
vCNN: Verifiable Convolutional Neural Network
Seunghwa Lee

Kookmin University

ttyhgo@kookmin.ac.kr

Hankyung Ko

Hanyang University

hankyungko@hanyang.ac.kr

Jihye Kim

Kookmin University

jihyek@kookmin.ac.kr

Hyunok Oh

Hanyang University

hoh@hanyang.ac.kr

ABSTRACT
Inference using convolutional neural networks (CNNs) is often

outsourced to the cloud for various applications. Hence it is cru-

cial to detect the malfunction or manipulation of the inference

results. To provide trustful services, the cloud services should prove

that the inference results are correctly calculated with valid in-

put data according to a legitimate model. Particularly, a resource-

constrained client would prefer a small proof and fast verification.

A pairing-based zero-knowledge Succinct Non-interactive ARgu-

ment of Knowledge(zk-SNARK) scheme is a useful cryptographic

primitive that satisfies both the short-proof and quick-verification

requirements with only black-box access to the models, irrespec-

tive of the function complexity. However, they require tremendous

efforts for the proof generation. It is impractical to build a proof us-

ing traditional zk-SNARK approaches due to many (multiplication)

operations in CNNs.

This paper proposes a new efficient verifiable convolution neu-

ral network (vCNN) framework, which allows a client to verify

the correctness of the inference result rapidly with short evidence

provided by an untrusted server. Notably, the proposed vCNNs

framework is the first practical pairing-based zk-SNARK scheme

for CNNs, and it significantly reduces space and time complexities

to generate a proof with providing perfect zero-knowledge and

computational knowledge soundness. The experimental results val-

idate the practicality of vCNN with improving VGG16 performance

and key size by 18000 fold compared with the existing zk-SNARKs

approach (reducing the key size from 1400 TB to 80 GB, and proving

time from 10 years to 8 hours).

KEYWORDS
Convolutional Neural Networks, Verifiable Computation, zk-SNARKs

1 INTRODUCTION
Machine learning and neural networks have greatly expanded our

understanding of data and the insights it carries. Among these,

convolutional neural networks (CNNs), based on the convolution

operation, are particularly useful tools for classification and recog-

nition, as compared with standard neural networks, CNNs are eas-

ily trained with considerably fewer connections and parameters

while providing a better recognition rate. Thus, CNNs generate

various business opportunities such as those based on law, banking,

insurance, document digitization, healthcare predictive analytics,

etc. However, extra caution is required when applying CNNs to

real-world applications since they are vulnerable to malfunction or

manipulation. For example, a sentence made by an AI based judge

may be deliberately altered by an attacker, causing an innocent

person to be convicted, or a guilty person to be acquitted.
1
Incorrect

results in healthcare prediction and precision medicine using CNNs

are even more catastrophic, as the lives of many users depend on

them.

This paper focuses on verifying CNN inference, which is often

outsourced to the cloud. CNN applications are vulnerable to ma-

licious data inputs, physical attacks, and misconfigurations [10].

Therefore, it is crucial to verify that CNN-inference results were cor-

rectly performed on the given input and model. The most straight-

forward approach to verify a CNN is to re-execute the same op-

eration; however, neither does it save computational burden for

the verifier, nor does it help outsource its computation. Even if

the verifier has sufficient resources to compute the CNN inference,

there is a privacy issue to consider; the verifier will unnecessarily

learn potentially important secrets, e.g., weights associated with

the model, which are a company’s important IP in many appli-

cations. To ensure efficient verification while retaining model in-

formation confidentiality, we adopt the zero-knowledge succinct

non-interactive argument of knowledge (zk-SNARK), which is a

nearly practical cryptographic proof system for achieving computa-

tional integrity and privacy protection [14, 17–19, 25, 30]. From the

view point of a verifier, pairing-based zk-SNARKs [14, 19, 25] are

considered the most practical verifiable computation systems when

verifying computation of a general function; the proof size is con-

stant, and verification only requires constant-time group operations

irrespective of the size of the function.

Pairing-based zk-SNARKs, however, require significant number

of computations on the prover’s side. In zk-SNARKs, a function is

translated to an arithmetic circuit comprising addition and multi-

plication gates to be represented as quadratic arithmetic programs

(QAPs). Although proving computation of addition gates is almost

free, proving computation of multiplication gates requires non-

negligible overhead. Thus, zk-SNARKs based on QAPs are inappro-

priate for multiplication-intensive functions, because the prover

may be overwhelmed by the huge amount of computations required.

In addition, the size of public parameters containing common ref-

erence string (CRS) linearly increases with the number of multipli-

cations. Thus, it is challenging to effectively apply zk-SNARKs to

CNNs that include a tremendous number of multiplications. The

convolution operation, the core in CNNs, is the dot product of the

input vector ®𝑥 and the kernel vector ®𝑎. If we express the convolution
as an arithmetic circuit, the number of multiplications becomes

𝑂 (| ®𝑥 | × | ®𝑎 |). Considering VGG16 [27] as an example, which is a

1
The Estonian Ministry of Justice plans to build a robot judge authorized to adjudicate

small claims disputes of less than 7,000 Euros.

model commonly used for image classification, it is too heavy to be

deployed in practice; only for the convolution and pooling layers of

VGG16 (excluding fully connected layers), the circuit is more than

6 TB in size, and 90 TB or more memory is required to generate a

CRS of size approximately 1400 TB; in addition, the proof compu-

tation takes 10 years using the state-of-the-art zk-SNARK in [19].

Because 90% of CNNs resources are used for convolution in CNNs,

optimizing the convolution circuit is crucial to devise a practical

zk-SNARK scheme for CNNs.

1.1 Main Idea

Optimizing Convolutional Relation: We propose a new effi-

cient QAP formula for convolution that significantly curtails the

number of multiplications. Consider the sum of products as a

general convolution expression. Since this generates considerable

multiplication operations when converted into arithmetic circuits,

we adopt a different expression, a product of sums, to represent

the convolution, with additional refitting to preserve the equal-

ity of equations. For instance, consider the following convolution:

𝑦𝑖 =
∑𝑙−1

𝑗=0 𝑎 𝑗 ·𝑥𝑖+𝑙−1−𝑗 , where ®𝑥𝑖 = (𝑥𝑖 , · · · , 𝑥𝑖+𝑙−1) denotes the 𝑖-th
input vector, 𝑦𝑖 the 𝑖th-output, and ®𝑎 = (𝑎0, · · · , 𝑎𝑙−1) the kernel
vector for 0 ≤ 𝑖 ≤ 𝑛 − 𝑙 . Notably, the original equation contains

𝑂 (𝑛𝑙) number of multiplications. First, we reconstruct the equation

into a product of sums with only one multiplication gate as follows:

(∑𝑛−1
𝑖=0 𝑥𝑖) · (

∑𝑙−1
𝑖=0 𝑎𝑖) =

∑𝑛+𝑙−2
𝑖=0 𝑦𝑖 . Still, this transformation (com-

bining multiple equations into one equation) is not sufficient, as it

covers surplus relations; i.e., verification can include the incorrect

values of input, kernel, and output.

To safeguard each convolution equation, we must enforce inde-

pendence in equations. Therefore, we rearrange the equation using

identities by combining indeterminate 𝑍 as follows: (∑𝑛−1
𝑖=0 𝑥𝑖𝑍

𝑖) ·
(∑𝑙−1

𝑖=0 𝑎𝑖𝑍
𝑖) = ∑𝑛+𝑙−2

𝑖=0 𝑦𝑖𝑍
𝑖
. Consequently, there are 𝑂 (𝑛 + 𝑙) iden-

tities, and each identity comprises𝑂 (𝑛 + 𝑙) multiplications. Notably,

the number of output 𝑦𝑖 ’s increases from 𝑂 (𝑛 − 𝑙) to 𝑂 (𝑛 + 𝑙). To
guarantee the equation correctness using the arithmetic circuit, we

need to evaluate 𝑑 + 1 different point evaluations for a polynomial

of degree 𝑑 . Because the polynomial evaluation at a point requests

𝑂 (𝑛 + 𝑙) operations and there are 𝑂 (𝑛 + 𝑙) points, the total com-

putation becomes 𝑂 ((𝑛 + 𝑙)2), which is even more expensive than

proving the original equation naively. We resolve this problem by

adopting a polynomial circuit using the quadratic polynomial pro-

gram (QPP) in [21], in which a wire is represented as a polynomial.

Thus, we can express the revised equation as a single multiplication

gate with two input polynomials and one output polynomial.

Connection with ReLU and Pooling: Our newly proposed for-

mula using QPP minimizes a prover’s computation only when con-

volution is verified; however, it is inefficient when the prover proves

computation of the whole CNN with other operations such as ReLU

or pooling. Polynomial circuits are represented using a single bi-

variate equation in QPP. Since the division (required to generate a

proof) is slow when QPP is expressed as a bivariate polynomial, we

convert it to a univariate polynomial by increasing the polynomial

degree to utilize the fast division algorithm based on number theo-

retic transform (NTT). To eliminate one variable, we change it into

the form of another variable with a higher degree. However, the

substitution of one variable by another incurs excessive overheads

in non-convolution operations, such as ReLU and Pooling, thereby

amplifying the degree of the equation to 𝑂 ((| ®𝑥 | + | ®𝑎 |)2).
Since the intermediates of convolutions and non-convolution

operations are independent, it is better to treat those operations sep-

arately to avoid mutual effects. In particular, to alleviate the degree

increments involving ReLU and Pooling, we apply the polynomial

circuit only to the convolution and the arithmetic circuit to the rest

part of CNN, and build a connecting proof between QPP and QAP

using the commit and prove SNARK (CP-SNARK) technique [8].

The CP-SNARK technique guarantees that QPP and QAP are inter-

connected with inputs for one component corresponding to outputs

from the other. To use this technique, we adopt commit and carry

SNARK (cc-SNARK) [8] rather than traditional SNARK for QPP and

QAP, as commitments are required for interconnected values with

proofs. Figure 1 illustrates the overview of our verifiable convolu-

tional neural network scheme called vCNN. As shown in Figure 1,

CNNs are proved by generating (𝑐𝑚𝑞𝑝𝑝 , 𝜋𝑞𝑝𝑝) fromQPP cc-SNARK

and (𝑐𝑚𝑞𝑎𝑝 , 𝜋𝑞𝑎𝑝) from QAP cc-SNARK, respectively, and then in-

terconnecting the commitments through 𝜋𝑐𝑝 . Hence, the final proof

for our proposed scheme is a tuple of two commitments and three

proofs (𝑐𝑚𝑞𝑎𝑝 , 𝑐𝑚𝑞𝑝𝑝 , 𝜋𝑞𝑎𝑝 , 𝜋𝑞𝑝𝑝 , 𝜋𝑐𝑝). The proposed scheme gen-

erates a single proof for QAP and QPP circuits even for multiple

layer CNNs, as all the convolution layers are collected and QPP is

applied to the collected convolution layer, and QAP is applied to

the other collected circuit in a similar manner. See Section 4 for

details.

1.2 Contributions
This paper provides several significant contributions as follows.

(1) We propose a new QPP relation optimized for the convolu-

tions and construct an efficient zk-SNARK scheme of which

CRS size and proving time are linear with the input size

and the kernel size, i.e., 𝑂 (𝑛 + 𝑙). The proposed scheme is a

verifier-friendly zk-SNARK with constant proof size, and its

verification time complexity linearly depends on the input

and output only, regardless of convolution intricacy.

(2) We propose vCNN as a practical construction to verify the

evaluation of the whole CNN. vCNN combines QPP-based

zk-SNARK optimized for convolutions and QAP-based zk-

SNARK that effectively works for Pooling and ReLU, and

interconnecting them using CP-SNARK.

(3) We prove that vCNN comprising QAP-based SNARK, QPP-

based SNARK, andCP-SNARKprovides computational knowl-

edge soundness and perfect zero-knowledge properties.

(4) We implement vCNN and compare it with the existing zk-

SNARK in terms of size and computation. The proposed

scheme improves the key generation/proving time 25 fold

and the CRS size 30 fold compared with the state-of-art zk-

SNARK scheme [19] for a small example of MNIST (2-layer

model) comprising a single convolution layer with ReLU

and a single pooling layer. For the realistic application of

VGG16, the proposed scheme improves the performance

at least 18000 fold, compared with [19]; the proving time

is reduced to 8 hours from 10 years, and the CRS size is

shortened to 80 GB from 1400 TB. Thus, we provide the first

2

Figure 1: Proposed vCNN overview

practical verifiable convolutional neural network, which has

been nearly impossible to realize so far.

1.3 Organization
The remainder of this paper is organized as follows: Section 2

discusses related work. Section 3 describes preliminaries for the

proposed schemes. Section 4 constructs a verifiable CNN scheme us-

ing zk-SNARKs and Section 5 represents experiment results. Finally,

Section 6 summarizes and concludes the paper. Security proofs are

presented in the Appendix.

2 RELATEDWORKS

VerifiableComputation.Various cryptographic proof systems [4–

6, 11, 14, 18, 19, 21, 25, 30] have been proposed to provide the privacy

and computational integrity. These systems have been improved

into many forms for the efficiency of their provers and verifiers,

and the expressiveness of the statement being proven. Each scheme

supports a general function, but it tends to be efficient only for a

specific function, so performance issues may occur when applied to

an application composed of functions with multiple characteristic.

Goldwasser et al. [18] proposed the GKR protocol, an interactive

proof protocol for a general function, where the function was rep-

resented as a layered arithmetic circuit, and the circuit was proved

using the sum-check protocol. GKR takes 𝑂 (𝑆 log 𝑆) computations

for proof generation and 𝑂 (𝑑 log 𝑆) computations for verifying

the proof, where 𝑆 denotes the circuit size and 𝑑 the circuit depth.

Cormode et al. [11] and Thaler [28] subsequently optimized GKR,

and Wahby et al. [30] added zero-knowledge property, producing

zk-SNARK in the ROM.

In contrast, Gennaro et al. [14] proposed a quadratic arithmetic

program (QAP) based zk-SNARK, where QAP is the representation

of an arithmetic circuit as a polynomial equation, and the circuit

satisfiability is checked using polynomial division. Parno et al. [25]

proposed Pinocchio, the first nearly practical QAP-based zk-SNARK

scheme with eight group elements for its proof, and implemented

zk-SNARK tools. Groth [19] improved Pinocchio with a shorter

proof comprising only three group elements.

Other than theoretical developments, many studies have investi-

gated practical zk-SNARK implementations. Libsnark [5, 7] imple-

mented QAP-based zk-SNARKs. Privacy preserving cryptocurrency

Zcash [3] utilizes libsnark as a real-world case, and other systems,

such as Zokrates and ZSL [2, 12], have also been proposed by im-

plementing zk-SNARKs using libsnark. The zk-SNARK system also

requires a front-end compiler that converts a function into a arith-

metic circuit. Pinocchio [25] provides a C-compiler that produces

arithmetic circuits for its own scheme. Kosba built Jsnark [1] which

generates the arithmetic circuit for zk-SNARKs using java language.

It provides gadgets that can easily convert conditional statements,

loops, and cryptographic schemes such as hashes and encryptions

into the arithmetic circuits that are difficult to perform in Pinoc-

chio compiler. He also proposed xjsnark [22] to convert their own

high-level language to an arithmetic circuit and optimized it.

Verifiable Neural Networks. To protect the privacy of the input

data and model of deep neural networks, Dowlin et al. proposed

CryptoNets [16] based on using the fully homomorphic encryption.

Juvekar et al. accelerates the overall performance through homo-

morphic matrix multiplication technique by proposing Gazelle [20].

These schemes based on homomorphic encryption focused on pri-

vacy and did not consider execution integrity. Slalom [29] was

proposed as a verifiable neural network scheme using a trusted

hardware, Intel SGX. It uses Freivalds’ algorithm [13] on SGXwhich

verifies the correctness of matrix multiplication. Since the inputs

and outputs are exposed to use the algorithm, Slalom adds random

values to protect the privacy of the inputs and outputs. However,

Slalom aims to provide the privacy of the inputs and outputs, and

it does not focus on the privacy of the model.

Even though zk-SNARKs are generally applicable for CNNs,

they are not very efficient for some functions, particularly convolu-

tions. Ghodsi et al. [15] proposed SafetyNet, the first SNARK-based

scheme supporting neural networks specifically. SafetyNet is based

on the GKR protocol [18], which is suitable for linear functions.

3

Table 1: Verifiable neural network scheme security coverage and performance , where ®𝑥 denotes the input, ®𝑎 the kernel, and ®𝑦
the output.

Approach Privacy Integrity Activation function Proving time Proof size Verifying time

Gazelle [20] O X ReLU - - -

SafetyNet [15] X O Quadratic | ®𝑎 | · | ®𝑥 | + | ®𝑦 | | ®𝑎 | · | ®𝑥 | + | ®𝑦 | | ®𝑎 | · | ®𝑥 | + | ®𝑦 |
VeriML [31] O O Quadratic | ®𝑎 | · | ®𝑥 | + | ®𝑦 | 1 | ®𝑥 | + | ®𝑦 |
Embedded proof [9] O O ReLU | ®𝑎 | · | ®𝑥 | + | ®𝑦 | 1 | ®𝑥 | + | ®𝑦 |
vCNN (ours) O O ReLU | ®𝑎 | + | ®𝑥 | + | ®𝑦 | 1 | ®𝑥 | + | ®𝑦 |

However, to effectively use this advantage, it adopts a quadratic

activation function (𝑥2) rather than ReLU, which reduces the neural

network accuracy. Thus, it is difficult to apply SafetyNet to actual

models, since most modern neural networks use ReLU. Zhao et al.

proposed VeriML [31] to verify neural networks using QAP-based

zk-SNARK for machine learning as a service (MLaaS). Although

VeriML ensures both privacy and integrity, it requires a long prov-

ing time, (𝑂 (| ®𝑎 | · | ®𝑥 | + | ®𝑦 |)), where ®𝑥 denotes the input, ®𝑎 the kernel,

and ®𝑦 the output.

Chabanne [9] proposed an embedded proofs protocol that com-

bines the GKR and QAP schemes, using GKR for linear and QAP

for non-linear functions. To combine them, the verifying process

of GKR is verified in the QAP circuit. However, it still has large

computation complexity of (𝑂 (| ®𝑎 | · | ®𝑥 | + | ®𝑦 |)), as the input(®𝑥) and
kernel(®𝑎) sizes are significantly large in real applications. So far,

to the best of our knowledge, there is no practical solution which

supports the model privacy and the integrity of execution.

3 PRELIMINARIES
First, we define some notations to avoid duplicate words. The term

[𝑛] denotes the set of indices {0, 1, . . . , 𝑛 − 1}. The input of convo-
lution is represented as {𝑥𝑖 }𝑖∈[𝑛] where the input size is 𝑛 and the

kernel of convolution is represented as {𝑎𝑖 }𝑖∈[𝑙] where the kernel
size is 𝑙 .

3.1 Bilinear groups
We use a Type III bilinear group (𝑝,G1,G2,G𝑇 , 𝑒,𝐺1,𝐺2) with the

following properties:

• G1,G2,G𝑇 are groups of prime order 𝑝 with generator𝐺1 ∈
G1,𝐺2 ∈ G2.
• The pairing 𝑒 : G1 × G2 → G𝑇 is a bilinear map.

• 𝑒 (𝐺1,𝐺2) generates G𝑇 .

3.2 Quadratic Arithmetic Program
Gennaro et al. [14] defined QAP as an efficient encoding method

for circuit satisfiability. QAP represents an arithmetic circuit that

encodes the constraints into the multiplication gates. The correct-

ness of the computation can be tested using QAP by performing a

divisibility check between polynomials. A cryptographic protocol

enables to check divisibility for a single polynomial and prevents

a cheating prover from building a proof for a false statement that

might be accepted.

Definition 3.1. Quadratic Arithmetic Program (QAP) A QAP

comprises three sets of polynomials {𝑢𝑖 (𝑋), 𝑣𝑖 (𝑋),𝑤𝑖 (𝑋)}𝑚𝑖=0 and a

target polynomial 𝑡 (𝑋). The QAP computes an arithmetic circuit if

(𝑐1, . . . , 𝑐𝑙−1) are valid assignments of both the inputs and outputs

for the circuit iff there exist coefficients (𝑐𝑙 , . . . , 𝑐𝑚) such that 𝑡 (𝑋)
divides 𝑝 (𝑋), as follows:

𝑝 (𝑋) = (Σ𝑚𝑖=1𝑐𝑖 · 𝑢𝑖 (𝑋)) · (Σ
𝑚
𝑖=1𝑐𝑖 · 𝑣𝑖 (𝑋)) − (Σ

𝑚
𝑖=1𝑐𝑖 ·𝑤𝑘 (𝑋))

A QAP that satisfies the aforementioned definition computes an

arithmetic circuit. The size of QAP is𝑚 and its degree is the degree

of 𝑡 (𝑋).

In the above-mentioned definition, 𝑡 (𝑋) = ∏
𝑖∈𝑚𝑢𝑙 (𝑥−𝑟𝑖), where

𝑚𝑢𝑙 is the set of multiplication gates of the arithmetic circuit and

each 𝑟 𝑗 is a random labeling for corresponding multiplication gate.

The polynomial 𝑢𝑖 (𝑋) encodes the left inputs, 𝑣𝑖 (𝑋) encodes the
right inputs, and 𝑤𝑖 (𝑋) encodes the gate outputs. By definition,

if 𝑟 𝑗 is a root for polynomial 𝑝 (𝑋), 𝑝 (𝑟 𝑗) represents the relation
between inputs and outputs for the corresponding multiplicative

gate 𝑔.

3.3 Quadratic Polynomial Program
QAP verifies wires that are represented as an arithmetic value in

an arithmetic circuit. Kosba et al. [21] subsequently defined the

quadratic polynomial program (QPP), similar to QAP, except circuit

wires that can be represented as a univariate polynomial.

Definition 3.2. Quadratic Polynomial Program(QPP) A QPP

for a polynomial circuit comprises three sets of polynomials {𝑢𝑖 (𝑋),
𝑣𝑖 (𝑋),𝑤𝑖 (𝑋)}𝑚𝑖=1 and a target polynomial 𝑡 (𝑋). The QPP computes

the circuit if (𝑐1 (𝑍), . . . , 𝑐𝑙 (𝑍)) are valid assignments of both the

inputs and outputs iff there exist coefficients (𝑐𝑙+1, . . . , 𝑐𝑚) such
that 𝑡 (𝑋) divides 𝑝 (𝑋,𝑍):

𝑝 (𝑋,𝑍) = (Σ𝑚𝑖=1𝑐𝑖 (𝑍) · 𝑢𝑖 (𝑋)) · (Σ
𝑚
𝑖=1𝑐𝑖 (𝑍) · 𝑣𝑖 (𝑋))

− (Σ𝑚𝑖=1𝑐𝑖 (𝑍) ·𝑤𝑘 (𝑋))
(1)

A QPP that satisfies this definition computes the circuit. The size

of QPP is𝑚 and its degree is the degree of 𝑡 (𝑋).

Similarly to the QAP definition, 𝑢𝑖 (𝑋), 𝑣𝑖 (𝑋), and 𝑤𝑖 (𝑋) rep-
resent a gate, where 𝑢𝑖 (𝑋) encodes a left input, 𝑣𝑖 (𝑋) a right in-
put, and𝑤𝑖 (𝑋) an output. If the left input wire of a multiplication

gate 𝑟 𝑗 is 𝑐𝑙 (𝑍), then the right wire is 𝑐𝑟 (𝑍) and the output is

𝑐𝑜 (𝑍); hence 𝑐𝑙 (𝑍) · 𝑐𝑟 (𝑍) = 𝑐𝑜 (𝑍) and it can be represented as

(∑𝑚
𝑖=1 𝑐𝑖 (𝑍) · 𝑢𝑖 (𝑟 𝑗)) (

∑𝑚
𝑖=1 𝑐𝑖 (𝑍) · 𝑣𝑖 (𝑟 𝑗)) = (

∑𝑚
𝑖=1 𝑐𝑖 (𝑍) ·𝑤𝑖 (𝑟 𝑗)).

4

3.4 Zero-Knowledge Succinct Non-interactive
Arguments of Knowledge

In this section, we recall the zk-SNARKs definition [19, 25].

Definition 3.3. A zero-knowledge succinct non-interactive ar-

guments of knowledge (zk-SNARKs) scheme for a relation 𝑅 is

the quadruple of PPT algorithms (KeyGen, Prove,Verify, Sim) as

follows.

• (𝑐𝑟𝑠, 𝜏) ← Setup(𝑅): The setup algorithm takes a relation

𝑅 ∈ ℛ𝜆 as input, and returns a common reference string 𝑐𝑟𝑠

and a simulation trapdoor 𝑡𝑑 .

• 𝜋 ← Prove(𝑐𝑟𝑠, 𝜙,𝑤): The prover algorithm takes a 𝑐𝑟𝑠 for

a relation 𝑅 and (𝜙,𝑤) ∈ 𝑅 as input, and returns a proof 𝜋 .

• 0/1← Verify(𝑐𝑟𝑠, 𝜙, 𝜋): the verifier algorithm takes a 𝑐𝑟𝑠 , a

statement 𝜙 , and a proof 𝜋 as input, and returns 0(reject) or

1(accept).

• 𝜋 ← Sim(𝑐𝑟𝑠, 𝑡𝑑, 𝜙): The simulator algorithm takes a 𝑐𝑟𝑠 ,

a simulation trapdoor 𝑡𝑑 , and a statement 𝜙 as input, and

returns a proof 𝜋 .

Completeness: An argument is complete if given true statement 𝜙 ,

a prover with a witness can convince the verifier. For all (𝜙,𝑤) ∈ 𝑅,
the probability of completeness is:

𝑃𝑟

[
Verify(𝑐𝑟𝑠, 𝜙, 𝜋) = 1

����(𝑐𝑟𝑠, 𝑡𝑑) ← Setup(𝑅),
𝜋 ← Prove(𝑐𝑟𝑠, 𝜙,𝑤)

]
= 1

Computational knowledge soundness: An argument is compu-

tational knowledge sound if the prover must know a witness and

such knowledge can be efficiently extracted from the prover by

using a knowledge extractor. Proof of knowledge requires that for

a PPT adversary 𝒜 generating an accepting proof, there must be

an extractor 𝜒𝒜 that, given the same input of 𝒜, outputs a valid

witness such that

𝑃𝑟

[
Verify(𝑐𝑟𝑠, 𝜙, 𝜋) = 1

∧(𝜙, 𝑤) ∉ 𝑅

���� (𝑐𝑟𝑠, 𝑡𝑑) ← Setup(𝑅),
(𝜙, 𝜋, 𝑤) ← (𝒜 |𝜒𝒜) (𝑅, 𝑐𝑟𝑠, 𝑧)

]
≈ 0

where 𝑧 is auxiliary input.

Succinctness: The length of a proof is

|𝜋 | ≤ poly(𝑘)poly𝑙𝑜𝑔(|𝑥 | + |𝑤 |)
.

Perfect zero-knowledge: An argument is zero-knowledge if it

does not leak any information other than the truth of the statement.

Notably, zk-SNARK is perfect zero-knowledge if for all (𝑅, 𝑧) ← ℛ,

(𝜙,𝑤) ← 𝑅 and all adversaries 𝒜, one has the following:

𝑃𝑟

[
𝒜(𝑅, 𝑧, 𝑐𝑟𝑠, 𝑡𝑑, 𝜋) = 1

����(𝑐𝑟𝑠, 𝑡𝑑) ← Setup(𝑅),
𝜋 ← Prove(𝑐𝑟𝑠, 𝜙,𝑤)

]
=𝑃𝑟

[
𝒜(𝑅, 𝑧, 𝑐𝑟𝑠, 𝑡𝑑, 𝜋) = 1

����(𝑐𝑟𝑠, 𝑡𝑑) ← Setup(𝑅),
𝜋 ← Sim(𝑐𝑟𝑠, 𝑡𝑑, 𝜙)

]
3.5 Commit and Prove SNARKs
The commit and prove SNARKs (CP-SNARKs) scheme [8] is a zk-

SNARKs scheme to prove the knowledge of (𝜙,𝑤) such that 𝑢 is a

message of commitment 𝑐𝑚 and a relation 𝑅(𝜙,𝑤) = 1 where the

witness 𝑢 ∈ 𝑤 .

Definition 3.4. A CP-SNARKs scheme includes the quadruple

PPT algorithms (KeyGen, Prove,Verify, Sim) defined as follows.

• (𝑐𝑟𝑠, 𝑡𝑑) ← Setup(𝑐𝑘, 𝑅): The setup algorithm takes a rela-

tion 𝑅 ∈ ℛ𝜆 and commitment key ck as input, and returns a

common reference string 𝑐𝑟𝑠 and a trapdoor 𝑡𝑑 .

• 𝜋 ← Prove(𝑐𝑟𝑠, 𝜙, {𝑐 𝑗 , 𝑢 𝑗 , 𝑜 𝑗 }𝑙𝑗=1,𝑤): The prover algorithm

takes as input a 𝑐𝑟𝑠 for a relation 𝑅, (𝜙,𝑤) ∈ 𝑅, commitments

𝑐 𝑗 , inputs 𝑢 𝑗 and opening 𝑜 𝑗 , and returns a proof 𝜋 .

• 0/1← Verify(𝑐𝑟𝑠, 𝜙, {𝑐 𝑗 }𝑙𝑗=1, 𝜋): The verifier algorithm takes

as input a 𝑐𝑟𝑠 , a statement 𝜙 , commitments 𝑐 𝑗 and a proof 𝜋 ,

and returns 0 (reject) or 1 (accept).

• 𝜋 ← Sim(𝑐𝑟𝑠, 𝑡𝑑, 𝜙, {𝑐 𝑗 }𝑙𝑗=1): The simulator algorithm takes

a 𝑐𝑟𝑠 , a trapdoor 𝑡𝑑 , a statement 𝜙 , and commitments 𝑐 𝑗 as

input, and returns a proof 𝜋 .

3.6 Commit and Carry SNARKs
Similar to the case of CP-SNARKs, the commit and carry SNARKs

(cc-SNARKs) scheme [8] proves a relation with commitment, but it

generates a commitment while proving the relation.

Definition 3.5. The cc-SNARKs scheme has the quintuple of PPT

algorithms (KeyGen, Prove, Verify, VerifyCom, Sim) defined as fol-

lows.

• (𝑐𝑘, 𝑐𝑟𝑠, 𝑡𝑑) ← Setup(𝑅): The setup algorithm takes as input

a relation 𝑅 ∈ ℛ𝜆 , and returns a commitment key 𝑐𝑘 , a 𝑐𝑟𝑠 ,

and a simulation trapdoor 𝑡𝑑 .

• (𝑐𝑚, 𝜋, 𝑟) ← Prove(𝑐𝑟𝑠, 𝜙,𝑤): The prover algorithm takes as

a 𝑐𝑟𝑠 for a relation 𝑅 and (𝜙,𝑤) ∈ 𝑅, and returns a commit-

ment 𝑐𝑚, a proof 𝜋 , and an opening 𝑟 .

• 0/1← Verify(𝑐𝑟𝑠, 𝜙, 𝑐𝑚, 𝜋): The verifier algorithm takes as

input a 𝑐𝑟𝑠 , a statement 𝜙 , commitments 𝑐𝑚 and a proof 𝜋 ,

and returns 0(reject) or 1(accept).

• 0/1← VerifyCom(𝑐𝑘, 𝑐𝑚,𝑢, 𝑟): The verifier algorithm takes

as input a commitment key 𝑐𝑘 , a commitments 𝑐𝑚, a message

𝑢, and an opening 𝑟 , and returns 0(reject) or 1(accept).

• (𝑐𝑚, 𝜋) ← Sim(𝑐𝑟𝑠, 𝑡𝑑, 𝜙): The simulator algorithm takes

as a 𝑐𝑟𝑠 , a simulation trapdoor 𝑡𝑑 , and a statement 𝜙 , and

returns a commitment 𝑐𝑚 and a proof 𝜋 .

4 VERIFIABLE CONVOLUTIONAL NEURAL
NETWORK

This section constructs Verifiable Convolutional Neural Network

(vCNN) scheme to prove CNNs efficiently, where it is significantly

expensive to prove CNN evaluations in traditional QAP-based zk-

SNARKs. Convolution computations deteriorate the proving perfor-

mance severely, since it requires more than 90% of total proof gen-

eration time in CNNs. First, we optimize the convolution relation

utilizing QPP [21] and construct an efficient QPP-based zk-SNARKs

scheme for convolutions. Although the QPP approach improves

5

Figure 2: Illustration of convolution

convolution performance, QPP representation of a whole CNN de-

grades the performance due to the other CNN components, such as

ReLU and Pooling. Hence, we propose a new efficient zk-SNARK

framework for CNNs by applying QPP to convolutions and QAP to

the other components, and we build a connecting proof between

QPP and QAP by using CP-SNARKs technique [8].

4.1 Optimizing Convolution Relation
The convolution filters inputs using kernels by computing the in-

ner product for inputs and kernels, as depicted in Figure 2. Thus,

convolution can be expressed as

𝑦𝑖 =
∑
𝑗 ∈[𝑙]

𝑎 𝑗 · 𝑥𝑖−𝑗+𝑙−1
(2)

for 𝑖 ∈ [𝑛] where {𝑎 𝑗 }𝑗 ∈[𝑙] are convolution kernels, {𝑥𝑖 }𝑖∈[𝑛] are
convolution inputs, and {𝑦𝑖 }𝑖∈[𝑛−𝑙] are convolution outputs. When

the convolution is represented as QAP, 𝑛×𝑙 multiplication gates are

required, since there are 𝑛 outputs and 𝑙 multiplications per output.

Figure 3 shows a small convolution example, where input size is

5, kernel size is 3, and output size is 3, hence the QAP requires 9

multiplication gates.∑
𝑖∈[𝑛+𝑙−1]

𝑦′𝑖 = (
∑
𝑖∈[𝑛]

𝑥𝑖) · (
∑
𝑖∈[𝑙]

𝑎𝑖)
(3)

Since Equation (2) is the sum of products, which requires many

multiplication gates, we transform it into the product of sums as

shown in Equation (3) which includes a single multiplication gate

to reduce the number of multiplications. However, the naive trans-

formation is not sound, as it is easy to find the incorrect output ®𝑦′
which is different from the correct output ®𝑦 such that sums of two

outputs are equivalent. Therefore, to distinguish each output 𝑦𝑖 , we

introduce an indeterminate variable 𝑍 for each equation as shown

in Equation (4) which has 𝑂 (| ®𝑥 | + | ®𝑎 |) (= 𝑂 (𝑛 + 𝑙)) multiplications.∑
𝑖∈[𝑛+𝑙−1]

𝑦𝑖 · 𝑍 𝑖 = (
∑
𝑖∈[𝑛]

𝑥𝑖 · 𝑍 𝑖) · (
∑
𝑖∈[𝑙]

𝑎𝑖 · 𝑍 𝑖)
(4)

Figure 4 unrolls the Equation (4). Notably, the transformation

slightly increases the number of outputs by 2𝑙 − 2 from that in the

original Equation (2) with 𝑛 outputs.

To formulate Equation (4), we can devise two approaches: a point

evaluation approach and a polynomial circuit with an indeterminate

variable. In the point evaluation approach, for a polynomial of

degree 𝑑 , 𝑑 +1 different points should be evaluated, requiring𝑂 (𝑑2)
(multiplicative) operations since there are 𝑑 multiplications per

Figure 3: Example of convolution

Figure 4: Example of Equation (4)

point evaluation and there are 𝑑 + 1 points. Point evaluation can be

performed using number theoretic transform (NTT) in 𝑂 (𝑑 log𝑑).
However, due to the NTT complexity, the computation overhead

in NTT is severer than the naive point evaluation, unless 𝑑 is large

enough.

In a polynomial circuit (called Quadratic Polynomial Program

(QPP) [21]) a wire can have a polynomial as value. Thus, we can

directly express the revised equation as a single multiplication gate

with two input polynomials and one output polynomial. While the

point evaluation approach requires quadratic𝑂 (𝑑2) or quasi-linear
𝑂 (𝑑 log𝑑) multiplication operations, the QPP approach requests

𝑂 (𝑑) operations. Therefore, this paper adopts QPP representation

for convolution.

Construction of QPP-based zk-SNARK: We now construct a

QPP-based zk-SNARK scheme to prove Equation (4), similar to [21],

exceptwe utilize Groth16 [19] rather than the Pinocchio scheme [25].

While eachwire can have only a value in QAP, QPP allows eachwire

to have a polynomial. The proposed concrete QPP-based zk-SNARK

scheme is as follows.

(𝑐𝑟𝑠, 𝑡𝑑) ← Setup(𝑅) : Pick 𝛼 , 𝛽 , 𝛾 , 𝛿 , 𝑥 , 𝑧
$← Z∗𝑝 . Define 𝑡𝑑=(𝛼 , 𝛽 ,

𝛾 , 𝛿 , 𝑥 , 𝑧) and set

𝑐𝑟𝑠 =

©­­­­­­­­­­­«

𝐺𝛼
1
,𝐺

𝛽

1
,𝐺𝛿

1
, {𝐺𝑥𝑖 ·𝑧 𝑗

1
}𝑑𝑥−1,𝑑𝑧
𝑖=0, 𝑗=0

,

𝐺
𝛽

2
,𝐺

𝛾

2
,𝐺𝛿

2
, {𝐺𝑥𝑖 ·𝑧 𝑗

2
}𝑑𝑥−1,𝑑𝑧
𝑖=0, 𝑗=0

,

{𝐺
𝛽𝑢𝑖 (𝑥)+𝛼𝑣𝑖 (𝑥)+𝑤𝑖 (𝑥)

𝛾
𝑧 𝑗

1
}𝑙,𝑑𝑧
𝑖=0, 𝑗=0

,

{𝐺
𝛽𝑢𝑖 (𝑥)+𝛼𝑣𝑖 (𝑥)+𝑤𝑖 (𝑥)

𝛿
𝑧 𝑗

1
}𝑚,𝑑𝑧
𝑖=𝑙+1, 𝑗=0,

{𝐺
𝑥𝑖 ·𝑧 𝑗 ·𝑡 (𝑥)

𝛿

1
}𝑑𝑥−2,𝑑𝑧
𝑖=0, 𝑗=0

ª®®®®®®®®®®®¬
𝜋 ← Prove(𝑐𝑟𝑠, 𝜙,𝑤): Parse 𝜙 as (𝑎0 (𝑍), 𝑎1 (𝑍), . . ., 𝑎𝑙 (𝑍)) and 𝑤
as (𝑎𝑙+1 (𝑍), . . ., 𝑎𝑚 (𝑍)). Use the witness to compute ℎ(𝑋,𝑍) from

6

the QPP. Choose 𝑟, 𝑠
$← Z∗𝑝 and output a proof 𝜋 = (𝐺𝑎

1
, 𝐺𝑏

2
, 𝐺𝑐

1
)

such that

𝑎 = 𝛼 +
𝑚∑
𝑖=0

𝑎𝑖 (𝑧)𝑢𝑖 (𝑥) + 𝑟𝛿 𝑏 = 𝛽 +
𝑚∑
𝑖=0

𝑎𝑖 (𝑧)𝑣𝑖 (𝑥) + 𝑠𝛿

𝑐 =
Σ𝑚
𝑖=𝑙+1𝑎𝑖 (𝑧) · (𝛽𝑢𝑖 (𝑥) + 𝛼𝑣𝑖 (𝑥) +𝑤𝑖 (𝑥)) + ℎ(𝑥, 𝑧)𝑡 (𝑥)

𝛿

+ 𝑎𝑠 + 𝑟𝑏 − 𝑟𝑠𝛿

0/1 ← Verify(𝑐𝑟𝑠, 𝜙, 𝜋) : Parse the statement 𝜙 as (𝑎0 (𝑍), 𝑎1 (𝑍),
. . ., 𝑎𝑙 (𝑍)) and the proof 𝜋 as (𝐴, 𝐵,𝐶). Accept the proof if and only
if the following equation is satisfied:

𝑒 (𝐴, 𝐵) =𝑒 (𝐺𝛼
1
,𝐺

𝛽

2
) · 𝑒 (

𝑙∏
𝑖=0

𝐺
𝑎𝑖 (𝑧) · 𝛽𝑢𝑖 (𝑥)+𝛼𝑣𝑖 (𝑥)+𝑤𝑖 (𝑥)

𝛾

1
,𝐺

𝛾

2
)

· 𝑒 (𝐶,𝐺𝛿
2
)

𝜋 ← Sim(𝜏, 𝜙) : Pick 𝑎, 𝑏
$← Z∗𝑝 and compute a simulated proof

𝜋 = (𝐺𝑎
1
,𝐺𝑏

2
,𝐺𝑐

1
) with

𝑐 =
𝑎𝑏 − 𝛼𝛽 − Σ𝑙

𝑖=0
𝑎𝑖 (𝑧) (𝛽𝑢𝑖 (𝑥) + 𝛼𝑣𝑖 (𝑥) +𝑤𝑖 (𝑥))

𝛿

Theorem 4.1. The above protocol is a non-interactive zero-knowledge
arguments of knowledge with completeness and perfect zero-knowledge.
It has computational knowledge soundness against adversaries that
only use a polynomial number of generic bilinear group operations.

The proposed QPP-based zk-SNARK has the same construction

as that of the original QAP-based zk-SNARK except that in the

former the terms in CRS include unknown value 𝑧 to generate

a polynomial 𝑓 (𝑍). We prove the knowledge soundness for the

proposed scheme in Appendix A.1.

Implementation challenge: To prove convolution using Equa-

tion (4), a prover computes ℎ(𝑋,𝑍) by performing polynomial di-

vision (𝑝 (𝑋,𝑍)/𝑡 (𝑋)) for Equation (1). Although the polynomial

division can be efficiently performed using NTT for univariate

polynomials, NTT is not directly applicable for the bivariate poly-

nomials in QPP. Therefore, we transform bivariate polynomials

to univariate polynomials. In QPP, the degree of 𝑋 in 𝑝 (𝑋,𝑍) is
2𝑑𝑥 − 2, where 𝑑𝑥 is the number of multiplication gates. Therefore,

by setting 𝑍 = 𝑋 2𝑑𝑥−1
, all terms can be distinct and the degree of

𝑝 (𝑋,𝑋 2𝑑𝑥−1) is (2𝑑𝑥 − 1)𝑑𝑧 where 𝑑𝑧 is the maximum degree of

𝑍 . Since there is one multiplication in Equation (4), and maximum

degree of 𝑍 is 𝑛 + 𝑙 − 1, the degree of 𝑝 (𝑋,𝑍) becomes 𝑛 + 𝑙 − 1. Al-
though converting bivariate polynomials to univariate polynomials

increases the equation degree, it is significantly more efficient than

QAP based approaches.

Although the total performance is expected to increase signifi-

cantly since QPP improves convolution proving time dramatically,

the actual performance for CNNs is not improved. Even if no 𝑍

variable is required in ReLU and Pooling, the transformation of bi-

variate polynomials to univariate polynomials increases the degree

of𝑋 , which populates unnecessary terms. The following subsection

tackles this problem.

4.2 Connection with ReLU and Pooling
To solve the above problem, QPP is applied only to convolution

while QAP is utilized for the other CNN modules, i.e., ReLU and

Pooling. To guarantee consistency between the QAP-based ReLU

and Pooling circuits and QPP-based convolution circuits, we adopt

CP-SNARKs [8].

Construction of commit and prove SNARKs: A commit and

prove SNARKs (CP-SNARKs) scheme is a proof system to prove that

multiple Pedersen-like commitments are constructed on the same

input. We refer to the scheme in LegoSNARK’s Appendix. D [8].

Setup takes two commitment keys, 𝑐𝑘 and 𝑐𝑘 ′ as inputs and com-

bines them to generate CRS. Prove creates a new proof 𝜋 in which

the commitments are combined. If commitments 𝑐 and 𝑐 ′ were
made using the same input, proof 𝜋 passes verification.

𝑅𝑐𝑝 =

{
𝜙 = (𝑐, 𝑐 ′),𝑤 = (𝑟, 𝑟 ′, ®𝑢)

���� 𝑐 = 𝑐𝑜𝑚𝑚𝑖𝑡 (𝑟, ®𝑢)
∧𝑐 ′ = 𝑐𝑜𝑚𝑚𝑖𝑡 (𝑟 ′, ®𝑢)

}
(𝑐𝑟𝑠, 𝑡𝑑) ← Setup(𝑅𝑐𝑝 , 𝑐𝑘, 𝑐𝑘 ′) : parse 𝑐𝑘 = {𝐺ℎ𝑖

1
}𝑙
𝑖=0

, 𝑐𝑘 ′ = {𝐺 𝑓𝑖
1
}𝑙
𝑖=0

.

Pick 𝑘1, 𝑘2, 𝑎
$← Z𝑝 and set 𝑐𝑟𝑠 = (𝐺𝑘1 ·ℎ0

1
, 𝐺

𝑘2 ·𝑓0
1

, {𝐺𝑘1 ·ℎ𝑖+𝑘2 ·𝑓𝑖
1

}𝑙
𝑖=1

,

𝐺
𝑎𝑘1
2

, 𝐺
𝑎𝑘2
2

, 𝐺𝑎
2
) and trapdoor 𝑡𝑑 = (𝑘1, 𝑘2).

𝜋 ← Prove(𝑐𝑟𝑠, 𝜙,𝑤): parse 𝑟, 𝑟 ′, {𝑢𝑖 }𝑙𝑖=1 ∈ 𝑤 and (𝐴, 𝐵, {𝐶𝑖 }𝑙𝑖=1,
𝑣𝑘1, 𝑣𝑘2, 𝑣𝑘3) ∈ 𝑐𝑟𝑠 . Compute 𝜋 as

𝜋 = 𝐴𝑟 · 𝐵𝑟
′
·

𝑙∏
𝑖=1

𝐶
𝑢𝑖
𝑖

(5)

1/0← Verify(𝑐𝑟𝑠, 𝜙, 𝜋): parse 𝑐 , 𝑐 ′ ∈ 𝜙 and (𝐴, 𝐵, {𝐶𝑖 }𝑙𝑖=1, 𝑣𝑘1, 𝑣𝑘2,
𝑣𝑘3) ∈ 𝑐𝑟𝑠 . Accept the proof iff the following equation is satisfied:

𝑒 (𝑐, 𝑣𝑘1) · 𝑒 (𝑐 ′, 𝑣𝑘2) = 𝑒 (𝜋, 𝑣𝑘3)

𝜋 ← Sim(𝑐𝑟𝑠, 𝑡𝑑, 𝜙): parse 𝑘1, 𝑘2 ∈ 𝑡𝑑 and 𝑐, 𝑐 ′ ∈ 𝜙 . Compute a

proof 𝜋 as

𝜋 = 𝑐𝑘1 · 𝑐 ′𝑘2

Construction of cc-SNARKs from zk-SNARKs: To connect the
zk-SNARKs proofs with CP-SNARKs, we need commitments for

inputs as well as the proofs. Therefore, we modify the zk-SNARKs

scheme in subsection 4.1 to produce a cc-SNARKs scheme that

generates a commitment of the wires with a proof, similar to LegoS-

NARKs [8]. Since the verification in zk-SNARKs includes a form of

Pedersen-like commitment as

𝑙∏
𝑖=0

𝐺
𝑎𝑖 (𝑧) · 𝛽𝑢𝑖 (𝑥)+𝛼𝑣𝑖 (𝑥)+𝑤𝑖 (𝑥)

𝛾

1
=

∏
𝑖∈[𝑙], 𝑗 ∈[𝑑𝑧+1]

(
𝐺

𝛽𝑢𝑖 (𝑥)+𝛼𝑣𝑖 (𝑥)+𝑤𝑖 (𝑥)
𝛾

·𝑧 𝑗

1

)𝑎𝑖,𝑗
it can be delegated to the prover, and hence we can create a proof

system that carries the commitment. Setup adds a commitment

key 𝐺

𝜂

𝛾

1
and additional random 𝐺

𝜂

𝛿

1
to the CRS. Prove additionally

generates a commitment 𝐺𝑑
1
, and we add the −𝜈 𝜂

𝛿
term to 𝑐 to

cancel out the random part of the commitment during verification.

Verify takes 𝑐𝑚 as input and verifies proof 𝜋 . Finally, there is a

new algorithm VerifyCom, which verifies the commitment 𝑐𝑚. The

modified algorithms are as follows.

7

(𝑐𝑚, 𝜋, 𝜈) ← Prove(𝑐𝑟𝑠, 𝜙,𝑤): Parse 𝜙 as (𝑎0 (𝑍), 𝑎1 (𝑍), . . ., 𝑎𝑙 (𝑍))
and𝑤 as (𝑎𝑙+1 (𝑍), . . ., 𝑎𝑚 (𝑍)). Use the witness to compute ℎ(𝑋,𝑍)
from the QPP. Choose 𝑟, 𝑠, 𝜈

$← Z∗𝑝 and output a random 𝜈 , a com-

mitment 𝑐𝑚 = 𝐺𝑑
1
, and a proof 𝜋 = (𝐺𝑎

1
, 𝐺𝑏

2
, 𝐺𝑐

1
) such that

𝑎 = 𝛼 +
𝑚∑
𝑖=0

𝑎𝑖 (𝑧)𝑢𝑖 (𝑥) + 𝑟𝛿 𝑏 = 𝛽 +
𝑚∑
𝑖=0

𝑎𝑖 (𝑧)𝑣𝑖 (𝑥) + 𝑠𝛿

𝑐 =

∑𝑚
𝑖=𝑙+1 𝑎𝑖 (𝑧) · (𝛽𝑢𝑖 (𝑥) + 𝛼𝑣𝑖 (𝑥) +𝑤𝑖 (𝑥)) + ℎ(𝑥, 𝑧)𝑡 (𝑥)

𝛿

+𝐴𝑠 + 𝑟𝐵 − 𝑟𝑠𝛿 − 𝜈 𝜂
𝛿

𝑑 =

∑𝑙
𝑖=0 𝑎𝑖 (𝑧) · (𝛽𝑢𝑖 (𝑥) + 𝛼𝑣𝑖 (𝑥) +𝑤𝑖 (𝑥))

𝛾
+ 𝜈 𝜂

𝛾

0/1 ← Verify(𝑐𝑟𝑠, 𝜙, 𝑐𝑚, 𝜋) : Parse the proof 𝜙 as (𝑎0 (𝑍), 𝑎1 (𝑍),
. . ., 𝑎𝑙 (𝑍)) and 𝜋 as (𝐴, 𝐵,𝐶). Accept the proof iff the following

equation is satisfied:

𝑒 (𝐴, 𝐵) =𝑒 (𝐺𝛼
1
,𝐺

𝛽

2
) · 𝑒 (𝑐𝑚,𝐺

𝛾

2
) · 𝑒 (𝐶,𝐺𝛿

2
)

0/1← VerifyCom(𝑐𝑘,𝑤, 𝑟, 𝑐𝑚) : Parse the message 𝑢 in𝑤 . Accept

the proof iff the following equation is satisfied:

𝑐𝑚 = (𝑟, ®𝑢) · 𝑐𝑘

(𝜈, 𝑐𝑚, 𝜋) ← Sim(𝜏, 𝜙) : Pick 𝑎, 𝑏, 𝜈 $← Z∗𝑝 and compute a simulated

commitment 𝑐𝑚 = 𝐺𝑑
1
and simulated proof 𝜋 = (𝐺𝑎

1
,𝐺𝑏

2
,𝐺𝑐

1
) with

𝑐 =
𝑎𝑏 − 𝛼𝛽 −∑𝑙

𝑖=0 𝑎𝑖 (𝑧) (𝛽𝑢𝑖 (𝑥) + 𝛼𝑣𝑖 (𝑥) +𝑤𝑖 (𝑥)) − 𝜈𝜂
𝛿

𝑑 =
Σ𝑙
𝑖=0

𝑎𝑖 (𝑧) (𝛽𝑢𝑖 (𝑥) + 𝛼𝑣𝑖 (𝑥) +𝑤𝑖 (𝑥)) + 𝜈𝜂
𝛾

Theorem 4.2. The protocol given above is a non-interactive zero-
knowledge arguments of knowledge with completeness and perfect
zero-knowledge. It has computational knowledge soundness against
adversaries that only use a polynomial number of generic bilinear
group operations.

The proof for Theorem 4.2 is available in Appendix A.1. We omit

the concrete construction and security proof for the QAP-based cc-

SNARKs here since it is a special case of the QPP-based cc-SNARKs;

the degree of 𝑍 is zero.

4.3 Construction of Verifiable Convolutional
Neural Network

The proposed vCNNproves CNNs using cc-SNARKs andCP-SNARKs.

The relation of CNNs, 𝑅𝐶𝑁𝑁 , comprises 𝑅𝑐𝑜𝑛𝑣𝑜𝑙 , 𝑅𝑅𝑒𝐿𝑈 +𝑃𝑜𝑜𝑙 , and
𝑅𝑐𝑝 , where 𝑅𝑐𝑜𝑛𝑣𝑜𝑙 is encoded in QPP containing𝑍 and 𝑅𝑅𝑒𝐿𝑈 +𝑃𝑜𝑜𝑙
is in QAP. Let Π𝑞𝑎𝑝 = (Setup, Prove, Verify, VerifyCom, Sim) be
a QAP-based cc-SNARKs scheme, Π𝑞𝑝𝑝 = (Setup, Prove, Verify,
VerifyCom, Sim) be a QPP-based cc-SNARKs scheme, and Π𝑐𝑝 =

(Setup, Prove, Verify, Sim) be a CP-SNARKs scheme.

(𝑐𝑟𝑠, 𝑡𝑑) ← Setup(𝑅𝐶𝑁𝑁) : Parse 𝑅𝐶𝑁𝑁 as relation of convolu-

tion 𝑅𝑐𝑜𝑛𝑣𝑜𝑙 , and ReLU and Pooling 𝑅𝑅𝑒𝐿𝑈 +𝑃𝑜𝑜𝑙 . Compute common

reference string 𝑐𝑟𝑠 and trapdoor 𝑡𝑑 as follows:

𝑐𝑘𝑞𝑎𝑝 , 𝑐𝑟𝑠𝑞𝑎𝑝 , 𝑡𝑑𝑞𝑎𝑝 ← Π𝑞𝑎𝑝 .Setup(𝑅𝑅𝑒𝐿𝑈 +𝑃𝑜𝑜𝑙)
𝑐𝑘𝑞𝑝𝑝 , 𝑐𝑟𝑠𝑞𝑝𝑝 , 𝑡𝑑𝑞𝑝𝑝 ← Π𝑞𝑝𝑝 .Setup(𝑅𝑐𝑜𝑛𝑣)
𝑐𝑟𝑠𝑐𝑝 , 𝑡𝑑𝑐𝑝 ← Π𝑐𝑝 .Setup(𝑐𝑘𝑞𝑎𝑝 , 𝑐𝑘𝑞𝑝𝑝)

Set 𝑐𝑟𝑠 = (𝑐𝑟𝑠𝑞𝑎𝑝 , 𝑐𝑟𝑠𝑞𝑝𝑝 , 𝑐𝑟𝑠𝑐𝑝) and 𝑡𝑑 = (𝑡𝑑𝑞𝑎𝑝 , 𝑡𝑑𝑞𝑝𝑝 , 𝑡𝑑𝑐𝑝) .

𝜋 ← Prove(𝑐𝑟𝑠, 𝜙,𝑤): Parse (𝜙 ,𝑤) as (𝜙𝑞𝑎𝑝 ,𝑤𝑞𝑎𝑝) and (𝜙𝑞𝑝𝑝 ,𝑤𝑞𝑝𝑝).

Parse 𝑐𝑟𝑠 as (𝑐𝑟𝑠𝑞𝑎𝑝 , 𝑐𝑟𝑠𝑞𝑝𝑝 , 𝑐𝑟𝑠𝑐𝑝). Compute a proof as follows:

𝜋𝑞𝑎𝑝 , 𝑟𝑞𝑎𝑝 , 𝑐𝑚𝑞𝑎𝑝 ← Π𝑞𝑎𝑝 .Prove(𝑐𝑟𝑠𝑞𝑎𝑝 , 𝜙𝑞𝑎𝑝 ,𝑤𝑞𝑎𝑝)
𝜋𝑞𝑝𝑝 , 𝑟𝑞𝑝𝑝 , 𝑐𝑚𝑞𝑝𝑝 ← Π𝑞𝑝𝑝 .Prove(𝑐𝑟𝑠𝑞𝑝𝑝 , 𝜙𝑞𝑝𝑝 ,𝑤𝑞𝑝𝑝)
𝑝𝑎𝑟𝑠𝑒 𝜋𝑞𝑎𝑝 = (𝐴𝑞𝑎𝑝 , 𝐵𝑞𝑎𝑝 ,𝐶𝑞𝑎𝑝)
𝑝𝑎𝑟𝑠𝑒 𝜋𝑞𝑝𝑝 = (𝐴𝑞𝑝𝑝 , 𝐵𝑞𝑝𝑝 ,𝐶𝑞𝑝𝑝)
𝜙𝑐𝑝 = (𝑐𝑚𝑞𝑎𝑝 , 𝑐𝑚𝑞𝑝𝑝)

𝑤𝑐𝑝 = (𝑟𝑞𝑎𝑝 , ®𝑦, 𝑟𝑞𝑝𝑝 , ®𝑦′)
𝜋𝑐𝑝 ← Π𝑐𝑝 .Prove(𝑐𝑟𝑠𝑐𝑝 , 𝜙𝑐𝑝 ,𝑤𝑐𝑝)

Set 𝜋 = (𝜋𝑞𝑎𝑝 , 𝜋𝑞𝑝𝑝 , 𝜋𝑐𝑝 , 𝑐𝑚𝑞𝑎𝑝 , 𝑐𝑚𝑞𝑝𝑝).

0/1 ← Verify(𝑅𝐶𝑁𝑁 , 𝑐𝑟𝑠, 𝜙, 𝜋) : Parse 𝜙 = (𝜙𝑞𝑎𝑝 , 𝜙𝑞𝑝𝑝). Parse 𝑐𝑟𝑠

as (𝑐𝑟𝑠𝑞𝑎𝑝 , 𝑐𝑟𝑠𝑞𝑝𝑝 , 𝑐𝑟𝑠𝑐𝑝) and 𝜋 as (𝜋𝑞𝑎𝑝 , 𝜋𝑞𝑝𝑝 , 𝜋𝑐𝑝 , 𝑐𝑚𝑞𝑎𝑝 , 𝑐𝑚𝑞𝑝𝑝).
And parse 𝜋𝑞𝑎𝑝 = (𝐴𝑞𝑎𝑝 , 𝐵𝑞𝑎𝑝 , 𝐶𝑞𝑎𝑝) and 𝜋𝑞𝑝𝑝 = (𝐴𝑞𝑝𝑝 , 𝐵𝑞𝑝𝑝 ,

𝐶𝑞𝑝𝑝). Accept the proof iff the following equation is satisfied:

𝑎𝑠𝑠𝑒𝑟𝑡 Π𝑞𝑎𝑝 .Verify(𝑐𝑟𝑠𝑞𝑎𝑝 , 𝜙𝑞𝑎𝑝 , 𝑐𝑚𝑞𝑎𝑝 , 𝜋𝑞𝑎𝑝) = 1

𝑎𝑠𝑠𝑒𝑟𝑡 Π𝑞𝑝𝑝 .Verify(𝑐𝑟𝑠𝑞𝑝𝑝 , 𝜙𝑞𝑝𝑝 , 𝑐𝑚𝑞𝑝𝑝 , 𝜋𝑞𝑝𝑝) = 1

𝑎𝑠𝑠𝑒𝑟𝑡 Π𝑐𝑝 .Verify(𝑐𝑟𝑠𝑐𝑝 , (𝑐𝑚𝑞𝑎𝑝 , 𝑐𝑚𝑞𝑝𝑝), 𝜋𝑐𝑝) = 1

𝜋 ← Sim(𝑐𝑟𝑠, 𝜏, 𝜙) :Parse𝜙=(𝜙𝑞𝑎𝑝 ,𝜙𝑞𝑝𝑝) and 𝑡𝑑 = (𝑡𝑑𝑞𝑎𝑝 , 𝑡𝑑𝑞𝑝𝑝 , 𝑡𝑑𝑐𝑝).
Compute a proof 𝜋 as follows:

𝑐𝑚𝑞𝑎𝑝 , 𝜋𝑞𝑎𝑝 ← Π𝑞𝑎𝑝 .Sim(𝑐𝑟𝑠𝑞𝑎𝑝 , 𝑡𝑑𝑞𝑎𝑝 , 𝜙𝑞𝑎𝑝)
𝑐𝑚𝑞𝑝𝑝 , 𝜋𝑞𝑝𝑝 ← Π𝑞𝑝𝑝 .Sim(𝑐𝑟𝑠𝑞𝑝𝑝 , 𝑡𝑑𝑞𝑝𝑝 , 𝜙𝑞𝑝𝑝)

𝜙𝑐𝑝 = (𝑐𝑚𝑞𝑎𝑝 , 𝑐𝑚𝑞𝑝𝑝)
𝜋𝑐𝑝 ← Π𝑐𝑝 .Sim(𝑐𝑟𝑠𝑐𝑝 , 𝑡𝑑𝑐𝑝 , 𝜙𝑐𝑝)

Set 𝜋 = (𝜋𝑞𝑎𝑝 , 𝜋𝑞𝑝𝑝 , 𝜋𝑐𝑝 , 𝑐𝑚𝑞𝑎𝑝 , 𝑐𝑚𝑞𝑝𝑝).

Theorem 4.3. If Π𝑞𝑎𝑝 , Π𝑞𝑝𝑝 , and Π𝑐𝑝 are computationally knowl-
edge sound and perfect zero-knowledge, then the protocol given above
is a non-interactive zero-knowledge arguments of knowledge with
completeness and perfect zero-knowledge. It has computational knowl-
edge soundness against adversaries that only use a polynomial number
of generic bilinear group operations.

The proposed vCNN scheme generates a constant size proof re-

gardless of the number of layers in the neural network models. Note

that since the constraint relations are checked in proof systems, the

computation order can be ignored. Therefore, we can build proofs

for QPP and QAP at once using given values without iterating lay-

ers. Consequently, the proposed vCNN generates 9 group elements

as proof; three for QAP, three for QPP, two for commitment, and

one for CP-SNARKs.

8

5 EXPERIMENT
This section describes the implementation of vCNN, and compares

the prove time and the CRS size in vCNN with existing QAP-based

zk-SNARKs scheme [19]. As real applications, we utilize LeNet-

5 [24], AlexNet [23], and VGG16 [27] models. We execute them on

a Quad-core Intel CPU i5 3.4 GHz and Ubuntu 16.04.

We implement the proposed QPP-based SNARKs scheme by

utilizing libsnark and jsnark [1, 4, 5]. First, we build a generic

convolution circuit operation in jsnark, as follows.

"convol in #input <wire numbers > out #output <wire numbers

> state #state < input size, kernel size>"

The circuit operation contains input and output wires. Since a

convolution takes kernels as input, keyword "state" is appended

to specify the size of input and kernel. And then, we add code for

reading "convol" operations and constructing QPP polynomials for

convolutions in the library.

5.1 Convolutions
We compare the prove performance in the proposed QPP-based

zk-SNARKs scheme with the QAP-based zk-SNARKs scheme [19]

for convolution. Figure 5 shows the setup and proof generation

time, and Figure 6 shows CRS size by varying the convolution

input size for given kernel size. Figures 5 and 6 show that the

proposed QPP-based scheme provides higher proving performance

and smaller CRS size where the improvement increases as the kernel

size increases.

5.2 Convolutional Neural Networks
We compare the proposed vCNN scheme with the QAP-based zk-

SNARKs scheme on various deep neural models from small CNNs

to real large models, to demonstrate its practicality.

Small size CNNs: Figures 7 and 8 illustrate the experimental re-

sults for a small CNN with one convolution layer and one pooling

layer. Figures 7 (a), (b), and (c) show setup time, proof generation

time, and CRS size, respectively, by varying the convolution input

size where the kernel size is 10, depth is 3, and quantization bit

depth is 10. Figure 8 increases the kernel size to 50 while the other

parameters remain. Figures 7 and 8 show that vCNN produces bet-

ter results in terms of performance and the CRS size always. In the

figures, the CP-SNARKs time in vCNN is ignorable. Performance

improves as the kernel size increases. In vCNN Setup is 2.6x faster

than Gro16, proving time is 3.3x faster, and CRS size is 3.3x smaller

when kernel size is 10; whereas setup is up to 9x faster, proving

time is 7.5x faster, and CRS size is 12.3x smaller when kernel size is

50. Note that the prove time of convolutions in Gro16 can be easily

estimated by subtracting the time of "ReLU+Pool" in vCNN from

the prove time in Gro16.

Figure 9 shows the result for a MNIST CNNmodel which consists

of a single convolution and pooling layer with kernel size is 9 (=3×3)
and kernel depth is 64 by varying quantization bit depth from 16

to 32. Since non-linear functions, such as ReLU, are required to be

encoded into bitwise operations "split" and "pack," both prove time

and CRS size are proportional to the quantization bit depth. Setup

and proof generation are up to 20x faster in vCNN than Gro16 and

CRS size is up to 30x smaller when quantization bit depth is 32.

Figure 10 illustrates multi-layer CNNs on the MNIST dataset

when the kernel size is 9 (=3 × 3) and quantization bit depth is

10. In this model convolution and pooling (including ReLU) layers

alternate. The 𝑥 axis represents the number of layers, e.g., the model

with 2 layers consists of a convolution and a pooling layers, whereas

in the model with 6 layers there are three convolution layers and

three pooling layers, respectively. Each convolution layer has a

different kernel depth. Kernel depths are given as 32, 64, and 128 for

the first, the second, and the third convolution layer, respectively.

Note that the model with 6 layers achieves 98% accuracy. Figures 10

(a)-(c) show that for the two layer model, setup is 10.6x faster in

vCNN than Gro16, proof generation is 12x faster, and CRS size is

14.5x smaller. vCNN generates a proof in less than 11 seconds with

55MB size CRS while Gro16 scheme fails to generate proofs when

the number of layers is more than two due to the large run-time

memory requirement.

Real CNNs:We evaluate vCNN on several canonical CNNs models:

LeNet-5 [24], AlexNet [23], and VGG16 [27]. We utilize the average

pool rather than the max pool since the average pool requires a

smaller circuit than the max pool. In addition, we exclude the fully

connected layer in the models.

Figures 11 and 12 show the prove time and the CRS size by

varying the scale factors for AlexNet and VGG16 models in vCNN.

The scale factor includes two subfactors for the kernel depth and

the input size. For example, (1
32
, 1
7
) denotes that the kernel depth

decreases by
1

32
and the input size by

1

7
in every layer. Note that

(1, 1) represents the real model.

Table 2 summarizes the performance and the size in vCNN and

Gro16 [19]. In the table, we estimate the results in Gro16 due to

insufficient memory. In vCNN, the setup time, proving time, and

CRS size in vCNN are 291x faster and smaller than Gro16 for

LeNet-5. Similarly, they are 1200x faster and smaller than Gro16

for AlexNet; and 18000x for VGG16. Note that Gro16 would require

more than 10 years to generate a proof for VGG16. Verification time

remains for all applications in both vCNN and Gro16.

6 CONCLUSION
In this paper, we propose the first practical verifiable zk-SNARKs

scheme for convolutional neural network models. We devise a new

relation to optimally represent convolution operations based on

quadratic polynomial program(QPP), which reduces the compu-

tational complexity to 𝑂 (𝑙 + 𝑛) from 𝑂 (𝑙 · 𝑛) in the existing QAP

approach where 𝑙 and 𝑛 denote the kernel and the input size. How-

ever, since the QPP only approach enlarges the circuit for compo-

nents except convolution we adopt a commit-and-prove approach

to combine proofs after applying QPP and QAP to convolution and

the other functions. The proposed scheme is proven to be perfectly

zero-knowledge and computationally knowledge sound.

The experimental results validate that the proposed vCNN scheme

reduce prove time and CRS size approximately 18,000x for the

canonical CNN models on VGG16. In practice, prove time decreases

to 8 hours from 10 years, and CRS size reduces to 80GB from 1400

TB compared with [19].

9

100 2500 5000 7500 10000

0

2

4

size of inputs

t
i
m
e
[
s
]

QAP-setup

QAP-prove

QPP-setup

QPP-prove

(a) kernel size = 10

100 2500 5000 7500 10000

0

5

10

size of inputs

(b) kernel size = 30

100 2500 5000 7500 10000

0

5

10

15

size of inputs

(c) kernel size = 50

Figure 5: Prove time in QAP and QPP based zk-SNARKs for convolutions

100 2500 5000 7500 10000

0

5

10

size of inputs

C
R
S
s
i
z
e
[
M
B
]

QAP-CRS

QPP-CRS

(a) kernel size = 10

100 2500 5000 7500 10000

0

10

20

30

size of inputs

(b) kernel size = 30

100 2500 5000 7500 10000

0

20

40

size of inputs

(c) kernel size = 50

Figure 6: CRS size in QAP and QPP based zk-SNARKs for convolutions

100 500 1000 5000 10000

0

10

20

30

40

size of inputs

s
e
t
u
p
t
i
m
e
[
s
]

ReLU+Pool

Convol

CP-SNARK

100 500 1000 5000 10000

0

10

20

30

40

size of inputs

s
e
t
u
p
t
i
m
e
[
s
]

Gro16

(a)

100 500 1000 5000 10000

0

5

10

15

20

size of inputs

p
r
o
v
e
t
i
m
e
[
s
]

100 500 1000 5000 10000

0

5

10

15

20

size of inputs

p
r
o
v
e
t
i
m
e
[
s
]

(b)

100 500 1000 5000 10000

0

50

100

size of inputs

C
R
S
s
i
z
e
[
M
B
]

100 500 1000 5000 10000

0

50

100

size of inputs

C
R
S
s
i
z
e
[
M
B
]

(c)

Figure 7: Comparison between vCNN and Gro16 [19] when the kernel size = 10, depth size = 3, and quantization bit depth = 10
bits

REFERENCES
[1] [n. d.]. Jsnark. https://github.com/akosba/jsnark.

[2] [n. d.]. ZSL on Quorum. https://github.com/jpmorganchase/zsl-q.

[3] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized Anonymous

Payments from Bitcoin. In 2014 IEEE Symposium on Security and Privacy, SP

2014, Berkeley, CA, USA, May 18-21, 2014. IEEE Computer Society, 459–474.

https://doi.org/10.1109/SP.2014.36

[4] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars

Virza. 2013. SNARKs for C: Verifying Program Executions Succinctly and in Zero

Knowledge, See [7], 90–108. https://doi.org/10.1007/978-3-642-40084-1_6

10

100 500 1000 5000 10000

0

20

40

60

80

size of inputs

s
e
t
u
p
t
i
m
e
[
s
]

ReLU+Pool

Convol

CP-SNARK

100 500 1000 5000 10000

0

20

40

60

80

size of inputs

s
e
t
u
p
t
i
m
e
[
s
]

Gro16

(a)

100 500 1000 5000 10000

0

20

40

size of inputs

p
r
o
v
e
t
i
m
e
[
s
]

100 500 1000 5000 10000

0

20

40

size of inputs

p
r
o
v
e
t
i
m
e
[
s
]

(b)

100 500 1000 5000 10000

0

100

200

size of inputs

C
R
S
s
i
z
e
[
M
B
]

100 500 1000 5000 10000

0

100

200

size of inputs

C
R
S
s
i
z
e
[
M
B
]

(c)

Figure 8: Comparison between vCNN and Gro16 [19] when kernel size = 50, depth size = 3, and quantization bit depth = 10 bits

Table 2: Comparison between vCNN and Gro16 for real CNN models

vCNN Gro16

setup prove verify |CRS| |proof| setup prove verify |CRS| |proof|

LeNet-5 19.47 s 9.34 s 75ms 40.07MB 1.5 hours 0.75 hours 75ms 11 GB

AlexNet 20 min 18 min 130ms 2.1 GB 2803 bits 16 days 14 days 130 ms 2.5 TB 1019 bits

VGG16 10 hours 8 hours 19.4s 83 GB 13 years 10 years 19.4s 1400 TB

16 20 24 28 32

0

50

100

150

200

quantization bit depth

s
e
t
u
p
t
i
m
e
[
s
]

ReLU+Pool

Convol

CP-SNARK

16 20 24 28 32

0

50

100

150

200

quantization bit depth

s
e
t
u
p
t
i
m
e
[
s
]

Gro16

(a)

16 20 24 28 32

0

20

40

60

quantization bit depth

p
r
o
v
e
t
i
m
e
[
s
]

16 20 24 28 32

0

20

40

60

quantization bit depth

p
r
o
v
e
t
i
m
e
[
s
]

(b)

16 20 24 28 32

0

100

200

300

400

quantization bit depth

C
R
S
s
i
z
e
[
M
B
]

16 20 24 28 32

0

100

200

300

400

quantization bit depth

C
R
S
s
i
z
e
[
M
B
]

(c)

Figure 9: Results when kernel size = 3 × 3 and kernel depth size = 64

[5] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. 2014.

Succinct Non-Interactive Zero Knowledge for a von Neumann Architec-

ture. In Proceedings of the 23rd USENIX Security Symposium, San Diego,

CA, USA, August 20-22, 2014. 781–796. https://www.usenix.org/conference/

usenixsecurity14/technical-sessions/presentation/ben-sasson

[6] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.

2013. Succinct Non-interactive Arguments via Linear Interactive Proofs. In

Theory of Cryptography - 10th Theory of Cryptography Conference, TCC 2013,

Tokyo, Japan, March 3-6, 2013. Proceedings. 315–333. https://doi.org/10.1007/

978-3-642-36594-2_18

[7] Ran Canetti and Juan A. Garay (Eds.). 2013. Advances in Cryptology - CRYPTO

2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August

18-22, 2013. Proceedings, Part II. Lecture Notes in Computer Science, Vol. 8043.

Springer. https://doi.org/10.1007/978-3-642-40084-1

[8] Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.).

2019. Proceedings of the 2019 ACM SIGSAC Conference on Computer and

Communications Security, CCS 2019, London, UK, November 11-15, 2019. ACM.

https://doi.org/10.1145/3319535

[9] Hervé Chabanne, Julien Keuffer, and Refik Molva. 2017. Embedded Proofs for

Verifiable Neural Networks. IACR Cryptology ePrint Archive 2017 (2017), 1038.

http://eprint.iacr.org/2017/1038

[10] Marcus Comiter. 2019. Attacking artificial intelligience: AI’s security

vulnerability and what policymakers can do about it. Technical Report. Belfer

Center for Science and International Affairs, Havard Kennedy School.

[11] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. 2012. Practi-

cal verified computation with streaming interactive proofs. In Innovations in

Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012.

90–112. https://doi.org/10.1145/2090236.2090245

[12] Jacob Eberhardt and Stefan Tai. 2018. ZoKrates - Scalable Privacy-Preserving

Off-Chain Computations. In IEEE International Conference on Internet of

Things (iThings) and IEEE Green Computing and Communications (GreenCom)

and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart

Data (SmartData), iThings/GreenCom/CPSCom/SmartData 2018, Halifax, NS,

Canada, July 30 - August 3, 2018. IEEE, 1084–1091. https://doi.org/10.1109/

Cybermatics_2018.2018.00199

[13] Rusins Freivalds. 1977. Probabilistic Machines Can Use Less Running Time.

In Information Processing, Proceedings of the 7th IFIP Congress 1977, Toronto,

11

2 4 6

0

50

100

number of layers

s
e
t
u
p
t
i
m
e
[
s
]

ReLU+Pool

Convol

CP-SNARK

2 4 6

0

50

100

number of layers

s
e
t
u
p
t
i
m
e
[
s
]

Gro16

(a)

2 4 6

0

20

40

number of layers

p
r
o
v
e
t
i
m
e
[
s
]

2 4 6

0

20

40

number of layers

p
r
o
v
e
t
i
m
e
[
s
]

(b)

2 4 6

0

100

200

300

number of layers

C
R
S
s
i
z
e
[
M
B
]

2 4 6

0

100

200

300

number of layers

C
R
S
s
i
z
e
[
M
B
]

(c)

Figure 10: MNIST CNN when kernel size is 3 × 3 and kernel depths are 32, 64, and 128 for each convolution layer

(1
8
, 1
8
) (1

6
, 1
6
) (1

4
, 1
4
) (1

3
, 1
3
) (1

2
, 1
2
) (1, 1)

0

200

400

600

800

1,000

scale factor

p
r
o
v
e
t
i
m
e
[
s
]

ReLU+Pool

Convol

CP-SNARK

(a)

(1
8
, 1
8
) (1

6
, 1
6
) (1

4
, 1
4
) (1

3
, 1
3
) (1

2
, 1
2
) (1, 1)

0

500

1,000

1,500

2,000

scale factor

C
R
S
s
i
z
e
[
M
B
]

(b)

Figure 11: AlexNet in vCNN by varying the scale factor to the kernel depth and the input size

(
1

3
2 , 1
7)

(
1

2
1 , 1
7)

(
1

1
6 , 1
7)

(
1

1
0 , 1
7)

(1
8 , 1
7)

(1
4 , 1
7)

(1
2 , 1
7)

(
1, 1
7)

(
1, 1
5)

(
1, 1
2)

(
1,
1)

0

1

2

3

·104

scale factor

p
r
o
v
e
t
i
m
e
[
s
]

ReLU+Pool

Convol

CP-SNARK

(a)

(
1

3
2 , 1
7)

(
1

2
1 , 1
7)

(
1

1
6 , 1
7)

(
1

1
0 , 1
7)

(1
8 , 1
7)

(1
4 , 1
7)

(1
2 , 1
7)

(
1, 1
7)

(
1, 1
5)

(
1, 1
2)

(
1,
1)

0

2

4

6

8

·104

scale factor

C
R
S
s
i
z
e
[
M
B
]

(b)

Figure 12: VGG16 in vCNN by varying the scale factorvCNN to the kernel depth and the input size

Canada, August 8-12, 1977, Bruce Gilchrist (Ed.). North-Holland, 839–842. [14] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. 2013.

Quadratic Span Programs and Succinct NIZKs without PCPs. In Advances in

12

Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Athens, Greece, May

26-30, 2013. Proceedings. 626–645. https://doi.org/10.1007/978-3-642-38348-9_

37

[15] Zahra Ghodsi, Tianyu Gu, and Siddharth Garg. 2017. SafetyNets: Ver-

ifiable Execution of Deep Neural Networks on an Untrusted Cloud.

In Advances in Neural Information Processing Systems 30: Annual

Conference on Neural Information Processing Systems 2017, 4-9 December

2017, Long Beach, CA, USA. 4675–4684. http://papers.nips.cc/paper/

7053-safetynets-verifiable-execution-of-deep-neural-networks-on-an-untrusted-cloud

[16] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael

Naehrig, and John Wernsing. 2016. CryptoNets: Applying Neural Networks

to Encrypted Data with High Throughput and Accuracy. In Proceedings of

the 33nd International Conference on Machine Learning, ICML 2016, New York

City, NY, USA, June 19-24, 2016. 201–210. http://proceedings.mlr.press/v48/

gilad-bachrach16.html

[17] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. 1989. The Knowledge

Complexity of Interactive Proof Systems. SIAM J. Comput. 18, 1 (1989), 186–208.

https://doi.org/10.1137/0218012

[18] Shafi Goldwasser, Guy N. Rothblum, and Yael Tauman Kalai. 2017. Delegat-

ing Computation: Interactive Proofs for Muggles. Electronic Colloquium on

Computational Complexity (ECCC) 24 (2017), 108. https://eccc.weizmann.ac.il/

report/2017/108

[19] Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments.

In Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International

Conference on the Theory and Applications of Cryptographic Techniques,

Vienna, Austria, May 8-12, 2016, Proceedings, Part II. 305–326. https://doi.org/

10.1007/978-3-662-49896-5_11

[20] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.

{GAZELLE}: A low latency framework for secure neural network inference.

In 27th {USENIX} Security Symposium ({USENIX} Security 18). 1651–1669.

[21] Ahmed E. Kosba, Dimitrios Papadopoulos, Charalampos Papamanthou, Mah-

moud F. Sayed, Elaine Shi, andNikos Triandopoulos. 2014. TRUESET: Faster Verifi-

able Set Computations. In Proceedings of the 23rd USENIX Security Symposium,

San Diego, CA, USA, August 20-22, 2014. 765–780. https://www.usenix.org/

conference/usenixsecurity14/technical-sessions/presentation/kosba

[22] Ahmed E. Kosba, Charalampos Papamanthou, and Elaine Shi. 2018. xJsnark:

A Framework for Efficient Verifiable Computation. In 2018 IEEE Symposium

on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco,

California, USA. 944–961. https://doi.org/10.1109/SP.2018.00018

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2017. ImageNet classifi-

cation with deep convolutional neural networks. Commun. ACM 60, 6 (2017),

84–90. https://doi.org/10.1145/3065386

[24] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-

based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–

2324.

[25] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2016. Pinocchio:

nearly practical verifiable computation. Commun. ACM 59, 2 (2016), 103–112.

https://doi.org/10.1145/2856449

[26] Torben Pryds Pedersen. 1991. Non-interactive and information-theoretic se-

cure verifiable secret sharing. In Annual international cryptology conference.

Springer, 129–140.

[27] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[28] Justin Thaler. 2013. Time-Optimal Interactive Proofs for Circuit Evaluation, See

[7], 71–89. https://doi.org/10.1007/978-3-642-40084-1_5

[29] Florian Tramèr and Dan Boneh. 2019. Slalom: Fast, Verifiable and Private Execu-

tion of Neural Networks in Trusted Hardware. In 7th International Conference

on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

https://openreview.net/forum?id=rJVorjCcKQ

[30] Riad S. Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Wal-

fish. 2018. Doubly-Efficient zkSNARKs Without Trusted Setup. In 2018 IEEE

Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San

Francisco, California, USA. 926–943. https://doi.org/10.1109/SP.2018.00060

[31] Lingchen Zhao, Qian Wang, Cong Wang, Qi Li, Chao Shen, Xiaodong Lin, Sheng-

shan Hu, and Minxin Du. 2019. VeriML: Enabling Integrity Assurances and

Fair Payments for Machine Learning as a Service. CoRR abs/1909.06961 (2019).

arXiv:1909.06961 http://arxiv.org/abs/1909.06961

A SECURITY PROOFS
A.1 Proof of Theorem 4.1 and 4.2

Proof. We demonstrate the NILP scheme soundness for the

proposed protocol as demonstrated in [19]. If the NILP scheme

is proved, then soundness for proposed scheme is guaranteed in

the Generic Group Model [19]. zk-SNARK and cc-SNARK are simi-

lar aside from the random parameter for the commitment. In the

proof, zk-SNARK soundness(4.1) is the special case of cc-SNARK

soundness(4.2) when 𝜈 = 0. Therefore we only prove Theorem 4.2

here.

We first consider an affine adversary𝒜 strategywith non-negligible

success probability of extracting a witness. First, we set 𝑍 = 𝑋 2𝑑𝑥−1

to reducing the variables. Then 𝒜 can generate a proof

𝐴 = 𝐴𝛼𝛼 +𝐴𝛽𝛽 +𝐴𝛾𝛾 +𝐴𝛿𝛿 +𝐴(𝑥, 𝑥2𝑑𝑥−1)

+
𝑙∑

𝑖=0

𝑑𝑧∑
𝑗=0

𝐴𝑖, 𝑗
𝛽𝑢𝑖 (𝑥) + 𝛼𝑣𝑖 (𝑥) +𝑤𝑖 (𝑥)

𝛾
𝑥 (2𝑑𝑥−1) · 𝑗

+
𝑚∑

𝑖=𝑙+1

𝑑𝑧∑
𝑗=0

𝐴𝑖, 𝑗
𝛽𝑢𝑖 (𝑥) + 𝛼𝑣𝑖 (𝑥) +𝑤𝑖 (𝑥)

𝛿
𝑥 (2𝑑𝑥−1) · 𝑗

+𝐴ℎ (𝑥, 𝑥2𝑑𝑥−1)
𝑡 (𝑥)
𝛿
+𝐴𝜂𝛾

𝜂

𝛾
+𝐴𝜂𝛿

𝜂

𝛿

for known filed elements 𝐴𝛼 , 𝐴𝛽 , 𝐴𝛾 , 𝐴𝛿 , 𝐴𝑖 and polynomials

𝐴(𝑥, 𝑧), 𝐴ℎ (𝑥, 𝑧). we construct 𝐵 and 𝐶 similarly for the proof. In

verification, the equation shows polynomials equality. From the

Schwartz-Zippel lemma, verification holds the proof(𝐴, 𝐵, and 𝐶)

for indeterminates 𝛼 , 𝛽 , 𝛾 , 𝛿 , and 𝑥 if verification succeed.

Terms with indeterminates 𝛼2 are 𝐴𝛼𝐵𝛼𝛼
2 = 0, i.e., 𝐴𝛼 = 0 or

𝐵𝛼 = 0. Since field operation is commutative, we can assume 𝐵𝛼 = 0.

Terms with indeterminate 𝛼𝛽 imply 𝐴𝛼𝐵𝛽 + 𝐴𝛽𝐵𝛼 = 𝐴𝛼𝐵𝛽 = 1.

Thus, 𝐴𝐵 = (𝐴𝐵𝛽) (𝐴𝛼𝐵), and we can assume 𝐴𝛼 = 𝐵𝛽 = 1. Hence

with indeterminate 𝛽2 now imply 𝐴𝛽𝐵𝛽 = 𝐴𝛽 = 0. This simplifies

𝐴 and 𝐵 constructed by the adversary to have the form

𝐴 = 𝛼 +𝐴𝛾𝛾 +𝐴𝛿𝛿 +𝐴(𝑥, 𝑥2𝑑𝑥−1) + · · ·

𝐵 = 𝛽 + 𝐵𝛾𝛾 + 𝐵𝛿𝛿 + 𝐵(𝑥, 𝑥2𝑑𝑥−1) + · · ·

Let us consider terms involving
1

𝛿2
.(

𝑚∑
𝑖=𝑙+1

𝐴𝑖, 𝑗 (𝛽𝑢𝑖 (𝑥) + 𝛼𝑣𝑖 (𝑥) +𝑤𝑖 (𝑥)) · 𝑥 (2𝑑𝑥−1) · 𝑗 +𝐴ℎ (𝑥, 𝑥2𝑑𝑥−1)𝑡 (𝑥)
)

·
(

𝑚∑
𝑖=𝑙+1

𝐵𝑖, 𝑗 (𝛽𝑢𝑖 (𝑥) + 𝛼𝑣𝑖 (𝑥) +𝑤𝑖 (𝑥)) · 𝑥 (2𝑑𝑥−1) · 𝑗 + 𝐵ℎ (𝑥, 𝑥2𝑑𝑥−1)𝑡 (𝑥)
)

= 0

Hence either left factor is 0. From symmetry, let us assume

(Σ𝑚
𝑖=𝑙+1𝐴𝑖 (𝛽𝑢𝑖 (𝑥) + 𝛼𝑣𝑖 (𝑥) +𝑤𝑖 (𝑥)) +𝐴ℎ (𝑥, 𝑥2𝑑𝑥−1)𝑡 (𝑥)) = 0

. Therefore, terms in

𝛼
Σ𝑚
𝑖=𝑙+1𝐵𝑖 (𝛽𝑢𝑖 (𝑥) + 𝛼𝑣𝑖 (𝑥) +𝑤𝑖 (𝑥)) + 𝐵ℎ (𝑥, 𝑥2𝑑𝑥−1)𝑡 (𝑥)

𝛿
= 0

imply that Σ𝑚
𝑖=𝑙+1𝐵𝑖 (𝛽𝑢𝑖 (𝑥) +𝛼𝑣𝑖 (𝑥) +𝑤𝑖 (𝑥)) +𝐵ℎ (𝑥, 𝑥2𝑑𝑥−1)𝑡 (𝑥) =

0.

Therefore, considering terms involving
1

𝛾 ,(
𝑙∑

𝑖=0

𝐴𝑖 (𝛽𝑢𝑖 (𝑥) + 𝛼𝑣𝑖 (𝑥) +𝑤𝑖 (𝑥))
)
·
(

𝑙∑
𝑖=0

𝐵𝑖 (𝛽𝑢𝑖 (𝑥) + 𝛼𝑣𝑖 (𝑥) +𝑤𝑖 (𝑥))
)

13

hence either left or right factor is 0. From symmetry, let us assume

(Σ𝑙
𝑖=0

𝐴𝑖 (𝛽𝑢𝑖 (𝑥) + 𝛼𝑣𝑖 (𝑥) +𝑤𝑖 (𝑥))) = 0. Thus, terms in

𝛽
Σ𝑙
𝑖=0

𝐵𝑖 (𝛽𝑢𝑖 (𝑥) + 𝛼𝑣𝑖 (𝑥) +𝑤𝑖 (𝑥))
𝛾

= 0

also imply Σ𝑙
𝑖=0

𝐵𝑖 (𝛽𝑢𝑖 (𝑥) + 𝛼𝑣𝑖 (𝑥) +𝑤𝑖 (𝑥)) = 0.

Thus, 𝐴𝛾 𝛽𝛾 = 0, 𝐵𝛾𝛼𝛾 = 0, and added terms involving 𝜂 also

(𝐴𝜂𝛾
𝜂
𝛾 +𝐴𝜂𝛿

𝜂

𝛿
) · 𝛽 = 0, hence𝐴𝛾 = 0, 𝐵𝛾 = 0,𝐴𝜂𝛾 = 0, and𝐴𝜂𝛿 = 0.

Collecting these results,

𝐴 = 𝛼 +𝐴(𝑥, 𝑥2𝑑𝑥−1) +𝐴𝛿𝛿 𝐵 = 𝛽 + 𝐵(𝑥, 𝑥2𝑑𝑥−1) + 𝐵𝛿𝛿

Remaining terms in the verification equation that involve 𝛼 imply

𝛼𝐵(𝑥, 𝑥2𝑑𝑥−1) = 𝛼
∑𝑙
𝑖=0 𝑎𝑖 (𝑥2𝑑𝑥−1𝑣𝑖 (𝑥) + 𝛼

∑𝑚
𝑖=𝑙+1

∑𝑑𝑧
𝑗=0

𝐶𝑖, 𝑗𝑣𝑖 (𝑥) ·
𝑥 (2𝑑𝑥−1) · 𝑗 . Defining𝑎𝑖 (𝑥2𝑑𝑥−1) = 𝐶𝑖 (𝑥2𝑑𝑥−1) =

∑𝑑𝑧
𝑗=0

𝐶𝑖, 𝑗 ·𝑥 (2𝑑𝑥−1) · 𝑗
for 𝑖 = 𝑙 + 1, . . . ,𝑚,

𝐴(𝑥, 𝑥2𝑑𝑥−1) =
𝑚∑
𝑖=0

𝑎𝑖 (𝑥2𝑑𝑥−1)𝑢𝑖 (𝑥) 𝐵(𝑥, 𝑥2𝑑𝑥−1) =
𝑚∑
𝑖=0

𝑎𝑖 (𝑥2𝑑𝑥−1)𝑣𝑖 (𝑥)

Finally,collecting terms involving powers of 𝑥 ,

𝑚∑
𝑖=0

𝑎𝑖 (𝑥2𝑑𝑥−1)𝑢𝑖 (𝑥) ·
𝑚∑
𝑖=0

𝑎𝑖 (𝑥2𝑑𝑥−1)𝑣𝑖 (𝑥)

=

𝑚∑
𝑖=0

𝑎𝑖 (𝑥2𝑑𝑥−1)𝑤𝑖 (𝑥) +𝐶ℎ (𝑥, 𝑥2𝑑𝑥−1)𝑡 (𝑥)

Since 𝑍 = 𝑋 2𝑑𝑥−1
, 𝑍 degree ≥ 𝑋 degree, and all terms are inde-

pendent. Thus, 𝑎𝑖 (𝑋 2𝑑𝑥−1) is irrelevant to 𝑢𝑖 (𝑋), 𝑣𝑖 (𝑋),𝑤𝑖 (𝑋) and
𝑡 (𝑋), and hence

𝑎𝑙+1 (𝑥2𝑑𝑥−1), . . . , 𝑎𝑚 (𝑥2𝑑𝑥−1) = 𝐶𝑙+1 (𝑥2𝑑𝑥−1), . . . ,𝐶𝑚 (𝑥2𝑑𝑥−1)

is a witness for the statement (𝑎1 (𝑥2𝑑𝑥−1), . . . , 𝑎𝑙 (𝑥2𝑑𝑥−1)). □

A.2 Proof of Theorem 4.3
Proof. We first prove the perfect zero-knowledge. There are sim-

ulators for each scheme, and the commitment is the Pedersen [26]

vector commitment which provides perfect hiding. Thus, proof has

no information regarding witnesses, and hence the scheme supports

perfect zero-knowledge.

Next, we prove that the computational knowledge soundness

error is negligible. We define the computational knowledge sound-

ness errors for each scheme Π𝑞𝑎𝑝 , Π𝑞𝑝𝑝 , and Π𝑐𝑝 as 𝜖𝑞𝑎𝑝 , 𝜖𝑞𝑝𝑝 , and

𝜖𝑐𝑝 , respectively, which are negligible; and the extractors for each

scheme are 𝜒𝑞𝑎𝑝 , 𝜒𝑞𝑝𝑝 , and 𝜒𝑐𝑝 , respectively, which must exist due

to the knowledge soundness for each scheme. The extractor 𝜒 for

the proposed scheme can be composed of three extractors because

each extractor can generate a witness and the collection of all the

witnesses is the witness for the proposed scheme.

Now, we compute the computation knowledge soundness error

for the proposed scheme as follows:

𝑃𝑟

[
Verify(𝑐𝑟𝑠, 𝜙, 𝜋) = 1

∧(𝜙, 𝑤) ∉ 𝑅

���� (𝑐𝑟𝑠, 𝑡𝑑) ← Setup(𝑅),
(𝜙, 𝜋, 𝑤) ← (𝒜 |𝜒𝒜) (𝑅, 𝑐𝑟𝑠, 𝑧)

]

= 𝑃𝑟


Π𝑞𝑎𝑝 .Verify(𝑐𝑟𝑠𝑞𝑎𝑝 , 𝜙𝑞𝑎𝑝 , 𝜋𝑞𝑎𝑝) = 1

∧Π𝑞𝑝𝑝 .Verify(𝑐𝑟𝑠𝑞𝑝𝑝 , 𝜙𝑞𝑝𝑝 , 𝜋𝑞𝑝𝑝) = 1

∧Π𝑐𝑝 .Verify(𝑐𝑟𝑠𝑐𝑝 , 𝜙𝑐𝑝 , 𝜋𝑐𝑝) = 1

∧((𝜙𝑞𝑎𝑝 , 𝑤𝑞𝑎𝑝) ∉ 𝑅𝑅𝑒𝐿𝑈 +𝑃𝑜𝑜𝑙𝑖𝑛𝑔
∨(𝜙𝑞𝑝𝑝 , 𝑤𝑞𝑝𝑝) ∉ 𝑅𝑐𝑜𝑛𝑣𝑜𝑙 ∨ (𝜙𝑐𝑝 , 𝑤𝑐𝑝) ∉ 𝑅𝑐𝑝)


≤ 𝑃𝑟


Π.Verify(𝑐𝑟𝑠𝑞𝑎𝑝 , 𝜙𝑞𝑎𝑝 , 𝜋𝑞𝑎𝑝) = 1

∧Π𝑞𝑝𝑝 .Verify(𝑐𝑟𝑠𝑞𝑝𝑝 , 𝜙𝑞𝑝𝑝 , 𝜋𝑞𝑝𝑝) = 1

∧Π𝑐𝑝 .Verify(𝑐𝑟𝑠𝑐𝑝 , 𝜙𝑐𝑝 , 𝜋𝑐𝑝) = 1

∧(𝜙𝑞𝑎𝑝 , 𝑤𝑞𝑎𝑝) ∉ 𝑅𝑅𝑒𝐿𝑈 +𝑃𝑜𝑜𝑙


+ 𝑃𝑟


Π𝑞𝑎𝑝 .Verify(𝑐𝑟𝑠𝑞𝑎𝑝 , 𝜙𝑞𝑎𝑝 , 𝜋𝑞𝑎𝑝) = 1

∧Π𝑞𝑝𝑝 .Verify(𝑐𝑟𝑠𝑞𝑝𝑝 , 𝜙𝑞𝑝𝑝 , 𝜋𝑞𝑝𝑝) = 1

∧Π𝑐𝑝 .Verify(𝑐𝑟𝑠𝑐𝑝 , 𝜙𝑐𝑝 , 𝜋𝑐𝑝) = 1

∧(𝜙𝑞𝑝𝑝 , 𝑤𝑞𝑝𝑝) ∉ 𝑅𝑐𝑜𝑛𝑣𝑜𝑙


+ 𝑃𝑟


Π𝑞𝑎𝑝 .Verify(𝑐𝑟𝑠𝑞𝑎𝑝 , 𝜙𝑞𝑎𝑝 , 𝜋𝑞𝑎𝑝) = 1

∧Π𝑞𝑝𝑝 .Verify(𝑐𝑟𝑠𝑞𝑝𝑝 , 𝜙𝑞𝑝𝑝 , 𝜋𝑞𝑝𝑝) = 1

∧Π𝑐𝑝 .Verify(𝑐𝑟𝑠𝑐𝑝 , 𝜙𝑐𝑝 , 𝜋𝑐𝑝) = 1

∧(𝜙𝑐𝑝 , 𝑤𝑐𝑝) ∉ 𝑅𝑐𝑝


≤ 𝜖𝑞𝑎𝑝 + 𝜖𝑞𝑝𝑝 + 𝜖𝑐𝑝

where we used that 𝜖𝑞𝑎𝑝 , 𝜖𝑞𝑝𝑝 , 𝜖𝑐𝑝 are negligible in the last

two inequalities. Therefore the computational soundness error is

negligible.

□

14

