the following forms:

1. Perfectly-secure reduction with threshold of t = dn3 − 1e whose computational complexity and
security loss are poly(n, S, 2D, k).

2. Statistically-secure reduction with threshold of t = dn2 − 1e whose computational complexity
and security loss are poly(n, S, 2D, k).

3. Assuming one-way functions, computationally secure reduction with threshold of t = dn2 − 1e
whose computational complexity and security loss are poly(n, S, k). Furthermore, the reduction
makes a black-box use of the one-way function (as part of the preprocessing and post-processing
phases).11

An identical statement for the special case of the binary field (k = 1) appears in [ABT19]. We
mention again that asymptotically when f = {fκ} is an infinite functionality the parameters n, S,D
and k are all functions of κ.

Proof. The proof of the theorem is obtained by plugging into our new master-theorem (Theo-
rem 5.21) standard protocols from the literature. Specifically, the completeness proof of [ABT19,
Section 5] shows that there exist perfectly-secure protocol with t = dn3 − 1e whose circuit complex-
ity is poly(n, S, 2D), a statistically-secure protocol with t = dn2 − 1e) whose circuit complexity is
poly(n, S, 2D) and, assuming one-way functions, a computationally-secure protocol that makes a
black-box use of the one-way function, whose circuit complexity is poly(n, S, k).

We make few comments about the protocols obtained in Theorem 5.23 which are taken verbatim
from [ABT19]. The protocols are employed over synchronous network with pairwise private channels
and a broadcast channel (which is our default setting). In all three settings, we require full security
(in particular, the adversary cannot abort the honest parties). It is well known that in this case the
best achievable threshold is d(n/3)− 1e for perfect MPC [BGW88] and d(n/2)− 1e for statistical,
or even computational MPC [RB89]. Hence, the theorem achieves optimal security thresholds in all
three cases.

As usual in the context of constant-round information-theoretic MPC, our information-theoretic
protocols are efficient only for NC1 functionalities.12 Nevertheless, even for general functions, for

11In the computational setting, we let the circuit size S play the role of the security parameter, and assume that
n is at most polynomial in S.

12This can be slightly pushed to log-space computation via standard techniques.

51

which our perfect and statistical reductions are inefficient, the result remains meaningful since the
protocols resist computationally unbounded adversaries.

References

[ABT18] Benny Applebaum, Zvika Brakerski, and Rotem Tsabary. Perfect secure computation
in two rounds. In Theory of Cryptography - 16th International Conference, TCC 2018,
Panaji, India, November 11-14, 2018, Proceedings, Part I, pages 152–174, 2018.

[ABT19] Benny Applebaum, Zvika Brakerski, and Rotem Tsabary. Degree 2 is complete for the
round-complexity of malicious MPC. In Advances in Cryptology - EUROCRYPT 2019 -
38th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part II, pages 504–
531, 2019.

[ACGJ18] Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek Jain. Round-
optimal secure multiparty computation with honest majority. In Advances in Cryptology
- CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2018, Proceedings, Part II, pages 395–424, 2018.

[ACGJ19] Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek Jain. Two round
information-theoretic MPC with malicious security. In Advances in Cryptology - EURO-
CRYPT 2019 - 38th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part
II, pages 532–561, 2019.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. In 45th
Symposium on Foundations of Computer Science (FOCS 2004), 17-19 October 2004,
Rome, Italy, Proceedings, pages 166–175, 2004.

[AIK14] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic circuits.
SIAM J. Comput., 43(2):905–929, 2014.

[AL17] Gilad Asharov and Yehuda Lindell. A full proof of the BGW protocol for perfectly
secure multiparty computation. J. Cryptology, 30(1):58–151, 2017.

[App17] Benny Applebaum. Garbled circuits as randomized encodings of functions: a primer.
In Tutorials on the Foundations of Cryptography., pages 1–44. 2017.

[BB89] Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant computing in con-
stant number of rounds of interaction. In Proceedings of the Eighth Annual ACM Sym-
posium on Principles of Distributed Computing, Edmonton, Alberta, Canada, August
14-16, 1989, pages 201–209, 1989.

[Bea91] D. Beaver. Efficient Multiparty Protocols Using Circuit Randomization. In J. Feigen-
baum, editor, Advances in Cryptology - CRYPTO ’91, 11th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 11-15, volume 576 of Lecture
Notes in Computer Science, pages 420–432. Springer Verlag, 1991.

52

[BFKR90] Donald Beaver, Joan Feigenbaum, Joe Kilian, and Phillip Rogaway. Security with
low communication overhead. In Advances in Cryptology - CRYPTO ’90, 10th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 11-15,
1990, Proceedings, pages 62–76, 1990.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In Pro-
ceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988,
Chicago, Illinois, USA, pages 1–10, 1988.

[BH08] Zuzana Beerliová-Trubíniová and Martin Hirt. Perfectly-secure MPC with linear com-
munication complexity. In Theory of Cryptography, Fifth Theory of Cryptography Con-
ference, TCC 2008, New York, USA, March 19-21, 2008, pages 213–230, 2008.

[BKP11] Michael Backes, Aniket Kate, and Arpita Patra. Computational verifiable secret sharing
revisited. In Advances in Cryptology - ASIACRYPT 2011 - 17th International Confer-
ence on the Theory and Application of Cryptology and Information Security, Seoul,
South Korea, December 4-8, 2011. Proceedings, pages 590–609, 2011.

[BL18] Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round
oblivious transfer via garbled interactive circuits. In Advances in Cryptology - EURO-
CRYPT 2018 - 37th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part
II, pages 500–532, 2018.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In Proceedings of the 22nd Annual ACM Symposium on
Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 503–513,
1990.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd Annual Symposium on Foundations of Computer Science, FOCS
2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 136–145, 2001.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure
protocols (extended abstract). In Proceedings of the 20th Annual ACM Symposium on
Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 11–19, 1988.

[CD01] Ronald Cramer and Ivan Damgård. Secure distributed linear algebra in a constant
number of rounds. In Advances in Cryptology - CRYPTO 2001, 21st Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 19-23, 2001,
Proceedings, pages 119–136, 2001.

[CGMA85] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable secret
sharing and achieving simultaneity in the presence of faults (extended abstract). In
26th Annual Symposium on Foundations of Computer Science, Portland, Oregon, USA,
21-23 October 1985, pages 383–395, 1985.

53

[CKPR01] Ran Canetti, Joe Kilian, Erez Petrank, and Alon Rosen. Black-box concurrent zero-
knowledge requires omega~(log n) rounds. In Proceedings on 33rd Annual ACM Sympo-
sium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece, pages 570–579,
2001.

[Cle86] Richard Cleve. Limits on the security of coin flips when half the processors are faulty
(extended abstract). In Proceedings of the 18th Annual ACM Symposium on Theory of
Computing, May 28-30, 1986, Berkeley, California, USA, pages 364–369, 1986.

[DI05] Ivan Damgård and Yuval Ishai. Constant-round multiparty computation using a black-
box pseudorandom generator. In Advances in Cryptology - CRYPTO 2005: 25th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 14-18,
2005, Proceedings, pages 378–394, 2005.

[DR85] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine
agreement. J. ACM, 32(1):191–204, 1985.

[FGG+06] Matthias Fitzi, Juan A. Garay, Shyamnath Gollakota, C. Pandu Rangan, and K. Sri-
nathan. Round-optimal and efficient verifiable secret sharing. In Theory of Cryptog-
raphy, Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA,
March 4-7, 2006, Proceedings, pages 329–342, 2006.

[FM85] Paul Feldman and Silvio Micali. Byzantine agreement in constant expected time (and
trusting no one). In 26th Annual Symposium on Foundations of Computer Science,
Portland, Oregon, USA, 21-23 October 1985, pages 267–276, 1985.

[GIKR01] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. The round complexity
of verifiable secret sharing and secure multicast. In Proceedings on 33rd Annual ACM
Symposium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece, pages
580–589, 2001.

[GIKR02] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. On 2-round secure
multiparty computation. In Advances in Cryptology - CRYPTO 2002, 22nd Annual
International Cryptology Conference, Santa Barbara, California, USA, August 18-22,
2002, Proceedings, pages 178–193, 2002.

[GIS18] Sanjam Garg, Yuval Ishai, and Akshayaram Srinivasan. Two-round MPC: information-
theoretic and black-box. In Theory of Cryptography - 16th International Conference,
TCC 2018, Panaji, India, November 11-14, 2018, Proceedings, Part I, pages 123–151,
2018.

[GK96] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof
systems. SIAM J. Comput., 25(1):169–192, 1996.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, 2004.

54

[GS18] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation
from minimal assumptions. In Advances in Cryptology - EUROCRYPT 2018 - 37th An-
nual International Conference on the Theory and Applications of Cryptographic Tech-
niques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II, pages 468–499,
2018.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In 41st Annual Symposium on
Foundations of Computer Science, FOCS 2000, 12-14 November 2000, Redondo Beach,
California, USA, pages 294–304, 2000.

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via per-
fect randomizing polynomials. In Automata, Languages and Programming, 29th Inter-
national Colloquium, ICALP 2002, Malaga, Spain, July 8-13, 2002, Proceedings, pages
244–256, 2002.

[IKKP15] Yuval Ishai, Ranjit Kumaresan, Eyal Kushilevitz, and Anat Paskin-Cherniavsky. Secure
computation with minimal interaction, revisited. In Advances in Cryptology - CRYPTO
2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20,
2015, Proceedings, Part II, pages 359–378, 2015.

[IKP10] Yuval Ishai, Eyal Kushilevitz, and Anat Paskin. Secure multiparty computation with
minimal interaction. In Advances in Cryptology - CRYPTO 2010, 30th Annual Cryp-
tology Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, pages
577–594, 2010.

[KKK09] Jonathan Katz, Chiu-Yuen Koo, and Ranjit Kumaresan. Improving the round com-
plexity of VSS in point-to-point networks. Inf. Comput., 207(8):889–899, 2009.

[KLR06] Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. Information-theoretically secure pro-
tocols and security under composition. In Proceedings of the 38th Annual ACM Sym-
posium on Theory of Computing, Seattle, WA, USA, May 21-23, 2006, pages 109–118,
2006.

[KPR10] Ranjit Kumaresan, Arpita Patra, and C. Pandu Rangan. The round complexity of
verifiable secret sharing: The statistical case. In Advances in Cryptology - ASIACRYPT
2010 - 16th International Conference on the Theory and Application of Cryptology and
Information Security, Singapore, December 5-9, 2010. Proceedings, pages 431–447, 2010.

[LF82] Leslie Lamport and Michael Fischer. Byzantine generals and transaction commit pro-
tocols. Technical report, Technical Report 62, SRI International, 1982.

[Lyn96] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[MNS16] Tal Moran, Moni Naor, and Gil Segev. An optimally fair coin toss. J. Cryptology,
29(3):491–513, 2016.

[PCRR09] Arpita Patra, Ashish Choudhary, Tal Rabin, and C. Pandu Rangan. The round com-
plexity of verifiable secret sharing revisited. In Advances in Cryptology - CRYPTO

55

2009, 29th Annual International Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 16-20, 2009. Proceedings, pages 487–504, 2009.

[PR18] Arpita Patra and Divya Ravi. On the power of hybrid networks in multi-party compu-
tation. IEEE Trans. Information Theory, 64(6):4207–4227, 2018.

[PSL80] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. J. ACM, 27(2):228–234, 1980.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority (extended abstract). In Proceedings of the 21st Annual ACM
Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washigton, USA, pages
73–85, 1989.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[SYY99] Tomas Sander, Adam L. Young, and Moti Yung. Non-interactive cryptocomputing for
NC1. In 40th Annual Symposium on Foundations of Computer Science, FOCS ’99,
17-18 October, 1999, New York, NY, USA, pages 554–567, 1999.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
27th Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29
October 1986, pages 162–167, 1986.

A Lower Bound

A.1 Perfectly-Secure VSS

Definition A.1 (Perfectly-secure VSS [CGMA85]). In a VSS protocol there is a distinguished
party D ∈ P that holds an input s picked from any distribution over a field F referred to as the
secret. The protocol consists of two phases, a sharing phase and a reconstruction phase.
- Sharing: In the beginning, D holds s and each party including the dealer holds an independent

random input ri. The sharing phase may span over several rounds. At each round, each party
can privately send messages to the other parties and it can also broadcast a message. Each
message sent or broadcasted by Pi is determined by its input (if any), its random input and
messages received from other parties in previous rounds.

- Reconstruction: In this phase, each Pi provides its entire view vi from the sharing phase, and a
reconstruction function is applied and is taken as the protocol’s output.

A two-phase, n party protocol as above is called a perfectly-secure (n, t)-VSS, if for any adversary
A corrupting at most t parties, the following holds:
- Correctness: If D is honest then each honest party upon completing the reconstruction phase,

outputs s.

- Commitment: Even if D is corrupt, any execution of the sharing phase determines a unique value
s̄, such that each honest party upon completing reconstruction phase outputs s̄, irrespective of
the behavior of the corrupted parties.

56

- Privacy: If D is honest then the adversary’s view during the sharing phase reveals no information
on s. More formally, the adversary’s view is identically distributed for all possible values of s.
Denoting Ds as A’s view during the sharing phase when D’s secret is s, the privacy property
demands Ds ≡ Ds′ for any s 6= s′.

A.2 General transference claim

We prove that nay RT T that is i-realizable in π′, is also i-realizable in π.

Claim A.2 (transference claim). If T is i-realizable in π′ then it is also i-realizable in π.

Proof. Given a RT T = (v,a,b) and index i ∈ [4], we define the (T, i)-canonical adversary P ∗i in π
as follows. Let c be the vector of broadcasts of the third round which is induced by T .

1. (Round 1) Broadcast ai and private messages ai,j as defined by T ;

2. (Round 2) Broadcast bi;

3. (Round 3) Broadcast ci.

We show that the (T, i)-canonical adversary realizes T in π. Consider an execution of π in which
the honest parties have inputs (zj)j 6=i and pick randomness (rj)j 6=i, where zj and rj are the input
and randomness of party j, as induced by T . By definition, the inputs/randomness of every honest
party j 6= i is consistent with vj as defined by T . Since the view of each honest party j is self
consistent (by Observation 3.10) its first-round broadcast and all the first round outgoing messages
of j to an honest party ` 6= i, are consistent with the transcript values (aj , (aj,`)` 6=i,j). Consequently,
every message that an honest party j receives from an honest party ` in the first round is consistent
with T (since honest parties are pairwise consistent). In addition, the incoming message from P ∗i is
consistent with T by definition of the canonical adversary.

Similarly, the broadcast messages that an honest party j sends in the second round are consistent
with T since vj is self-consistent in T , the broadcast value is computed based on Pj ’s inputs,
randomness, and incoming messages which are all consistent with T . Therefore, every broadcast
message that an honest party j receives from an honest party ` in the first round is consistent with
T (since honest parties are pairwise consistent). In addition, the broadcast message from P ∗i is
consistent with T by the definition of the canonical adversary.

Finally, the broadcast messages that an honest party j sends in the second round are consistent
with T since αj = 0 and so the value cj induced by T is computed just like in π based on values
that were computed in previous rounds, and party i broadcasts the value ci which is induced by
T .

B Perfectly-secure MPC

Security of all the protocols are proven based on real and ideal world paradigm, as recalled in
Section 5.1.4.

B.1 Weak Commitment

Proof. We divide the proof into two cases based on whetherD is corrupt or not. We design simulator
and show indistinguishability for each case.

57

Honest D. The simulator invokes A with its auxiliary information z. It then receives si for every
corrupt Pi in set I from functionality Fwc and picks a g′(x) polynomial such that g′(i) = si for
every Pi ∈ I. It then picks a symmetric bivariate polynomial G′(x, y) uniformly at random with
G′(x, 0) = g′(x) and emulates the role of the honest parties to the set of corrupt parties in I. The
simulator outputs what A outputs.

Denoting g′i(x) = G′(x, i), the set polynomials {g′i(x)}i∈I determine the values that the simulator
on behalf of the honest D is supposed to disclose for the pairs whose masked values do not match.
This is because no two honest parties conflict over their masked values. The same is true even for a
real execution. The only difference between the real and simulated execution is whether {g′i(x)}i∈I
is based on the real polynomial g(x) or the simulator-chosen polynomial g′(x). These distributions
{gi(x)}i∈I and {g′i(x)}i∈I are indeed identical. A formal argument for this can be derived from the
argument given in Claim 5.4 of [AL17] for non-symmetric bivariate polynomials. It is easy to see
that the outputs of the honest parties in P \ I are the same in both the worlds for every input g(x)
and auxiliary input of the adversary A. Therefore the simulation ensures that the joint distribution
of the views of honest (which are their outputs) and corrupt parties have identical distribution in
both the worlds over the random coins of the honest parties, for every input g(x) and auxiliary input
of the adversary A (which can be assumed to hold the best coins of adversary). This completes the
proof for honest D.

Corrupt D. The simulator invokesA with its auxiliary information z. The simulator plays the role
of the n−|I| honest parties and receives the g′i(x) polynomials from corrupt D. It then emulates the
role of the honest parties using these polynomials. At the end of the simulated protocol execution,
if D is discarded, then it sends x2t and W to Fwc. Sending x2t ensures that the functionality sends
⊥ to all the honest parties. Otherwise, let H be the set of honest parties contained in W. Since
the g′i(x) polynomials possessed by the parties in H are consistent with each other, they define
a unique symmetric bivariate polynomial of degree at most t in both x and y, say G′(x, y). Let
g′(x) = G′(x, 0). The simulator forwards g′(x) and W to Fwc and outputs what A outputs. This
completes the simulation.

Since the simulator emulates the honest parties as per the specification of the protocol, the
simulated view of the corrupt parties is perfectly indistinguishable from their real world view.
Assuming (a) the random coins of the corrupt parties come from A’s auxiliary input and (b) the
simulator and the honest parties in the real world pick the same randomness, the adversary sees the
identical view across the real and simulated world for every choice of its input g′(x). We now show
that the outputs of the honest parties in P \ I are the same in both the worlds for every input g′(x),
auxiliary input of the adversary A, and the random coins chosen for the honest parties. The entire
execution in both the worlds, under the above circumstances, turn identical which readily implies
that the setW is identical in both worlds. From a real execution, it is clear that all the honest parties
in W are pairwise consistent implying their polynomials uniquely determine a bivariate polynomial
G′(x, y) and its underlying univariate polynomial G′(x, 0) = g′(x). As a result, in the real execution,
every honest party in W outputs g′(i) and others output ⊥. In the simulated world, the simulator,
on seeing the same W, computes G′(x, y) and g′(x) with the honest parties polynomials in W. Since
it forwards (g′(x),W) to Fwc, honest parties in W receive g′(i) from the functionality, while the
honest parties outside receive ⊥. Therefore, the outputs of the honest parties are identical in both
the worlds for every input g′(x), auxiliary input of the adversary A, and the random coins chosen
for the honest parties. This implies that the joint distribution of the views of honest (which are

58

their outputs) and corrupt parties have identical distribution in both the worlds over the random
coins of the honest parties, for every input g(x) and auxiliary input of the adversary A.

B.2 Verifiable Secret Sharing (VSS)

Proof. We divide the proof into two cases based on whetherD is corrupt or not. We design simulator
and show indistinguishability for each case.

Honest D. The simulator Vh initiates A with auxiliary input z and performs three types of
communication– (i) external communication to functionality Fvsh, (ii) simulation of wcomi via in-
voking a copy of a simulator for wcom, denoted as Wi (which is either for the honest or corrupt
dealer case based on whether Pi is honest or corrupt) and (iii) simulation of the honest parties to A
as per the steps of protocol vsh outside the executions {wcomi}i∈{1,...,n} . On receiving polynomials
{fi(x)}i∈I from Fvsh, Vh emulates the honest dealer by picking a symmetric bivariate polynomial
F (x, y) with the constraint F (x, i) = fi(x) for every i ∈ I. It internally invokes Wi, a simulator for
honest dealer case, for i 6∈ I with t values {hij}j∈I chosen uniformly at random. Let hi(x) is the
polynomial that Wi uses to simulate wcomi. Vh uses hi(x) as the blinder polynomial of honest Pi
to compute the blinded polynomial on behalf of the honest parties. For every wcomi, i ∈ I, it runs
Wi, a simulator for corrupt dealer case. Let {hij}j 6∈I are values that Wi receives from A in wcomi.
Vh uses these as the blinders the honest parties received from corrupted Pi in wcomi and simulates
the role for the honest parties in vsh. The simulator outputs what A outputs. This concludes the
simulation. The outputs of the honest parties in the two worlds are identical for every input F (x, y)
and auxiliary input of the adversary A. Below we argue the indistinguishability of views of A in
the two worlds.

First, we note that the simulator makes sure, just like the real world, that the adversary first sees
its messages in Round 1 of vsh and its messages in all wcomi for honest Pi, before it distributes the
shares of the blinder polynomials inside wcom of the corrupt parties. Given this, the simulations of
all wcomi is perfectly indistinguishable from the real world. Further, the polynomials corresponding
to the corrupt parties, {fi(x)}i∈I , entirely determine the values that the simulator on behalf of the
honest D is supposed to disclose for pairs whose pairwise consistency check fails (those who are
in conflict). The same is true even for a real execution. The only difference between the real and
simulated execution is whether {fi(x)}i∈I is based on the real polynomial F ′(x, y) or the simulator-
chosen polynomial F (x, y). These distributions {f ′i(x)}i∈I and {fi(x)}i∈I are indeed identical. A
formal argument for this can be derived from the argument given in Claim 5.4 of [AL17] for non-
symmetric bivariate polynomials. This completes the proof for honest D.

D is corrupt. The simulator Vc initiates A with auxiliary input z and performs three types of
communication as mentioned in the previous case. The invocations to {Wi} are handled in the
same way and same order i.e. {Wi}i 6∈I are invoked first so that A sees its messages first in these
instances, followed by the invocations to {Wi}i∈I . Next, Vc perfectly simulates the steps of vsh on
behalf of the honest parties on receiving {fi(x)}i 6∈I from A. In the end, if D is discarded, then send
x2ty2t to functionality Fvsh so that it sets F (x, y) to a default symmetric bivariate polynomial of
degree t in both variables and distributes the shares accordingly. Otherwise, Vc computes F (x, y)
as the unique polynomial inferred by the fi(x) polynomials of the honest parties in V. Note that
there exist a unique such polynomial since no honest parties in V conflict over their common shares
(fi(j) and fj(i) respectively). Vc sends F (x, y) to Fvsh. The simulator outputs what A outputs.

59

Since the simulator emulates the honest parties as per the protocol specification, the simulated
view of the adversary A is indistinguishable from its real world view. Similar to the proof of corrupt
dealer case for wcom, we can conclude that for a given F (x, y), z (which includes the best coins
of adversary and given this, A turns a deterministic algorithm), and the random coins for the
honest parties, the the outputs of the honest parties in both world will be identical. In the real
world, every honest Pi receives fi(x) = F (x, i). The same is true in the simulated world, as the
simulator extracts the unique F (x, y) from the polynomials of the the honest parties in V (which
uniquely define F (x, y)) and forwards the same to Fvsh. This ensures all the honest parties receive
fi(x) = F (x, y).This further implies the joint distribution of the outputs of honest parties and views
of the corrupt parties in both the worlds are identical, for a given input F (x, y) and auxiliary input
z.

B.3 Multiplication Triple Sharing

Proof of Lemma 4.12. We divide the proof in two cases as before based on whether D is honest or
corrupt. We design simulator and show indistinguishability for each case.

D is honest. The simulator Mh runs the adversary A with auxiliary input z. On receiv-
ing three set of values {ai, bi, ci}i∈I from Fmsh, it picks a set of t + 3 random polynomials
f̄a(x), f̄ b(x), f̄ c(x), f̄1(x), . . . , f̄ t(x) as follows: (i) the polynomials f̄a(x), f̄ b(x), f̄ c(x) are such that
f̄a(i) = ai, f̄

b(i) = bi, f̄
c(i) = ci and their constant terms are equal to three random values ā, b̄, c̄

satisfying c̄ = āb̄; (ii) f̄ c(x) = f̄a(x)f̄ b(x) −
∑t

α=1 x
αf̄α(x). Next, following an honest dealer Mh

picks symmetric bivariate polynomials F̄ a(x, y), F̄ b(x), F̄ c(x), F̄ 1(x), . . . , F̄ t(x) hiding the respec-
tive univariate polynomials in them. It then internally initiates t + 3 VSS simulators for honest
dealer case, denoted as Va,Vb,Vc, {Vα}α∈{1,...,t} with inputs respectively {f̄ai (x)}i∈I , {f̄ bi (x)}i∈I ,
{f̄ ci (x)}i∈I for first three and with input {f̄αi (x)}i∈I for Vα and making sure the bivariate polyno-
mials used by these simulators are as chosen by her. Next, Va,Vb,Vc, {Vα}α∈{1,...,t} emulates their
instances of VSS honestly. Mh emulates the honest parties role in the protocol outside the VSS
instances. In the end,Mh outputs what the adversary outputs.

It is clear from the way the polynomials f̄a(x), f̄ b(x), f̄ c(x), f̄1(x), . . . , f̄ t(x) are picked that
f̄a(x), f̄ b(x), f̄ c(x) are chosen uniformly at random with the constraint f c(0) = fa(0)f b(0). Now
following security of VSS (which implies indistinguishability of the views inside the VSS instances),
A’s views across the two worlds are perfectly indistinguishable.

D is corrupt. The simulator for the corrupt dealer case, Mc runs the adversary A with aux-
iliary input z. On receiving, the t + 3 set of polynomials {f̄ai (x)}i 6∈I , {f̄ bi (x)}i 6∈I , {f̄ ci (x)}i 6∈I ,
{f̄αi (x)}i 6∈I for α ∈ {1, . . . , t}, internally initiates t + 3 VSS simulators for corrupt dealer case,
Va,Vb,Vc, {Vα}α∈{1,...,t} with their respective set of polynomials. Mc then runs the execution and
takes care of the steps outside the VSS instances as per protocol specification. If D is not discarded,
then it extracts the unique bivariate polynomials F̄ a(x, y), F̄ b(x), F̄ c(x), F̄ 1(x), . . . , F̄ t(x) defined by
the honest parties in V (they are guaranteed to exist as the security proof for VSS suggests). It
then returns f̄a(x) = F̄ a(x, 0), f̄ b(x) = F̄ b(x, 0) and f̄ c(x) = F̄ c(x, 0) to Fmsh. Otherwise, it sends
(x2t, x2t, x2t) to Fmsh that, on seeing polynomials of degree more than t, distributes ⊥ to the honest
parties.

60

The distribution of the views of A in both the worlds are identical asMc emulates the honest
parties as per protocol specification. As per the arguments made in the proof of VSS for the corrupt
dealer case, the outputs of the honest parties are identical in both the worlds when we fix the inputs
fa(x), fb(x), fc(x), the auxiliary input z of A and pick the same randomness for the honest parties in
the VSS instances. We now prove that f c(0) = fa(0)f b(0) when D is not discarded in the real world
which will conclude the same for the simulated world. Let fa(x), f b(x), f c(x), f1(x), . . . , f t(x) are
the polynomials that are t-shared in the end of Round 3 (the guarantee that these are polynomials
of degree t comes from the success of VSS when D is not discarded). Our protocol ensures that
these polynomials satisfy f c(i) = fa(i)f b(i)−

∑t
α=1 i

αfα(i) for every honest Pi whether it belongs
to V or not. In the former case, it is done via private check and for the latter it is done via public
verification. That is, at least 2t+ 1 parties confirm that this relation is satisfied. Now consider the
two polynomials f c(x) and fa(x)f b(x) −

∑t
α=1 x

αfα(x). The latter is a polynomial of degree at
most 2t with constant term as ab. The former is a polynomial of degree at most t with constant term
as c. Since these two polynomials intersect at 2t + 1 points, it is guaranteed that the polynomials
are equal and the unique polynomial has degree at most t and has ab in the constant term.

When D is discarded, either one of the following is true: (a) polynomials
fa(x), f b(x), f c(x), f1(x), . . . , f t(x) are not of degree t; (b) the relation f c(i) = fa(i)f b(i) −∑t

α=1 i
αfα(i) does not hold true for i 6∈ I; (iii) a corrupt Pi complains and the relation

f c(i) = fa(i)f b(i) −
∑t

α=1 i
αfα(i) does not hold true in Round 4. In both the worlds, either of

the above leads to every honest party outputting ⊥. It is clear from the steps of the real protocol,
while in the simulated world, the simulator makes sure the same by sending (x2t, x2t, x2t) to Fmsh.
This completes the proof.

B.4 Degree-2 Computation

Proof of Theorem 4.13. The simulator S initiates A with auxiliary input z and performs three
types of communication– (i) simulation of vshα, vshβ, {vshi,mshi}i∈{1,...,n} via invoking a copy of
their simulators either for the honest or corrupt dealer case based on whether their dealers are
honest or not, (ii) simulation of the honest parties to A as per the steps of protocol d2c outside the
executions vshα, vshβ, {vshi,mshi}i∈{1,...,n} and (iii) external communication to functionality Fd2c.

– Simulation of the vsh and msh instances with honest dealers. First, corresponding to the honest
parties in P \ I, the simulator emulates the honest parties with inputs as 0 and the triples as
suggested in the protocol (i.e randomly picked triples (ai, bi, ci) satisfying product relation). It then
invokes the simulators for honest dealer case for all instances of vsh with the set of t polynomials
(corresponding to I) on the chosen bivariate polynomials. These simulators take care of the
simulation of these instances for their entire run until Round 3. Similarly, it invokes the simulators
for honest dealer case of msh instances with honest dealers with the shares on the univariate
polynomials corresponding to I. These take care of the simulation of these msh instances for their
entire run until the end.

– Simulation of the vsh and msh instances with corrupt dealers. Next, it initiates simulators for
corrupt dealer case corresponding to instances of vsh andmsh with corrupt dealers. If the simulator
for a vsh instance returns x2ty2t (implying D of this instance is discarded), it picks a default value
for the input corresponding to this instance. Otherwise, it receives the extracted inputs of the
corrupt parties from the vsh instances. If the simulator for a msh instance returns (x2t, x2t, x2t)

61

(implying D of this instance is discarded), it removes the dealer from its set L which is initialised
to P.

– Simulation of steps of d2c outside the vsh and msh instances. It emulates the steps outside
vshα, vshβ, {vshi,mshi}i∈{1,...,n} honestly and emulates F〈0〉 correctly.

– Interaction with Fd2c. It sends the inputs (either the default or the extracted ones) to Fd2c on
behalf of the corrupt parties and receives the output y.

– Simulation of Round 4. The simulator S simulates the reconstructions as a part of Beaver’s trick
honestly for every Pi and updates L. Now on holding y and knowing the shares of y possessed by
the corrupt parties in I, it fits a random degree 2t polynomial over these points. This polynomial
determines the share yi for every honest Pi. Now for every party Pi in L, it uses yi and the share-
shares of yi held by the corrupt parties in I to interpolate a degree t polynomial. This polynomial
determines the share-shares of yi for all the honest parties. The simulator thus adjusts these shares
and share-shares using the shares and share-shares corresponding to 〈0〉 generated by itself, while
emulating F〈0〉. The simulator now discloses these adjusted share-shares of the ith share of y for
every Pi ∈ L as a part of rec protocols. This ensures that the adversary outputs y, as returned by
the functionality. This completes the simulation.

We now argue perfect indistinguishability between the simulated and the real world views. The exe-
cution of msh instances are done identically in both the worlds. The prime difference between these
worlds is in the inputs of the honest parties which are real in the protocol, but 0s in the simulation.
Relying on the security of the vsh protocol, we claim indistinguishability of the views generated
inside the concerned vsh instances. The communication regarding the sharing corresponding to
0 inputs that are part of Beaver’s trick are indistinguishable, owing to the unknown and random
triples. Indeed, only the values of the form (xαi − ai) and their shares are revealed. Finally, the way
the shares and share-shares of y corresponding to the honest parties are computed takes care of the
fact that it indeed corresponds to 〈y〉, barring the fact that the underlying 2t degree polynomial
may not be a random polynomial. This is settled by blinding this sharing of y with a random 〈0〉.
Therefore, the revealed second-level sharings corresponding to the parties in L and the underlying
2t-degree polynomial are random subject to the fact that y lies in the constant term of the 2t degree
polynomial. This completes the proof.

C Analyzing the Garbled Circuit (Proof of Lemma 5.20)

We begin by presenting the mapping T . The details are somewhat tedious, and the definition
becomes clearer after seeing the correctness and privacy proofs that appear in the subsequent sections
(Section C.1 and Section C.2).

Construction C.1 (The mapping T). The mapping T receives as an input an I-gate vectors
ΓI = (Γg)g∈I ◦α[Iwire] and outputs a triple (x̂[Iinp], α̂[Iwire], Ĉ) which is defined as follows.

• For every j ∈ Iwire we define the effective mask

α̂j =

{
αj , if αj ∈ {0, 1},
0, otherwise,

and take α̂[Iwire] to be the concatenation of all effective masks of wires in Iwire.

62

• For every input gate g ∈ I with outgoing wire k, input-value Γg = xg and wire mask αk, we
define the effective input

x̂g =

{
(xg + αk)− α̂k, if xg + αk ∈ {0, 1},
0− α̂k, otherwise,

and take x̂[Iinp] to be the concatenation of all effective inputs of input gates in I.

• The circuit Ĉ is obtained from C by modifying the semantics of local computation gates and
generalized transmission gates in I as follows.

A local computation gate g ∈ I, with incoming wires c, d and outgoing wire k, is replaced by a
local computation gate that computes the following effective Boolean operator Ĝ defined via

Ĝ(β0, β1) :=

{
(γβ0+α̂c,β1+α̂d
g + αk)− α̂k, if (γβ0+α̂c,β1+α̂d

g + αk) ∈ {0, 1},
0− α̂k, otherwise,

for every β0, β1 ∈ {0, 1}.
A generalized transmission gate g ∈ I with incoming wire c, outgoing wires k1, . . . , kp, and
every j ∈ [p] such that wire kj has label (a, b), is replaced with a generalized transmission gate
in which the effective label of wire kj, denoted by (â, b̂), is defined via

(â, b̂) :=

(a, b) if a = 0,

(a, b) if a = 1, kj ∈ Īwire and αc ∈ {0, 1},
(0, 0) if a = 1, kj ∈ Īwire and αc /∈ {0, 1},
(1, α̂c − αc + b+ αkj − α̂kj) if a = 1, kj ∈ Iwire and αkj − αc ∈ {0, 1},
(0, 0) if a = 1, kj ∈ Iwire, αc /∈ {0, 1}, and αkj ∈ {0, 1},
(a, b) if a = 1, kj ∈ Iwire, αc ∈ {0, 1}, and αkj /∈ {0, 1},
(0, 0) if a = 1, kj ∈ Iwire, αc, αkj /∈ {0, 1}, and αkj − αc /∈ {0, 1}.

One can easily verify that the mapping T satisfies the following syntactic properties.

Proposition C.2. The mapping T can be computed by making O(m) arithmetic operations. More-
over, for every circuit C, admissible set I and input ΓI , the circuit Ĉ has the same topology as
C and every generalized transmission gate g in C which is Ī-consistent (that is, the labels of all
outgoing wires in Īwire are the same) is transformed into an Ī-consistent generalized transmission
gate as well. That is, Ĉ is an I-corrupted version of C. Finally, for every binary I-input vector
x[Iinp] and binary I-mask vector α[Iwire] it holds that

T (preCI (x[Iinp],α[Iwire])) = (x[Iinp],α[Iwire], C).

C.1 Proof of Lemma 5.20 (Correctness)

In this section we prove the correctness of the randomized encoding presented in Lemma 5.20.
Throughout the end of this subsection, fix a circuit C, an admissible set of gates I, and some I-gate
vectors ΓI , and let us denote the output of T (ΓI) by (x̂[Iinp], α̂[Iwire], Ĉ). Our goal is to show that,

63

for every binary Ī-input vector x[Īinp] and a binary Ī-mask vector α[Īwire] and every fixing of the
randomness (s,R) of enc, when decC is applied to

encC
(
ΓI , pre

C
Ī (x[Īinp],α[Īwire]); (s,R)

)
the outcome agrees with the garbled-evaluation function gEvalĈ applied to(

(x̂[Iinp],x[Īinp]), (α̂[Iwire],α[Īwire])
)
.

Fix a binary Ī-input vector x[Īinp] and a binary Ī-mask vector α[Īwire], and fix some internal
randomness for enc that consists of wire-keys s = (s0

j , s
1
j)j∈[m] and randomness R = (Rg)g∈C for

the gadgets employed for every gate g.
Let (vj)j∈[m] denote the outputs of the decoder. The following claim shows that the wire-keys

and table entries that are computed by the decoder as intermediate values are consistent with
corresponding values that are computed by enc.

Claim C.3. Consider the application of decC on

encC
(
ΓI , pre

C
Ī (x[Īinp],α[Īwire]; (s,R))

)
,

and recall that for each wire j the decoding algorithm dec computes a pair (vj , sj), where vj ∈ {0, 1}
and sj ∈ Fωj . Then for each j ∈ [m], the key sj computed by the decoder agrees with the wire-key
s
vj
j that was employed by enc.

Therefore, for each local gate with incoming wires c and d, the value qvc,vdg computed by the
decoder agrees agrees with the corresponding value that is computed by enc. Similarly, for each
transmission gate with incoming wire c, the value of qvcg as computed by the decoder agrees with the
corresponding value as computed by enc.

Proof. Let g1, . . . , gN be a topological ordering of the gates of C. We prove by induction on i ∈ [N]
that the the property holds for the wire going out from gi.

Base case. The base case i = 1 is an input gate with outgoing wire k. Then, by the perfect
correctness of the select gadget the decoder computes (vk, s

vk
k), where svkk is indeed the wire-key

whose index is vk used to construct the gate.

Induction step. If gi is an input gate then the same proof as in the base case applies here as
well. Assume that gi is a local gate with incoming wires c, d and outgoing wire k. By the induction
hypothesis the claim holds for c and d, and so qvc,vdg is correctly recovered by dec. Then, by the
perfect correctness of the select gadget the decoder computes (vk, s

vk
k), where svkk is indeed the

wire-key whose index is vk used to construct the gate.
Assume that gi is a transmission gate with incoming wire c and outgoing wires k1, . . . , kp. By

the induction hypothesis the claim holds for c, and so qvcg is correctly recovered by dec. Fix some
j ∈ [p]. Then, by the perfect correctness of the select gadget the decoder computes (vkj , s

vkj
kj

), where

s
vkj
kj

is indeed the wire-key whose index is vkj used to construct the gate.

The correctness of the randomized encoding is established in the following lemma.

64

Lemma C.4 (correctness). For wire j ∈ [m], let uj be the value of wire j in the computation of

Ĉ(x̂[Iinp],x[Īinp]),

and let vj be the masked value of wire j, according to

decC
(
encC

(
ΓI , pre

C
Ī (x[Īinp],α[Īwire]); (s,R)

))
.

Then for every j ∈ Iwire it holds that
vj = uj + α̂j ,

and for every j ∈ Īwire it holds that
vj = uj + αj .

Note that Lemma C.4 implies the correctness of the randomized encoding by the decoder dec,
since for wire j ∈ [m] the output of gEvalĈ is uj + αj when j ∈ Īwire, and uj + α̂j when j ∈ Iwire.
We continue with the proof of Lemma C.4.

Proof. Fix some topological ordering of the gates of C, denoted g1, . . . , gN . We prove by induction
on i ∈ [N] that if the property holds for the wires going into gi, then the property holds for the
wires going from gi. Recall that by Claim C.3 for each local gate with incoming wires c and d, the
value qvc,vdg is correctly computed by dec, and for each transmission gate with incoming wire c, the
value qvcg is correctly computed by dec. Since the decoder accesses only those entries, we need to
analyse those accesses. First we analyse the case in which gi /∈ I.

• Assume that gi /∈ I is an input gate with outgoing wire k. Since gi /∈ I then k ∈ Īwire (see
Remark 5.19), so αk, xg ∈ {0, 1}. It follows that uk := xgi and since xgi + αk ∈ {0, 1}, then
dec sets vk := xgi + αk = uk + αk, and the claim follows.

• Assume that gi /∈ I is a local gate, with incoming wires c, d and outgoing wire k. Since gi /∈ I
then c, d, k ∈ Īwire (see Remark 5.19), so αc, αd, αk ∈ {0, 1}. By the induction hypothesis it
holds that vc = uc +αc and vd = ud +αd. In Ĉ it holds that uk := G(uc, ud). Since γ

vc,vd
g was

computed according to pre, we conclude that γvc,vdg = G(vc − αc, vd − αd) ∈ {0, 1}, so vk is
defined by dec to be vk = γvc,vdg + αk = G(vc − αc, vd − αd) + αk = G(uc, ud) + αk = uk + αk,
as required.

• Assume that gi /∈ I is a transmission gates with incoming wire c and outgoing wires k1, . . . , kp.
Since gi /∈ I then c ∈ Īwire (see Remark 5.19), so αc ∈ {0, 1}. By the induction hypothesis it
holds that vc = uc + αc. Fix some j ∈ [p] with labels (a, b), so the value of wire kj in Ĉ is
ukj = a · uc + b.

Assume that kj ∈ Īwire, so αkj ∈ {0, 1}. In this case dec sets vkj := a(vc − αc) + b + αkj =
a · uc + b+ αkj = ukj + αkj , as required.

Otherwise kj ∈ Iwire. If αkj ∈ {0, 1}, then, as before, vkj := ukj + αkj = ukj + α̂kj . Otherwise
αkj /∈ {0, 1}, and so the decoding algorithm sets vkj := a(vc − αc) + b = a · uc + b = ukj =
ukj + α̂kj , as required.

We continue with the case in which gi ∈ I.

65

• Assume that gi ∈ I is an input gate with outgoing wire k ∈ Iwire, Γgi = xgi and wire mask
αk. Recall that according to dec, if xgi + αk ∈ {0, 1} then vk := xgi + αk, and otherwise, if
xgi + αk /∈ {0, 1}, then vk := 0. By the definition of T , if xgi + αk ∈ {0, 1}, then uk = x̂gi =
(xgi + αk)− α̂k = vk − α̂k, and otherwise uk = x̂gi = 0− α̂k = vk − α̂k, as required.

• Assume that gi ∈ I is a local gate, with incoming wires c, d and outgoing wire k, where
c, d, k ∈ Iwire. By the induction hypothesis it holds that vc = uc + α̂c and vd = ud + α̂d.
Recall that according to dec, if γvc,vdgi + αk ∈ {0, 1} then vk := γvc,vdgi + αk, and otherwise, if
γvc,vdgi + αk /∈ {0, 1}, then vk := 0. By the definition of T , if γvc,vdgi + αk ∈ {0, 1} then uk =

Ĝ(uc, ud) = (γuc+α̂c,ud+α̂d
gi +αk)− α̂k = (γvc,vdgi +αk)− α̂k = vk− α̂k, and if γvc,vdgi +αk /∈ {0, 1}

then uk = 0− α̂k = vk − α̂k, as required.

• Assume that gi ∈ I is a transmission gates with incoming wire c ∈ Iwire and outgoing wires
k1, . . . , kp. By the induction hypothesis it holds that vc = uc + α̂c. Fix some wire j ∈ [p]
whose original labels are (a, b).

We begin with the case a = 0, in which, by the definition of T , the effective labels are also
(a, b), so ukj = 0 ·uc+b = b. Note that according to dec, if b+αkj ∈ {0, 1} then vkj := b+αkj ,
and otherwise, if b+αkj /∈ {0, 1}, then vkj := b. First, assume that kj is an honest wire (that
is, kj ∈ Īwire). In this case it always holds that αkj ∈ {0, 1}, and so vkj := b+αkj = ukj +αkj ,
as required. Assume that kj ∈ Iwire is a malicious wire. As before, if αkj ∈ {0, 1} then
vkj := b + αkj = ukj + αkj = ukj + α̂kj , as required. Otherwise, if αkj /∈ {0, 1}, then
vkj := b = ukj = ukj + α̂kj , as required.

Now, consider the case a = 1. Recall that, according to dec, (1) if αkj − αc ∈ {0, 1} then
vkj := vc − αc + b+ αkj ; (2) if αc /∈ {0, 1} and αkj ∈ {0, 1} then vkj := αkj ; (3) if αc ∈ {0, 1}
and αkj /∈ {0, 1} then vkj := vc − αc + b; (4) if αc, αkj /∈ {0, 1} and αkj − αc /∈ {0, 1} then
vkj := 0.

Assume that kj is an honest wire (that is, kj ∈ Īwire), so it holds that αkj ∈ {0, 1}. If αc ∈ {0, 1}
then (according to case (1)) vkj := vc − αc + b+ αkj = uc + α̂c − αc + b+ αkj = uc + b+ αkj .
Furthermore, according to T it holds that the effective labels are (a, b), so ukj = uc + b and
so vkj = ukj + αkj , as required. If αc /∈ {0, 1}, then (according to case (2)) vkj = αkj , and
ukj = 0 · uc + 0 = 0 (since the effective labels are (0, 0)), so vkj = uc + αkj , as required.

Assume that kj ∈ Iwire is a malicious wire. In case (1), according to T we have that ukj =
uc + α̂c − αc + b + αkj − α̂kj , and according to the decoding algorithm we have vkj = vc −
αc + b + αkj = uc + α̂c − αc + b + αkj = ukj + α̂kj , as required. In case (2), according to T
we have ukj = 0 · uc + 0 = 0 and according to dec we have vkj = αkj = 0 + α̂kj = ukj + α̂kj ,
as required. In case (3), according to T we have ukj = uc + b, and according to dec we have
vkj = vc − αc + b = uc + α̂c − αc + b = uc + b = ukj = ukj + α̂kj , as required. In case (4),
according to T we have ukj = 0 and according to dec we have vkj = 0 = ukj = ukj + α̂kj , as
required.

This concludes the proof.

C.2 Proof of Lemma 5.20 (Privacy)

Fix a circuit C, an admissible set of gates I, and some I-gate vectors ΓI , and let us denote the
output of T (ΓI) by (x̂[Iinp], α̂[Iwire], Ĉ). Our goal is to describe a simulator that, for every binary

66

Ī-input vector x[Īinp] and a binary Ī-mask vector α[Īwire], samples the distribution

encC
(
ΓI , pre

C
Ī (x[Īinp],α[Īwire])

)
,

(induced by the internal randomness of encC) given the output of

gEvalĈ
(
(x̂[Iinp],x[Īinp]), (α̂[Iwire],α[Īwire])

)
.

Specifically, the simulator takes a binary vector (vj)j∈[m] as input, and outputs a list of gate tables
(Q̃g)g∈C . Recall that the simulator takes the set I and an I-gate vector ΓI as an auxiliary input.
We begin with the description of the simulator.

The simulator S. The simulator first samples wire-keys {s̃vjj }j∈[m] uniformly at random, where
s̃
vj
j ∈ Fωj . We call those keys the on-path keys, since those are the keys that will be revealed in
the computation of dec on the gate tables that we construct. The on-path keys will be used to
compute, in each gate g, a single on-path entry of the gate’s table, whereas all the off-path entries
of the gate will be sampled uniformly at random. Here the on-path entry of the gate is the entry
that is revealed to the decoder; That is, in an input gate g the only entry Q̃g is the on-path entry,
in a local computation gate with incoming wires c and d the on-path entry of g is Q̃vc,vdg , and in a
generalized transmission gate with with a single incoming wire c, the on-path entry is Q̃vcg . Details
follow.

For every gate g ∈ C the simulator samples the gate table Q̃g according to the gate’s type as
follows.

• g is an input gate with outgoing wire k. If g /∈ I, let Q̃g be the output of the simulator
of select when applied on (vk, s̃

vk
k). If g ∈ I, let Q̃g be the output of the simulator of select

when applied on (xg + αk, s̃
vk
k). (In this case g is a malicious gate, so Qg is constructed with

the value xg + αk, taken from ΓI .)

• g is a local computation gate with incoming wires c, d and outgoing wire k. If g /∈ I,
let q̃vc,vdg be the output of the simulator of select when applied on (vk, s̃

vk
k). If g ∈ I, let q̃vc,vdg

be the output of the simulator of select when applied on (γvc,vdg + αk, s̃
vk
k). (In this case g

is a malicious gate, so qvc,vdg is constructed with the value γvc,vdg + αk taken from ΓI .) Let
Q̃vc,vdg := q̃vc,vdg + s̃vc [vd] + s̃vd [vc]. For (βc, βd) 6= (vc, vd), sample Q̃βc,βdg uniformly at random.
Let Q̃g := (Q̃0,0

g , Q̃0,1
g , Q̃1,0

g , Q̃1,1
g).

• g is a transmission gate with incoming wire c, and outgoing wires k1, . . . , kp. Denote
the original labels of wire kj , as defined by C, by (aj , bj). Recall that the gate table of a
transmission gate is constructed using the tselect gadget, and that the gtselect function reveals
all the selectors up to the first binary selector (if such exists), and the key that corresponds to
the effective selector. Therefore, for each wire j ∈ [m] we first identify how the output of the
corresponding gtselect should look like by identifying the first binary selector, and then apply
the simulator of tselect on this value.

If g /∈ I, for every j ∈ [m] we split into cases.

– Assume that kj ∈ Īwire. In this case let q̃vcg [j] be the output of the simulator of tselect
when applied on (vkj , s̃

vkj
kj

).

67

– Assume that kj ∈ Iwire and αkj ∈ {0, 1}. In this case let q̃vcg [j] be the output of the
simulator of tselect when applied on (vkj , s̃

vkj
kj

).

– Assume that kj ∈ Iwire and αkj /∈ {0, 1}. In this case let q̃vcg [j] be the output of the
simulator of tselect when applied on (vkj + αkj , αkj , vkj , s̃

vkj
kj

).

If g ∈ I, for every j ∈ [m] we split into cases.

– Assume that kj ∈ Iwire and aj · (vc − αc) + bj + αkj ∈ {0, 1}. In this case, let q̃vcg [j] be
the output of the simulator of tselect when applied on (vkj , s̃

vkj
kj

).

– Assume that kj ∈ Īwire and aj · (vc − αc) + bj ∈ {0, 1}. In this case, let q̃vcg [j] be the
output of the simulator of tselect when applied on (vkj , s̃

vkj
kj

).

– Assume that kj ∈ Iwire, aj · (vc − αc) + bj + αkj /∈ {0, 1} and αkj ∈ {0, 1}. In this
case, In this case, let q̃vcg [j] be the output of the simulator of tselect when applied on
(aj · (vc − αc) + bj + vkj , vkj , s̃

vkj
kj

).

– Assume that kj ∈ Īwire, and aj · (vc − αc) + bj /∈ {0, 1}. In this case, let q̃vcg [j] be the
output of the simulator of tselect when applied on (aj · (vc − αc) + bj + vkj , vkj , s̃

vkj
kj

).

– Assume that kj ∈ Iwire, aj(vc−αc)+bj +αkj /∈ {0, 1}, αkj /∈ {0, 1} and aj(vc−αc)+bj ∈
{0, 1}. In this case let let q̃vcg [j] be the output of the simulator of tselect when applied
on (aj · (vc − αc) + bj + αkj , αkj , vkj , s̃

vkj
kj

).

– Assume that kj ∈ Iwire, aj(vc−αc)+bj +αkj /∈ {0, 1}, αkj /∈ {0, 1} and aj(vc−αc)+bj /∈
{0, 1}. In this case let let q̃vcg [j] be the output of the simulator of tselect when applied
on (aj · (vc − αc) + bj + αkj , αkj , aj · (vc − αc) + bj , s̃

vkj
kj

).

Let q̃vcg := (q̃vcg [1], . . . , q̃vcg [p]), and Q̃vcg := q̃vcg + s̃vcc . Let Q̃g := (Q̃0
g, Q̃

1
g), where Q̃1−vc

g is
sampled uniformly at random.

Finally, the output of the simulator is (Q̃g)g∈C .

Privacy. Fix some binary vectors x[Īinp] and α[Īwire] and let v = (vj)j∈[m] denote the output of
gEvalĈ

(
(x̂[Iinp],x[Īinp]), (α̂[Iwire],α[Īwire])

)
. We need to show that the distribution of “simulated”

gate tables (Q̃g)g∈C , as defined by
S (v) ,

is the same as the distribution of the “real” gate tables (Qg)g∈C , which are sampled from

encC
(
ΓI , pre

C
Ī (x[Īinp],α[Īwire])

)
.

Alignment of on-path entries and on-path keys. Recall that any fixed vector of gate tables
Q = (Qg) induces a sequence of garbled wire values (obtained by invoking the decoder dec) which
in turn can be used to define the on-path and off-path entries of the tables. Furthermore, by
the design, the outcome of the simulator (Q̃g)g∈C always satisfies dec((Q̃g)g∈C) = v. Also, by
correctness (Lemma C.4), the same holds for the real gate tables, i.e., dec((Qg)g∈C) = v. Hence,
the on-path entries of the gate tables in both experiments are aligned with each other.

68

From now on, let us condition on the event that both the simulated on-path keys (s̃
vj
j)j∈[m] and

the real on-path keys (s
vj
j)j∈[m] agree with each other and are fixed to some arbitrary values. It

suffices to show that, conditioned on this event, the simulated gate tables, (Q̃g)g∈C , and real gate
tables, (Qg)g∈C , are distributed identically.

Let g1, . . . , gN be a topological ordering of the gates in C. Before establishing privacy, we show
that the off-path entries in “real” gate tables are uniformly distributed. Specifically, this will follow
from the following claim.

Claim C.5. For every fixed gate number i ∈ [N] and every fixing of the off-path entries of
(Qg1 , . . . , Qgi−1), the conditional joint distribution of the off-path entries of the i-th gate together
with all the off-path keys of wires that do not enter any of the first i gates is uniform.

Proof of Claim C.5. Fix the internal randomness of the select and tselect gadgets which are used in
off-path entries of the gate tables. We show that the claim holds for every such fixing.

For an index i let us denote by Wi the set of all wires that do not enter any of the first i gates.
We prove the claim by induction on i.

The basis i = 1 holds since the first gate must be an input gate and its gate table outputs the
on-path key (and the masked value of the wire) and is therefore independent of the off-path keys of
all wires. (The off-path entry of this gate is empty and so we can say that it is distributed uniformly
over the set of empty strings.)

Let us assume that the claim holds for i, and prove it for i + 1. The hypothesis implies that
the vector (s1−vw

w)w∈Wi is uniformly distributed even when conditioned on any fixing of the off-
path entries of (Qg1 , . . . , Qgi−1) and on any fixing of the off-path entries of Qgi . Our goal is to
show that the joint distribution of (1) the off-path entries of Qgi+1 and (2) the Wi+1-off-path keys
(s1−vw
w)w∈Wi+1 , is uniform. Since Wi+1 ⊂ Wi, our hypothesis already implies that (2) holds. It

therefore suffices to show that even when we condition on any fixing of (s1−vw
w)w∈Wi+1 the off-path

entries of Qgi+1 are uniformly distributed.
If g = gi+1 is an input gate, this trivially holds since the off-path entry of Qgi+1 is empty. Next,

assume that g is a local computation gate with input wires c and d and an output wire w and
observe that c, d ∈ Wi \Wi+1 and that w ∈ Wi+1 and therefore the w-th off-path key is fixed. We
show that the off-path entries Qβc,βdg for (βc, βd) 6= (vc, vd) are uniformly distributed even when all
the randomness in the experiment is fixed except for the off-path keys of the wires c and d. Indeed,
recall that

Qβc,βdg = qβc,βdg +
(
sβcc [βd] + sβdd [βc]

)
,

where qβc,βdg is some fixed value (that depends on the keys of the wire w and other randomness that
was already fixed). The claim follows by noting that every off-path entry Qβc,βdg where (βc, βd) 6=
(vc, vd), is randomized by a different half of the random off-path keys s1−vc

c , s1−vd
d of the incoming

wires. Specifically, Qvc,1−vd is randomized by s1−vd
d [vc], the entry Q1−vc,vd is randomized by s1−vc

c [vd]
and the entry Q1−vc,1−vd is randomized by s1−vc

c [1− vd].
The case of generalized transmission gates is similar. Assume that g is a generalized transmission

gate with input wire c, and outgoing wires k1, . . . , kp, and observe that c ∈Wi\Wi+1 and k1, . . . , kp ∈
Wi+1, and so the off-path keys of k1, . . . , kp are fixed. We show that the off-path entry Q1−vc

g is
uniformly distributed even when all the randomness in the experiment is fixed except for the off-path
keys of wire c. Indeed, since

Q1−vc
g = q1−vc

g + s1−vc
c ,

69

where q1−vc
g is some fixed value (that depends on the keys of the wires k1, . . . , kp and other random-

ness that was already fixed), and s1−vc
c is uniformly distributed, the claim follows.

Recall that the simulator samples the off-path entries of the gate tables uniformly at random.
The above claim therefore shows that the marginal distribution of the off-path entries in both
experiments (real and simulated) is uniform.

Let us further condition on the event that the off-path entries in both experiments are fixed to
the same arbitrary value. To complete the privacy proof, it suffices to show that the on-path entries
in both experiments are distributed identically. This will follow from the following claim.

Claim C.6. For every i ∈ [N], conditioned on the event that the on-path entries of (Qg1 , . . . , Qgi−1)

and (Q̃g1 , . . . , Q̃gi−1) take the same fixed value, the on-path entry of Qgi and the on-path entry of
Q̃gi are identically distributed.

Proof. The proof is by induction on i. Let g = gi. Since the off-path entries of the gates and
the on-path keys are all fixed, the only randomness involved is the internal randomness of the
gadget (in the real experiment) and the randomness of the gadget’s simulator (in the simulated
experiments). Hence, by the privacy of the gadget’s simulators, it suffices to show that whenever
select (resp., tselect) is applied in the real encoding to inputs (γ, s0, s1) (resp., (γ1, γ2, γ3, s

0, s1)) the
corresponding simulator is applied on gselect(γ, s0, s1) (resp., gtselect(γ1, γ2, γ3, s

0, s1)). It will be also
useful to keep in mind the following fact: Recall that we can associate a single gadget with every
wire j that leaves the gate g; then, by the correctness analysis (Lemma C.4), the effective selector
in the gadget always equal to the garbled value vj of the corresponding wire. We continue the proof
via case analysis.

g is an input gate with outgoing wire k. The on-path entry Qg in the real experiment is
Qg = select(xg+αk, s

0
k, s

1
k). If g /∈ I then vk = xg+αk is binary and so gselect(xg+αk, s

0
k, s

1
k) outputs

(vk, s
vk
k). Indeed, the simulated table Q̃g is sampled by applying the select-simulator to (vk, s

vk
k), as

required. Otherwise, if g ∈ I, then gselect(xg + αk, s
0
k, s

1
k) outputs xg + αk together with the key sbk

where the effective selector b equals to vk by the correctness of the garbled circuit (Lemma C.4).
Since the simulated table Q̃g is sampled by applying the select-simulator to (xg + αk, s

vk
k), the

privacy of select guarantees that Qg and Q̃g are identically distributed. (Recall that xg + αk is
extracted from ΓI .)

g is a local gate with incoming wires c, d and outgoing wire k. Recall that Qvc,vdg and
Q̃vc,vdg are obtained by encrypting the values qvc,vdg and q̃vc,vdg under the same on-path keys (svcc , s

vd
d).

Therefore it suffices to show that qvc,vdg and q̃vc,vdg are identically distributed. In the real experiment,

qvc,vdg = select(γvc,vdg + αk, s
0
k, s

1
k).

If g /∈ I, then vk = γvc,vdg + αk is binary and so gselect(γ
vc,vd
g + αk, s

0
k, s

1
k) = (vk, s

vk
k). Since

the simulated entry q̃vc,vdg is sampled by applying the select-simulator to (vk, s
vk
k), the resulting

distribution is identical to qvc,vdg .
If g ∈ I then gselect(γ

vc,vd
g + αk, s

0
k, s

1
k) = (γvc,vdg + αk, s

b
k) where the effective selector b = vk as

follows from the correctness analysis (Lemma C.4). Since the simulated entry q̃vc,vdg is sampled by
applying the select-simulator to (γvc,vdg +αk, s

vk
k), the perfect privacy of select implies that qvc,vdg and

70

q̃vc,vdg are identically distributed. (Again, recall that the simulator retrieves the value γvc,vdg + αk
from ΓI .)

g is a generalized transmission gate with incoming wire d and outgoing wires k1, . . . , kp.
As in the previous case, it suffices to show that qvcg has the same distribution as q̃vcg . Since {qvcg [j]}j∈[p]

(resp. {q̃vcg [j]}j∈[p]) are independent random variables, it is enough to show that for every j ∈ [p] it
holds that qvcg [j] has the same distribution as q̃vcg [j]. Fix some j ∈ [p] with label (aj , bj) and recall
that enc samples

qvcg [j] = tselect(δj + αkj , αkj , δj , s
0
kj
, s1
kj

)

where δj = aj · (vc − αc) + bj .

• Assume that g /∈ I. Hence, c ∈ Īwire, αc ∈ {0, 1} and δj is also binary. We split into cases.

– If kj ∈ Īwire, then αkj ∈ {0, 1}. Therefore, the first selector δj + αkj is binary and
gtselect(δj + αkj , αkj , δj , s

0
kj
, s1
kj

) outputs δj + αkj together with the corresponding key

s
δj+αkj
kj

. By the correctness of the encoding (Lemma C.4), it holds that the effective

selector δj +αkj equals to vkj , and we conclude that gtselect outputs (vkj , s
vkj
kj

). Since the

simulator samples q̃vcg [j] by applying the tselect-simulator to (vkj , s
vkj
kj

), the claim follows
from the perfect privacy of tselect.

– If kj ∈ Iwire and αkj ∈ {0, 1}. (Recall that αkj is extracted from ΓI). Then, as in
the previous case, gtselect outputs (vkj , s

vkj
kj

), and since q̃vcg [j] is sampled by applying the

tselect-simulator to (vkj , s
vkj
kj

), the simulated distribution is identical to the real one.

– If kj ∈ Iwire and αkj (extracted from ΓI) is non-binary, then only the third selector,
δj , of the tselect gadget is binary and first two selectors, δj + αkj and αkj are non-
binary. Therefore, gtselect(δj + αkj , αkj , δj , s

0
kj
, s1
kj

) outputs all three selectors together

with the key sδjkj . By the correctness of the encoding (Lemma C.4), the effective selector
δj equals to vkj . Since q̃vcg [j] is indeed sampled by applying the tselect-simulator on
(vkj + αkj , αkj , vkj , s

vkj
kj

), the claim follows from the perfect privacy of tselect.

• Assume that g ∈ I, and so αc is known given ΓI . We split into cases.

– If kj ∈ Iwire (so αkj is known given ΓI) and the first selector δj +αkj is binary, then gtselect
treats this value as the effective selector and outputs it together with the corresponding
skj key. By the correctness of the encoding (Lemma C.4), the effective selector equals to
vkj , and so the output of gtselect is the pair (vkj , s

vkj
kj

). Since we sample q̃vcg [j] by applying

the tselect-simulator on (vkj , s
vkj
kj

), the claim follows from the perfect privacy of tselect.

– If kj ∈ Īwire (so that αkj ∈ {0, 1}) and, in addition, δj is binary, then the situation is
identical to the previous case. That is, the first selector δj + αkj is binary, and it plays
the role of the effective selector vkj . The output of gtselect is the pair (vkj , s

vkj
kj

), and
q̃vcg [j] is distributed just like qvcg [j] since it is sampled by applying the tselect-simulator
on (vkj , s

vkj
kj

).

71

– If kj ∈ Iwire (so αkj is known given ΓI), the first selector δj + αkj is non-binary but the
second selector αkj is binary, then gtselect uses the second selector as its effective selector,
i.e., vkj = αkj and outputs the tuple z = (δj +αkj , vkj , s

vkj
kj

). Since we compute q̃vcg [j] by
applying the tselect-simulator on z, the claim follows from the perfect privacy of tselect.

– If kj ∈ Īwire (so αkj ∈ {0, 1}), and δj is non-binary, the situation is similar to the previous
case. The first selector δj + αkj is non-binary, but the second selector, αkj is binary, so
vkj = αkj , and gtselect outputs the tuple z = (δj + αkj , vkj , s

vkj
kj

). Since q̃vcg [j] is sampled
by applying the tselect-simulator on z it is distributed identically to qvcg [j].

– If kj ∈ Iwire (so αkj is known given ΓI), the first selector δj + αkj is non-binary, the
second selector αkj is non-binary and the third selector δj is binary, then gtselect uses δj
as its effective selector vkj and outputs the tuple z = (δj +αkj , αkj , vkj , s

vkj
kj

). Since q̃vcg [j]

is sampled by applying the tselect-simulator on z it is distributed identically to qvcg [j].

– If kj ∈ Iwire (so αkj is known given ΓI), and all three selectors, δj + αkj , αkj and δj
are non-binary, then gtselect uses 0 as its effective selector vkj , and outputs the tuple
z = (δj + αkj , αkj , δj , s

vkj
kj

). Since q̃vcg [j] is sampled by applying the tselect-simulator on
z, it is distributed identically to qvcg [j].

This completes the proof of the claim, and completes the privacy analysis.

72

	Introduction
	Previous Works
	Our Results

	Technical Overview
	Lower Bound
	Computing Degree-2 Functionalities in Four-Rounds
	Completeness of Degree-2 Functionalities over Large Fields

	Lower-Bound for Perfectly-Secure MPC
	The Reduction
	Privacy (Proof of Lemma 3.5)
	Basic Properties
	Correctness (Proof of Lemma 3.6)
	Commitment (Proof of Lemma 3.7)
	Case 1: v2,s is self-consistent and consistent with all parties
	Case 2: v2,s is self-consistent and inconsistent with Pi

	Perfectly-secure Degree-2 Computation in Four Rounds
	Definitions
	The High-level Idea
	Verifiable Secret Sharing
	Weak Commitment.
	Verifiable Secret Sharing.
	Reconstruction of [s].

	Multiplication Triple Sharing
	Degree-2 Computation

	Completeness of Degree-2 Functionalities over Large Fields
	Preliminaries
	Boolean Circuits
	Randomized Encoding of Functions
	Functionalities and Protocols
	Correctness and Security of Protocols
	Circuit Representation of a Protocol

	Key-selection Gadgets
	Binary Gadgets
	Generalized-selection Gadget
	Proofs of Lemma 5.13 and Lemma 5.12

	The Garbled Circuit
	Description of the Garbled Circuit
	Analysis of the Garbled Circuit

	The Master Theorem
	Completeness Theorems

	Lower Bound
	Perfectly-Secure VSS
	General transference claim

	Perfectly-secure MPC
	Weak Commitment
	Verifiable Secret Sharing (VSS)
	Multiplication Triple Sharing
	Degree-2 Computation

	Analyzing the Garbled Circuit (Proof of Lemma 5.20)
	Proof of Lemma 5.20 (Correctness)
	Proof of Lemma 5.20 (Privacy)

