
Automatic Verification of Differential
Characteristics: Application to Reduced Gimli

(Full Version)

Fukang Liu1,3, Takanori Isobe2,3, Willi Meier4

1 Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

liufukangs@163.com
2 National Institute of Information and Communications Technology, Japan

3 University of Hyogo, Hyogo, Japan
takanori.isobe@ai.u-hyogo.ac.jp

4 FHNW, Windisch, Switzerland
willimeier48@gmail.com

Abstract. Since Keccak was selected as the SHA-3 standard, more
and more permutation-based primitives have been proposed. Different
from block ciphers, there is no round key in the underlying permutation
for permutation-based primitives. Therefore, there is a higher risk for
a differential characteristic of the underlying permutation to become
incompatible when considering the dependency of difference transitions
over different rounds. However, in most of the MILP or SAT based models
to search for differential characteristics, only the difference transitions
are involved and are treated as independent in different rounds, which
may cause that an invalid one is found for the underlying permutation.
To overcome this obstacle, we are motivated to design a model which
automatically avoids the inconsistency in the search for differential
characteristics. Our technique is to involve both the difference transitions
and value transitions in the constructed model. Such an idea is inspired
by the algorithm to find SHA-2 characteristics as proposed by Mendel
et al. in ASIACRYPT 2011, where the differential characteristic and the
conforming message pair are simultaneously searched. As a first attempt,
our new technique will be applied to the Gimli permutation, which
was proposed in CHES 2017. As a result, we reveal that some existing
differential characteristics of reduced Gimli are indeed incompatible, one
of which is found in the Gimli document. In addition, since only the
permutation is analyzed in the Gimli document, we are lead to carry
out a comprehensive study, covering the proposed hash scheme and the
authenticated encryption (AE) scheme specified for Gimli, which has
become a second round candidate of the NIST lightweight cryptography
standardization process. For the hash scheme, a semi-free-start (SFS)
collision attack can reach up to 8 rounds starting from an intermediate
round. For the AE scheme, a state recovery attack is demonstrated to
achieve up to 9 rounds. It should be emphasized that our analysis does
not threaten the security of Gimli.

Keywords: Gimli, hash function, AE, MILP, collision, state-recovery

1 Introduction

As the demand for lightweight cryptographic primitives in industry increases,
NIST is currently holding a public Lightweight Cryptography Standardization
process [1], aiming at lightweight cryptography standardization by combining the
efforts from both academia and industry. Among the 32 second round candidates,
Gimli was first proposed in CHES 2017 [4]. The main strategy to improve its
performance is to process the 384-bit data in four 96-bit columns independently
and make only a 32-bit word swapping among the four columns every two rounds.
Such a design strategy soon received a doubt from Hamburg [12]. However, the
attack in [12] works for an ad-hoc mode rather than the proposed hash scheme
or AE scheme in the submitted Gimli document.

Along the development of differential attacks [6], several variants have been
proposed. A very influential one was the modular differential attack on the
MD-SHA hash family, which directly turned MD5 [21] and SHA-1 [18,20] into
broken hash functions. To mount collision attacks on MD5 and SHA-1 as
in [20,21], one challenging work is to find a proper differential characteristic,
which was first finished by hand-craft [20,21]. Later, the guess-and-determine
method to search for differential characteristics was proposed in ASIACRYPT
2006, together with its application to full SHA-1 [9]. However, when such a
guess-and-determine technique is directly applied to reduced SHA-2, Mendel et
al. pointed out in [16] that the discovered differential characteristics are always
invalid since contradictions may easily occur in the set of conditions implied
in the discovered differential characteristics. To overcome this obstacle, they
finally developed an algorithm to search for the differential characteristic and
the conforming message pair simultaneously to avoid the inconsistency.

Indeed, such a case does not only exist in the MD-SHA hash family. For the
ARX construction, for instance, some differential characteristics of Blake-256 [7]
and Skein-512 [3] are also proven to be invalid if taking some dependency
into account, as revealed by Leurent [14]. To search for valid differential
characteristics of reduced Skein, Leurent designed a dedicated algorithm in [15]
using the improved generalized conditions [14] and the guess-and-determine
technique [9].

In another direction, since the introduction of the MILP-based method
to search for differential characteristics [19], the SAT-based method has also
been developed [13]. However, in most of the MILP models or SAT models to
search for differential characteristics [4,13,19,23], only the difference transitions
are taken into account and are treated as independent in different rounds.
Although such an assumption is commonly believed to be reasonable for block
ciphers, it may not hold well for permutation-based primitives since there is no
round key in the permutation. A similar problem has been investigated in [8].
Moreover, since Keccak [5] was selected as the SHA-3 standard, more and more

2

permutation-based primitives have been proposed. However, whether similar
cases once appearing in SHA-2 [16], Skein-512 [3] and Blake-256 [7] will occur
in the commonly constructed MILP or SAT models to search for differential
characteristics for the underlying permutation remains unknown. Therefore, it
is vital to make an investigation for such a problem.

However, both the methods in [15,16] require a dedicated implementation
of the heuristic search. In addition, how to achieve the simultaneousness is
ambiguous in [16]. For [15], the inconsistency is avoided by using the improved
generalized conditions [14]. As is known, the most convincing way is to provide
a conforming message pair for the discovered differential characteristic.

Therefore, similar to the motivation to introduce the MILP-based method
into cryptanalysis, it would be meaningful to utilize some off-the-shelf tools to
reduce the workload. Consequently, we take Gimli as our first attempt and are
motivated to tackle the problem of how to construct a model to always avoid
the incompatibility in the search for differential characteristics. Moreover, since
Gimli is one of the second round candidates in NIST Lightweight Cryptography
Standardization process, we will provide some additional analysis of reduced
Gimli. We noticed that there is a related work [17] for MD-SHA hash family
published at SAT 2006 aiming at automatic message modification, though with
ambiguous technical details.

Our Contributions. We made a comprehensive study of Gimli5, as summarized
below:

• We make the first step to investigate the properties of the SP-box. Such a
work is meaningful since all the attacks in this paper heavily rely on them.
• A novel MILP model capturing the difference transitions and value tran-

sitions simultaneously is developed. To the best of our knowledge, this is
the first model which takes both transitions into account. This model can
be simply used to detect contradictions in the differential characteristic of
Gimli. As a result, we prove that both the 12-round differential characteristic
in the Gimli document [4] and the 6-round differential characteristic used for
the collision attack on 6-round Gimli-Hash in [23] are invalid. The second
usage of this model is to directly search for a valid differential characteristic
and the conforming message pair simultaneously.
• For the hash scheme, we provide the first practical semi-free-start (SFS)

colliding message pair for 6-round Gimli-Hash and develop several techniques
to convert SFS collisions into collisions. Moreover, we also mount a SFS
collision attack on the intermediate 8-round Gimli-Hash.
• For the AE scheme, we are curious why the designers only claim 128-bit

security while a 256-bit key is used. Thus, we are motivated to devise an
attack which can maximize the number of rounds with complexity below
2256. Consequently, we mount a state-recovery attack on 9-round Gimli with
a rather high time complexity 2192 and memory complexity 2190.

5 The source code of our attacks can be referred to https://github.com/
LFKOKAMI/GimliAnalysis.git

3

https://github.com/LFKOKAMI/GimliAnalysis.git
https://github.com/LFKOKAMI/GimliAnalysis.git

The memory/data/time complexity of the above attacks are displayed in Table 1.

Organization. The Gimli permutation and some properties of the SP-box will
be introduced in section 2 and section 3, respectively. Then, the MILP model
capturing both difference transitions and value transitions will be described in
section 4. The (SFS) collision attack on 6-round and 8-round Gimli-Hash will
be shown in section 5 and section 6, respectively. Then, we will investigate the
security of the AE scheme and present the state-recovery attack on 9-round
Gimli in section 7. Finally, we conclude the paper in section 8.

Table 1: The analytical results of reduced Gimli, where Z-S represents Zero-sum
and Z-D represents Zero-internal-difference.

Target Attack Type Rounds Memory Data Time Ref.

Hash scheme SFS collision 6 practical Sec. 5

Hash scheme collision 6 264 - 264 Sec. 5.3

Hash scheme collision 6 negligible - 291.4 App. D

Hash scheme SFS collision 8 negligible - 264 Sec. 6

AE scheme state-recovery 5 2126 4 2128 App. F

AE scheme state-recovery 9 2190 4 2192 Sec. 7.1

2 Description of Gimli

The Gimli state can be viewed as a two-dimensional array S = (Si,j) (0 ≤ i ≤
2, 0 ≤ j ≤ 3), where Si,j ∈ F 32

2 , as illustrated in Figure 1. The Gimli permutation
is specified with Algorithm 1 in Appendix A. As can be seen from the description
of the Gimli permutation, the 24-round permutation can be viewed as iterating
the following sequence of operations for 6 times:

(SP→ S SW→ AC)→ (SP)→ (SP→ B SW)→ (SP),

where the SP-box operation, Small-Swap operation, Big-Swap operation and
AddRoundConstant operation are denoted by SP, S SW, B SW and AC, re-
spectively. For convenience, denote the internal state after r-round permutation
by Sr and the input state by S0. In other words, we have

S4i SP−→ S4i+0.5 S SW−→ AC−→ S4i+1 SP−→ S4i+2 SP−→S BW−→ S4i+3 SP−→ S4i+4,

where 0 ≤ i ≤ 5. In addition, ∆Sr denotes the exclusive or difference in Sr

(0 ≤ r ≤ 24). Z[i] (0 ≤ i ≤ 31) denotes the (i + 1)-th bit of the 32-bit word Z
and Z[0] is the least significant bit of Z. Z[i ∼ j](0 ≤ j < i ≤ 31) represents the
(j + 1)-th bit to the (i + 1)-th bit of the 32-bit word Z. For example, Z[1 ∼ 0]
represents the two bits (Z[1],Z[0]). Moreover, ⊕, �, ≪, ∨ and ∧ represent the
logic operations exclusive or, shift left, rotate left, or, and, respectively.

4

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

Fig. 1: The Gimli state

2.1 SP-box

The SP-box of Gimli takes a 96-bit value as input and outputs a 96-bit value.
Denote the input and the output by (IX, IY, IZ) ∈ F 32×3

2 and (OX,OY,OZ) ∈
F 32×3

2 , respectively. Then, the relation between (OX,OY,OZ) and (IX, IY, IZ)
can be described as follows:

IX ← IX ≪ 24

IY ← IY ≪ 9

OZ ← IX ⊕ IZ � 1⊕ (IY ∧ IZ)� 2

OY ← IY ⊕ IX ⊕ (IX ∨ IZ)� 1

OX ← IZ ⊕ IY ⊕ (IX ∧ IY)� 3

Based on the above relation, the following bit relations can be derived, where
the indices are considered within modulo 32.

OX[i] =

{
IZ[i]⊕ IY [i− 9] (0 ≤ i ≤ 2)

IZ[i]⊕ IY [i− 9]⊕ (IX[i− 27] ∧ IY [i− 12]) (3 ≤ i ≤ 31)
(1)

OY [i] =

{
IY [i− 9]⊕ IX[i− 24] (i = 0)

IY [i− 9]⊕ IX[i− 24]⊕ (IX[i− 25] ∨ IZ[i− 1]) (1 ≤ i ≤ 31)
(2)

OZ[i] =


IX[i− 24] (i = 0)

IX[i− 24]⊕ IZ[i− 1] (i = 1)

IX[i− 24]⊕ IZ[i− 1]⊕ (IY [i− 11] ∧ IZ[i− 2]) (2 ≤ i ≤ 31)

(3)

2.2 Linear Layer

The linear layer includes two different swap operations, namely Small-Swap
and Big-Swap. Small-Swap occurs every 4 rounds starting from the 1st round.
Big-Swap occurs every 4 rounds starting from the 3rd round. The illustration of
Small-Swap and Big-Swap can be referred to Figure 2.

5

Fig. 2: The linear layer. The left/right one represent the Small-Swap/Big-Swap.

2.3 Gimli-Hash

How Gimli-Hash compresses a message is illustrated in Figure 3. Specifically,
Gimli-Hash initializes a 48-byte Gimli state to all-zero. It then reads sequentially
through a variable-length input as a series of 16-byte input blocks, denoted by
M0, M1, · · ·. After all message blocks are processed, the 256-bit hash value will
be generated. More details can be referred to [1] .

0 0 0 0

0 000

0 0 0 0

M0

⊕
f

⊕

M1

f
· · ·

Mi

f f

Absorbing Squeezing

Injection Output

Fig. 3: The process to compress the message, where f is the Gimli permutation

3 Properties of the SP-box

Since several properties of the SP-box will be exploited in our collision attack
and state-recovery attack, for convenience, we summarize them in this part. For
simplicity, the input and output of the SP-box are denoted by (IX, IY, IZ) and
(OX,OY,OZ), respectively.

Property 1 If IY [31 ∼ 23] = 0 and IY [19 ∼ 0] = 0, OX will be independent
of IX.

Property 2 A random triple (IY, IZ,OX) is potentially valid with probability
2−15.5 without knowing IX.

Property 3 Given a random triple (IX,OY,OZ), it is valid with probability
2−1. Once it is valid, (OX[30 ∼ 0], IY, IZ[30 ∼ 0]) can be determined.

Property 4 Given a random triple (IY, IZ,OZ), (IX,OX,OY) can be uniquely
determined. In addition, a random tuple (IY, IZ,OY,OZ) is valid with probabil-
ity 2−32.

6

Property 5 Suppose the pair (IY, IZ) and t bits of OY are known. Then t bits
of information on IX can be recovered by solving a linear equation system of
size t.

The above properties will be frequently exploited in our attacks and therefore
we list them ahead of time. The corresponding proofs can be referred to Appendix
B. Some other properties will be explained later.

4 The MILP Model Capturing Difference and Value
Transitions

To search for a valid differential characteristic of reduced SHA-2, Mendel
et al. developed a technique to search for the differential characteristic and
conforming message pair simultaneously [16]. However, how to achieve the
simultaneousness is not explained in [16]. Inspired by such an idea, different
from many models where only the difference transitions are considered and are
treated as independent in different rounds, we try to construct a model which
can describe the difference transitions and value transitions simultaneously. The
basic idea is simple. As shown in Figure 4, the models to describe the difference
transitions and value transitions will be independently constructed. Then,
construct a model to describe the difference-value relations in the nonlinear
operation and use it to connect the difference transitions and value transitions.
The reason is that the difference transitions and value transitions are dependent
only in the nonlinear operation. If such a model can be constructed, the
contradictions can always be avoided in the search.

Difference Transitions

Value Transitions

Connect via nonlinear operations

Fig. 4: Illustration of the model

4.1 Difference-Value Relations Through the SP-box

First of all, consider the relations between the difference and value. According
to the bit relations between (IX, IY, IZ) and (OX,OY,OZ) as specified in
Equation 1, Equation 2, and Equation 3, one can easily observe that there are
at most 4 types of Boolean expressions as follows, where a[i] ∈ F2 and 0 ≤ i ≤ 4.

Type-1: a[1] = a[0].
Type-2: a[2] = a[0]⊕ a[1].

7

Type-3: a[4] = a[0]⊕ a[1]⊕ a[2] ∧ a[3].
Type-4: a[4] = a[0]⊕ a[1]⊕ a[2] ∨ a[3].

Specifically, Type-1 corresponds to the expression to calculate OZ[0]. Type-2
corresponds to the expressions to calculate OX[0], OX[1], OX[2], OY [0] and
OZ[1]. Type-3 corresponds to the expression to compute OX[i] (3 ≤ i ≤ 31)
and OZ[j] (2 ≤ j ≤ 31), while Type-4 corresponds to the expression to compute
OY [i] (1 ≤ i ≤ 31).

For convenience, introduce another 5 bit variables a′={a′[0], a′[1], a′[2], a′[3],
a′[4]} and let ∆a = a ⊕ a′, i.e. ∆a[i] = a[i] ⊕ a′[i] for 0 ≤ i ≤ 4. For better
understanding, we explain the relations between the difference (∆a) and the
value (a) for each of the 4 types.

Type-1. For this type, there is no relation between ∆a and a. Only the following
relation can be derived:

∆a[1] = ∆a[0].

Type-2. Similar to Type-1, there is no relation between ∆a and a. Only the
following relation can be derived:

∆a[2] = ∆a[0]⊕∆a[1].

Type-3. Since a nonlinear operation exists in this expression, we can derive the
relations between ∆a and a, as specified below:

∆a[4]⊕∆a[0]⊕∆a[1] = 1, ∆a[2] = 0, ∆a[3] = 0⇒ Contradiction

∆a[4]⊕∆a[0]⊕∆a[1] = 1, ∆a[2] = 0, ∆a[3] = 1⇒ a[2] = 1

∆a[4]⊕∆a[0]⊕∆a[1] = 1, ∆a[2] = 1, ∆a[3] = 0⇒ a[3] = 1

∆a[4]⊕∆a[0]⊕∆a[1] = 1, ∆a[2] = 1, ∆a[3] = 1⇒ a[2] = a[3]

∆a[4]⊕∆a[0]⊕∆a[1] = 0, ∆a[2] = 0, ∆a[3] = 1⇒ a[2] = 0

∆a[4]⊕∆a[0]⊕∆a[1] = 0, ∆a[2] = 1, ∆a[3] = 0⇒ a[3] = 0

∆a[4]⊕∆a[0]⊕∆a[1] = 0, ∆a[2] = 1, ∆a[3] = 1⇒ a[2]⊕ a[3] = 1.

Type-4. Similar to Type-3, since a nonlinear operation exists in this expression,
the following relations between ∆a and a can be derived:

∆a[4]⊕∆a[0]⊕∆a[1] = 1, ∆a[2] = 0, ∆a[3] = 0⇒ Contradiction

∆a[4]⊕∆a[0]⊕∆a[1] = 1, ∆a[2] = 0, ∆a[3] = 1⇒ a[2] = 0

∆a[4]⊕∆a[0]⊕∆a[1] = 1, ∆a[2] = 1, ∆a[3] = 0⇒ a[3] = 0

∆a[4]⊕∆a[0]⊕∆a[1] = 1, ∆a[2] = 1, ∆a[3] = 1⇒ a[2] = a[3]

∆a[4]⊕∆a[0]⊕∆a[1] = 0, ∆a[2] = 0, ∆a[3] = 1⇒ a[2] = 1

∆a[4]⊕∆a[0]⊕∆a[1] = 0, ∆a[2] = 1, ∆a[3] = 0⇒ a[3] = 1

∆a[4]⊕∆a[0]⊕∆a[1] = 0, ∆a[2] = 1, ∆a[3] = 1⇒ a[2]⊕ a[3] = 1.

8

4.2 Constructing the MILP Model

It has been discussed above that there are only two cases when we need to
consider the relations between the difference and value transitions through the
SP-box. Thus, we first construct the MILP model to describe such relations.
First of all, consider two minimal models called AND-Model and OR-Model.

Constructing AND-Model Consider the following Boolean expression

a[2] = a[0] ∧ a[1].

Firstly, construct the truth table for (a[0], a[1], ∆a[0], ∆a[1], ∆a[2]), as shown in
Table 7 in Appendix G. Using the greedy algorithm in [19], the corresponding
truth table can be described with the following linear inequalities, where the
remaining 16 invalid patterns can not satisfy at least one of them.

−a[0]− a[1]−∆a[1] +∆a[2] + 2 ≥ 0

a[0]− a[1]−∆a[1]−∆a[2] + 2 ≥ 0

−a[0] + a[1]−∆a[0]−∆a[2] + 2 ≥ 0

a[0] +∆a[0]−∆a[2] ≥ 0

a[0] + a[1]−∆a[0]−∆a[1] +∆a[2] + 1 ≥ 0

∆a[0] +∆a[1]−∆a[2] ≥ 0

a[1] +∆a[1]−∆a[2] ≥ 0

−a[1]−∆a[0] +∆a[1] +∆a[2] + 1 ≥ 0

−a[0] +∆a[0]−∆a[1] +∆a[2] + 1 ≥ 0

(4)

Constructing OR-Model Consider the following Boolean expression

a[2] = a[0] ∨ a[1].

Similarly, construct the truth table for (a[0], a[1], ∆a[0], ∆a[1], ∆a[2]), as shown
in Table 8 in Appendix G, which is equivalent to the following linear inequalities:

−a[1] +∆a[1]−∆a[2] + 1 ≥ 0

−a[0] +∆a[0]−∆a[2] + 1 ≥ 0

a[1]−∆a[0] +∆a[1] +∆a[2] ≥ 0

a[0] +∆a[0]−∆a[1] +∆a[2] ≥ 0

a[0] + a[1]−∆a[1] +∆a[2] ≥ 0

∆a[0] +∆a[1]−∆a[2] ≥ 0

a[0]− a[1]−∆a[0]−∆a[2] + 2 ≥ 0

−a[0]− a[1]−∆a[0]−∆a[1] +∆a[2] + 3 ≥ 0

−a[0] + a[1]−∆a[1]−∆a[2] + 2 ≥ 0

(5)

9

Constructing MILP Model for Value Transitions For the Gimli round
function, the linear layer can be viewed as a simple permutation of bit positions.
Thus, we only focus on the model to describe the value transitions through the
SP-box in this part. As discussed above, there are at most 4 types of Boolean
expressions when expressing the output bit in terms of the input bits for the
SP-box. Now, we explain how to model such 4 types of expressions.

Modeling Type-1 Expression. The Type-1 Boolean expression is

a[1] = a[0].

Thus, it is rather simple to model the value relation by using the following linear
equality:

a[1] = a[0]. (6)

Modeling Type-2 Expression. The Type-2 Boolean expression is

a[2] = a[0]⊕ a[1].

Such a linear Boolean equation can be described with the following linear
inequalities: 

a[0] + a[1]− a[2] ≥ 0

a[0]− a[1] + a[2] ≥ 0

−a[0] + a[1] + a[2] ≥ 0

−a[0]− a[1]− a[2] + 2 ≥ 0

(7)

Modeling Type-3 Expression. The Type-3 Boolean expression is

a[4] = a[0]⊕ a[1]⊕ a[2] ∧ a[3].

Such a linear Boolean equation can be described with the following linear
inequalities: 

−a[0] + a[1] + a[3] + a[4] ≥ 0

a[0]− a[1] + a[3] + a[4] ≥ 0

a[0] + a[1] + a[2]− a[4] ≥ 0

a[0] + a[1] + a[3]− a[4] ≥ 0

a[0]− a[1] + a[2] + a[4] ≥ 0

−a[0] + a[1] + a[2] + a[4] ≥ 0

a[0] + a[1]− a[2]− a[3] + a[4] + 1 ≥ 0

−a[0]− a[1] + a[2]− a[4] + 2 ≥ 0

a[0]− a[1]− a[2]− a[3]− a[4] + 3 ≥ 0

−a[0]− a[1]− a[2]− a[3] + a[4] + 3 ≥ 0

−a[0]− a[1] + a[3]− a[4] + 2 ≥ 0

−a[0] + a[1]− a[2]− a[3]− a[4] + 3 ≥ 0

(8)

10

Modeling Type-4 Expression. The Type-4 Boolean expression is

a[4] = a[0]⊕ a[1]⊕ a[2] ∨ a[3].

Such a linear Boolean equation can be described with the following linear
inequalities: 

−a[0] + a[1]− a[3]− a[4] + 2 ≥ 0

a[0]− a[1]− a[3]− a[4] + 2 ≥ 0

−a[0]− a[1]− a[3] + a[4] + 2 ≥ 0

−a[0] + a[1]− a[2]− a[4] + 2 ≥ 0

a[0]− a[1]− a[2]− a[4] + 2 ≥ 0

−a[0]− a[1]− a[2] + a[4] + 2 ≥ 0

−a[0] + a[1] + a[2] + a[3] + a[4] ≥ 0

a[0] + a[1]− a[3] + a[4] ≥ 0

a[0] + a[1]− a[2] + a[4] ≥ 0

a[0]− a[1] + a[2] + a[3] + a[4] ≥ 0

a[0] + a[1] + a[2] + a[3]− a[4] ≥ 0

−a[0]− a[1] + a[2] + a[3]− a[4] + 2 ≥ 0

(9)

Constructing MILP Model for Difference Transitions The value transi-
tions through the SP-box have been discussed above. In the following, how to
model the difference transitions will be detailed. Similarly, write the four possible
types of expressions for differences as follows:

∆a[1] = ∆a[0], (10)

∆a[2] = ∆a[0]⊕∆a[1], (11)

∆a[4] = ∆a[0]⊕∆a[1]⊕∆na0, (12)

∆a[4] = ∆a[0]⊕∆a[1]⊕∆na1, (13)

where na0 and na1 represent the output difference of the nonlinear operation
a[2]∧a[3] and a[2]∨a[3], respectively. It can be easily observed that the first two
possible transitions (Eq. 10 and Eq. 11) share the same MILP model used to
describe the value transitions for Type-1 expression and Type-2 expression. For
the last two transitions, we need to construct a model to describe the following
linear Boolean equation:

a[3] = a[0]⊕ a[1]⊕ a[2].

11

This task is also rather easy. The linear inequalities to describe the above linear
Boolean equation in terms of four variables are specified as follows:

a[0] + a[1]− a[2] + a[3] ≥ 0

a[0] + a[1] + a[2]− a[3] ≥ 0

−a[0] + a[1] + a[2] + a[3] ≥ 0

a[0]− a[1] + a[2] + a[3] ≥ 0

−a[0]− a[1] + a[2]− a[3] + 2 ≥ 0

a[0]− a[1]− a[2]− a[3] + 2 ≥ 0

−a[0] + a[1]− a[2]− a[3] + 2 ≥ 0

−a[0]− a[1]− a[2] + a[3] + 2 ≥ 0

(14)

One may observe that two intermediate variables na0 and na1 are
introduced when constructing the model for difference transitions and they have
not been connected with the actual variables, i.e. a and ∆a in the constructed
model. In fact, this is where our technique exists in order to model the
difference and value transitions simultaneously. Specifically, the two intermediate
variables na0 and na1 will be utilized to link the value transitions and difference
transitions, together with the two minimal models AND-Model and OR-Model.

Connecting the Value Transitions and Difference Transitions It can
be observed that the current MILP models for value transitions and difference
transitions are independently constructed. In this part, we will describe how to
connect the value and difference transitions with the two intermediate variables
(na0,na1) by using the AND-Model and OR-Model. Note that na0 and na1

denote the output difference of the nonlinear operations a[2]∧a[3] and a[2]∨a[3],
respectively.

Connecting the Two Transitions for Type-3 Expression. Consider the Type-3
expression:

a[4] = a[0]⊕ a[1]⊕ a[2] ∧ a[3].

Firstly, use Equation 8 to model the relations of (a[0], a[1], a[2], a[3], a[4]). Then,
use the AND-Model to describe the relations of (a[2], a[3], ∆a[2], ∆a[3], na0).
Finally, use Equation 14 to describe the relations of (∆a[0], ∆a[1], na0, ∆a[4]). In
this way, the value and difference transitions for Type-3 expression are connected.

Connecting the Two Transitions for Type-4 Expression. The Type-4 expression
is specified as follows:

a[4] = a[0]⊕ a[1]⊕ a[2] ∨ a[3].

Similarly, Equation 9 is used to model the relations of (a[0], a[1], a[2], a[3], a[4]).
Then, the OR-Model is used to model the relations of (a[2], a[3], ∆a[2], ∆a[3], na1).
At last, Equation 14 is used to describe the relations of (∆a[0], ∆a[1], na1, ∆a[4]).

12

For the remaining two expressions (Type-1 and Type-2), the value and differ-
ence transitions are independent. Therefore, the corresponding two models are
independent and there is no need to connect them. Obviously, the AND-Model
and OR-Model are the core techniques to achieve the connection.

4.3 Detecting Contradictions

Since both the difference transitions and value transitions are taken into account
in our MILP model, once given a specified differential characteristic of Gimli, the
difference transitions are fixed. In addition, some constraints on the value of the
internal states are fixed as well based on the AND-Model and OR-Model. Thus,
the final inequality system in the whole model is only in terms of the variables
representing the value of the internal states. If a solution can be returned by the
solver, it simply means that there is a conforming message pair satisfying the
differential characteristic. However, if the solver returns ”infeasible”, it implies
that no conforming message pair can satisfy the differential characteristic, thus
revealing that the differential characteristic is impossible.

We have used the above method to check the validity of two existing
differential characteristics of Gimli. One is the 12-round differential characteristic
proposed in the Gimli document [4], and the other is the 6-round differential
characteristic used for a collision attack in [23]. Surprisingly, both of them are
proven to be invalid, i.e. the Gurobi solver [2] returns ”infeasible”. To support
the correctness of our model, detailed analysis of the contradictions are provided
in Appendix C.

5 Collision Attack on 6-Round Gimli-Hash

Since the 6-round differential characteristic is invalid in [23], it is necessary to
search for a valid one in order to mount a collision attack on 6-round Gimli-Hash.
On the whole, our collision attack procedure can be divided into the following
two phases:

Phase 1: Utilize our model to find a valid 6-round differential characteristic.
Phase 2: Use the linearization and start-from-the-middle techniques to find all

the conforming message pairs satisfying the discovered differential
characteristic and store them in a clever way. All these message pairs
can be viewed as SFS colliding message pairs. Then, convert the SFS
collisions into collisions with a divide-and-conquer method.

Obviously, both the way to search for a differential characteristic and the way
to mount a collision attack are different from that in [23].

5.1 Searching a Valid 6-Round Differential Characteristic

It can be easily observed in [23] that, in order to eliminate the influence of linear
layer (Big-Swap and Small-Swap) and to reduce the workload of the MILP

13

model, the authors only considered the difference transitions in one column
rather than the whole state. Specifically, as shown in Figure 5, the target is
to find the following valid difference transitions through the SP-box:

(D0, 0, 0)
SP−→ (0, D1, D2)

SP−→ (D3, D4, D5)
SP−→

(D6, D7, D8)
SP−→ (D9, D10, D11)

SP−→ (0, 0, D12)
SP−→ (D13, 0, 0).

Once such a solution is found, it can be easily converted into a differential
characteristic of the full state. However, as has been proved, the solution found
in [23] is actually invalid if considering the dependency between the value
transitions and difference transitions.

∆S0

D0 D0

D1

D2

D1

D2

D3

D4

D5

D3

D4

D5

D6

D7

D8

D6

D7

D8

D9

D10

D11

D9

D10

D11D12 D12

D13 D13

∆S1
∆S2

∆S3

∆S4
∆S5

∆S6

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

SP

S SW

AC

SP SP

B SW

SP

SP

S SW

AC

SP

Fig. 5: The pattern of the difference transitions in [23]

Different from the optimal differential characteristic which may be sparse,
the differential characteristic used for the collision attack is much denser,
thus having a high probability that contradictions occur if only the difference
transitions are considered. To avoid such a bad case, the differential characteristic
and the conforming message pair will be simultaneously searched with our
constructed MILP model. Similar to [4,23], a probability 1 two-round differential
characteristic is first constructed in the last two rounds. Moreover, to reduce
the workload, some additional constraints will be added when constructing the
model, as specified below:

∆S0
i,0 = ∆S0

i,2 = 0 (0 ≤ i ≤ 2). (15)

∆S0
j,1 = ∆S0

j,3 = 0 (1 ≤ j ≤ 2). (16)

∆S4
i,0 = ∆S4

i,2 = 0 (0 ≤ i ≤ 2). (17)

∆S4
j,1 = ∆S4

j,3 = 0 (1 ≤ j ≤ 2). (18)

∆Sri,j = ∆Sri,j+2 (0 ≤ i ≤ 2, 0 ≤ j ≤ 1, 0 ≤ r ≤ 3). (19)

∆S4
0,1 = ∆S4

0,3 = 0x80. (20)

∆S4
1,1 = ∆S4

1,3 = 0x400000. (21)

∆S4
2,1 = ∆S4

2,3 = 0x80000000. (22)

14

Moreover, to reduce the search space, we further constrain the hamming weight
of (∆S3

0,1, ∆S
3
1,1, ∆S

3
2,1) as follows, i.e. the number of bits whose values are 1:

HW (∆S3
0,1, ∆S

3
1,1, ∆S

3
2,1) ≤ 8.

Specifically, the aim is to find a solution for the 32-bit words marked with ”?”
in Figure 6.

∆S0
∆S1

∆S2
∆S3

∆S4

c0

c1

c2

c0

c1

c2

0

0

0

0

0

0

0

0

0

0

0

0

?

?

?

?

?

?

?

?

?

?

?

?

0

0

0

0

0

0

0

0

0

0 0 0

0

0

?

?

?

?

? ?0

0

0

0

0

0

0

0

0

0

c0 = 0x80

c1 = 0x400000

c2 = 0x80000000

Difference Transitions

?

S0 S1 S2 S3

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

Value Transitions

SP

S SW

AC

SP SP

B SW

SP

SP

S SW

AC

SP SP

B SW

Fig. 6: Searching a valid 6-round differential characteristic

The 6-Round Differential Characteristic. Based on the above model, the Gurobi
solver returns a solution in less than 4 hours. In other words, a valid 6-round
differential characteristic and a conforming message pair are obtained. For a
better presentation, the differential characteristic is displayed in Table 2. The
conforming message pair is displayed in Table 4. The conditions implied in the
differential characteristic are shown in Table 3. Note that by using one more
message block to eliminate the difference in the rate part, a full-state SFS
collision is obtained. However, the SFS collision attack is still less meaningful
than the collision attack. Therefore, we are further motivated to convert the SFS
collisions into collisions.

5.2 Converting SFS Collision Attacks into Collision Attacks

First of all, as shown in Table 3, the conditions on S3
0,1 and S3

0,3 only involve the
bits of S3

0,1 and S3
0,3, respectively. Due to the symmetry of the 6-round differential

characteristic, the conditions on S3
0,1 and S3

0,3 are the same. Due to the influence
of Big-Swap, S3

0,3 is actually computed by using (S2
0,1, S

2
1,1, S

2
2,1), while S3

0,1 is
computed by using (S2

0,3, S
2
1,3, S

2
2,3). Thus, we define two sets of conditions which

can be independently verified, as specified below:

Definition 1. The internal state words (S0
0,1, S

0
1,1, S

0
2,1), (S1

0,1, S
1
1,1, S

1
2,1), (S2

0,1, S
2
1,1, S

2
2,1)

and (S3
0,3, S

3
1,1, S

3
2,1) only depend on the input state words (S0

i,j) (0 ≤ i ≤
2, 0 ≤ j ≤ 1), while the internal state words (S0

0,3, S
0
1,3, S

0
2,3), (S1

0,3, S
1
1,3, S

1
2,3),

15

Table 2: The 6-round differential characteristic
State XOR Difference

∆S0
0 0x7c2c642a 0 0x7c2c642a
0 0 0 0
0 0 0 0

∆S1
0 0 0 0
0 0x6e1c342c 0 0x6e1c342c
0 0x2a7c2c64 0 0x2a7c2c64

∆S2
0 0x91143078 0 0x91143078
0 0x28785014 0 0x28785014
0 0x35288a58 0 0x35288a58

∆S3
0 0x80010008 0 0x80010008
0 0x00002000 0 0x00002000
0 0x44400080 0 0x44400080

∆S4
0 0x00000080 0 0x00000080
0 0x00400000 0 0x00400000
0 0x80000000 0 0x80000000

∆S5
0 0 0 0
0 0 0 0
0 0x80000000 0 0x80000000

∆S6
0 0x80000000 0 0x80000000
0 0 0 0
0 0 0 0

(S2
0,3, S

2
1,3, S

2
2,3) and (S3

0,1, S
3
1,3, S

3
2,3) only depend on the input state words (S0

i,j)
(0 ≤ i ≤ 2, 2 ≤ j ≤ 3).

Therefore, by only knowing (S0
i,j) (0 ≤ i ≤ 2, 0 ≤ j ≤ 1), we can fully

compute (S0
0,1, S

0
1,1, S

0
2,1), (S1

0,1, S
1
1,1, S

1
2,1), (S2

0,1, S
2
1,1, S

2
2,1) and (S3

0,3, S
3
1,1, S

3
2,1).

For simplicity, the conditions on these 12 internal state words in Table 3 are
called L-Conditions.

Similarly, by only knowing (S0
i,j) (0 ≤ i ≤ 2, 2 ≤ j ≤ 3), we can fully

compute (S0
0,3, S

0
1,3, S

0
2,3), (S1

0,3, S
1
1,3, S

1
2,3), (S2

0,3, S
2
1,3, S

2
2,3) and (S3

0,1, S
3
1,3, S

3
2,3).

For simplicity, the conditions on these 12 internal state words in Table 3 are
called R-Conditions.

Therefore, the L-Conditions and R-Conditions can be verified independently.
Now, we introduce a method to identify all the possible values for the capacity
of the first two columns (S0

i,j) (1 ≤ i ≤ 2, 0 ≤ j ≤ 1) which can fulfill the L-
Conditions. Since the L-Conditions and R-Conditions are identical, the method
works in the same way to find all the possible values for the capacity part of the
last two columns (S0

i,j) (1 ≤ i ≤ 2, 2 ≤ j ≤ 3) which can fulfill the R-Conditions.

Identifying All Possible Solutions To obtain all valid values of (S0
i,j) (1 ≤

i ≤ 2, 0 ≤ j ≤ 1), the following techniques will be exploited to accelerate the
exhaustive search:

1. Merge the conditions in two consecutive rounds, which can significantly
reduce the size of the search space.

2. Use a start-from-the-middle method and the properties of the SP-box to
further accelerate the exhaustive search.

16

Table 3: The conditions implied in the 6-round differential characteristic
S0
0,1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
S0
1,1 −− 0 0 −− 0 −−−−−− 0 − 0 −− 0 0 0 0 0 −−−− 0 − 0 0 −
S0
2,1 −− 0 − 1 − 0 −− 1 0 0 1 1 −−−− 1 − 0 0 −−− 1 0 −− 0 −−
S0
0,3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
S0
1,3 −− 0 0 −− 0 −−−−−− 0 − 0 −− 0 0 0 0 0 −−−− 0 − 0 0 −
S0
2,3 −− 0 − 1 − 0 −− 1 0 0 1 1 −−−− 1 − 0 0 −−− 1 0 −− 0 −−

S1
0,1 − 1 1 1 0 1 −−− 0 1 0 1 0 −− 1 0 0 1 1 0 −−−− 1 1 0 − 1 −
S1
1,1 −−− 1 −−−−−−−−−−− 0 −−−− 1 − 1 −−−− 1 −− 1 −
S1
2,1 −−− 1 −−−−−−−−−−−−− 0 − 1 −−−− 1 −− 0 0 −−−
S1
0,3 − 1 1 1 0 1 −−− 0 1 0 1 0 −− 1 0 0 1 1 0 −−−− 1 1 0 − 1 −
S1
1,3 −−− 1 −−−−−−−−−−− 0 −−−− 1 − 1 −−−− 1 −− 1 −
S1
2,3 −−− 1 −−−−−−−−−−−−− 0 − 1 −−−− 1 −− 0 0 −−−

S1
1,1[2] 6= S1

2,1[11], S1
1,1[10] 6= S1

2,1[19], S1
1,1[12] = S1

2,1[21]

S1
1,1[13] = S1

2,1[22], S1
1,1[18] = S1

2,1[27], S1
1,1[20] 6= S1

2,1[29]

S1
1,1[25] = S1

2,1[2], S1
1,1[29] 6= S1

2,1[6], S1
1,3[2] 6= S1

2,3[11]

S1
1,3[10] 6= S1

2,3[19], S1
1,3[12] = S1

2,3[21], S1
1,3[13] = S1

2,3[22]

S1
1,3[18] = S1

2,3[27], S1
1,3[20] 6= S1

2,3[29], S1
1,3[25] = S1

2,3[2]

S1
1,3[29] 6= S1

2,3[6]

S2
0,1 −− 1 − 0 −−− 0 − 1 − 0 − 0 −− 1 −− 1 −−−−−−−− 0 − 1

S2
1,1 −−− 0 − 0 −−−−−−− 1 1 − 1 −−− 1 0 −− 1 0 −− 1 − 1 0

S2
2,1 − 0 −− 1 −−− 1 −− 0 −−− 1 −− 0 1 − 0 −−−− 0 −−−−−
S2
0,3 −− 1 − 0 −−− 0 − 1 − 0 − 0 −− 1 −− 1 −−−−−−−− 0 − 1

S2
1,3 −−− 0 − 0 −−−−−−− 1 1 − 1 −−− 1 0 −− 1 0 −− 1 − 1 0

S2
2,3 − 0 −− 1 −−− 1 −− 0 −−− 1 −− 0 1 − 0 −−−− 0 −−−−−

S2
0,1[4] 6= S2

2,1[28], S2
0,1[5] 6= S2

2,1[29], S2
0,1[12] = S2

2,1[4]

S2
0,1[31] = S2

1,1[14], S2
1,1[2] 6= S2

2,1[11], S2
1,1[12] = S2

2,1[21]

S2
1,1[19] = S2

2,1[28], S2
1,1[20] 6= S2

2,1[29], S2
1,1[27] 6= S2

2,1[4]

S2
1,1[29] 6= S2

2,1[6], S2
0,3[4] 6= S2

2,3[28], S2
0,3[5] 6= S2

2,3[29]

S2
0,3[12] = S2

2,3[4], S2
0,3[31] = S2

1,3[14], S2
1,3[2] 6= S2

2,3[11]

S2
1,3[12] = S2

2,3[21], S2
1,3[19] = S2

2,3[28], S2
1,3[20] 6= S2

2,3[29]

S2
1,3[27] 6= S2

2,3[4], S2
1,3[29] 6= S2

2,3[6]

S3
0,1 − 0 −−−−−−−−−−−−−− 0 −−−−−−−− 1 −−− 0 −−
S3
1,1 0 0 −−−−−−−−−−− 1 0 −− 1 −−−−−−−−−−−−−−
S3
2,1 −−−− 1 −−− 1 −−−−−−−−−−−−−− 1 −−−−−−−−
S3
0,3 − 0 −−−−−−−−−−−−−− 0 −−−−−−−− 1 −−− 0 −−
S3
1,3 0 0 −−−−−−−−−−− 1 0 −− 1 −−−−−−−−−−−−−−
S3
2,3 −−−− 1 −−− 1 −−−−−−−−−−−−−− 1 −−−−−−−−

S3
1,1[13] 6= S3

2,1[22], S3
1,3[13] 6= S3

2,3[22]

Instead of directly finding all valid values for (S0
i,j) (1 ≤ i ≤ 2, 0 ≤

j ≤ 1), we will first search for all the valid solutions for (S1
0,1, S

1
1,1, S

1
2,1).

It should be noted that once (S1
0,1, S

1
1,1, S

1
2,1) are known, (S2

0,1, S
2
1,1, S

2
2,1)

and (S3
0,3, S

3
1,1, S

3
2,1) can be fully determined. In other words, we can first

identify all the solutions for (S1
0,1, S

1
1,1, S

1
2,1) which can make the conditions on

(S1
0,1, S

1
1,1, S

1
2,1), (S2

0,1, S
2
1,1, S

2
2,1) and (S3

0,3, S
3
1,1, S

3
2,1) hold.

Merging the Conditions. According to Table 3, there are 40 linearly independent
conditions on (S1

0,1, S
1
1,1, S

1
2,1). Moreover, there are 41 linearly independent

conditions on (S2
0,1, S

2
1,1, S

2
2,1). The basic idea to convert partial conditions on

(S2
0,1, S

2
1,1, S

2
2,1) into those on (S1

0,1, S
1
1,1, S

1
2,1) is simple. Specifically, represent

the conditions on (S1
0,1, S

1
1,1, S

1
2,1) using a matrix LM1 at first. Then, represent

17

Table 4: The conforming message pair for the 6-round differential characteristic
The input state S0

0xff792f16 0x9a757bef 0xff792f16 0x9a757bef
0x37feedd1 0x0d8080e8 0x37feedd1 0x0d8080e8
0xaca93960 0x88cda05b 0xaca93960 0x88cda05b

The input state S′0(S0 ⊕∆S0)
0xff792f16 0xe6591fc5 0xff792f16 0xe6591fc5
0x37feedd1 0x0d8080e8 0x37feedd1 0x0d8080e8
0xaca93960 0x88cda05b 0xaca93960 0x88cda05b

The output state S6 after 6-round permutation for S0

0x0765a592 0xcda58e91 0xa5f12648 0xcf35aef1
0x2cecc20e 0xc11436eb 0xba243082 0xc0df1177
0xeda218de 0xeb3f7ab7 0xffb9fd21 0xebe4552b

The output state S′6 after 6-round permutation for S′0

0x0765a592 0x4da58e91 0xa5f12648 0x4f35aef1
0x2cecc20e 0xc11436eb 0xba243082 0xc0df1177
0xeda218de 0xeb3f7ab7 0xffb9fd21 0xebe4552b

∆S6 = S′6 ⊕ S6

0 0x80000000 0 0x80000000
0 0 0 0
0 0 0 0

the conditions on (S2
0,1, S

2
1,1, S

2
2,1) using another matrix LM2. Consider the

following relations between (S1
0,1, S

1
1,1, S

1
2,1) and (S2

0,1, S
2
1,1, S

2
2,1):

S2
0,1[i] =

{
S1

2,1[i]⊕ S1
1,1[i− 9] (0 ≤ i ≤ 2)

S1
2,1[i]⊕ S1

1,1[i− 9]⊕ (S1
0,1[i− 27] ∧ S1

1,1[i− 12]) (3 ≤ i ≤ 31)

S2
1,1[i] =

{
S1

1,1[i− 9]⊕ S1
0,1[i− 24] (i = 0)

S1
1,1[i− 9]⊕ S1

0,1[i− 24]⊕ (S1
0,1[i− 25] ∨ S1

2,1[i− 1]) (1 ≤ i ≤ 31)

S2
2,1[i] =


S1

0,1[i− 24] (i = 0)

S1
0,1[i− 24]⊕ S1

2,1[i− 1] (i = 1)

S1
0,1[i− 24]⊕ S1

2,1[i− 1]⊕ (S1
1,1[i− 11] ∧ S1

2,1[i− 2]) (2 ≤ i ≤ 31)

Therefore, if there are conditions on S2
0,1[i] (0 ≤ i ≤ 2) or on S2

1,1[0] or
on S2

2,1[i] (0 ≤ i ≤ 1), they can be directly converted into linear conditions
on (S1

0,1, S
1
1,1, S

1
2,1). Thus, we can add these newly-generated conditions to

LM1 and apply the Gauss elimination. As for the remaining conditions on
(S2

0,1, S
2
1,1, S

2
2,1), we first check whether the nonlinear part S1

0,1[i−27]∧S1
1,1[i−12]

or S1
0,1[i − 25] ∨ S1

2,1[i − 1] or S1
1,1[i − 11] ∧ S1

2,1[i − 2] can be linearized based
on the conditions on (S1

0,1, S
1
1,1, S

1
2,1). Specifically, if one bit of the nonlinear

part is fixed in (S1
0,1, S

1
1,1, S

1
2,1), the corresponding conditions on (S2

0,1, S
2
1,1, S

2
2,1)

can be directly converted into linear conditions on (S1
0,1, S

1
1,1, S

1
2,1). Then, we

add these newly-generated linear conditions to LM1 and again apply the Gauss
elimination. Such a process is repeated until LM1 becomes stable, i.e. no

18

more conditions on (S2
0,1, S

2
1,1, S

2
2,1) can be converted into new linear conditions

on (S1
0,1, S

1
1,1, S

1
2,1). In this way, there will be finally 61 linearly independent

conditions on (S1
0,1, S

1
1,1, S

1
2,1). In other words, the size of the solution space

of (S1
0,1, S

1
1,1, S

1
2,1) is reduced to 296−61 = 235 from 296−40 = 256 after

converting partial conditions on (S2
0,1, S

2
1,1, S

2
2,1) into those on (S1

0,1, S
1
1,1, S

1
2,1).

An illustration of this procedure can be referred to Figure 7.

The number of bit conditions : 27 40 41 13

27 61The number of bit conditions :

Converting partial conditions on S
2 into those on S

1

S
1

S
0

S
2

S
3

S
0

S
1

S
2

S
3

Conditional

Fig. 7: Illustration of merging conditions

The Start-From-the-Middle Method. According to the above analysis, the
solution space of (S1

0,1, S
1
1,1, S

1
2,1) can now be exhausted in practical time 235. For

each of its possible values, the conditions on (S2
0,1, S

2
1,1, S

2
2,1) and (S3

0,3, S
3
1,1, S

3
2,1)

can be fully verified. In this way, we find that there are in total 1632 solutions for
(S1

0,1, S
1
1,1, S

1
2,1). By sorting the solutions according to (S1

1,1, S
1
2,1), we find that

among all the 1632 solutions, there are 720 different values of (S1
1,1, S

1
2,1) and

each different value of (S1
1,1, S

1
2,1) will correspond to 2 different values of S1

0,1 on
average. Record these 720 different values of (S1

1,1, S
1
2,1) in order to identify all

the valid values of (S0
1,1, S

0
2,1).

It has been discussed in Property 4 that a random tuple (S0
1,1, S

0
2,1, S

1
1,1, S

1
2,1)

is valid with probability 2−32. Once it is valid, (S0
0,1, S

1
0,1) is determined. In other

words, although the attacker can freely choose the values of S0
0,1, whether the

720 different values of (S1
1,1, S

1
2,1) can be reached only depends on the value of

(S0
1,1, S

0
2,1). According to Table 3, there are 27 linearly independent conditions

on (S0
1,1, S

0
2,1). Thus, a naive way to find all the valid solutions of (S0

1,1, S
0
2,1) is to

exhaust all the 264−27 = 237 possible values of (S0
1,1, S

0
2,1) since we can pre-assign

values to (S0
1,1, S

0
2,1) to make the 27 linear conditions on them hold. For each

guessed value, check whether there exists a tuple (S1
1,1, S

1
2,1) which can make the

tuple (S0
1,1, S

0
2,1, S

1
1,1, S

1
2,1) valid. Obviously, the time complexity of this method

is 720×237 = 246.4 and therefore it still requires a significant amount of time. To
accelerate this exhaustive search, we use the following property of the SP-box.

19

Property 6 Given the triple (IZ,OY,OZ), IY can be recovered by solving a
linear equation system of size 32.

Proof. For simplicity, we omit the rotate shift of (IX, IY) and only focus on the
following relations.

OZ ← IX ⊕ IZ � 1⊕ (IY ∧ IZ)� 2

OY ← IY ⊕ IX ⊕ (IX ∨ IZ)� 1

OX ← IZ ⊕ IY ⊕ (IX ∧ IY)� 3

Therefore, we can obtain that

OY = IY ⊕ (OZ ⊕ IZ � 1⊕ (IY ∧ IZ)� 2)⊕ ((OZ ⊕ IZ � 1⊕ (IY ∧ IZ)� 2) ∨ IZ)� 1.

Since (IZ,OY,OZ) are known, 32 linearly independent equations in terms of
the unknown 32 bits of IY can be derived. Consequently, IY can be recovered
by solving a linear equation system of size 32.

Based on Property 6, the search space of (S0
1,1, S

0
2,1) can be significantly

reduced, as specified below:

Step 1: Record the 13 conditions on S0
1,1 displayed in Table 3 by a matrix LM3.

Keep the 14 conditions on S0
2,1 displayed in Table 3 hold.

Step 2: Guess all possible values of the remaining unknown 18 bits of S0
2,1. For

each guess of S0
2,1, exhaust the 720 different values of (S1

1,1, S
1
2,1). For

each guessed value of (S0
2,1, S

1
1,1, S

1
2,1), according to Property 6, 32 linear

equations in terms of S0
1,1 can be derived. Add these 32 linear equations

to LM3 and check the consistency using Gauss elimination. If they are
consistent, output the solution to S0

1,1.

The time complexity of the above method is therefore 720 × 218 = 227.4. With
this method, we find that there are in total 0x34c8 valid values for (S0

1,1, S
0
2,1).

Moreover, each solution of (S0
1,1, S

0
2,1) will correspond to 2 different values of

(S1
1,1, S

1
2,1). Note that each (S1

1,1, S
1
2,1) can correspond to 2 different values of

S1
0,1 on average. Thus, each valid solution of (S0

1,1, S
0
2,1) can correspond to 4

different solutions of S1
0,1 on average. An illustration of the start-from-the-middle

procedure can be referred to Figure 8.

Calculating the Probability. It has been identified that there are in total
0x34c8 valid values for (S0

1,1, S
0
2,1), each of which will correspond to 4 different

values of S1
0,1. Note that S1

0,1 is computed by using (S0
0,0, S

0
1,0, S

0
2,0) due to the

effect of Small-Swap. It has been pointed out in Property 2 that a random
tuple (S0

1,0, S
0
2,0, S

1
0,1) holds with probability 2−15.5. Thus, a random tuple

(S0
1,0, S

0
2,0, S

0
1,1, S

0
2,1) is valid with probability 2−64 × 0x34c8 × (4 × 2−15.5) ≈

2−63.8. It has been discussed above that L-Conditions and R-Conditions are
identical. Consequently, the whole capacity part (S0

i,j) (1 ≤ i ≤ 2, 0 ≤ j ≤ 3) is

valid with probability 2−127.6. Once it is valid, a solution to (S0
0,0, S

0
0,1, S

0
0,2, S

0
0,3)

20

S0 S1 S2 S3

1. Exhaust all possible 235 values of S1.

2. Exhaust (S0

1,1
, S0

2,1
) and check (S0

1,1
, S0

2,1
, S1

1,1
, S1

2,1
).

SP

S SW

AC

SP SP

B SW

Fig. 8: Illustration of the start-from-the-middle method

can always be computed to make the L-Conditions and R-Conditions hold.
In the following, how to find the solution to (S0

0,0, S
0
0,1, S

0
0,2, S

0
0,3) when (S0

i,j)
(1 ≤ i ≤ 2, 0 ≤ j ≤ 1) are valid will be described. An illustration of the
probability calculation can be referred to Figure 9.

Probability: 2−64
× 0x24c8 = 2−50.3

Probability: 2−15.5
× 4 = 2−13.5

Total probability: 2(−13.5−50.3)×2 = 2−127.6

SP

S SW

AC

Fig. 9: Calculating the probability of a valid capacity part

Storing the Solutions. Note that there is no need to enumerate all the valid
solutions for (S0

i,j) (1 ≤ i ≤ 2, 0 ≤ j ≤ 3), which will be very costly. Instead, we
can construct 4 small tables to record all the valid solutions as follows.

1. Construct the table TA0 to record the valid tuples (S0
1,1, S

0
2,1).

2. Construct the table TA1 to record the valid tuples (S1
0,1, S

1
1,1, S

1
2,1).

3. Construct the table TA2 to record the valid tuples (S0
1,1, S

0
2,1, S

1
1,1, S

1
2,1).

4. Construct the table TA3 to record the valid tuples (S0
1,1, S

0
2,1, S

1
0,1).

In this way, once (S0
i,j) (1 ≤ i ≤ 2, 0 ≤ j ≤ 3) are valid, we can retrieve the

corresponding (S1
1,1, S

1
2,1, S

1
1,3, S

1
2,3) from TA2. And once (S1

1,1, S
1
2,1, S

1
1,3, S

1
2,3)

are known, we can retrieve valid (S1
0,1, S

1
0,3) from TA1. Until this phase,

(S0
1,0, S

0
2,0, S

1
0,1), (S0

1,2, S
0
2,2, S

1
0,3), (S0

1,1, S
0
2,1, S

1
1,1, S

1
2,1) and (S0

1,3, S
0
2,3, S

1
1,3, S

1
2,3)

are known. Thus, we can compute the corresponding value of (S0
0,0, S

0
0,1, S

0
0,2, S

0
0,3)

and they will always make the L-Conditions and R-Conditions hold. Thus,
the remaining work is how to find a valid value of the capacity part (S0

i,j)
(1 ≤ i ≤ 2, 0 ≤ j ≤ 3).

21

5.3 Finding a Valid Capacity Part

According to the above analysis, converting a semi-free-start collision attack into
a collision attack based on the 6-round differential characteristic in Table 2 is
reduced to finding a valid capacity part of the output state after several message
blocks are absorbed. Since the capacity part is valid with probability 2−127.6, a
naive way is to try 2127.6 random messages, which is obviously too inefficient. In
the following, a time-memory trade-off method will be introduced to efficiently
find a message which can make the capacity part valid. Another method without
time-memory trade-off can be referred to Appendix D.

The Exhaustive Search with Time-Memory Trade-off An illustration
of the procedure can be referred to Figure 10. Note that the valid values of
(S6

1,1, S
6
2,1) have been stored in TA0 and (S6

1,3, S
6
2,3) shares the same valid values

with (S6
1,1, S

6
2,1) due to the symmetry of the 6-round differential characteristic.

Moreover, given a valid value of (S6
1,1, S

6
2,1), by using TA3 and the Property 2

of the SP-box, we can determine whether (S6
1,0, S

6
2,0) is valid with only 4 times

of check. Why 4 times are needed can be referred to the part to calculate the
probability of a valid capacity part.

To efficiently find a valid value for S6, some conditions on (S0
i,j) (1 ≤ i ≤

2, 0 ≤ j ≤ 3) will be added, as specified below:
(S0

1,0 ≪ 9) ∧ 0x1fffffff = 0,

(S0
1,1 ≪ 9) ∧ 0x1fffffff = 0,

(S0
1,2 ≪ 9) ∧ 0x1fffffff = 0,

(S0
1,3 ≪ 9) ∧ 0x1fffffff = 0.

(23)

In this way, (S1
0,0, S

1
0,1, S

1
0,2, S

1
0,3) will be independent of (S0

0,0, S
0
0,1, S

0
0,2, S

0
0,3)

based on Property 1. For readability, how to find a message which can lead to
an output whose capacity part satisfies Equation 23 will be first skipped. In
the following, we start from how to find a valid solution for the capacity part
of S6 when Equation 23 has been fulfilled. We refer to Figure 10 for better
understanding. The corresponding procedure is as follows:

Step 1: Exhaust all 0x34c8 possible values of (S6
1,1, S

6
2,1). For each value, guess

S5
2,1 and compute S5

1,1. Store all 232 × 0x34c8 ≈ 245.7 possible values
of (S5

1,1, S
5
2,1, S

6
1,1, S

6
2,1) in the table TA4. Due to the symmetry of the

6-round differential characteristic, (S5
1,3, S

5
2,3, S

6
1,3, S

6
2,3) take the same

possible values with that of (S5
1,1, S

5
2,1, S

6
1,1, S

6
2,1).

Step 2: Exhaust all 264 possible values of (S0
0,0, S

0
0,2) and compute the corre-

sponding (S5
0,1, S

5
0,3). Record all the values of (S5

0,1, S
5
0,3, S

0
0,0, S

0
0,2) in

the table TA5.
Step 3: Exhaust all 264 possible values of (S0

0,1, S
0
0,3). For each value, compute

the corresponding (S5
1,1, S

5
2,1, S

5
1,3, S

5
2,3). According to TA4, retrieve the

corresponding (S6
1,1, S

6
2,1, S

6
1,3, S

6
2,3) if there is. Otherwise, try another

22

S
0

0,0S
0

0,1S
0

0,2S
0

0,3

S
0

1,0S
0

1,1S
0

1,2S
0

1,3

S
0

2,0S
0

2,1S
0

2,2S
0

2,3

S
1

0,0

S
1

1,0

S
1

2,0

S
1

0,1

S
1

1,1

S
1

2,1

S
1

0,2S
1

0,3

S
1

1,2S
1

1,3

S
1

2,2S
1

2,3

S
5

0,0S
5

0,1S
5

0,2S
5

0,3

S
5

1,0S
5

1,1S
5

1,2S
5

1,3

S
5

2,0S
5

2,1S
5

2,2S
5

2,3

S
6

0,0S
6

0,1S
6

0,2S
6

0,3

S
6

1,0S
6

1,1S
6

1,2S
6

1,3

S
6

2,0S
6

2,1S
6

2,2S
6

2,3

SP

S SW

AC

SP

SP

B SW

SPSP

S SW

AC

SP

Fig. 10: Matching one valid capacity part

guess of (S0
0,1, S

0
0,3). It is expected that there will be 264+(−64+45.7)×2 =

227.4 valid values of (S0
0,1, S

0
0,3, S

6
1,1, S

6
2,1, S

6
1,3, S

6
2,3). For each valid value,

move to Step 4.
Step 4: Once (S6

1,1, S
6
2,1, S

6
1,3, S

6
2,3) is known, compute the corresponding (S5

0,1, S
5
0,3)

according to Property 4. Then, retrieve the corresponding (S0
0,0, S

0
0,2)

from TA5. Once (S0
0,0, S

0
0,2) is determined, we can compute (S6

1,0, S
6
2,0, S

6
1,2, S

6
2,2)

and check its validity according to TA3, which holds with probability
(4 × 2−15.5)2 = 2−27. Thus, it is expected to find one solution to
(S0

0,0, S
0
0,1, S

0
0,0, S

0
0,3) which can make the capacity part of S6 valid.

It can be easily observed that the time and memory complexity of the above
procedure are both 264.

Fulfilling Equation 24. It should be observed that the initial state of Gimli-Hash
satisfies Equation 23. Thus, we can start from an input state S0 whose capacity
part satisfies Equation 23 and find a solution to (S0

0,0, S
0
0,1, S

0
0,2, S

0
0,3) in order

that the capacity part of S6 satisfies Equation 24. The procedure is almost the
same with the above one.

(S6
1,0 ≪ 9) ∧ 0x1fffffff = 0,

(S6
1,1 ≪ 9) ∧ 0x1fffffff = 0,

(S6
1,2 ≪ 9) ∧ 0x1fffffff = 0,

(S6
1,3 ≪ 9) ∧ 0x1fffffff = 0.

(24)

Step 1: Exhaust all 264 possible values of (S0
0,0, S

0
0,2) and compute the corre-

sponding (S5
0,1, S

5
0,3). Record all the values of (S5

0,1, S
5
0,3, S

0
0,0, S

0
0,2) in

the table TA6.
Step 2: Exhaust all 264 possible values of (S0

0,1, S
0
0,3). For each possible value,

(S5
1,1, S

5
2,1, S

5
1,3, S

5
2,3) is computable. Then, based on the Property 5 of

the SP-box, compute (S5
0,1, S

5
0,3) which can make the conditions on

(S6
1,1, S

6
1,3) hold. Once (S5

0,1, S
5
0,3) is determined, we can retrieve from

TA6 the values of (S0
0,0, S

0
0,2). Then, we can compute the full value of S6

and check whether the conditions on (S6
1,0, S

6
1,2) hold. Once it is valid,

23

a solution to the rate part of S0 which can make the 4 × 29 = 116 bit
conditions on the capacity part of S6 hold is found.

Obviously, the time complexity to find a conditional capacity part is upper
bounded by 264 and the memory complexity is 264. Consequently, the time and
memory complexity to convert the SFS collisions into collisions are both 264.

5.4 Discussions on Our MILP Model

Similar to the MILP model for bit-based division property to find an integral
distinguisher [22], our model is used to identify whether there exists a feasible
solution instead of proving something optimal. If the model is infeasible, it simply
implies that the corresponding differential characteristic is invalid. We also have
to admit that the detection of contradictions can be performed manually, espe-
cially for the primitives with simple linear and nonlinear components. However,
when the components become sophisticated, it is rather time-consuming to tackle
this task. For example, the linear and nonlinear components of ASCON [10] are
more complex than those of Gimli and we are not able to carry out a manual
analysis of the 2-round differential characteristic for ASCON found in [23].
However, after constructing a similar model for ASCON, we immediately found
that the 2-round differential characteristic [23] is invalid as well. The correctness
of the model for ASCON is verified by setting a correct 4-round differential
characteristic and its corresponding conforming message as inputs, which are
found by the designers in [11]. However, we are not able to improve the results
for ASCON.

We also notice that as the number of the attacked rounds increases, more
variables and more related inequalities are involved, thus making the time to
get a solution increase significantly. Consequently, it is difficult to estimate
whether a differential characteristic can be verified in practical time. We believe
that if there are simple contradictions in the differential characteristic, they
can be found immediately. However, when the contradictions are complex, it
may take more time to detect them. For example, we followed some truncated
collision-producing differential characteristics for ASCON identified in [10]. For
the dense parts, after we ensure that there is no contradiction for certain two
consecutive rounds and get a solution for the differential characteristic, when
three consecutive rounds are tested, contradictions start to appear and it takes
some time for the solver to output ”infeasible”.

Therefore, we provide an insight on searching for differential characteristics
for the permutation-based primitives. Suppose the target is to search for a
characteristic for up to XR rounds. For such a task, one can involve the
value transitions in a suitable place of the differential characteristics to avoid
the inconsistency in this part. After a feasible solution is found, involve the
value transitions in longer consecutive rounds and further check the consistency.
However, it can not be guaranteed that we can always obtain a solution
(”feasible”) or no solution (”infeasible”) in practical time.

24

6 SFS Collisions for Intermediate 8-Round Gimli-Hash

The collision attack on 6-round Gimli-Hash has been described above. To further
understand the security of Gimli-Hash, a SFS collision attack on the intermediate
8 rounds of Gimli-Hash will be described in this section. Specifically, the following
sequence of operations (8-round permutation) will be considered:

(SP)→ (SP→ B SW)→ (SP)

→ (SP→ S SW→ AC)→ (SP)→ (SP→ B SW)→ (SP)

→ (SP→ S SW→ AC).

In addition, our target is to find an inner collision, i.e. the collision in the capacity
part, which can be trivially converted to a real SFS collision by using more
message blocks to absorb the difference in the rate part.

Different from the collision attack on 6-round Gimli-Hash, this attack does
not rely on a specific differential characteristic. Instead, the structure of the
intermediate 8-round permutation will be exploited. As shown in Figure 11, the
message difference is only injected in S1

0,3 and the difference of several internal
state words are conditioned in order to generate an inner collision. In other
words, finding a SFS collision is equivalent to finding a message pair which can
make the conditions on these intermediate words hold.

6.1 Fulfilling ∆S3
0,1 = 0, ∆S5

1,3 = 0 and ∆S5
2,3 = 0

First of all, consider the conditions on ∆S3 and ∆S5, i.e. ∆S3
0,1 = 0, ∆S5

1,3 = 0
and ∆S5

2,3 = 0. The following facts should be noticed:

– S3
0,1 only depends on (S1

0,3, S
1
1,3, S

1
2,3).

– (S5
1,3, S

5
2,3) only depend on (S3

0,3, S
3
1,3, S

3
2,3).

– S3
0,3 only depends on (S1

0,1, S
1
1,1, S

1
2,1).

– (S3
1,3, S

3
2,3) only depend on (S1

0,3, S
1
1,3, S

1
2,3).

Therefore, the corresponding attack procedure to make the above three condi-
tions hold can be described as below:

Step 1: Randomly choose a value for (S1
1,3, S

1
2,3), exhaust all 232 possible values

of S1
0,3 and compute the corresponding (S3

0,1, S
3
1,3, S

3
2,3). Store these

values in a table and sort it according to S3
0,1.

Step 2: For each pair of (S3
0,1, S

3
1,3, S

3
2,3) colliding in S3

0,1, exhaust all 232 possible
values of S3

0,3. Then, we can compute a pair of (S5
1,3, S

5
2,3) and check

whether they collide. If all possible values of S3
0,3 are used up and there

is no collision in (S5
1,3, S

5
2,3), goto Step 1. If a collision in (S5

1,3, S
5
2,3) is

found, move to Step 3.
Step 3: Randomly choose a value for (S3

1,1, S
3
2,1) and compute backward to

obtain (S1
0,1, S

1
1,1, S

1
2,1).

25

0

0

0

0

∆S1
∆S2

∆S3
∆S4

∆S5

∆S6
∆S7

∆S8Conditional

Active

Inactive

SP SP

B SW

SP SP

S SW

AC

SP

SP

B SW

0

0

∆S9

SPSP

S SW

AC

Fig. 11: SFS collision attack on the intermediate 8-round Gimli-Hash

Complexity Evaluation. Obviously, at Step 1, we can expect 231 pairs of
(S3

0,1, S
3
1,3, S

3
2,3) colliding in S3

0,1. The time complexity and memory complexity
to obtain these collisions are both 232. As for Step 2, we need to enumerate
all possible values of S3

0,3 for each colliding message pair. Therefore, the time
complexity is 264. In addition, ∆S5

1,3 = 0 and ∆S5
2,3 = 0 hold with probability

2−64 while only 232+31 pairs of (S3
0,3, S

3
1,3, S

3
2,3) will be checked at Step 2. Thus,

Step 1 will be repeated twice. Since only half state is computed at this phase,
the time complexity to make the conditions ∆S3

0,1 = 0, ∆S5
1,3 = 0 and ∆S5

2,3 = 0
hold is 264, while the memory complexity is 232.

6.2 Fulfilling ∆S7
0,0 = 0, ∆S9

1,2 = 0 and ∆S9
2,2 = 0

After the conditions on ∆S3 and ∆S5 are satisfied, some internal state words will
be fixed, as can be noted in the above attack procedure to fulfill these conditions.
In fact, the above method can be adjusted to fulfill ∆S7

0,0 = 0, ∆S9
1,2 = 0 and

∆S9
2,2 = 0. First of all, notice the following facts:

– S7
0,0 only depends on (S5

0,2, S
5
1,2, S

5
2,2).

– (S9
1,2, S

9
2,2) only depend on (S7

0,2, S
7
1,2, S

7
2,2).

– S7
0,2 only depends on (S5

0,0, S
5
1,0, S

5
2,0).

– (S7
1,2, S

7
2,2) only depend on (S5

0,2, S
5
1,2, S

5
2,2).

– (S5
0,0, S

5
0,2) have already been fixed.

Therefore, the procedure to fulfill the conditions ∆S7
0,0 = 0, ∆S9

1,2 = 0 and
∆S9

2,2 = 0 can be described as below:

Step 1: Exhaust all 264 possible values of (S5
1,2, S

5
2,2). In this way, 264 different

pairs of (S5
0,2, S

5
1,2, S

5
2,2) can be obtained. For each pair, check whether

they collide in S7
0,0, which holds with probability 2−32. Once they collide,

move to Step 2.
Step 2: Exhaust all 232 possible values of S7

0,2. In this way, 232 different pairs
of (S7

0,2, S
7
1,2, S

7
2,2) can be generated. For each pair, check whether they

collide in (S9
1,2, S

9
2,2), while occurs with probability 2−64. Once they

collide, move to Step 3. Otherwise, goto Step 1.

26

Step 3: Randomly choose values for (S5
1,0, S

5
2,0) and compute the corresponding

S7
0,2. Repeat until the computed S7

0,2 is consistent with that obtained at
Step 2. Finally, randomly choose a value for S5

0,3 and the full state of S5

is known. Compute backward to obtain the corresponding S1.

Complexity Evaluation. At Step 1, it is expected that there will be 232 pairs of
(S5

0,2, S
5
1,2, S

5
2,2) colliding in S7

0,0. The corresponding time complexity is 264. For
each colliding pair, at Step 2, we will exhaust 232 all possible values of S7

0,2 and
check whether the collision will occur in (S9

1,2, S
9
2,2). Thus, after traversing all

possible solutions obtained at Step 1, we can expect a collision in (S9
1,2, S

9
2,2).

Thus, the time complexity at Step 2 is 232. As for Step 3, it is obvious that
the time complexity is 232. Therefore, the total time complexity to find a SFS
collision for the intermediate 8-round Gimli-Hash is 264.

Remark. It can be noted that there is a minor difference between the methods
to fulfill the conditions on (S3, S5) and on (S7, S9). Thus, when fulfilling the
conditions on (S3, S5), there is actually no need to consume 232 memory. Similar
to the above method, one can simply first choose two different values for S1

0,3

and then exhaust all possible values of (S1
1,3, S

1
2,3) to obtain 232 pairs colliding

in S3
0,1. Thus, we do not take the memory complexity into account in the final

complexity evaluation. On the other hand, 232 memory is cheap as well.

6.3 Experimental Verification

One may doubt whether the above differential pattern for 8-round Gimli-Hash
is valid. To confirm it, our MILP model is applied. Since the generic complexity
we found is 264, it is reasonable that the solver cannot find a solution in practical
time, except the case when there are some more clever algorithms to solve the
corresponding inequalities in the solver. According to the output of the Gurobi
solver, it keeps trying to solve the inequalities and does not output ”infeasible”
for such a differential pattern. Thus, we believe that the 8-round differential
pattern is reasonable. As a counter-example, an impossible 7-round differential
pattern is displayed in Appendix E.

7 State Recovery Attack on 9-Round Gimli

For the AE scheme specified in the submitted Gimli document [1], the key length
is 256 bits while the designers claim only 128-bit security. Such a security claim
is strange since there is no generic attack matching this bound. Although there is
a key-recovery attack on 22.5-round Gimli [12], it only works for an ad-hoc mode
and cannot be directly applied to the official scheme. Thus, we are motivated
to devise the following two attacks and we believe that they are meaningful to
further understand the security of Gimli.

1. The attack on a round-reduced variant matching the 2128 security claim.

27

2. Maximize the number of rounds that can be attacked with complexity below
2256.

According to the specification of the AE scheme, it seems difficult to devise
an attack starting from the initializing phase when the key and the nonce will
be mixed since 2r-round permutation needs to be considered when attacking
r-round Gimli in the nonce-respecting setting. Therefore, we only focus on the
encryption phase when part of the secret state will be leaked. Specifically, the
first row of the Gimli state will be leaked to an attacker at the encryption phase.
Thus, our aim is to recover the full secret state using the leaked information. A
brief description of the AE scheme can be referred to Appendix H. The complete
description of the authenticated encryption scheme can be referred to [1]. For
our state recovery attack, four 128-bit message blocks will be used, as shown in
Figure 12. The aim is to recover the secret state of P1. The attack procedure
can be divided into three steps, as specified below:

f

P0

f f

P1 P2 P3

Known Unknown

Fig. 12: Leaked information in the state recovery attack

Step 1: Find all the solutions for the unknown 256 bits of P1 which can match
the first row of P0. Since the matching probability is 2−128, it is expected
that there will be 2128 solutions.

Step 2: For each solution matching the first row of P0, check whether it can
match the first row of P2 and P3 simultaneously. Since the matching
probability is 2−256, it is expected to find the unique correct solution for
the unknown 256 bits of P1.

Step 3: Once the unique solution is found, the full state of P1 is known and we
can compute backward to obtain the secret key.

As can be noticed, the main obstacle is Step 1. To gain an advantage over the
brute force, all the solutions to the unknown 256 secret state bits of P1 which
can match the first row of P0 have to be collected in less than 2256 time. Thus,
in the description of the state recovery attacks on 5/9-round Gimli, we mainly
focus on Step 1. The attack on 5-round Gimli matching the 2128 security claim
can be referred to Appendix F. In the following, how to mount a state-recovery
attack on 9-round Gimli with complexity less than 2256 will be detailed.

7.1 State Recovery Attack on 9-Round Gimli

As shown in Figure 13, our aim is to exhaust all possible values of (S9
i,j) (1 ≤ i ≤

2, 0 ≤ j ≤ 3) and then compute backward to check whether the first row of S0 can

28

be matched. The complexity is required not to exceed 2256. The corresponding
attack procedure can be described as follows:

S
0

S
0.5

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

Known

Guessed

Further guessed

Known after guess

SP

S SW

AC

SP

SP

B SW

SPSP

S SW

AC

SP

SP

B SW

SP SP

S SW

AC

Fig. 13: State recovery attack on 9-round Gimli

Step 1: Guess (S9
1,0, S

9
2,0, S

9
1,2, S

9
2,2, S

4
0,0, S

4
0,2). For each guess, compute back-

ward to obtain (S0.5
1,0 , S

0.5
2,0 , S

0.5
1,2 , S

0.5
2,2 , S

0.5
0,1 , S

0.5
0,3). Then, according to the

Property 3 of the SP-box, the guess is correct with probability 2−2. Once
it is correct, compute (S0

1,0, S
0
2,0[30 ∼ 0], S0.5

0,0 [30 ∼ 0]). For the correct
guess, store the corresponding value of the tuple

(S0.5
0,0 [30 ∼ 0], S0.5

0,1 , S
0.5
0,2 [30 ∼ 0], S0.5

0,3 , S
4
0,0, S

4
0,1, S

4
0,2, S

4
0,3, S

9
1,0, S

9
2,0, S

9
1,2, S

9
2,2)

in a table denoted by T49. It is expected to have 2192−2 = 2190 valid
values.

Step 2: Similarly, guess (S9
1,1, S

9
2,1, S

9
1,3, S

9
2,3, S

4
0,1, S

4
0,3) and compute the corre-

sponding value of the tuple

(S0.5
0,0 , S

0.5
0,1 [30 ∼ 0], S0.5

0,2 , S
0.5
0,3 [30 ∼ 0], S4

0,0, S
4
0,1, S

4
0,2, S

4
0,3).

Check whether there is a match between

(S0.5
0,0 [30 ∼ 0], S0.5

0,1 [30 ∼ 0], S0.5
0,2 [30 ∼ 0], S0.5

0,3 [30 ∼ 0], S4
0,0, S

4
0,1, S

4
0,2, S

4
0,3)

in the table T49. Once a match is found, a valid value of (S9
i,j) (1 ≤ i ≤

2, 0 ≤ j ≤ 3) is found. Since the matching probability is 2−31×4−128 =
2−252 and there are in total 2190+190 = 2380 pairs, it is expected to find
2380−252 = 2128 valid values of (S9

i,j) (1 ≤ i ≤ 2, 0 ≤ j ≤ 3).

Obviously, the time complexity and memory complexity to enumerate all
valid values of (S9

i,j) (1 ≤ i ≤ 2, 0 ≤ j ≤ 3) are 2192 and 2190, respectively. The

correctness of (S9
i,j) (1 ≤ i ≤ 2, 0 ≤ j ≤ 3) can be simply further verified using

the leaked information from (P2, P3).

29

8 Conclusion

A comprehensive study of Gimli has been made. Especially, a novel MILP model
capturing both difference transitions and value transitions is developed. As far
as we know, this is the first MILP model to search for a differential characteristic
involving the value transitions. It would be interesting to apply this technique to
other permutation-based cryptographic primitives. Based on this new model, we
reveal that some existing differential characteristics of Gimli are incompatible.
Moreover, a practical SFS colliding message pair for 6-round Gimli-Hash is found
by utilizing this model and several techniques to convert the SFS collisions into
collisions are developed. To test how far the SFS collision attack on Gimli-
Hash can go, we also mount an attack on the intermediate 8-round Gimli-Hash
with time complexity 264. For the authenticated encryption scheme, a state-
recovery attack on 9-round Gimli can be mounted with time complexity 2192 and
memory complexity 2190. To the best of our knowledge, these are the best attacks
on round-reduced Gimli, covering the proposed hash scheme and authenticated
encryption scheme.

Acknowledgements. We thank the anonymous reviewers of CRYPTO 2020
for their many helpful comments. We thank Daniel J. Bernstein and Florian
Mendel for some discussions on the cryptanalysis of Gimli. We also thank
Xiaoyang Dong and Rui Zong for the discussions on the contradictions in the
6-round differential characteristic. Fukang Liu and Takanori Isobe are supported
by Grant-in-Aid for Scientific Research (B) (KAKENHI 19H02141) for Japan
Society for the Promotion of Science and SECOM science and technology
foundation. In addition, Fukang Liu is partially supported by National Natural
Science Foundation of China (Grant No.61632012, 61672239).

References

1. https://csrc.nist.gov/Projects/Lightweight-Cryptography/
Round-2-Candidates.

2. https://www.gurobi.com.
3. J. Aumasson, Ç. Çalik, W. Meier, O. Özen, R. C. Phan, and K. Varici.

Improved cryptanalysis of skein. In Advances in Cryptology - ASIACRYPT 2009,
15th International Conference on the Theory and Application of Cryptology and
Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings, pages 542–
559, 2009.

4. D. J. Bernstein, S. Kölbl, S. Lucks, P. M. C. Massolino, F. Mendel, K. Nawaz,
T. Schneider, P. Schwabe, F. Standaert, Y. Todo, and B. Viguier. Gimli : A
cross-platform permutation. In Cryptographic Hardware and Embedded Systems
- CHES 2017 - 19th International Conference, Taipei, Taiwan, September 25-28,
2017, Proceedings, pages 299–320, 2017.

5. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. The Keccak reference, 2011.
http://keccak.noekeon.org.

6. E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems.
In Advances in Cryptology - CRYPTO ’90, 10th Annual International Cryptology

30

https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-2-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-2-Candidates
https://www.gurobi.com
http://keccak.noekeon.org

Conference, Santa Barbara, California, USA, August 11-15, 1990, Proceedings,
pages 2–21, 1990.

7. A. Biryukov, I. Nikolic, and A. Roy. Boomerang attacks on BLAKE-32. In Fast
Software Encryption - 18th International Workshop, FSE 2011, Lyngby, Denmark,
February 13-16, 2011, Revised Selected Papers, pages 218–237, 2011.

8. C. Blondeau, A. Bogdanov, and G. Leander. Bounds in shallows and in miseries.
In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, pages 204–221,
2013.

9. C. De Cannière and C. Rechberger. Finding SHA-1 characteristics: General results
and applications. In X. Lai and K. Chen, editors, Advances in Cryptology -
ASIACRYPT 2006, 12th International Conference on the Theory and Application
of Cryptology and Information Security, Shanghai, China, December 3-7, 2006,
Proceedings, volume 4284 of LNCS, pages 1–20. Springer, 2006.

10. C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer. Ascon v1.2, 2018.
https://ascon.iaik.tugraz.at/files/asconv12-nist.pdf.

11. C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer. Preliminary
analysis of Ascon-Xof and Ascon-Hash (version 0.1), 2019. https:
//ascon.iaik.tugraz.at/files/Preliminary_Analysis_of_
Ascon-Xof_and_Ascon-Hash_v01.pdf.

12. M. Hamburg. Cryptanalysis of 22 1/2 rounds of gimli. Cryptology ePrint Archive,
Report 2017/743, 2017. https://eprint.iacr.org/2017/743.

13. S. Kölbl, G. Leander, and T. Tiessen. Observations on the SIMON block cipher
family. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I,
pages 161–185, 2015.

14. G. Leurent. Analysis of differential attacks in ARX constructions. In Advances
in Cryptology - ASIACRYPT 2012 - 18th International Conference on the Theory
and Application of Cryptology and Information Security, Beijing, China, December
2-6, 2012. Proceedings, pages 226–243, 2012.

15. G. Leurent. Construction of differential characteristics in ARX designs application
to skein. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I,
pages 241–258, 2013.

16. F. Mendel, T. Nad, and M. Schläffer. Finding SHA-2 characteristics: Searching
through a minefield of contradictions. In Advances in Cryptology - ASIACRYPT
2011 - 17th International Conference on the Theory and Application of Cryptology
and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings,
pages 288–307, 2011.

17. I. Mironov and L. Zhang. Applications of SAT solvers to cryptanalysis of hash
functions. In A. Biere and C. P. Gomes, editors, Theory and Applications of
Satisfiability Testing - SAT 2006, 9th International Conference, Seattle, WA,
USA, August 12-15, 2006, Proceedings, volume 4121 of Lecture Notes in Computer
Science, pages 102–115. Springer, 2006.

18. M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov. The first
collision for full SHA-1. In J. Katz and H. Shacham, editors, Advances in
Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I, volume 10401
of LNCS, pages 570–596. Springer, 2017.

31

https://ascon.iaik.tugraz.at/files/asconv12-nist.pdf
https://ascon.iaik.tugraz.at/files/Preliminary_Analysis_of_Ascon-Xof_and_Ascon-Hash_v01.pdf
https://ascon.iaik.tugraz.at/files/Preliminary_Analysis_of_Ascon-Xof_and_Ascon-Hash_v01.pdf
https://ascon.iaik.tugraz.at/files/Preliminary_Analysis_of_Ascon-Xof_and_Ascon-Hash_v01.pdf
https://eprint.iacr.org/2017/743

19. S. Sun, L. Hu, P. Wang, K. Qiao, X. Ma, and L. Song. Automatic security
evaluation and (related-key) differential characteristic search: Application to
SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In
Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on
the Theory and Application of Cryptology and Information Security, Kaoshiung,
Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, pages 158–178, 2014.

20. X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full SHA-1. In V. Shoup,
editor, Advances in Cryptology - CRYPTO 2005: 25th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 14-18, 2005,
Proceedings, volume 3621 of LNCS, pages 17–36. Springer, 2005.

21. X. Wang and H. Yu. How to break MD5 and other hash functions. In R. Cramer,
editor, Advances in Cryptology - EUROCRYPT 2005, 24th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Aarhus,
Denmark, May 22-26, 2005, Proceedings, volume 3494 of LNCS, pages 19–35.
Springer, 2005.

22. Z. Xiang, W. Zhang, Z. Bao, and D. Lin. Applying MILP method to searching
integral distinguishers based on division property for 6 lightweight block ciphers.
In J. H. Cheon and T. Takagi, editors, Advances in Cryptology - ASIACRYPT 2016
- 22nd International Conference on the Theory and Application of Cryptology and
Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I,
volume 10031 of Lecture Notes in Computer Science, pages 648–678, 2016.

23. R. Zong, X. Dong, and X. Wang. Collision attacks on round-reduced Gimli-
Hash/Ascon-Xof/Ascon-Hash. Cryptology ePrint Archive, Report 2019/1115,
2019. https://eprint.iacr.org/2019/1115.

A Algorithm of Gimli

The specification of Gimli is shown in Algorithm 1.

B Proofs of the Properties

In this part, we give the detailed proofs of the properties of the SP-box.

Property 1. If IY [31 ∼ 23] = 0 and IY [19 ∼ 0] = 0, OX will be independent of
IX.

Proof. Based on the specification of the SP-box, we have

OX = IZ ⊕ (IY ≪ 9)⊕ ((IX ≪ 24) ∧ (IY ≪ 9))� 3.

If IY [31 ∼ 23] = 0 and IY [19 ∼ 0] = 0, we have

OX = IZ ⊕ (IY ≪ 9).

Therefore, OX will be independent of IX once such conditions on IY hold.

32

https://eprint.iacr.org/2019/1115

Algorithm 1 Description of Gimli permutation

Input: S = (Si,j)
1: for r from 24 down to 1 inclusive do
2: for j from 0 to 3 inclusive do
3: x← S0,j ≪ 24
4: y ← S1,j ≪ 9
5: z ← S2,j

6:
7: S2,j ← x⊕ z � 1⊕ (y ∧ z)� 2
8: S1,j ← y ⊕ x⊕ (x ∨ z)� 1
9: S0,j ← z ⊕ y ⊕ (x ∧ y)� 3

10: end for
11:
12: if r mod 4 =0 then
13: S0,0, S0,1, S0,2, S0,3 ← S0,1, S0,0, S0,3, S0,2 . Small-Swap
14: else if r mod 2 =0 then
15: S0,0, S0,1, S0,2, S0,3 ← S0,2, S0,3, S0,0, S0,1 . Big-Swap
16: end if
17:
18: if r mod 4 =0 then
19: S0,0 ← S0,0 ⊕ 0x9e377900⊕ r
20: end if
21: end for
22: return (Si,j)

Property 2. A random triple (IY, IZ,OX) is potentially valid with probability
2−15.5 without knowing IX.

Proof. Note that

OX[i] =

{
IZ[i]⊕ IY [i− 9] (0 ≤ i ≤ 2)

IZ[i]⊕ IY [i− 9]⊕ (IX[i− 27] ∧ IY [i− 12]) (3 ≤ i ≤ 31)
(25)

Therefore, given a random triple (IY, IZ,OX), OX[i] (0 ≤ i ≤ 2) is valid with
probability 2−3. As for OX[i] (3 ≤ i ≤ 31), it is potentially valid with probability
(1 − 2−1 × 2−1)29 = 0.7529 since OX[i] can be computed without knowing IX
when IY [i− 12] = 0. Thus, the total probability is 2−3 × 0.7529 = 2−15.5.

Property 3. Given a random triple (IX,OY,OZ), it is valid with probability
2−1. Once it is valid, (OX[30 ∼ 0], IY, IZ[30 ∼ 0]) can be determined.

Proof. Note that

OY [i] =

{
IY [i− 9]⊕ IX[i− 24] (i = 0)

IY [i− 9]⊕ IX[i− 24]⊕ (IX[i− 25] ∨ IZ[i− 1]) (1 ≤ i ≤ 31)
(26)

33

OZ[i] =


IX[i− 24] (i = 0)

IX[i− 24]⊕ IZ[i− 1] (i = 1)

IX[i− 24]⊕ IZ[i− 1]⊕ (IY [i− 11] ∧ IZ[i− 2]) (2 ≤ i ≤ 31)

(27)

Therefore, OZ[0] = IX[8] always holds, thus resulting in a valid random triple
(IX,OY,OZ) with probability 2−1. Once OZ[0] = IX[8] holds, we can first
compute

IY [23] = OY [0]⊕ IX[8],

IZ[0] = OZ[1]⊕ IX[9],

IY [24] = OY [1]⊕ IX[9]⊕ (IX[8] ∨ IZ[0]),

IZ[1] = OZ[2]⊕ IX[10].

Then, we can recursively compute the following bits:

IY [i− 9] = OY [i]⊕ IX[i− 24]⊕ (IX[i− 25] ∨ IZ[i− 1]),

IZ[j − 1] = OZ[j]⊕ IX[j − 24]⊕ (IY [j − 11] ∧ IZ[j − 2])

for 2 ≤ i ≤ 31 and 2 ≤ j ≤ 31. As a result, the 32 bits of IY can be fully
recovered while only IZ[30 ∼ 0] can be recovered. Since

OX = IZ ⊕ IY ≪ 9⊕ ((IX ≪ 24) ∧ (IY ≪ 9))� 3,

only OX[30 ∼ 0] can be recovered as well.

Property 4. Given a random triple (IY, IZ,OZ), (IX,OX,OY) can be uniquely
determined. In addition, a random tuple (IY, IZ,OY,OZ) is valid with proba-
bility 2−32.

Proof. After knowing (IY, IZ,OZ), IX can be computed as follows:

IX = (OZ ⊕ IZ � 1⊕ ((IY ≪ 9) ∧ IZ)� 2) ≫ 24.

After IX is known, the triple (IX, IY, IZ) is fully known and we can therefore
compute (OX,OY). SinceOY can be uniquely computed based on the knowledge
of (IY, IZ,OZ), it is natural to derive that a random tuple (IY, IZ,OY,OZ) is
valid with probability 2−32.

Property 5. Suppose the pair (IY, IZ) and t bits of OY are known. Then t bits
of information on IX can be recovered by solving a linear equation system of
size t.

Proof. Note that

OY = (IY ≪ 9)⊕ (IX ≪ 24)⊕ ((IX ≪ 24) ∨ IZ)� 1.

After knowing (IY, IZ) and t bits of OY , t linearly independent equations in
terms of IX can be derived. Each solution to this equation system will correspond
to a possible value of IX.

34

C Explaining the Contradictions

In this section, we show why the 6-round differential characteristic [23] and the
12-round differential characteristics [4] are invalid.

C.1 Explaining the Contradictions in [23]

For better understanding, we extracted all the conditions on the internal states
implied in the 6-round differential characteristic. How to extract the conditions
from an existing differential characteristic can be seen from our description in
subsection 4.1, where the difference-value relations through the SP-box for Type-
3 and Type-4 expressions are discussed. The conditions in the first three rounds
implied in the 6-round differential characteristic are displayed in Table 5. Based
on this table, we are able to explain one of the contradiction. Specifically, we
have the following set of conditions:

S2
0,1[24] = 0, S1

2,1[24]⊕ S1
1,1[15] = 1, S1

0,1[29] = 0.

Moreover, S2
0,1[24] is computed using the following equation:

S2
0,1[24] = S1

2,1[24]⊕ S1
1,1[15]⊕ S1

0,1[29] ∧ S1
1,1[12].

Therefore, the above three conditions cannot hold simultaneously. Specifically, if
S1

0,1[29] = 0 and S1
2,1[24]⊕S1

1,1[15] = 1, then S2
0,1[24] = 1 must hold according to

the above equation. Consequently, the 6-round differential characteristic in [23]
is invalid.

C.2 Explaining the Contradictions in [4]

For the 12-round differential characteristic in the Gimli document, instead of
directly finding a conforming message pair for the whole differential characteristic
with our model, which we believe is impossible in practical time, we divide
the differential characteristic into several shorter ones and then try to find the
corresponding conforming message pair for each short one. For the differential
characteristic in the first 6 rounds, the solver can return a conforming message
pair in about 27 seconds. However, for the differential characteristic from Round
8 to Round 11, the solver returns ”infeasible”. Such a result motivates us to
carefully investigate the dependency of the conditions in different rounds and
we did identify why there is a contradiction. For better understanding, we
also extract the conditions implied in this short differential characteristic (from
Round 8 to Round 11) as first, as displayed in Table 6. According to this table,
we have the following set of conditions:

S9
1,2[24] = 0, S9

2,2[1] = 1, S10
0,2[1] = 0.

However, S10
0,2[1] is updated with the following equation:

S10
0,2[1] = S9

2,2[1]⊕ S9
1,2[24].

Obviously, the above three conditions cannot hold simultaneously. Therefore,
the 12-round differential characteristic in [4] is invalid as well.

35

Table 5: The conditions implied in the differential characteristic in [23]
S0
0,1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
S0
1,1 0 0 −−−−−−−−−−−−−− 0 0 0 0 0 0 0 0 0 0 −−− 0 −−
S0
2,1 −−−−−−− 1 0 0 1 1 0 0 0 0 1 −−− 1 −− 1 0 −−−−−−−
S0
0,3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
S0
1,3 0 0 −−−−−−−−−−−−−− 0 0 0 0 0 0 0 0 0 0 −−− 0 −−
S0
2,3 −−−−−−− 1 0 0 1 1 0 0 0 0 1 −−− 1 −− 1 0 −−−−−−−
S1
0,1 0 1 0 1 0 1 1 1 0 −−− 1 −− 1 0 −−−−−−−−−−−−− 0 0
S1
1,1 − 1 −−−−−−−−−−−−−−− 1 1 1 − 1 1 1 − 1 −−− 0 −−
S1
2,1 −−−−−− 0 −−−−−−−−−−−−−−−−−−−−−−−−−
S1
0,3 0 1 0 1 0 1 1 1 0 −−− 1 −− 1 0 −−−−−−−−−−−−− 0 0
S1
1,3 − 1 −−−−−−−−−−−−−−− 1 1 1 − 1 1 1 − 1 −−− 0 −−
S1
2,3 −−−−−− 0 −−−−−−−−−−−−−−−−−−−−−−−−−

S1
1,1[7] = S1

2,1[16], S1
1,1[11] = S1

2,1[20]
S1
1,1[15] 6= S1

2,1[24], S1
1,1Y [31] 6= S1

2,1[8]
S1
1,3[7] = S1

2,3[16], S1
1,3[11] = S1

2,3[20]
S1
1,3[15] 6= S1

2,3[24], S1
1,3Y [31] 6= S1

2,3[8]

S2
0,1 −−−−−−− 0 −−− 1 −−− 0 −−−−−−−−−−−−−−−−
S2
1,1 −−−−−−−−−−−−−−−−−− 0 −−−− 0 0 − 0 0 1 − 0 1
S2
2,1 −−−−−−−−− 1 −−−− 1 −− 1 0 −− 1 0 − 0 −−−−−−−
S2
0,3 −−−−−−− 0 −−− 1 −−− 0 −−−−−−−−−−−−−−−−
S2
1,3 −−−−−−−−−−−−−−−−−− 0 −−−− 0 0 − 0 0 1 − 0 1
S2
2,3 −−−−−−−−− 1 −−−− 1 −− 1 0 −− 1 0 − 0 −−−−−−−

S2
0,1[15] 6= S2

1,1[30], S2
1,1[31] = S2

2,1[8]
S2
0,3[15] 6= S2

1,3[30], S2
1,3[31] = S2

2,3[8]

36

Table 6: The conditions implied in the differential characteristic in [4]
S8
0,2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
S8
1,2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
S8
2,2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
S8
0,3 −−−−−−−−−−−−−− 0 −−−−−−−−−−−−−−−−−
S8
1,3 −−−−−−−−−−−−−−−− 0 −−−−−−−− 0 −−−−−−
S8
2,3 −−−−−−−−−−−−−−−− 1 −−−−− 0 −−−−−−−−−

S8
0,3[0] 6= S8

2,3[24]

S9
0,2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
S9
1,2 −−−−−−− 0 −−−−−−−−−−−−−−−− 0 −−−−−−−
S9
2,2 −−−−−−−−−−−−−−− 1 −−−−−−−−−−−−−− 1 −
S9
0,3 −−−−− 0 −− 0 −−−−−−−−−−−−− 0 −−−−−−− 1 1
S9
1,3 −−−−−−−−−−−−−−− 1 −−−−−−−−− 0 −−−−−−
S9
2,3 −−−−−−−−−−−−− 0 −−−−−−−−−−−−−−−− 0 −

S9
1,3[15] = S9

2,3[24]

S10
0,2 −−−−−−− 1 −−−−− 0 −−−−−−−− 1 −−−−−−− 0 −
S10
1,2 −−−−−−− 0 −−−−−−−−−−−−−−−− 0 −−−−−−−
S10
2,2 −−−−−− 0 −−−−−−−−−−−−−− 0 −−−−−−−−−−
S10
0,3 −−−−−−− 1 −−−−−−−−−−−−−− 0 −−−−− 0 −−−
S10
1,3 − 1 −−−−−−−−−−−−−−−−−−− 0 − 0 0 −−−−−−−
S10
2,3 −−−−−−−−−−−− 1 − 1 −−−−−− 1 −− 1 −−−−− 0 −

S10
0,3[1] 6= S10

2,3[25], S10
0,3[18] 6= S10

1,3[1],
S10
1,3[16] = S10

2,3[25], S10
1,3[18] 6= S10

2,3[27]

D Converting SFS Collisions into Collisions without
Time-Memory Trade-off

As depicted in Figure 14, the corresponding procedure to find a message which
can lead to a valid capacity part can be described as follows:

Step 1: Randomly choose a message and compress it with the 6-round Gimli
permutation. Denote the corresponding output state by S0. Repeat
trying random messages until (S0

1,0, S
0
1,2) satisfy the following conditions:

(S0
1,0 ≪ 9) ∧ 0x1fffffff = 0,

(S0
1,2 ≪ 9) ∧ 0x1fffffff = 0.

Step 2: At this step, the capacity part (S0
i,j) (1 ≤ i ≤ 2, 0 ≤ j ≤ 3) is a fixed

constant. According to the Property 1 of the SP-box, when (S0
1,0, S

0
1,2)

satisfies the above conditions, (S5
1,1, S

5
2,1, S

5
1,3, S

5
2,3) is independent of

(S0
0,0, S

0
0,2), which can be easily observed in Figure 14. Thus, we

can guess all possible values of (S0
0,1, S

0
0,3). For each guessed value,

(S5
1,1, S

5
2,1, S

5
1,3, S

5
2,3) is known. Therefore, we exhaust all possible values

in TA0 and check whether there exists a solution to (S6
1,1, S

6
2,1, S

6
1,3, S

6
2,3)

which can make (S5
1,1, S

5
2,1, S

6
1,1, S

6
2,1) and (S5

1,3, S
5
2,3, S

6
1,3, S

6
2,3) valid.

Once a solution is found, move to Step 3.

37

S
0

0,0S
0

0,1S
0

0,2S
0

0,3

S
0

1,0S
0

1,1S
0

1,2S
0

1,3

S
0

2,0S
0

2,1S
0

2,2S
0

2,3

S
1

0,0

S
1

1,0

S
1

2,0

S
1

0,1

S
1

1,1

S
1

2,1

S
1

0,2S
1

0,3

S
1

1,2S
1

1,3

S
1

2,2S
1

2,3

S
5

0,0S
5

0,1S
5

0,2S
5

0,3

S
5

1,0S
5

1,1S
5

1,2S
5

1,3

S
5

2,0S
5

2,1S
5

2,2S
5

2,3

S
6

0,0S
6

0,1S
6

0,2S
6

0,3

S
6

1,0S
6

1,1S
6

1,2S
6

1,3

S
6

2,0S
6

2,1S
6

2,2S
6

2,3

SP

S SW

AC

SP

SP

B SW

SPSP

S SW

AC

SP

Fig. 14: Matching one valid capacity part

Step 3: At this step, (S5
1,1, S

5
2,1, S

6
1,1, S

6
2,1) and (S5

1,3, S
5
2,3, S

6
1,3, S

6
2,3) are fixed and

valid. According to the Property 4 of the SP-box, (S5
0,1, S

5
0,3) can be

computed and become determined. Thus, we exhaust all possible values
of (S0

0,0, S
0
0,2) and compute the corresponding (S5

0,1, S
5
0,3) and check

whether it matches with the value computed by (S5
1,1, S

5
2,1, S

6
1,1, S

6
2,1) and

(S5
1,3, S

5
2,3, S

6
1,3, S

6
2,3). Once they are consistent, (S0

0,0, S
0
0,1, S

0
0,2, S

0
0,3) are

fully known and we can compute the corresponding (S6
1,0, S

6
2,0, S

6
1,2, S

6
2,2).

Note that at this step, (S6
1,1, S

6
2,1, S

6
1,3, S

6
2,3) is fixed and they will

associate with four valid values according to TA3. According to the
Property 2 of the SP-box, (S6

1,0, S
6
2,0, S

6
1,2, S

6
2,2) is valid with probability

(4 × 2−15.5)2 = 2−27 by considering the 4 associated values. Once
(S6

1,0, S
6
2,0, S

6
1,2, S

6
2,2) is valid, we obtain a valid capacity part.

Complexity Evaluation. For Step 1, the time complexity is 256. For Step 2, the
time complexity is 264 × 0x34c8 = 277.7. After the filtering of Step 2, about
264+27.4−64 = 227.4 valid values of (S0

0,1, S
0
0,3) will be left. For Step 3, the time

complexity is 227.4+64 = 291.4 since for each valid (S0
0,1, S

0
0,3) obtained at Step

2, all possible values of (S0
0,0, S

0
0,2) will be traversed. Therefore, the total time

complexity to find a valid capacity part is 291.4.

E The Invalid Differential Characteristic of the Last
7-Round Gimli

As a counter-example, we provide an impossible 7-round differential pattern,
which seems correct at the first glance. As shown in Figure 15, similar to the
8-round differential pattern, we can mount a SFS collision attack on the last
7-round Gimli-Hash based on this pattern. However, when testing the validity
of the differential pattern from ∆S21 to ∆S24, the Gurobi solver immediately
outputs ”infeasible”. Thus, such an attack on the last 7-round Gimli-Hash is
actually invalid.

38

0

0

0

0

∆S17
∆S18

∆S19
∆S20

∆S21

∆S22
∆S23

∆S24Conditional

Active

Inactive

0

0

SP SP

B SW

SP SP

S SW

AC

SP

SP

B SW

SP

Fig. 15: Invalid SFS collision attack on the last 7-round Gimli-Hash

F State Recovery Attack on 5-Round Gimli

As shown in Figure 16, our aim is to exhaust all possible values of (S5
i,j) (1 ≤ i ≤

2, 0 ≤ j ≤ 3) and then compute backward to check whether the first row of S0 can
be matched. The complexity is required not to exceed 2128. The corresponding
attack procedure can be described as follows:

Known

Guessed

Known after guess

S
0

S
0.5

S
1

S
2

S
3

S
4

S
5

SP

S SW

AC

SP

SP

B SW

SPSP

S SW

AC

Fig. 16: State recovery attack on 5-round Gimli

Step 1: Guess (S5
1,0, S

5
2,0, S

5
1,2, S

5
2,2). For each guess, compute backward to obtain

(S0.5
1,0 , S

0.5
2,0 , S

0.5
1,2 , S

0.5
2,2 , S

0.5
0,1 , S

0.5
0,3).

Step 2: According to the Property 3 of the SP-box, (S0
0,0, S

0.5
1,0 , S

0.5
2,0) is valid with

probability 2−1. Once it is valid, compute (S0
1,0, S

0
2,0[30 ∼ 0], S0.5

0,0 [30 ∼
0]). Similarly, we can compute (S0

1,2, S
0
2,2[30 ∼ 0], S0.5

0,2 [30 ∼ 0]) by
considering the tuple (S0

0,2, S
0.5
1,2 , S

0.5
2,2). Thus, for the correct guess at

Step 1, the corresponding value of the tuple (S0.5
0,0 [30 ∼ 0], S0.5

0,1 , S
0.5
0,2 [30 ∼

0], S5
0,3) can be obtained. Since each guess is correct with probability

2−2, it is expected to obtain 2128−2 = 2126 valid values of (S0.5
0,0 [30 ∼

0], S0.5
0,1 , S

0.5
0,2 [30 ∼ 0], S0.5

0,3). The valid values of the following tuple will
be stored in the table T0.5.

(S0.5
0,0 [30 ∼ 0], S0.5

0,1 , S
0.5
0,2 [30 ∼ 0], S0.5

0,3 , S
5
1,0, S

5
2,0, S

5
1,2, S

5
2,2).

39

Step 3: After all possible values of (S5
1,0, S

5
2,0, S

5
1,2, S

5
2,2) are traversed, repeat

a similar procedure to guess (S5
1,1, S

5
2,1, S

5
1,3, S

5
2,3). Specifically, for

each guess of (S5
1,1, S

5
2,1, S

5
1,3, S

5
2,3), compute backward and obtain the

corresponding (S0.5
0,0 , S

0.5
0,1 [30 ∼ 0], S0.5

0,2 , S
0.5
0,3 [30 ∼ 0]). For each obtained

(S0.5
0,0 , S

0.5
0,1 [30 ∼ 0], S0.5

0,2 , S
0.5
0,3 [30 ∼ 0]), check whether there is a match

between (S0.5
0,0 [30 ∼ 0], S0.5

0,1 [30 ∼ 0], S0.5
0,2 [30 ∼ 0], S0.5

0,3 [30 ∼ 0]) in the
table T0.5. Once a match is found, a valid value of (S5

i,j) (1 ≤ i ≤ 2, 0 ≤
j ≤ 3) is found. Since the matching probability is 2−31×4 = 2−124 and
there are in total 2126+126 = 2252 pairs, we expect to find 2252−124 = 2128

valid values of (S5
i,j) (1 ≤ i ≤ 2, 0 ≤ j ≤ 3).

According to the above analysis, the time complexity and memory complexity
to enumerate all the possible values of (S5

i,j) (1 ≤ i ≤ 2, 0 ≤ j ≤ 3) are 2128 and

2126, respectively. For each valid value of (S5
i,j) (1 ≤ i ≤ 2, 0 ≤ j ≤ 3), it can be

simply further verified as described in section 7.

G Difference-Value Relations

The relations between the difference and value in ∧ operation and ∨ operation
are displayed in Table 7 and Table 8.

Table 7: The possible patterns for AND operation a[2] = a[0] ∧ a[1]
a[0] a[1] ∆a[0] ∆a[1] ∆a[2]

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

H Illustration of the AE Scheme of Gimli

We give a brief description of the AE scheme of Gimli. The details can be referred
to [1]. Specifically, the whole phase is composed of four phases: initialization,

40

Table 8: The possible patterns for OR operation a[2] = a[0] ∨ a[1]
a[0] a[1] ∆a[0] ∆a[1] ∆a[2]

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

processing associated data, encryption and extracting tag. As shown in Figure 17,
the nonce is a 128-bit value and the key is of size 256 bits. Each block of the
associated data and the message are both of 128 bits. After the associated data
and message are absorbed, the 128-bit tag will be generated. Especially, when
the associated data is empty, the phase to process the associated data cannot
be skipped.

f
⊕

f

A0

⊕

A1

f
· · ·

f

Ai

Initialization Processing associated data

⊕

M0

f

C0

⊕
f

M1 C1

· · ·

f

Mi Ci

Encryption phase Extracting tag

Nonce Key Injection Tag

Fig. 17: Illustration of the AE scheme, where f is the Gimli permutation, Ai is
the associated data block and Mi is the message block.

41

	Automatic Verification of Differential Characteristics: Application to Reduced Gimli (Full Version)
	Fukang Liu, Takanori Isobe, Willi Meier

