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Abstract. This paper proposes new symmetric cryptoalgorithms of
Residue Number System and its Modified Perfect Form. According to
the first method, ciphertext is regarded as a set of residues to the cor-
responding sets of modules (keys) and decryption or decimal number
recovery from its residues takes place according to the Chinese remain-
der theorem. To simplify the calculations, it is proposed to use a Modified
Perfect Form of Residue Number System, which leads to a decrease in
the number of arithmetic operations (in particular, finding the inverse
and multiplying by it) during the decryption process.
Another method of symmetric encryption based on the Chinese remain-
der theorem can be applied when fast decryption is required. In this
algorithm, the plaintext block is divided into sub-blocks that are smaller
than the corresponding module and serve as remainders on dividing some
number, which is a ciphertext, by these modules. Plaintext recovery is
based on finding the ciphertext remainders to the corresponding mod-
ules. Examples of cryptoalgorithms implementation and their encryption
schemes are given.
Cryptosecurity of the proposed methods is estimated on the basis of the
Prime number theorem and the Euler function. It is investigated which
bitness and a number of modules are required for the developed sym-
metric security systems to ensure the same security level as the largest
length key of the AES algorithm does. It is found that as the number
of modules increases, their bitness decreases. Graphical dependencies of
cryptoanalysis complexity on bitness and a number of modules are built.
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It is shown that with the increase of specified parameters, the cryptose-
curity of the developed methods also increases.

Keywords: ciphertext · cryptoalgorithm · encryption

1 Introduction

The majority of modern scientific and technical problems that need to be solved
are clearly related to processing and secure transmission of multi-digit num-
bers [1] [2]. Cryptoalgorithms are usually used in traditional information security
technologies. However, the requirements for them are usually quite strict and, as
a consequence, they are cumbersome to implement and costly in operation [3] [4].
In addition, in order to increase cryptoalgorithm security, it is necessary to in-
crease the length of the keys and, accordingly, the value of the operands of
mathematical transformations. This leads to a decrease in the performance of
cryptoalgorithms. Therefore, there is a need to find appropriate methods which
can be used to speed up arithmetic operations. The most promising way to per-
form faster arithmetic operations is to parallelize the computation process. This
property is inherent in non-positional Residue Number System (RNS) [5] [6].
Although it has some disadvantages (difficulties in performing division, compar-
ison, and detecting the overflow of a bit grid [7]), it can be successfully used
for addition, subtraction, exponentiation and multiplication of multi-digit whole
numbers that is important for asymmetric cryptography [8]. The advantages of
the RNS include:

1. Possibility to perform operations on numbers that are smaller than the se-
lected modules [9].

2. Parallelization of the computation that is the most promising way of increas-
ing the performance of computing systems.

3. Pabsence of inter-digit carries.

Such features of RNS make it possible to significantly reduce power consump-
tion of certain digital devices [10]. Besides the use in cryptography [11] [12],
the advantages of RNS can be used to process digital signals [13] [14] and im-
ages [15] [16], in cloud computing [17] [18], Internet of Things [19], noise im-
munity coding [20] [21], etc. In addition, in [22] it was proposed to use RNS to
improve the performance of a convolutional neural network.
The main disadvantage of RNS, which slowed down its development, is the dif-
ficulty in converting numbers from RNS into decimal or binary system [23]].
It should be noted that the vast majority of papers [24] [25] deal with mod-
ules represented by the Mersenne and Fermat numbers and powers of 2. Known
approaches to decimal number recovery are based on the Chinese remainder the-
orem (CRT) or Garner’s algorithm which involves finding a modular inverse and
multiplying by it that can lead to bit grid overflow [26]. It is possible to avoid
these disadvantages using Perfect Form [27] and Modified Perfect Form (MPF)
of RNS [28] [29].
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In addition, a promising way in development of cryptography is the develop-
ment of encryption methods of RNS, in particular of its MPF. For example,
in [30] a hierarchical approach to the implementation of asymmetric cryptosys-
tems and CRT in asymmetric cryptography was proposed. Modern methods of
using RNS parallelism for key generation in asymmetric cryptosystems were in-
troduced in [11]. Thus, the development of new encryption methods of RNS
and the study of their resistance to cryptoanalysis is currently an extremely
important task.

2 Theoretical basic aspects of RNS and rules for text
encoding

It is known [5] [6] that any decimal number N in the RNS is represented by inte-
gral remainder bi (i-module number) on dividing N by each of natural pairwise
relatively prime modules pi in the system:

bi = Nmodpi (1)

Conversion of number N from RNS to decimal number system using CRT takes
place in the vast majority of cases:

N =

(
m∑
i=1

biMimi

)
modP (2)

where P =
∏m

i=1 pi, Mi = P
pi

, mi is found according to the expression mi =

M−1
i modpi = 1, m – a number of modules. In this case, the inequality N < P

must be satisfied.
It is possible to simplify the recovery of the decimal number from its residues
using MPF of RNS, in which the modules are selected in such a way thatmi = ±1
[28] [29]. In [27] [31], an expression was obtained to find a set of MPF of RNS
modules by solving the systems of congruences:

m∑
i=1

1

pi
= γ ± 1∏m

i=1 pi
, (3)

where γ = 0,±1,±2,±3, ...
To simplify the task, let γ = 0, which corresponds to the largest range of calcu-
lations for a given number of modules. Thus, equation (3) is as follows:

1

p1
+

1

p2
+

1

p3
+ ...+

1

pm−1
+

1

pm
=

1

p1p2p3...pm−1pm
. (4)

It should be noted that positive values of modules pi correspond to the condition
mi = 1 and negative values correspond to the condition mi = −1. Let the
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last two modules pm−1 and pm be unknown. Then (4) will be represented as a
diophantine equation of the second degree:

pm−1pm (p2p3...pm−2 + p1p3...pm−2 + p1p2...pm−3) +

+ p1p2...pm−2 (pm−1 + pm−2) = ±1 (5)

Let us introduce the notation:

pm−1,m =
a, b− p1p2...pm−1

p2p3...pm−2 + p1p3...pm−2 + p1p2...pm−3
. (6)

After substituting (6) in (5) and the corresponding mathematical transforma-
tions, we obtain the expression for the integer solution (5):

± (p2p3...pm−2 + p1p3...pm−2 + p1p2...pm−3) + (p1p2...pm−2)
2

= ab. (7)

This means that the left-hand side of (7) must be factored, on the basis of
which the parameters a and b are defined. Although there are some difficulties
in factorization [32], but in most cases the left-hand side (7) is decomposed into
relatively small factors. In addition, the modules pm and pm−1 must be integers.
Therefore, it follows from (6):

(a, b− p1p2...pm−2)mod(|p2p3...pm−2 + p1p3 + ...+ pm−2 + ...

+ p1p2...pm−3|) = 0. (8)

Expressions (7) and (8) determine the conditions for finding any number of
modules of the MPF of RNS, two of which are unknown. Such features of RNS
and CRT make them useful for constructing symmetric cryptosystems. First of
all, it is necessary to determine the rules for conversion of textual information
into numeric one. For example, this might be the classic variant when the letter
corresponds to a number that is its ordinal number in the alphabet (in addition,
it may be the ordering of letters by the frequency with which they occur in rather
long texts, the use of keywords like Trisemus cipher tables, arbitrary numbering
of letters, etc.). Let the following correspondence between letters and numbers as
shown in Table 1 be matched to the English alphabet, not including uppercase
and lowercase characters.

Table 1. Correspondence between letters and numbers of the English alphabet

Letter a b c d e f g h i j k l m
Number 00 01 02 03 04 05 06 07 08 09 10 11 12

Letter n o p q r s t u v w x y z
Number 13 14 15 16 17 18 19 20 21 22 23 24 25
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3 Symmetric encryption based on finding residues

3.1 Cryptosystem based on conventional integer RNS

In symmetric cryptosystem, both subscribers must be aware of the key modules
p1. The open message is broken down into N blocks, for each of them the con-
dition N < P must be satisfied. If the first digit of the plaintext block is 0, then
the appropriate agreement between the subscribers will be required. However,
it is advisable for the plaintext block to contain a whole number of letters. A
ciphertext is a set of residues bi obtained due to formula (1). Decoding or deci-
mal number recovery from its residues is performed according to expression (2).
Figure 1) presents a general scheme of encryption due to the proposed method
based on the RNS. The following designations are introduced: A – sender, B
– receiver, N – plaintext; bi – cryptogram. Keys pi, i = 1..m are transmitted
aforehand through a closed channel (the channel is considered to be reliable).

Fig. 1. The scheme of proposed encryption algorithm based on the RNS.

For, example, let the number of modules be m = 4, p1 = 47, p2 = 53, p3 = 67,
p4 = 73.Then, correspondingly, p = 12183481. Let the word keys be a plaintext,
which, according to Table 1, corresponds to the number 10042418. The results of
encryption and pre-calculations of decryption using a conventional integer RNS
are shown in Table 2.

Therefore, the sequence 22315627, which is ciphertext, is received as a result
of encryption. Having intercepted this message, it is very difficult for an intruder
without the keys (modules) to recover a plaintext, which is a superposition of
several parameters. To simplify the calculations while deciphering, formula (2)
is written in such a way to make it possible to find the remainder on dividing
each summand byP (2):

N =

(
m∑
i=1

((biMimi)modP )

)
modP. (9)
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Table 2. The results of encryption and pre-calculations of decryption using a conven-
tional integer RNS

i 1 2 3 4

pi 47 53 67 73
bi 22 31 56 27
Mi 259223 229877 181843 166897
Mimodpi 18 16 5 19
mi 34 10 27 50

Then N = ((259223 · 34 · 22)mod12183481 + (229877 · 10 · 31)mod12183481 +
+(181843 ·27 ·56)mod12183481+(166897 ·50 ·27)mod12183481)mod12183481 =
= (11146589+10344465+6910034+6008292)mod12183481 = 10042418. As it is
seen, numerical value of the plaintext and the results of the decryption coincide.

3.2 Building the system of modules for MPF of RNS

To compare, let us consider the MPF of RNS, which also consists of four modules.
Conditions (6) - (8) are transformed as follows:

p3,4 =
a, b− p1p2
p1 + p2

;± (p1 + p2) + (p1p2)
2

= ab; (a, b− p1p2)mod (p1 + p2) = 0.

(10)
It can be seen from (4) that for m = 4 the values p1 and p2 must have different
signs. Considering the module p1 positive, the largest number of options will
be provided when p2 = −(p1 + 1), since in this case the third condition (10) is
always satisfied. The first two will be as the following:

p3,4 = −
(
a, b+ p21 + p1

)
;±1 + (p1 (p1 + 1))

2
= ab; (11)

Let p1 = 49, then p2 = −50 and from (11) p3,4 = − (a, b+ 2450) and

ab = ±1 + 6002500 =

{
6002499 = 3 · 19 · 31 · 43 · 79

6002501 = 2381 · 2521
are received.

All possible values of modules p3, p4 when p1 = 49, p2 = −50 are shown in
Table 3.
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Table 3. All possible values of modules p3, p4 when p1 = 49, p2 = −50

No ab a b p3 p4
1

3 · 19 · 31 · 43 · 79

1 6319314379 −2451 −6004949
2 -1 −319314379 -2449 6000049
3 3 19314379 -2453 -2003283
4 -3 −19314379 -2447 1998383
5 19 3314379 -2469 -318371
6 -19 −3314379 -2431 313471
7 31 3194379 -2481 -196079
8 -31 −3194379 -2419 191179
9 43 3193179 -2493 -142043
10 -43 −139593 -2407 137143
11 319 314379 -2507 -107757
12 -57 −105307 -2393 102857
13 79 3193143 -2529 -78431
14 -79 −75981 -2371 73531
15 331 194379 -2543 -66993
16 -93 −64543 -2357 62093
17 343 193179 -2579 -48981
18 -129 −46531 -2321 44081
19 379 193143 -2687 -27777
20 -237 −25327 -2213 22877
21 1931 34379 -3039 -12641
22 -589 −10191 -1861 7741
23 1943 33179 -3267 -9797
24 -817 −7347 -1633 4897
25 3143 31979 -3783 -6953
26 -1333 −4503 -1117 2053
27 1979 33143 -3951 -6449
28 -1501 −3999 -949 1549
29 31931 4379 -4217 -5847
30 -1767 −3397 -683 947
31 3179 31943 -4899 -4901
32 -2449 −2451 -1 1

33

2381 · 2521

1 23812521 -2451 -6004951
34 -1 −6002501 -2449 6000051
35 2381 2521 -4831 -4971
36 -2381 −2521 -69 71
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3.3 Encoding on the basis of MPF of RNS

It is advisable to choose p3 = −69, p4=71 among all options presented in Table 3
since these values are the least different from the first two selected modules. Ad-
ditional studies show that for each module you need to change its sign to the
opposite. It should be noted that the absolute value of each module is used in
calculations, and its sign is taken into account by the parameter mi = ±1. Cal-
culation range P = 12002550. As a plaintext the word keys is selected, which
corresponds to the number 10042418. The results of encryption according to the
expression (1) and pre-calculations of decryption (similar to this given in Ta-
ble 2) using MPF of RNS are shown in Table 4.

Table 4. The results of encryption and pre-calculations of decryption using MPF of
RNS

i 1 2 3 4

pi 49 50 69 71
bi 15 18 20 36
Mi 244950 240051 173950 169050
Mimodpi 48 6 1 70
mi 48mod49 = −1mod49 1 1 70mod71 = −1mod71

As a result of encryption, the ciphertext is as follows15182036. Due to the vari-
ability of mi which can become ±1, and the fact that bi < pi, it is advisable
to perform the decimal number recovery using MPF of RNS according to for-
mula (2): N = (−244950 · 1 · 15 + 240051 · 1 · 18 + 173950 · 1 · 20 − 169050 · 1 ·
36)mod12002550 = (−3674250 + 4320918 + 3479000− 6085800)mod12002550 =
(−1960132)mod12002550 = 10042418. It can be seen that the use of MPF of
RNS leads to a decrease in the number of arithmetic operations (in particular,
finding the inverse and multiplying by it (2) [33], simplifying the procedure of
finding the remainder modulo P [34]) performed on operands having a lower
bitness than the conventional integer form of the RNS has. This leads to an
increase in the decryption process. It is advisable to use the presented encryp-
tion algorithm during information exchange when you need to quickly encrypt
messages and it may take longer to decrypt.

4 Evaluation of cryptosecurity of the proposed encryption
algorithm.

To provide the required level of protection of information flows, it is necessary
to evaluate the cryptosecurity of the proposed encryption method by examining
the main vulnerabilities and possible options of cryptoanalysis from the point of
view of the intruder.
Since the values of modules are the keys, it is necessary to consider all the possible
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variants of their sets while planning mathematical attack. These modules should
be pairwise relatively primes to satisfy the condition:

GCD (pi, pj) = 1, i = 1...,m; j = 1, ...,m; i 6= j. (12)

Since, it is necessary to apply the CRT to each set of modules to receive the
plaintext then the time costs of cryptoanalysis (and, accordingly, the algorithm
cryptosecurity) will be estimated by the total number of all possible sets pi mul-
tiplied by the time complexity of the CRT. However, it should be noted that the
theoretical cryptosecurity of this algorithm can be estimated only approximately.

4.1 Cryptosecurity estimation based on the law of asymptotic
distribution of prime numbers

Let the modules be prime numbers. According to the asymptotic distribution
of prime numbers, their amount in the range from 0 to a certain q is approxi-
mately determined by the formula π (q) = q

ln q Suppose that for n-bit number

q = 2n. Then π (q) = 2n

n ln 2 ≈
2n+1

n . Since n can be considered rather large,
then the approximate number of options for choosing a system between m mod-

ules is
(

2n+1

n

)m
. The time complexity of CRT is also approximately n2 [35], so

the total time complexity of cryptoanalysis of the proposed cryptoalgorithm is

o
((

2n+1

n

)m
n2
)

.

Fig. 2. Dependence of cryptoanalysis complexity on the bitness of n and the number
of m modules.

Figure 2 shows the dependence of cryptoanalysis complexity on a logarithmic
scale on the bitness of n and the number of m modules. It is seen that with
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increasing of these parameters the complexity of cryptoanalysis also increases.
According to [36] [37], for cryptoanalysis of a modern symmetric AES cipher
with n-bit key, 2n−1 bit operations (the maximum key of the AES algorithm is

256 bits) are required. According to equality
(

2n+1

n

)m
n2 = 2255, one can find

the bitness and the number of RNS modules that provide the same security as
the key of the longest AES algorithm (Table 5).

Table 5. Bitness and number of RNS modules that provide the same security as the
key of the longest AES

Number of modules 3 4 5 6 7 8 9 10 11 12 13 14 15

Bitness 87 66 54 46 40 35 32 29 27 25 23 21 20

The Table above shows that with increasing the number of modules their bitness
decreases.

4.2 Cryptosecurity evaluation based on the Euler function

The number of relatively prime numbers with a given number is calculated us-
ing the Euler function ϕ (pi). Moreover, the maximum value ϕmax (pi) is ob-

tained when p
(n)
imax is the maximum prime number of a given n bitness, since

ϕmax

(
p
(n)
imax

)
= p

(n)
imax − 1. For example, for 8-bit numbers p

(8)
imax = 251,

ϕmax

(
p
(n)
imax

)
= 250.

We receive the minimum value of the Euler function ϕmin (pi) when pi is decom-

posed into the product of consecutive primes of singular degree: pi =
∏k

l=1 pl,
where k - is the number of multipliers, pi = 2, 3, 5, ... - consecutive primes. For 8-

bit numbers p
(8)
i the minimum value ϕmin

(
p
(n)
imax

)
will be when p

(8)
i = 2·3·5·7 =

= 210, and p
(8)
imin = ϕ (2) · ϕ (3) · ϕ (5) · ϕ (7) = 1 · 2 · 4 · 6 = 48 respectively.

Since all possible sets of pairwise relatively prime numbers is related to the Euler
function, then with the maximum fixed prime p1, a number of possible options
will be ϕ (p1) for p2, ϕ (p2) for p3, ..., ϕ (pm−1) for pmrespectively. Without re-
ducing generalization, we consider p1 > p2 > ... > pm−1 > pm and only one of
the modules can be folded. Then, the total number of all sets of modules will be
estimated according to the following formula:

K =

m=1∏
i−1

ϕ (pi) . (13)

This method allows you to evaluate when K values are maximum, minimum and
in the middle of this range. It should be noted that the maximum value of K pro-
vides the highest cryptosecurity of the encryption algorithm, and, accordingly,
the minimum value of K provides the smallest cryptosecurity.
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Table 6. Evaluating the maximum cryptosecurity of 4 modules with n=32, 64 and 128
bits.

No n, bit pi Cryptosecurity
evaluation

p1 = 4294967291,
1 32 p2 = 4294967279, 1, 6 · 1032

p3 = 4294967231,
p4 = 4294967197

p1 = 18446744073709551557,
2 64 p2 = 18446744073709551533, 5, 1 · 1061

p3 = 18446744073709551521,
p4 = 18446744073709551437

p1 = 340282366920938463463374607431768211297,
3 128 p2 = 340282366920938463463374607431768211283, 1, 3 · 10120

p3 = 340282366920938463463374607431768211223,
p4 = 340282366920938463463374607431768211219

Fig. 3. Cryptoanalysis security dependence on n bitness and the number of m modules.
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The total decryption time based on mathematical attack will be calculated

according to the ratio O
(
m · n2 ·

∏m=1
i−1 ϕ (pi)

)
taking into account the time

complexity of the CRT. Similar to the previous case, an increase in cryptosecurity
can be achieved by increasing the number of modules (keys), their bitness, and
selecting the modules for which the value ϕ (pi) is the maximum.
Table 6 shows an example of finding the maximum cryptosecurity of 4 modules
with n = 32, 64 and 128 bits according to the proposed method.
Since in the assessment of cryptosecurity, n -bit numbers are the values of the
Euler function, then the complexity of finding the amount of key variants is
calculated according to the ratio O

(
log2 (m− 1) · n2

)
. As a result, the overall

cryptosecurity assessment is as follows: O
(
log2 (m− 1) · n4

)
, whose dependence

on the bitness and the number of modules is presented in Figure 3.
It is seen that with the increase of these parameters, the algorithm cryptosecurity
sharply increases.

5 Symmetric encryption based on the CRT

When fast decryption is required, it is advisable to use another symmetric cryp-
toalgorithm. However, using it all the RNS modules must exceed the maximum
numeric value of the plaintext letter. Figure 4 presents the general encryption
scheme due to the proposed method. The plaintext block is subdivided into sub-

Fig. 4. General symmetric encryption scheme based on the CRT.

blocks that are smaller than the corresponding module and are the remainders
on dividing of some number, which is a ciphertext, by these modules. The ci-
phertext is obtained according to the expression (9).
Pre-calculations of encryption using conventional integer RNS (p1 = 47, p2 =
53, p3 = 67, p4 = 73, P = 12183481) and plaintext keys (10042418) are shown in
Table 7.
Ciphertext N = ((259223 ·34 ·10)mod12183481 + (229877 ·10 ·4)mod12183481 +
(181843 · 27 · 24)mod12183481 + (166897 · 50 · 18)mod12183481)mod12183481 =
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Table 7. Pre-calculations of encryption using conventional integer RNS

i 1 2 3 4

pi 47 53 67 73
bi 10 04 24 18
Mi 259223 229877 181843 166897
Mimodpi 18 16 5 19
mi 34 10 27 50

(2851453 + 9195080 + 8182935 + 4005528)mod12183481 = 12051515.
Correspondingly, the process of decryption is to find the residues 12051515modpi:
12051515mod47 = 10, 12051515mod53 = 04, 12051515mod67 = 24,
12051515mod73 = 18. After concatenation, the numeric value of the plaintext
will be 10042418, which corresponds to the word keys.
It should be noted that cryptosecurity of this method will be less than that of
the previous one, since the complexity of finding residues O (n · log2 n) [34] is
less than in multiplication – O

(
n2
)
.

When using MPF of RNS, pre-calculations are obtained given in Table 8.

Table 8. Pre-calculations of encryption using MPF of RNS

i 1 2 3 4

pi 49 50 69 71
bi 10 04 24 18
Mi 244950 240051 173950 169050
Mimodpi 48 6 1 70
mi 48mod49 = −1mod49 1 1 70mod71 = −1mod71

Encryption results by formula (2): N = (−244950 · 1 · 10 + 240051 · 14 + 173950 ·
1 · 24− 169050 · 1 · 18)mod12002550 = (−2449500 + 960204 + 4174800−
3042900)mod12002550 = (−357396)mod12002550 = 11645154.
Residues must be found for decryption 11645154modpi: 11645154mod49 = 10,
11645154mod50 = 04, 11645154mod69 = 24, 11645154mod71 = 18. Therefore,
the numeric value of the plaintext is 10042418, which corresponds to the word
keys.
Similarly to the previous case, the selections of modules that satisfy the condi-
tions of MPF of RNS greatly simplify the process of decimal number recovery
from its residuals.

6 Conclusions.

Symmetric cryptoalgorithms are developed on the basis of conventional integer
RNS and its Modified Perfect Form. Due to the first algorithm, ciphertext acts
as a set of residues to the corresponding modules (keys), and decryption or dec-
imal number recovery from its residues takes place according to the CRT. Due
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to the second method, the plaintext block is subdivided into sub-blocks that
are smaller than the corresponding modules and serve as residues on dividing
some number, which is ciphertext, by these modules. The plaintext recovery is
based on finding ciphertext residues to corresponding modules. The evaluation
of cryptosecurity of the proposed methods is carried out on the basis of the the-
orem for the asymptotic distribution of prime numbers and the Euler function.
Bitness and number of RNS modules, required for the developed symmetric se-
curity systems to ensure the same security level as the largest length key of the
modern symmetric AES algorithm provides are investigated. It is found that as
the number of modules increases, their bitness decreases. The time complexity
of the mathematical attack was evaluated and the dependence of cryptosecurity
of the proposed methods on bitness of modules and their number was investi-
gated. The analysis of the conducted research showed that with the increase of
the specified parameters the complexity of cryptoanalysis also increases.

References

1. Hoffstein. J., Pipher. J., Silverman. J.: An Introduction to Mathematical Cryptog-
raphy. Springer Science+Business Media, New York, (2008)

2. Jeffrey, H., Jill, P., Joseph, H.: An Introduction to Mathematical Cryptography.
Springer, Berlin, (2008).

3. Yakymenko, I. Z., Kasianchuk, M. M., Ivasiev, S. V., Melnyk, A. M., Nykolaichuk,
Ya. M.: Realization of RSA cryptographic algorithm based on vector-module method
of modular exponention. In: Modern Problems of Radio Engineering, Telecommu-
nications and Computer Science, pp. 550-554. TCSET–2018, L’viv–Slavske (2018).

4. Kasianchuk, M., Yakymenko I., Pazdriy I., Melnyk A., Ivasiev S.: Rabin’s mod-
ified method of encryption using various forms of system of residual classes. In:
the Experience of Designing and Application of CAD Systems in Microelectron-
ics (CADSM-2017), pp. 222-224. Proceedings of the XIV International Conference,
Polyana-Svalyava (2017).

5. Omondi, A., Premkumar, B.: Residue number systems: theory and implementation.
Imperial College Press, London (2007).

6. Ananda Mohan P. V.: Residue Number Systems: Theory and Applications.
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M. A. M., Del Galdo, G.: M-estimator based Chinese remainder theorem with few
remainders using a kroenecker product based mapping vector. Digit. Signal Process,
87, 60–74 (2019).



16 M. Kasianchuk et al.

27. Kasianchuk, M., Yakymenko, I., Pazdriy, I., Zastavnyy O.: Algorithms of findings of
perfect shape modules of remaining classes system. In: the Experience of Designing
and Application of CAD Systems in Microelectronics (CADSM-2015): Proceedings
of the XIII International Conference, pp. 168-171. Polyana-Svalyava (2015).

28. Nykolaychuk, Ya. M., Kasianchuk, M. M., Yakymenko, I. Z.: Theoretical Foun-
dations of the Modified Perfect form of Residue Number System. Cybernetics and
Systems Analysis 52(2), 219-223 (2016).

29. Kasianchuk, M. N., Nykolaychuk, Ya. N., Yakymenko, I. Z. Theory and Methods
of Constructing of Modules System of the Perfect Modified Form of the System
of Residual Classes. Journal of Automation and Information Sciences 48(8), 56-63
(2016).

30. Djath, L., Bigou, K., Tisserand, A.: Hierarchical Approach in RNS Base Extension
for Asymmetric Cryptography. In: IEEE 26th Symposium on Computer Arithmetic
(ARITH-2019), pp. 46-53. Kyoto, Japan (2019).

31. Iakymenko, I., Kasianchuk, M., Kinakh, I., Karpinski, M. Construction of dis-
tributed thermal or piezoelectric sensor based on residue systems. Przeglad Elek-
trotechniczny, 1, 290-294 (2017).

32. Karpiński, M., Ivasiev, S., Yakymenko, I., Kasianchuk, M., Gancarczyk, T.: Ad-
vanced method of factorization of multi-bit numbers based on Fermat’s theorem in
the system of residual classes. In: Proceedings of the International Conference on
Control, Automation and Systems (ICCAS–2016), vol. 1, pp. 1484–1486. Gyeongju,
Korea (2016).

33. Rajba, T., Klos-Witkowska, A., Ivasiev, S., Yakymenko, I., Kasianchuk, M.: Re-
search of Time Characteristics of Search Methods of Inverse Element by the Module.
In: Intelligent Data Acquisition and Advanced Computing Systems: Technology and
Applications (IDAACS–2017): Proceedings of the 2017 IEEE 9th International Con-
ference, vol. 1, pp. 82–85. Bucharest, Romania (2017).

34. Ivasiev, S., Yakymenko, I., Kasianchuk, M., Shevchuk, R., Karpinski, M., Go-
motiuk, O.: Effective algorithms for finding the remainder of multi-digit numbers.
In: Advanced Computer Information Technology (ACIT–2019): Proceedings of the
International Conference, pp. 175-178. Ceske Budejovice, Czech Republic (2019).

35. Karpinski, M., Rajba, S., Zawislak, S., Warwas, K., Kasianchuk, M., Ivasiev, S.,
Yakymenko, I.: A Method for Decimal Number Recovery from its Residues Based on
the Addition of the Product Modules. In: Intelligent Data Acquisition and Advanced
Computing Systems: Technology and Applications (IDAACS–2019): Proceedings of
the 10th International Conference, vol. 1, pp. 13–17 (2019).

36. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
AES. ASIACRYPT-2011, LNCS, vol. 7073, pp. 344–371 (2011).

37. Tiessen, T.: Polytopic cryptanalysis. In: Advances in Cryptology (EUROCRYPT-
2016): Proceedings of the 35th International Conference, LNCS, vol. 9665, pp.
214–239. Springer, N. Y. (2016).


