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Abstract. Public permutations have been established as valuable prim-
itives since the absence of a key schedule compared to block ciphers alle-
viates cryptanalysis. While many permutation-based authentication and
encryption schemes have been proposed in the past decade, the birth-
day bound in terms of the primitive’s block length n has been mostly
accepted as the standard security goal. Thus, remarkably little research
has been conducted yet on permutation-based modes with higher secu-
rity guarantees. Only recently at CRYPTO’19, Chen et al showed two
constructions with higher security based on the sum of two public per-
mutation. Their work has sparked increased interest in this direction by
the community. However, since their proposals were domain-preserving,
the question of encryption schemes with beyond-birthday-bound security
was left open.
This work tries to address this gap by proposing CENCPP, a nonce-based
encryption scheme from public permutations. Our proposal is a vari-
ant of Iwata’s block-cipher-based mode CENC that we adapt for public
permutations, thereby generalizing Chen et al.’s Sum-of-Even-Mansour
construction to a mode with variable output lengths. Like CENC, our
proposal enjoys a comfortable rate-security trade-off that needs w + 1
calls to the primitive for w primitive outputs. We show a tight security
level for up to O(22n/3/w2) primitive calls. While w ≥ 1 can be arbitrary,
two independent keys suffice; moreover, although we propose CENCPP

first in a generic setting with w + 1 independent permutations, we show
that only log2(w + 1) bits of the input for domain separation suffice to
obtain a single-permutation variant that still maintains a security level
of up to O(22n/3/w4) queries.
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1 Introduction

Permutation-based Cryptography has been established as an important branch
of symmetric-key cryptography during the 2010s decade since they avoid the task



of designing and analyzing a secure key schedule. After the selection of Keccak
as SHA-3 standard [NIS15], permutations have found their way into manyfold
applications beyond hashing, such as encryption (e.g., OPP [GJMN16]), au-
thentication (Chaskey [MMH+14]), or authenticated encryption (e.g., NORX
[AJN14], Ascon [DEMS16], Ketje [BDP+16], or STRIBOB [SB15]).

The Security of Many Block-cipher-based Modes such as GCM [MV04] or
OCB3 [KR11] is limited by the birthday bound of the primitive’s state size
(usually indicated by n bits). This limitation renders the privacy guarantees
void when some internal collision occurs, which happens with non-negligible
probability after O(2n/2) blocks have been processed under the same key. While
this level of security is often sufficient, it can become problematic for settings
that need primitives with small block lengths [BL16], or for applications that
employ large amounts of data. Moreover, higher security is not undesirable in
the approaching era of quantum computers.
In the domain of block ciphers, the community has consequently proposed vari-
ous modes with higher guarantees over the previous decades, e.g., CENC [Iwa06]
or the Sum of GCM [IM16], just to name examples. Moreover, the usage of tweak-
able block ciphers (TBCs) [LRW02], that take an additional public input called
tweak, has allowed the construction of modes with significantly enhanced security
guarantees. For example, the modes ΘCB3 [KR11] or OTR [Min14] can overcome
the birthday bound with appropriate primitives. As a result, a series of research
introduced highly secure encryption modes [PS16], MACs [IMPS17,Nai15], and
AE schemes [BGIM19,PS16] based upon them.

For Permutation-based Modes, the birthday-bound limitation has been usu-
ally tolerated, e.g. in Farfalle [BDH+17] or OPP [GJMN16]. This generic lack
of security and efficiency has been compensated by using permutations with
larger state sizes. Moreover, it is not easy to overcome the birthday bound when
the primitive is public due to the existence of well-known generic attacks e.g.
[DDKS13,DKS12]. Various approaches tried to increase the security by multiple
calls to the primitive, e.g., in multiple rounds of Even-Mansour constructions
[CLL+14,CLM19,CS14,CS15].
Nevertheless, permutation-based modes do not have to be limited in general.
Often, the designers of permutation-based schemes have argued that the mere
size of their underlying permutation renders birthday attacks infeasible – a valid
and pragmatic argument. However, an equally pragmatic argument is the fact
that the state size of current permutations poses considerable costs either to im-
plementation size, area, or performance. Therefore, efficient permutation-based
modes with higher security appear attractive, be it with some restrictions such
as the need for multiple keys.
One step in this direction has been taken recently by Chen et al. [CLM19]
who proposed two permutation-based PRFs, called Sum-of-Even-Mansour con-
structions (SoEM) and Sum-of-Key-alternating-Ciphers. They provided security
proofs for both with up to O(22n/3) queries. Still, their constructions map only
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fixed-length inputs to fixed-length outputs, which left the question of designing
an encryption scheme with similar security still open.

This Work tries to move a step forwards in this direction. We propose CENCPP[w],
a mode from n-bit permutations with O(22n/3/w2) security where w is a small
user-chosen integer. Our proposal is a straight-forward adaption of Iwata’s CENC
mode [Iwa06]. So, this represents a trade-off, where w can be chosen to be still
below the usual number of round keys e.g. for the AES [NIS01] or Deoxys-BC

[JNP14]. It can be instantiated directly with usual permutations such as Keccak-
f and requires only two independent keys.
While our generic proposal of CENCPP[w] considers (w+1) independent permu-
tations, we suggest a variant that needs only a single public permutation while
sacrificing only log2(w+1) bits of the input space for separating domains. That
is, we derive domain-separated single-primitive variants of SoEM and CENCPP,
that we call DS-SoEM and DS-CENCPP[w], and show their security. We show
that two independent keys are sufficient and necessary for our security guar-
antees by providing also distinguishers for all constructions in O(2n/2) if single
keys or simpler key scheduling approaches would be taken. Moreover, we provide
distinguishers in O(22n/3) queries to note that the security is effectively tight
except the logarithmic factor in w.

The Remainder is structured as follows: Section 2 recalls necessary preliminaries
before Section 3 defines CENCPP. We employ two different keys for our security,
and show that it is necessary to combine the keys for most primitive calls. Our
approach of using keys is necessary. We show that a simpler key scheduling
would lead to a birthday-bound distinguisher in Section 4. Next, the security of
the generic CENCPP is analyzed in Section 5. In Section 6, we propose domain-
separated variants of SoEM and CENCPP, called DS-SoEM and DS-CENCPP.
We provide a design rationale with brief description of distinguishers on weaker
variants in Section 7. Thereupon, we analyze first DS-SoEM in Section 8 and 9.
Finally, Section 10 concludes this work.

2 Preliminaries

In General, we will use lowercase letters x, y for indices and integers, uppercase
letters X,Y for binary strings and functions, calligraphic uppercase letters X ,Y
for sets and spaces. We write F2 for the finite field of characteristic 2 and Fn
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for an n-element vector of elements in F2, or bit strings. X ‖ Y denotes the
concatenation of binary strings X and Y , and X ⊕ Y for their bitwise XOR,
that is, addition in F2. We indicate the length of X in bits by |X |, and write Xi

for the i-th block. We denote by X և X that X is chosen uniformly at random
from the set X . We define Func(X ,Y) for the set of all functions F : X → Y,
Perm(X ) for the set of all permutations π : X → X , and P̃erm(T ,X ) for the
set of tweakable permutations π̃ : T × X → X over X with tweak space T . We
define by X1, . . . , Xj

x←− X an injective splitting of a string X into blocks of
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x-bit such that X = X1 ‖ · · · ‖Xj , |Xi| = x for 1 ≤ i ≤ j − 1, and |Xj | ≤ x.
For positive integer m, we use X≤m =def

⋃m
i=0 X i. By 〈X〉n, we denote the

encoding of an integer X into an n-bit string, e.g., 〈135〉8 = (10000111)2. For
any n-bit string X = (X [n − 1] . . .X [1]X [0]) and non-negative integer x ≤ n,
let lsbx(X) and msbx(X) denote the functions that return the x least significant
and most significant bits of X , respectively. We omit writing n if it is clear from
the context. For q ∈ N, we define [q] =def {1, . . . , q} and [0..q] =def {0, . . . , q}.
Given a vector space V ⊆ F of a field F, and an element α ∈ K, we define the
space α ·V =def {α ·V : V ∈ V}. Moreover, given two spaces V ,W ⊂ F, we define
by V +W =def {V ∈ V ,W ∈ W : V +W}, where addition is in F.

A Distinguisher A is an efficient Turing machine that interacts with a given
set of oracles that appear as black boxes to A. We write ∆A

(
O1;O2

)
for the

advantage of A to distinguish between oracles O1 and O2. All probabilities are
defined over the random coins of the oracles and those of the adversary, if any.
We write AdvX

F (q, σ) =def maxA{AdvX
F (A)} for the maximum over all X-

adversaries A on F that ask at most q queries of at most σ blocks in total to its
oracles. W.l.o.g., we assume that A never asks queries to which it already knows
the answer.
Note that hereafter, we consider information-theoretic distinguishers A, whose
resources are upper bounded only in terms of their maximal numbers of queries
and blocks that they can ask to their available oracles. One can derive the
computation-theoretic counterparts in straight-forward manner. We parametrize
our distinguishers, where we use qc for the number of queries to a construction
and σ to the total number of blocks to the construction. Since we analyze con-
structions Π [π0, . . . , πw] based on public permutations π0, . . . , πw in the ideal-
permutation model, we further use qp for the number of queries to the primitive
oracles.

For primitives, we will often use sets the K = Fn
2 for keys, B = Fn

2 for message
blocks, N = Fν

2 for nonces, and D = F
µ
2 for counters, where n, ν, µ are small

integers.

PRF Security refers to the maximal advantage of distinguishing the outputs of
a scheme from random bits of the expected length. Given two non-empty sets
or spaces X ,Y, let F : K × X → Y be a function, ρ և Func(X ,Y) and K և K
be a secret key. Then, the PRF advantage of A is defined as

AdvPRF

FK
(A)

def
= ∆

A
(FK ; ρ) .

A Nonce-based Encryption Scheme Π = (E ,D) is a tuple of algorithms for
encryption and decryption with signatures E : K × N × F∗2 → F∗2 and D : K ×
N×F∗2 → F∗2, whereN denotes a nonce space. The nonceN ∈ N must not repeat
over all encryption queries. Distinguishers that obey this requirement are called
nonce-respecting. We assume thatΠ is correct, i.e., for allK,N,M ∈ K×N×F∗2,
it holds that DK(N, EK(N,M)) = M .
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Let K և K and ρ : N ×F∗2 → F∗2 be a function that, on input (N,M), computes

C ← EK(N,M) for random K և K and outputs C′ և F
|C|
2 . The nE-security of

a nonce-respecting distinguisher A is defined as

AdvnE

ΠK
(A)

def
= ∆

A
(EK ; ρ) .

In The Ideal-permutation Model, the distinguisher has one or multiple addi-
tional oracles π± that provides access to the public permutation π in forward
and backward direction. Since this work studies schemes based on public per-
mutations, we study the security notions such as PRF and nE security to the
ideal-permutation model. We write Π [π] and E [π], D[π], etc. to indicate that an
encryption scheme Π and its algorithms are based on a primitive π.

The H-coefficient Technique is a proof method by Patarin [Pat08,Pat10]. Here,
we refer to the modernized variant by Chen and Steinberger [CS14]. Let A
be a distinguisher that interacts with its oracles O and obtains outputs from
a real world Oreal or an ideal world Oideal. The results of the interaction are
collected in a transcript or view τ . The oracles can sample random coins before
the experiment (often a key or an ideal primitive that is sampled beforehand),
and are then deterministic [CS14]. We choose two random variables Θreal for
the distribution of transcripts in the real world and correspondingly Θideal for
that in the ideal world, respectively. A transcript τ is called attainable if A can
observe τ with non-zero probability in the ideal world. The fundamental Lemma
of the H-coefficients technique, whose proof can be found e.g., in [CS14,Pat08],
states that we can split the set of all attainable transcripts into two disjoint sets
GoodT and BadT and bound the distinguishing advantage as follows:

Lemma 1 (Fundamental Lemma o. t. H-coefficient Technique [Pat08]).
Assume, there exist ǫ1, ǫ2 ≥ 0 such that for any transcript τ ∈ GoodT, it holds

Pr [Θreal = τ ]

Pr [Θideal = τ ]
≥ 1− ǫ1 and Pr [Θideal ∈ BadT] ≤ ǫ2 .

Then, for all distinguishers A, it holds that ∆A (Oreal;Oideal) ≤ ǫ1 + ǫ2.

The technique has been generalized by Hoang and Tessaro [HT16] in their expec-
tation method, which allowed to derive the fundamental lemma as a corollary.

The Sum-capture Lemma by Chen et al. [CLL+14] states the following.

Lemma 2. Let n, q ∈ N such that 9n ≤ q ≤ 2n−1. Let T = {T 1, . . . , T q} ⊆ Fn
2

such that the values T i for i ∈ [q] are with-replacement samples from Fn
2 . Let

X ,Y ⊂ Fn
2 be arbitrary and S =def {(T,X, Y ) ∈ T ×X ×Y : T = X⊕Y }. Then,

it holds that

Pr

[
|S| ≥ q|X ||Y|

2n
+ 3
√
nq|X ||Y|

]
≤ 2

2n
.

where the randomness is defined over T .
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Fig. 1: The construction SoEM22 by Chen et al. [CLM19], with two independent per-
mutations πi and independent keys each.

3 The CENCPP Mode

This section will define the generic CENCPP. Standing on the shoulders of exist-
ing constructions, we prior give the necessary details of SoEM and CENC first.

3.1 SoEM

At CRYPTO’19, Chen et al. [CLM19] proposed two constructions with beyond-
birthday-bound security from two public permutations each: SoEM (Sum of
Even-Mansour constructions) and SoKAC (Sum of Key-alternating Ciphers).
Both designs represent fixed-length PRFs which they provided analyses for up
to O(22n/3) queries for both. An improved analysis that showed subtleties of the
proof of SoKAC 21 was presented later in [Nan20]. The former sums the results
of two single-round Even-Mansour ciphers, whereas the latter defines a variant
of Encrypted Davies-Meyer [MN17a] from public instead of keyed primitives.
Chen et al. parametrized their constructions as SoEMλκ and SoKACλκ, where
λ denoted the number of permutations, and κ the number of keys. Figure 1
illustrates SoEM22, which will be relevant in this work. Both modes require two
calls to the public permutations and two independent permutations. Moreover,
SoEM demanded two independent keys. Chen et al. considered SoEM12 with
a single permutation: π(M ⊕ K1) ⊕ K1 ⊕ π(M ⊕ K2) ⊕ K2, and SoKAC12 as
π(π(M ⊕K1) ⊕K2) ⊕K1 ⊕ π(M ⊕K1) ⊕K2, and showed distinguishers with
O(2n/2) queries for both.

3.2 CENC

CENC is a nonce-based block-cipher-based mode that generalizes the sum of
permutations by Iwata [Iwa06]. It uses the nonce concatenated with a counter
as block cipher input, splits each sequence of w subsequent message blocks into
chunks, and processes them by XORP.

In XORP, the message M is split into w blocks of n bits, for a small positive
integer w. Let n, ν, µ be integers such that n = ν + µ and w + 1 ≤ 2µ. Let
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E : K × Fn
2 → Fn

2 be a block cipher, and let N = Fν
2 be a nonce space. The

remaining µ bits of the input are used for a counter. Let K ∈ K be a secret
key and N ∈ N be a nonce. Then, XORP[EK , w](N, s) computes a key stream
S1 ‖ . . . ‖Sw as

Si
def
= EK(N ‖ 〈s〉µ)⊕ EK(N ‖ 〈s+ i〉µ), for i ∈ [w] .

Thus, it makes w + 1 block-cipher calls with pairwise distinct inputs, where
EK(X ‖ 〈s〉µ) with the starting value s of the counter is XORed to each of the
other blocks. XORP[EK , w] can be simply used as a length-restricted encryption
scheme by XORing its output to a message M of |M | ≤ n · w bits. The final
chunk is simply truncated to the length of the final message block. We slightly
adapt the definition by [Iwa06,IMV16] to

XORP[EK , w] : N × F
µ
2 → (F2)

n·w,

where XORP[EK , w](N, i) uses N ‖ 〈i〉µ, N ‖ 〈i + 1〉µ, . . . instead of N ‖ 〈0〉µ,
N ‖ 〈1〉µ, . . . as inputs to EK .

CENC concatenates several instances of XORP[EK , w] with pair-wise distinct

inputs. Let M ∈ F∗2 be a message s. t. (M1 ‖ . . . ‖Mm)
n←− M . Let ℓ = ⌈m/w⌉

denote the number of chunks. It must hold that ℓ · (w + 1) < 2µ. Then

CENC[EK , w](N,M)
def
= msb|M|

(
‖ ℓ−1i=0 XORP[EK , w] (N, i · (w + 1))

)
⊕M.

3.3 CENCPP

In the following, we adapt CENC to the public-permutation setting. Let π0,
. . ., πw ∈ Perm(Fn

2 ) be permutations, and let K0,K1 ∈ Fn
2 be independent

secret keys. We define π =def (π0, . . . , πw) as shorthand form. Furthermore,
D ⊆ F

µ
2 be a set of domains, s. t. n = ν + µ. For brevity, we define a key

vector K = (K0,K1). We combine both keys K0 and K1 for the individual
permutations as 2

iK0 ⊕ 2
2iK1, for all i ∈ [0..w], where we assume that the

element 2 is primitive in F2n .
We adapt XORP to XORPP to note that it is based on the XOR of public
permutations. We define XORPP[π, w] : (Fn

2 )
2 × Fn

2 → (Fn
2 )

w, instantiated with
w + 1 permutations π0, . . . , πw, a key space (Fn

2 )
2 as given in Algorithm 1. We

write XORPP as short for XORPP[π, w] when w and the permutations are clear
from the context. Given that the permutations are independent, CENCPP use
the same input (N ‖ 〈i〉µ) for each permutation call in one call of XORPP. Then,
we define the encryption and decryption algorithms E and D of the nonce-based
mode CENCPP as given in Algorithm 1.

3.4 Discussion

Further Constructions with beyond-birthday security from public permutations
are naturally possible. However, our proposal of CENCPP seems very efficient.
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N ‖ 〈0〉

K0 ⊕K1

π0

X1,0

U1,0

V1,0

N ‖ 〈0〉

2K0 ⊕ 22K1

π1

M1

C1

X1,0

U1,1

V1,1

N ‖ 〈0〉

22K0 ⊕ 24K1

π2

M2

C2

X1,0

U1,2

V1,2

N ‖ 〈1〉

K0 ⊕K1

π0

X2,0

U2,0

V2,0

N ‖ 〈1〉

2K0 ⊕ 22K1

π1

M3

C3

X2,0

U2,1

V2,1

N ‖ 〈1〉

22K0 ⊕ 24K1

π2

M4

C4

X2,0

U2,2

V2,2

Fig. 2: Schematic illustration of the encryption of a four-block message M = (M1,
. . ., M4) with CENCPP[(π0, π1, π2), 2]K0,K1

. The final chunk is simply truncated if its
length is less than 2n bits. N is a nonce, K0 and K1 are independent secret keys and
π0, π1, and π2 are independent public permutations.

Algorithm 1 Definition of CENCPP.

101: function CENCPP[π, w].EK(N,M)

102: (M1, . . . ,Mm)
n
←− M

103: ℓ← ⌈m/w⌉
104: for i← 0..ℓ− 1 do
105: j ← i ·w
106: (Sj+1 ‖ · · · ‖Sj+w)
107: ← XORPP[π, w]K(N ‖ 〈i〉µ)
108: for k ← j + 1..j + w do
109: Ck ← msb|Mk|(Sk)⊕Mk

110: return (C1 ‖ · · · ‖Cm)

201: function CENCPP[π, w].DK(N,C)
202: return CENCPP[π, w].EK(N,C)

301: function XORPP[π, w]K(M)
302: (K0,K1)← K
303: (π0, . . . , πw)← π

304: U0 ←M ⊕ (K0 ⊕K1)
305: X0 ← π0(U0)⊕ (K0 ⊕K1)
306: for j ← 1..w do
307: Lj ← (2j ·K0)⊕ (22j ·K1)
308: Uj ← M ⊕ Lj

309: Xj ← πj(Uj)⊕ Lj

310: Cj ← Xj ⊕X0

311: return (C1 ‖ · · · ‖Cw)

Instantiating CENC[π,w] with a two-round Even-Mansour construction could be
an obvious generic way. This approach can provide approximately the security of
the primitive, i.e. 2n/3 bits, and would employ ⌈2w+1

w ⌉ calls to the permutation
for w message blocks.
In their proposal of AES-PRF, Mennink and Neves therefore increased the per-
formance of their construction [MN17b] by instantiating it with five-round AES.
However, its security margin is thin [DIS+18], so that this approach bears some
risk of breaking from improved cryptanalysis in the close future.

More Related Works exist in the secret-permutation setting. Cogliati and
Seurin [CS18] showed that a variant of EDM with a single keyed permutation
– that is EK(EK(M)⊕M) – possesses roughly O(22n/3) security. The work by
Guo et al. [GSWG19] followed this direction, showingO(22n/3/n) security for the
single-permutation variants of EDM and its dual EDMD– EK(EK(M))⊕EK (M).
Moreover, they proved a similar security result also for the sum from a single
permutation and its inverse, SUMPIP: EK(M) ⊕ E−1K (M). This reminds of the
DecryptedWegman-Carter Davies-Meyer construction by Datta et al. [DDNY18]
that would also possess a security bound of O(22n/3) but limited the input space
to a 2n/3-bit message. SUMPIP could retain beyond-birthday-bound security
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(a) XORPP
′.

M
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K αK
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(b) SoEM
′.

Fig. 3: Example of using a weak key schedule for XORPP and SoEM.

with public permutations, i.e.

π(M ⊕K1)⊕K1 ⊕ π−1(M ⊕K2)⊕K2

could be secure beyond O(2n/2) queries when using a public primitive π. How-
ever, such an instantiation would need both encryption and decryption direction
of the primitive implemented, which is less practical than a construction that
only needs a single direction. Plus, for CENCPP, we are unaware how this in-
stantiation would help since it needs at least three independent permutations.
We leave the security of modes similar to SUMPIP as an open question.

4 Distinguisher on Low-rank Key Schedules of XORPP

The keysK0 and K1 are combined a non-intuitive way in CENCPP, using αiK0⊕
α2iK1 for i ∈ [0..w]. In general, this approach of a key schedule can be described
as the multiplication with a Vandermonde matrix L

[
1 α1 α2 · · · αw

1 α2 α4 · · · α2w

]⊤

︸ ︷︷ ︸
L

·
[
K0

K1

]

where the elements are in F2n , and α ∈ F2n is a primitive element, which is often
α = 2, that is the polynomial x1 for practical values of F2n . We assume p(x) is
some irreducible modulus polynomial in F2n . Having SoEM as base, it is more
tempting to employ a key scheduling of K0, K1, αK1, α

2K1, . . . , instead, that
is omitting the addition of K0 for all subsequent permutation calls. In matrix
form, such a key schedule would be written as

[
1 0 0 · · · 0

0 1 α · · · αw−1

]⊤

︸ ︷︷ ︸
L′

·
[
K0

K1

]
.
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While the latter appears much simpler, after transposing its matrix form to
w + 1 rows, it contains rows that are not independent. We can exploit this fact
by cancelling two outputs so that the distinguishing problem reduces to that for
single-key SoEM. Since the steps are not intuitive, we illustrate the birthday-
bound distinguisher in the following. We denote CENCPP with the key-schedule
matrix L′ as CENCPP′ that uses it in calls to a variant of XORPP with this
key schedule. Let us call that XORPP′ for consistency. First, we show that we
can reduce the security of CENCPP′ to the security of SoEM with the key usage
of K,α · K, as illustrated in Figure 3b. Similarly, we denote that variant as
SoEM′ =def SoEM[π1, π2]K,αK .

4.1 Reduction to SoEM′

Suppose, A is an information-theoretic distinguisher on SoEM′. We have a tran-
script τ = {K}∪ τp∪ τc, consisting of the key and two disjoint parts of the tran-
script. The primitive-query transcript τp consists of qp chosen primitive queries
and their corresponding responses (U i, V i) to π1 and (Xk, Y k) to π2 each. The
construction-query transcript τc consists of qc chosen construction queries and
their corresponding responses (M j , Cj). After the interaction with its oracles, A
is given the transcript, that is, also the key K և F2n . A sees C = W ⊕Z where

W
def
= π1(M ⊕K)⊕K

Z
def
= π2(M ⊕ (α ·K))⊕ (α ·K).

In comparison, an adversary A′ on CENCPP[π0, π2, π2]K0,K1
with key schedule

as illustrated in Figure 3a can compute C1 ⊕ C2 = (X1 ⊕ X0) ⊕ (X2 ⊕ X0) =
W ⊕ Z = C. Thus, it holds that

AdvPRF

CENCPP[π0,...,πw,w]K0,K1
(A′) ≥ AdvPRF

SoEM′(A),

where A and A′ ask the same number of construction queries qc and primitive
queries qp to each of the primitives.

4.2 Distinguisher on SoEM′

Next, we consider an information-theoretic distinguisher on SoEM′. Its goal is to
find vector spaces U ,X ,M ⊂ F2n of cardinalities |U|, |X |, |M| ∈ O(2n/2) such
that M + U = M + X = F2n . This ensures that there exist U ∈ U , X ∈ X ,
and M ∈ M such that M + U = K and M + X = α · K, where additions
and multiplication are in the field. Once those spaces have been found, A can
proceed as follows:

1. It queries all values U i ∈ U to its primitive oracle π1, and stores them
together with the corresponding responses V i, (U i, V i), into a list.

2. Similarly, it queries all values Xk ∈ X to its primitive oracle π2, and stores
them together with the corresponding responses Y k, (Xk, Y k), into a second
list.
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3. Moreover, it queries all values M j ∈M to its construction oracle and stores
the tuples (M j , Cj) into a third list.

4. It repeats the queries for the cosets U + c, X + c, andM+ c, where addition
is in the field. This means, A asks the queries U i ⊕ c, Xk ⊕ c, and M j ⊕ c,
where c ∈ F2n is an arbitrary non-zero constant, for all i, j, k ∈ [2n/2]. Define

M ′
j
= M j ⊕ c, U ′

i
= U i ⊕ c and X ′

k
= Xk ⊕ c.

5. If there exist tuples (M j , U i, Xk) such that Cj
1⊕Cj

2 = (U i⊕V i)⊕(Xk⊕Y k)

and C′j1⊕C′j2 = (U ′i⊕V ′i)⊕(X ′k⊕Y ′k), output real, and random otherwise.

For the real construction, the success probability is one. For the random const-
ruction, the probability to produce two pairs at random is approximately O(2−n)
since we can build O(2n/2 · 2n/2) pairs that match both n-bit equations with
probability 2−n each.

Remark 1. In the following, we show an example which works if the message
length is even, which is natural since n is usually even in practice. We exemplify
it for the case when α = 2. The distinguisher works since the message space of
U+X = X +2X = 3X =M covers O(2n/2) messagesM only and still can cover
all key combinations. A general approach is possible for all values of α = 2

i for
any i < n, even for the cases when U + X = 2

i ·K or U +X = (2i + 2
j) ·K.

However, we are not aware yet of how to apply it for general multiples of K.
The bottleneck is to find spaces of cardinalities |U|, |X |, |M| ∈ O(2n/2).

Example: As example, we sketch the procedure for α = 2. Here, we can use

X =
∑n/2−1

i=0 x
2i. In terms of bit strings, this means that we consider all values

whose odd-indexed bits are fixed to zero and the even-indexed bits can take any
value:

X def
= {X ∈ Fn

2 : X2i+1 = 0, for all i ∈ [0..n/2]} .

Thus, the structure of the elements in bit-wise notation isX = (0,Xn−2,0,Xn−4,
. . ., 0, X0), that is all odd-indexed bits are zero. Clearly, the size is |X | = 2n/2.
Moreover, we employ U = 2 · X , that is

U = {U ∈ Fn
2 : X2i = 0, for all i ∈ [0..n/2]} .

Thus, the structure of elements is U = (Un−1, 0, Un−3, 0, . . ., U1, 0), i.e., all
even-indexed bits are zero.
The goal of A is to find a construction query index j ∈ [qc] and primitive query

indices i, k ∈ [qp] such that (Û j = M j ⊕K = U i) ∧ (X̂j = M j ⊕ 2 ·K = Xk).
For this purpose, it constructs messages from M = U + X , which have the
structure of

M = (Mn−2,Mn−2,Mn−4,Mn−4, . . . ,M0,M0) +

{
0 if K < 2n−1

p(x) otherwise.

Let K = (Kn−1,Kn−2, . . . ,K0). A can proceed as follows:
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1. Query all 2n/2 values U i ∈ U to its primitive oracle π1 and store U i ⊕ V i

into a list LU .
2. Query all 2n/2 values Xk ∈ X to its primitive oracle π2 and store Xk ⊕ Y k

into a list LX .
3. Query all 2·2n/2 valuesM j ∈ M to its construction oracle and storeM j⊕Cj

into a list LM .
4. Let c = 1. Repeat the queries U ′

i
, X ′

k
, and M ′

j
, for all i, j, k ∈ [2n/2] and

store the results U ′i ⊕ V ′i into a list L′U , X ′k ⊕ Y ′k into a list L′X , and

M ′
j ⊕ C′

j
into a list L′M .

5. If there exist tuples (M j , U i, Xk) in the lists such that Cj
1 ⊕ Cj

2 = (U i ⊕
V i) ⊕ (Xk ⊕ Y k) and C′

j
1 ⊕ C′

j
2 = (U ′

i ⊕ V ′
i
) ⊕ (X ′

k ⊕ Y ′
k
), output real,

and random otherwise.

For the real construction, the success probability is one. We obtain two cases:
(1) K < 2n−1, and (2) K ≥ 2n−1. We consider the former case first. Here, the
correct tuple (M j , U i, Xk) is given by

M j = (Kn−2,Kn−2, . . . ,K2,K2,K0,K0), which implies

Û j = M j ⊕K

= (Kn−2,Kn−2, . . . ,K2,K2,K0,K0)⊕ (Kn−1,Kn−2, . . . ,K3,K2,K1,K0)

= (Kn−1 ⊕Kn−2, 0, . . . ,K3 ⊕K2, 0,K1 ⊕K0, 0),

X̂j = M j ⊕ 2K

= (Kn−2,Kn−2, . . . ,K2,K2,K0,K0)⊕ (Kn−2,Kn−3, . . . ,K2,K1,K0, 0)

= (0,Kn−2 ⊕Kn−3, . . . , 0,K2 ⊕K1, 0,K0) ,

where Û j follows from the fact that K < 2n−1. Since Û j ∈ U and X̂j ∈ X , there
exist i, k such that U i = Û j and Xk = X̂j . The addition of c to all values in the
tuple to create (M ′

j
, U ′

i
, X ′

k
) leaves the conditions fulfilled.

In the latter case, let the representation of p(x) be (pn−1, . . . , p1, p0). In this
case, the correct tuple (M j , U i, Xk) is given by

M j = (Kn−2,Kn−2, . . . ,K2,K2,K0,K0),

⊕ (pn−1, pn−2, . . . , p3, p2, p1, p0), which implies

Û j = M j ⊕K

= (Kn−2,Kn−2, . . . ,K2,K2,K0,K0)⊕ (Kn−1,Kn−2, . . . ,K3,K2,K1,K0)

⊕ (pn−1, pn−2, . . . , p3, p2, p1, p0)

= (Kn−1 ⊕Kn−2, 0, . . . ,K3 ⊕K2, 0,K1 ⊕K0, 0)

⊕ (pn−1, pn−2, . . . , p3, p2, p1, p0),

X̂j = M j ⊕ 2K

= (Kn−2,Kn−2, . . . ,K2,K2,K0,K0)⊕ (Kn−2,Kn−3, . . . ,K2,K1,K0, 0)

⊕ (pn−1, pn−2, . . . , p3, p2, p1, p0)

= (0,Kn−2 ⊕Kn−3, . . . , 0,K2 ⊕K1, 0,K0)⊕ (pn−1, pn−2, . . . , p3, p2, p1, p0),
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where Û j follows from the fact that K ≥ 2n−1. Again Û j ∈ U and X̂j ∈ X ,
which means that there exists a tuple and the distinguisher succeeds.

5 Security Analysis of CENCPP

This section studies the nE security of CENCPP. Prior, we briefly revisit the
analysis of CENC.

5.1 Recalling the Security of CENC

The Security of XORP. In [Iwa06], Iwata showed that CENC[w] is secure
for up to 22n/3/w message blocks as long as EK is a secure block cipher. At
Dagstuhl’07 [Iwa07], he added an attack that needed 2n/w queries, and showed
O(2n/w) security if the total number of primitive calls remained below σ < 2n/2.
He conjectured that CENC may be secure for up to 2n/w blocks. In [IMV16],
Iwata et al. confirmed that conjecture by a simple corollary from Patarin. We
briefly recall their conclusion. In [Pat10, Theorem 6], Patarin showed the indis-
tinguishability for the sum of multiple independent secret permutations. [IMV16]
provided an explanation how this bound could be adapted to address the security
of XORP:

AdvPRF

XORP[EK ,w] ≤
w2q

2n
+AdvPRP

EK
((w + 1)q, t). (1)

Theorem 3 in [IMV16] conjectured for m being a multiple of w:

AdvnE

CENC[EK,w](q,m, t) ≤ mwq

2n
+AdvPRP

EK

(
w + 1

w
mq, t

)
.

Thus, CENC provided a convenient trade-off of w+1 calls per w message blocks
while ensuring security for up to 2n/w calls to EK .

5.2 The Security of CENCPP

In the following, let n,w be positive integers, π0, . . . , πw և Perm(Fn
2 ) be inde-

pendent public permutations and K0,K1 և K be independent secret keys. We
write K = (K0,K1) and π = (π0, . . . , πw) for brevity. Again, we conduct a two-
step analysis, where we consider (1) the PRF security of XORPP[π, w] and (2)
the PRF security of CENCPP[π, w].

Theorem 1. It holds that

AdvnE

CENCPP[π,w]K(qp, qc, σ) ≤ AdvPRF

XORPP[π,w]K

(
qp,

m

w
qc, σ

)
.

Proof. The proof follows a similar argumentation as that of CENC in [IMV16].
For a maximal number of message chunks ℓ = ⌈σ/w⌉, CENCPP[π, w]K consists of
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the application of ℓ instances of XORPP[π, w]K. We can replace XORPP[π, w]K
by a random function ρ at the cost of

AdvPRF

XORPP[π,w]K

(
qp,

m

w
q,σ
)
.

Since the resulting construction is indistinguishable from random bits, our claim
in Theorem 1 follows.

Theorem 2. Let qc + (w + 1)qp ≤ 2n−w and qc ≥ 9n. It holds that

AdvPRF

XORPP[π,w]K(qp, qc, σ) ≤
(w + 1)2q2pqc

22n
+

(w + 1)3qpqc
22n

+
(w + 1)3q2pq

2
c

23n
+

2qc(qp + qc)
w+1

2n(w+1)
+

(w + 1)2

2n
+

(w + 1)2qp
√
3nqc

2n
.

Proof of Theorem 2. The analysis basically extends and adapts that by Chen
et al. from two to more permutations. In the real world, A has access to a
construction oracle that it can ask at most qc tuples of nonces and messages to
and will receive the corresponding ciphertexts from. Moreover, A has access to
primitive oracles O0, . . . , Ow that it can ask queries U i

j or V i
j to and obtains

V i
j ← πj(U

i
j) or U i

j ← π−1j (V i
j ) for i ∈ [qp] and j ∈ [0..w], respectively. We

say that it asks at most qp queries to each of them. In the ideal world, the
construction queries are answered by random bits of the expected length; the
primitive oracles are the same in both worlds.
We partition the transcript τ into parts: τ = τc ∪ τ0 ∪ . . . ∪ τw, where each
partial transcript captures the queries and responses from a particular oracle.
The construction transcript consists of the keys and the queries to and responses
from the construction oracle: τc = {(K0,K1), (M

1, C1), . . . , (M qc , Cqc)}. The
primitive transcripts τj = {(U1

j , V
1
j ), . . . , (U

qp
j , V

qp
j )} contain exactly the queries

to and responses from permutation πj . We assume that the transcript does not
contain duplicate elements. The keys K0,K1 are given to the distinguisher after
its interaction but before it outputs its decision bit. In both worlds, those keys are
sampled uniformly at random. With their help, the adversary can itself compute
the inputs Û j

i and outputs V̂ j
i of permutations i ∈ [0..w] and queries j ∈ [qc]. We

partition the set of all attainable transcripts into two disjoint sets of GoodT and
BadT that represent good and bad transcripts. We say that τ ∈ BadT iff any
of the following bad events holds; otherwise, τ is called a good transcript. Prior,
we define sets Sα,β =def {(i, j, k) : V̂ i

α ⊕ V̂ i
β = V j

α ⊕ V k
β } for i ∈ [qc], j, k ∈ [qp],

and distinct α < β ∈ [0..w]. Let θ = q2pqc/2
n + qp

√
3nqc be the threshold from

Lemma 2.

Bad Events. We extend the three bad events from [CLM19] as follows. To aid the
reader, we recall that U i

j is the input of the i-th primitive query to the primitive

πj that is answered by V i
j and vice versa. Û i

j the input of the i-th query to that

would go to πj in the real construction and produce V̂ i
j .
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– bad1: There exists a construction query index j ∈ [qc] and primitive query
indices i, k ∈ [qp] as well as distinct permutation indices α, β ∈ [0..w] such

that (Û j
α = U i

α) ∧ (Û j
β = Uk

β ).
– bad2: There exist distinct α, β ∈ [0..w] such that |Sα,β | ≥ θ.
– bad3: There exists a construction query index j ∈ [qc] and primitive query

indices i, k ∈ [qp] as well as distinct permutation indices α, β ∈ [0..w] such

that (Û j
α = U i

α) ∧ (V̂ j
β = V k

β ).
– bad4: There exists a construction query index j ∈ [qc] and a primitive query

index i ∈ [qp] as well as permutation indices α, β, γ ∈ [0..w] with β 6= γ such

that (Û j
α = U i

α) ∧ (V̂ j
β = V̂ j

γ ).
– bad5: There exist distinct construction query indices j, k ∈ [qc], primitive

query index i ∈ [qp] as well as permutation indices α, β, γ ∈ [0..w] such that

(Û j
α = U i

α) ∧ (Ûk
γ = Uk

γ ) ∧ (V̂ j
β = V̂ k

β ).

The probability that a transcript in the ideal world is bad is at most

Pr [Θideal ∈ BadT] ≤
2∑

i=1

Pr[badi] + Pr[bad3|¬bad2] +
5∑

i=4

Pr[badi] .

Lemma 3. Let qc + (w + 1)qp ≤ 2n−w. It holds that

Pr [Θideal ∈ BadT] ≤ (w + 1)2q2pqc

22n
+

(w + 1)3qpqc
22n

+
(w + 1)2

2n
+

(w + 1)3q2p
(
qc
2

)

23n
+

(w + 1)2qp
√
3nqc

2n
.

Proof. In the following, we study the probabilities of the individual bad events.

bad1. This event considers the collisions between two construction-query inputs
and two primitive-query inputs. For this event, it must hold that

M j ⊕ (2α−1K0 ⊕ 2
2(α−1)K1) = U i

α

M j ⊕ (2β−1K0 ⊕ 2
2(β−1)K1) = Uk

β .

Thus, the difference is always given by 2
β−αK0⊕ 2

2(β−α)K1 6= 0. Moreover, the
differences between each tuple (α, β) 6= (α′, β′) are pairwise independent. Thus,
the equations are always independent since the keys are sampled independently
at random. Thus, the probability is 2−2n. Over all indices, we obtain

Pr[bad1] =
∑

j∈[qc]

∑

i∈[qp]

∑

k∈[qp]

∑

0≤α<β≤w

Pr
[
Û j
α = U i

α ∧ Û j
β = Uk

β

]
≤
(
w+1
2

)
q2pqc

22n
.

bad2. For fixed α, β, the probability of this event is given by Lemma 2. Over
the union bound of all combinations of α and β, we obtain that

∑

0≤α<β≤w

Pr [|Sα,β | ≥ θ] ≤ 2
(
w+1
2

)

2n
.
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bad3. This event is similar to bad1; it considers collisions between a construction-
query input and a primitive-query input as well as between a construction-query
and primitive-query output. For this event, it must hold that

M j ⊕ (2α−1K0 ⊕ 2
2(α−1)K1) = U i

α

X̂j
β ⊕ (2β−1K0 ⊕ 2

2(β−1)K1) = V k
β .

The first equation reveals V̂ j
α = V i

α, which yields X̂j
α and therefore X̂j

0 = Cj
α⊕X̂j

α.

Thus, the adversary can deduce X̂j
β for all β 6= α. Since all values Cj

β are sampled
uniformly and independently at random, and so are the keys in both equations,
and the linear equation system between each two equations has maximal rank,
the probability is 2−2n. Since bad2 does not hold, there are at most θ such tuples.
Over all indices, we obtain therefore

Pr[bad3|¬bad2] =
∑

j∈[qc]

∑

i∈[qp]

∑

k∈[qp]

∑

0≤α<β≤w

Pr
[
Û j
α = U i

α ∧ V̂ j
β = V k

β

]

≤
(
w+1
2

)
q2pqc

22n
+

(
w+1
2

)
qp
√
3nqc

2n
.

bad4. In this event, a construction-query input collides with a primitive-query
input, which allows to derive a candidate of V̂ j

α , which reveals all further permu-
tation outputs for the j-th construction query. Thereupon, one of them collides
with a further construction-query output. The probability for the above is at
most 2−2n since {α, β, γ} contain at least two independent indices. W.l.o.g., as-
sume β 6= α. Then, Cj

α and Cj
β are chosen independently uniformly at random

from Fn
2 . Since there are at most w choices for γ 6= β:

Pr[bad4] =
∑

j∈[qc]

∑

i∈[qp]

∑

α∈[0..w]

∑

0≤β<γ≤w

Pr
[
Û j
α = U i

α ∧ V̂ j
β = V̂ j

γ

]

≤ (w + 1)
(
w+1
2

)
qpqc

22n
.

bad5. In this event, the permutation inputs of two distinct construction queries
collide with a primitive-query input each. Both input collisions allow to derive
a candidate of V̂ j

α and V̂ k
γ , which reveals all further permutation outputs for

both construction queries. Thereupon, one of the outputs collides between the
construction-query outputs. The probability for the collisions with the primitive-
query inputs is 2−2n since Cj

α and Ck
γ are chosen independently uniformly at

random from Fn
2 . The probability of the third collision between V̂ j

β = V̂ k
β is

again 2−n. We obtain that

Pr[bad5] ≤
∑

1≤j<k≤qc

∑

i∈[qp]

∑

ℓ∈[qp]

∑

α,β,γ∈[0..w]

Pr
[
Û j
α = U i

α ∧ V̂ j
β = V̂ k

β ∧ Ûk
γ = U ℓ

γ

]

≤
(w + 1)3q2p

(
qc
2

)

23n
.

The bound in Lemma 3 follows.
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Good Transcripts. It remains to consider the interpolation probabilities of good
attainable transcripts.

Lemma 4. It holds that

Pr[Θreal = τ ]

Pr[Θideal = τ ]
≥ 1− 2qc(qp + qc)

w+1

2n(w+1)
.

Proof. Let Allreal(τ) denote the set of all oracles in the real world, and Allideal(τ)
the set of all oracles in the ideal world that produce τ ∈ GoodT. Let Compreal(τ)
denote the fraction of oracles in the real world that are compatible with τ and
Compideal(τ) the corresponding fraction in the ideal world. It holds that

Pr [Θreal = τ ]

Pr [Θideal = τ ]
=
|Compreal(τ)| · |Allideal(τ)|
|Compideal(τ)| · |Allreal(τ)|

.

We can easily bound the number for three out of four terms:

|Allreal(τ)| = (2n)2 · (2n!)w+1

since there exist (2n)2 keys and 2n! possible ways for each of the w+1 indepen-
dent permutations πι. The same argument holds in the ideal world

|Allideal(τ)| = (2n)2 · (2n!)w+1 · (2wn)2
n

,

combined with (2wn)2
n

random functions for the answers to the construction
queries. Moreover,

|Compideal(τ)| = (2wn)2
n−qc ·

w∏

i=0

(2n − qp)!

compatible oracles exist in the ideal world, where (2wn)2
n−qc are the oracles

that produce the correct construction-query outputs for the 2n − qc remaining
non-queried inputs, and for all permutations, there exist (2n − qp)! compatible
primitives each.
It remains to determine |Compreal(τ)|. Like Chen et al., we regroup the queries
from the transcript parts. We generalize their claim [CLM19] to the following to
cover all w + 1 permutations:

Claim. For a good transcript, τ ∈ GoodT, any construction query (M j , Cj) ∈
τc collides with at most one primitive query (U i

α, V
i
α) for some α ∈ [0..w], but

never with multiple primitive queries.

We regroup the queries from τc, τ0, . . . , τw to τnewc , τnew0 , . . . , τneww . The new
transcript sets are initialized by their corresponding old parts, and reordered as
follows:
If there exist j ∈ [qc], i ∈ [qp], and α ∈ [0..w] such that Û j

α = U i
α, then (M j , Cj

α)

is removed from τnewc and (Uβ , Vβ) = (Û j
β, V̂

j
β ) is added to τnewβ , for all β ∈ [0..w]

with β 6= α.
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Given qc constructions queries and qp queries to each of the permutations in
the original transcript, the numbers of queries moved from τc into the primitive
partial transcripts τi is denoted by si. The number of queries in the new const-
ruction transcript is denoted by q′ = qc −

∑w
i=0 si. In the following, for a given

transcript τnew0 of q′ elements, it remains to count the number of permutations
(π) that are compatible with the transcript. The set of occurred (i.e., prohibited)
outputs of πα are denoted by V out

α . For j = [0..q′ − 1], let

λj+1
def
=
∣∣∣
{
(V 1

0 , . . . , V
j+1
0 , . . . , V 1

w , . . . , V
j+1
w )

}∣∣∣ (2)

be the number of solutions that satisfy

(1)
{
(V 1

0 , . . . , V
j
0 , . . . , V

1
w , . . . , V

j
w)
}
satisfy the conditions recursively,

(2) It holds that

V j+1
0 ⊕ V j+1

1 = Cj+1
1 ⊕ (K0 ⊕K1)⊕ (2K0 ⊕ 2

2K1)

...

V j+1
0 ⊕ V j+1

w = Cα+1
w ⊕ (K0 ⊕K1)⊕ (2wK0 ⊕ 2

2wK1) (3)

(3.0) It holds that V α+1
0 6∈ {V 1

0 , . . . , V
α
0 } ∪ V out

0 .
. . .

(3.w) It holds that V α+1
w 6∈ {V 1

w , . . . , V
α
w } ∪ V out

w .

Then, the goal is to define a recursive expression for λα+1 from λα such that a
lower bound can be found for the expression λα+1/λα. It holds that

|Compreal(τ)| = λq′ · (2n − (qp + s0 + q′))! · · · · · (2n − (qp + sw + q′))! · (2n)w·qc ,

where the second term represents the number of permutations compatible with
π0 and the rightmost term contains the number of permutations compatible with
πw. We obtain

Pr[Θreal = τ ]

Pr[Θideal = τ ]
=

λq′ ·
∏w

i=0(2
n − (qp + si + q′))!

((2n − qp)!)w+1
. (4)

Let B(1,2) denote the set of solutions that comply with only Conditions (1)
and (2), without considering Conditions (3.0) through (3.w). Moreover, let B(3.ι:i)
denote the set of solutions compatible with Conditions (1) and (2), but not with
(3.ι : i), for i = 1, . . . , α+ |V out

ι |. From inclusion-exclusion, it follows that

λα+1 =
∣∣B(1,2)

∣∣−

∣∣∣∣∣∣

α+|V out

0 |⋃

i=1

B(3.0:i)

∣∣∣∣∣∣
∪ · · · ∪

∣∣∣∣∣∣

α+|V out

0 |⋃

i=1

|B(3.w:i)|

∣∣∣∣∣∣

≥
∣∣B(1,2)

∣∣−

∣∣∣∣∣∣

α+|V out

0 |∑

i=1

|B(3.0:i)|

∣∣∣∣∣∣
− · · · −

∣∣∣∣∣∣

α+|V out

0 |∑

i=1

|B(3.w:i)|

∣∣∣∣∣∣
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+

α+|V out

0 |∑

i=1

α+|V out

1 |∑

i′=1

∣∣B(3.0:i) ∩ B(3.1:i′)
∣∣+ · · ·

+

α+|V out

0 |∑

i=1

α+|V out

1 |∑

i′=1

∣∣B(3.(w−1):i) ∩ B(3.w:i′)

∣∣

≥ 2n · λα −
α+|V out

0 |∑

i=1

λα − · · · −
α+|V out

w |∑

i=1

λα.

So, it follows that

λα+1 ≥ 2n · λα − (α+ qp + s0) · λα − . . .− (α+ qp + sw) · λα.

Therefore,

λα+1

λα
≥ 2n − (w + 1)α− (w + 1)qp −

w∑

i=0

si

with λ0 = 1. It follows from Equation (4) that

(4) =

s0−1∏

j=0

2n

2n − qp − j
· . . . ·

sw−1∏

j=0

2n

2n − qp − j
·
q′−1∏

i=0

λα+1

λα
· (2n)w∏w

j=0(2
n − qp − i− sj)

≥
q′−1∏

i=0

(2n − (w + 1)α− (w + 1)qp −
∑w

j=0 sj)∏w
j=0(2

n − qp − i− sj)
· 2nw

≥
q′−1∏

i=0

(
1−

∏w
j=0(qp + i+ sj)∏w

j=0(2
n − qp − i− sj)

)

≥
q′−1∏

i=0

(
1−

∏w
j=0(qp + q′ + sj)∏w

j=0(2
n − qp − q′ − sj)

)

≥
q′−1∏

i=0

(
1−

∏w
j=0(qp + q′ + sj)

(2n − qp − q′ − sj)w+1

)
≥
(
1− (qp + q)w+1

(2n − qp − q′ − sj)w+1

)q′

≥ 1− 2q′(qp + q)w+1

2n(w+1)
≥ 1− 2qc(qp + qc)

w+1

2n(w+1)
,

using the fact that qp + q′ + sj ≪ 2n−w. The bound in Lemma 4 follows.

Our claim in Theorem 2 follows from Lemma 1, 3, and 4.

6 Domain-separated Variants

This section derives a single-primitive variant of SoEM that uses domain sepa-
ration for distinct permutations.
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Algorithm 2 Definition of DS-CENCPP, DS-XORPP, and DS-SoEM.

101: function DS-CENCPP[π,w].EK(N,M)

102: (M1, . . . ,Mm)
n
←− M

103: ℓ← ⌈m/w⌉
104: for i← 0..ℓ− 1 do
105: j ← i ·w
106: (Sj+1 ‖ · · · ‖Sj+w)
107: ← DS-XORPP[π,w]K(N ‖ 〈i〉µ)
108: for k ← j + 1..j + w do
109: Ck ← Sk ⊕Mk

110: return msb|M|(C1 ‖ · · · ‖Cm)

201: function DS-CENCPP[π,w].DK(N,C)
202: return DS-CENCPP[π,w].EK(N,C)

301: function DS-XORPP[π,w]K(M)
302: (K0,K1)← K
303: U0 ← (M ⊕ msbn−d(K0 ⊕K1)) ‖ 〈0〉d
304: X0 ← π(U0)⊕ (K0 ⊕K1)
305: for j ← 1..w do
306: Lj ← (2j ·K0)⊕ (22j ·K1)
307: Uj ← (M ⊕ msbn−d(Lj)) ‖ 〈j〉d
308: Xj ← π(Uj)⊕ Lj

309: Cj ← Xj ⊕X0

310: return (C1 ‖ · · · ‖Cw)

401: function DS-SoEM[π,w]K(M)
402: (K0,K1)← K
403: U ← (msbn−d(K0)⊕M) ‖ 〈0〉d
404: X ← (msbn−d(K1)⊕M) ‖ 〈1〉d
405: V ← π(U) ⊕K0

406: Y ← π(X)⊕K1

407: C ← V ⊕ Y
408: return C

DS-SoEM. First, we propose DS-SoEM, a sum of Even-Mansour constructions
that uses (n− d)-bit message inputs and fixes d bits to encode domains that are
distinct for each permutation. Let π ∈ Perm(Fn

2 ) andK = (K0,K1) ∈ (F2n)
2. We

define DS-SoEM[π]K0,K1
: (F2n)

2×Fn−d
2 → Fn

2 to compute DS-SoEM[π]K0,K1
(M),

as listed in Algorithm 2. Note that we use (n− d) bits of the key in forward di-
rection only, i.e., the domain is not masked. Furthermore, for DS-SoEM, a single
bit (i.e. d = 1) suffices to set a zero bit for the call to the left and a one bit for
the domain input to the right permutation. An illustration is given in Figure 4a.

DS-XORPP. In a similar manner, we can define DS-XORPP[π,w]. Here, d ≥
⌈log2(w + 1)⌉ bits are necessary to separate the domains. Let again K =def

(K0,K1) ∈ (F2n)
2. We define

DS-XORPP[π,w] : (F2n)
2 × F

n−d
2 → (Fn

2 )
w

as given in Algorithm 2. An illustration is given in Figure 4b. The input domain
is M ∈ Fn−d

2 . Again, we use (n − d) bits of the key in forward direction only,
i.e., the domain is not masked.

DS-CENCPP is then defined in the natural manner. Let N =def F
ν+µ
2 be a

nonce space such that ν + µ = n − d. Let N ∈ N be a nonce and M ∈ F∗2 be
a message. Let again K =def (K0,K1) ∈ (F2n)

2 and π ∈ Perm(Fn
2 ). Then, the

encryption and decryption algorithms E and D of DS-CENCPP[π,w]K(N,M) are
provided in Algorithm 2.

7 Distinguishers on DS-SoEM and DS-XORPP

This section provides a distinguisher on DS-SoEM that matches our later security
bound, and distinguishers on variants that mask also the domain and use only
a single key, respectively. Thus, they show that our bound is tight (up to a
logarithmic factor) and provide a design rationale on our constructions.
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(b) DS-XORPP[π,w]K0,K1
.

Fig. 4: The domain-separated constructions, here with DS-XORPP[π, 2]. The trape-
zoids represent truncation of the key masks at the input to their b = n − d most
significant bits.

The Existing Distinguisher from [CLM19, Proposition 2] on SoEM12 (one per-
mutation, two independent keys) needed 3 · 2n/2 queries:

1. For i← 1..2n/2, query M i = (〈i〉n/2 ‖ 0n/2) to obtain Ci, and query M∗i =

M i ⊕ 1 to obtain C∗i.
2. For j ← 1..2n/2, query M ′

j
= (0n/2 ‖ 〈j〉n/2) to obtain C′

j
, and query

M ′∗
j
= M ′j ⊕ 1 to obtain C′∗

j
.

After 3 · 2n/2 queries, there exists one tuple (M i,M∗i,M ′j ,M ′∗
j
) such that

M i ⊕ M ′j = M∗i ⊕ M ′∗
j
= K0 ⊕ K1, which can be seen if Ci = C′j and

C∗i = C′
∗j
. Note that the fourth set of queriesM ′

∗j
is not new, but can be taken

from the other sets. For SoEM, the distinguisher exploited that one can find two
queries M and M ′ such that their inputs to the left and right permutation are
swapped. For DS-SoEM, this distinguisher does not apply since the domain
separation prevents that the permutation inputs can be swapped entirely.

A Working Distinguisher can be constructed with significant advantage and
6c · 22n/3 queries, for small constant c ≥ 1. Let q = c · 22n/3.

1. For j ← 1..q, query a random M j (without replacement), obtain Cj . More-
over, query M∗j = M j ⊕ 〈1〉n to obtain C∗j and store (Cj , C∗j).

2. For i ← 1..q, sample ui ∈ Fn−d
2 (without replacement), query U i = (ui ‖

〈0〉d) to π, and obtain V i. Derive U∗i = U i⊕10n−1, query U∗i to π to obtain
V ∗i and store (V i, V ∗i).

3. For k ← 1..q, sample xk ∈ Fn−d
2 (without replacement), query Xk = (xk ‖

〈1〉d) to π, and obtain Y k. Derive X∗k = Xk ⊕ 10n−1, query X∗k to π to
obtain Y ∗k and store (Y k, Y ∗k).

With high probability, there exists a tuple (M j , U i, Xk) such that

((M j ⊕msbn−d(K0)) ‖ 〈0〉d) = U i and ((M j ⊕msbn−d(K1)) ‖ 〈1〉d) = Xk .
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If this is the case, check if

((M∗j ⊕msbn−d(K0) ‖ 〈0〉d) = U∗i and ((M∗j ⊕msbn−d(K1)) ‖ 〈1〉d) = X∗k

also holds. If yes, return real; return random otherwise.

Why Not Also Mask The Domain? If the keys K0 and K1 would be XORed
also to the domains, it could hold for DS-SoEM that

lsbd(K0)⊕ 〈0〉d = lsbd(K1)⊕ 〈1〉d .

Similarly, it could hold for DS-XORPP for any distinct pair i, j ∈ [0..w] that

lsbd(2
iK0 ⊕ 2

2iK1)⊕ 〈i〉d = lsbd(2
jK0 ⊕ 2

2jK1))⊕ 〈j〉d

This would invalidate the effect of the domain. Note that, while the distinguisher
from [CLM19, Proposition 2] would still not be applicable, a slide attack (cf.
[DKS12,DDKS13]) may become.
In the following, we consider a variant of DS-SoEM[π] where the inputs to the
permutations would be defined as

U i ← (M i ‖ 〈0〉d)⊕K0 and X i ← (M i ‖ 〈1〉d)⊕K1.

We assume that K0,K1 և Fn
2 , d = 1 for simplicity, and that lsbd(K0) ⊕

lsbd(K1) = 1, i.e., their least significant d bits differ, which holds with prob-
ability 0.5. Let c ∈ Fn−d

2 be an arbitrary non-zero constant. Then:

1. For i← 1..2n/2, sample M i = (〈i〉n/2 ‖ 0n/2−d), obtain Ci and store it.

2. Derive M∗i = M i ⊕ c, and obtain its corresponding ciphertext C∗i.
3. Similarly, for j ← 1..2n/2−d, sample M j = (0n/2 ‖ 〈j〉n/2−d), obtain Cj and

store it.
4. Derive M∗j = M j ⊕ c, and obtain its corresponding ciphertext C∗j .
5. If there exist distinct i 6= j such that Ci = Cj and C∗i = C∗j , return real;

return random otherwise.

With probability one, there exists one pair such that M i ⊕M j = msbn−d(K
0⊕

K1). In this case, it holds that U i = Xj and U j = X i, from which Ci = Cj

follows. A similar argument holds for C∗i = C∗j.

A Distinguisher on a Single-key Variant. It could furthermore appear tempting
to use a single-key domain-separated variant of DS-SoEM. Since the domain
differs in both permutation calls, this would ensure distinct inputs in both sides of
each query. However, this construction would possess only n/2-bit PRF security.
In the following, we sketch a distinguisher, where we assume that both keys K0

and K1 are replaced by a single keyK. We further assume d < n/2 for simplicity.

1. For i ← 1..2n/2, sample M i = (〈i〉n/2 ‖ 0n/2−d) to obtain Ci and store

them. Associate with each M i a plaintext M ′
i
= M i ⊕ (10n−1−d) and its

corresponding output C′
i
.
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2. For j ← 1..2n/2−d, ask for the primitive encryption of U j = (〈0〉n/2 ‖
〈i〉n/2−d ‖ 〈0〉d) to obtain V j . Query U ′j = U j ⊕ (10n−1) to obtain V ′j .

3. Similarly, for j ← 1..2n/2−d, ask for the primitive encryption ofXj = (〈0〉n/2
‖ 〈i〉n/2−d ‖ 〈1〉d) to obtain Y j . Query X ′j = Xj ⊕ (10n−1) to obtain Y ′j .

4. If there exists one tuple i, j s. t. Ci = V j ⊕ Y j and C′
i
= V ′

j ⊕ Y ′
j
, output

real and output random otherwise.

With probability one, there will be one collision for the real construction, whereas
the probability of the 2n-bit event is negligible in the ideal world.

8 Security Analysis of DS-SoEM

In the following, we consider DS-SoEM[π]K with d ∈ [n − 1], based on π և

Perm(Fn
2 ), K0,K1 և Fn

2 , and K = (K0,K1).

Theorem 3. Let A be a distinguisher with at most qc construction queries and
qp primitive queries to each of π±(· ‖ 〈0〉d) and π±(· ‖ 〈1〉d). Let qc + 2qp < 2n−3

and qc, qp > 9n. Then,

AdvPRF

DS-SoEM[π]K(A) ≤ (6 · 2d + 22d)qcq
2
p

22n
+

22dqcq
2
p

23n
+

qc + 2 + 4qp
√
3nqc

2n
+

2qc(2qc + 2qp)
2

22n
.

Proof. Again, we follow the footsteps by Chen et al.; this time, we partition the
transcript τ into τ = τc∪τ0∪τ1, where τc = {(K0,K1), (M

1, C1), . . . , (M qc , Cqc)}
is the transcript of construction queries. We define two primitive transcripts:
τ0 and τ1; τ0 = {(U1

j , V
1
j ), . . . , (U

qp
j , V

qp
j )} contains exactly the queries to and

responses from permutation π for which it holds that lsbd(U
i) = 〈0〉d. Similarly,

τ1 = {(U j
1 , V

j
1 ), . . . , (U

j
qp , V

j
qp)} contains exactly the queries to and responses

from permutation π for which lsbd(U
i) = 〈1〉d holds. We denote the permutation

inputs of construction queries, for j ∈ [qc] as

Û j =def (M j ⊕msbn−d(K0)) ‖ 〈0〉d and

X̂j =def (M j ⊕msbn−d(K1)) ‖ 〈1〉d

and their corresponding outputs as V̂ j and Ŷ j , respectively. We also use in-
terchangeably the notations of Û j

0 = Û j , Û j
1 = X̂j , V̂ j

0 = V̂ j , and V̂ j
1 = Ŷ j ,

respectively. Define S =def {(i, j, k) : Ci ⊕K0 ⊕K1 = V j
0 ⊕ V k

1 } for i ∈ [qc] and
j, k ∈ [qp]. Let θ = q2pqc/2

n + qp
√
3nqc be the threshold from Lemma 2.

Bad Events. We define the following bad events:

– bad1: There exists a construction query j and two primitive queries i and k
such that (Û j

0 = U i
0) ∧ (Û j

1 = Uk
1 ).
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– bad2: It holds that |S| ≥ θ.
– bad3: There exists a construction query j and two primitive queries i and k

such that (Û j
0 = U i

0) ∧ (V̂ j
1 = V k

1 ).
– bad4: There exists a construction query j and two primitive queries i and k

such that (Û j
1 = U i

1) ∧ (V̂ j
0 = V k

0 ).
– bad5: There exists a construction query j and two primitive queries i and k

such that (Û j
0 = U i

0) ∧ (V̂ j
1 = V k

0 ).
– bad6: There exists a construction query j and two primitive queries i and k

such that (Û j
1 = U i

1) ∧ (V̂ j
0 = V k

1 ).
– bad7: There exist two distinct construction queries j and k and two distinct

primitive queries i and ℓ such that (Û j
0 = U i

0) ∧ (Ûk
0 = U ℓ

0) ∧ (V̂ j
1 = V̂ k

1 ).
– bad8: There exist two distinct construction queries j and k and two distinct

primitive queries i and ℓ such that (Û j
1 = U i

1) ∧ (Ûk
1 = U ℓ

1) ∧ (V̂ j
0 = V̂ k

0 ).
– bad9: There exist two distinct construction queries j and k and two distinct

primitive queries i and ℓ such that (Û j
0 = U i

0) ∧ (Ûk
1 = U ℓ

1) ∧ (V̂ j
1 = V̂ k

0 ).
– bad10: There exists a construction query j such that Cj = K0 ⊕K1.

Lemma 5. Let qc + 2qp < 2n−3. It holds that

Pr [Θideal ∈ BadT] ≤ (6 · 2d + 22d)qcq
2
p

22n
+

22dqcq
2
p

23n
+

qc + 2

2n
+

4qp
√
3nqc

2n
. (5)

Proof. The event bad1 considers the probability of two input collisions of a const-
ruction and two primitive queries. Thus, the probability can be upper bounded
by

Pr[bad1] =
∑

j∈[qc]

∑

i∈[qp]

∑

k∈[qp]

Pr
[
Û j
0 = U i

0 ∧ Û j
1 = Uk

1

]
≤ qcq

2
p

22(n−d)
.

The probability of bad2 is upper bounded by Lemma 2:

Pr[bad2] = Pr [|Sα,β | ≥ θ] ≤ 2

2n
.

The events bad3 and bad4 consider an input and an output collision:

Pr[bad3|¬bad2] =
∑

j∈[qc]

∑

i∈[qp]

∑

k∈[qp]

Pr
[
Û j
0 = U i

0 ∧ V̂ j
1 = V k

1

]

≤ qcq
2
p

2n+(n−d)
+

qp
√
3nqc
2n

.

The probability Pr[bad4|¬bad2] can be upper bounded by a similar argument.
Events bad5 and bad6 study an input collision between a construction and a
primitive query, that leads to a conflict of the other output for that construction
query. The probabilities can be upper bounded by

Pr[bad5|¬bad2] =
∑

j∈[qc]

∑

i∈[qp]

∑

k∈[qp]

Pr
[
Û j
0 = U i

0 ∧ V̂ j
1 = V k

0

]
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≤ qcq
2
p

(2n − 1)(2n−d)
+

qp
√
3nqc
2n

.

The bound of Pr[bad6|¬bad2] is again analogous.
The event bad7 requires first two separate input collisions between a construction
query and a primitive query each, and the output collisions between their other
permutation-calls outputs. This probability can be upper bounded by

Pr[bad7] ≤
∑

1≤j<k≤qc

∑

1≤i<ℓ≤qp

Pr
[
Û j
0 = U i

0 ∧ Ûk
1 = U ℓ

0 ∧ V̂ j
1 = V̂ k

1

]
≤
(
qc
2

)(
qp
2

)

22(n−d)2n
.

The probabilities of bad8 and bad9 can be bounded in a similar manner. The
probability of the latter is

Pr[bad9]≤
∑

1≤j<k≤qc

∑

i∈[qp]

∑

ℓ∈[qp]

Pr
[
Û j
0 = U i

0 ∧ Ûk
1 = U ℓ

0 ∧ V̂ j
1 = V̂ k

0

]
≤

(
qc
2

)
q2p

22(n−d)2n
.

Note that events such as

(Û j
0 = U i

0) ∧ (Ûk
0 = U ℓ

0) ∧ (V̂ j
0 = V̂ k

0 )

can not occur since we assume that A does not ask trivial queries. Thus, the
distinct construction queries j 6= k prevent that Û j

0 = Ûk
0 would hold, which

implies that V̂ j
0 6= V̂ k

0 . A similar argument holds for

(Û j
1 = U i

1) ∧ (Ûk
1 = U ℓ

1) ∧ (V̂ j
1 = V̂ k

1 ) .

Finally, bad10 represents the event that a construction query obtains equal out-
puts from both permutation calls, while the inputs are always distinct. Thus,
V j ⊕ Y j = Cj ⊕ K0 ⊕ K1 can never be zero for the real construction. The
probability is upper bounded by

Pr[bad10] =
∑

j∈[qc]

Pr
[
V̂ j
0 = V̂ j

1

]
≤ qc

2n
.

The bound in Lemma 5 follows from

2∑

i=1

Pr [badi] +

6∑

i=3

Pr [badi|¬bad2] +
10∑

i=7

Pr [badi] .

Good Transcripts. It remains to consider the interpolation probability of good
attainable transcripts.

Lemma 6. It holds that

Pr[Θreal = τ ]

Pr[Θideal = τ ]
≥ 1− 2qc(2qp + 2qc)

2

22n
. (6)

25



We note that this part is almost exactly as the part of good transcripts in the
proof of SoEM22 by Chen et al. [CLM19]. Moreover, similar results for secret
permutations have been derived at several places, for example, by Jha and Nandi
[JN18] and Datta et al. [DDN+17].

Proof. Again, we can write

Pr[Θreal = τ ]

Pr[Θideal = τ ]
=
|Compreal(τ)| · |Allideal(τ)|
|Compideal(τ)| · |Allreal(τ)|

.

Three out of four terms are again easy to bound:

|Allreal(τ)| = 22n · (2n)!

since there exist 22n keys and 2n! independent permutations π. A similar argu-
ment holds in the ideal world, combined with (2n)2

n

random functions for the
answers to the construction queries:

|Allideal(τ)| = 22n · (2n)! · (2n)2n

Moreover, we can bound

|Compideal(τ)| = (2n)2
n−qc · (2n − 2qp)!

compatible oracles exist in the ideal world: there exist (2n)2
n−qc oracles that

produce the correct construction-query outputs for the 2n − qc remaining non-
queried inputs, and (2n − 2qp)! compatible permutations π. So, we obtain

Pr[Θreal = τ ]

Pr[Θideal = τ ]
≥ |Compreal(τ)| · 22n · (2n)! · (2n)2

n

(2n)2n−qc · (2n − 2qp)! · 22n · (2n)!
=
|Compreal(τ)| · (2n)qc

(2n − 2qp)!
.

It remains to determine |Compreal(τ)|. We reuse the claim by Chen et al.:

Claim. For a good transcript, τ ∈ GoodT, any construction query (M j , Cj) ∈
τc collides with at most one primitive query (U i

α, V
i
α) for some α ∈ {0, 1}, but

never with multiple primitive queries.

We regroup the queries from τc, τ0, and τ1 to τnewc , τnew0 , and τnew1 . The new
transcript sets are initialized by their corresponding old parts, and reordered:

– If there exists an i such that Û j
0 = U i

0, then (M j , Cj) is removed from τnewc

and (U i
1, V

i
1 ) = (Û j

1 , V̂
j
1 ) is added to τnew1 .

– If there exists an i such that Û j
1 = U i

1, then (M j , Cj) is removed from τnewc

and (U i
0, V

i
0 ) = (Û j

0 , V̂
j
0 ) is added to τnew0 .

Given qc constructions queries and qp queries in τ0 and τ1 each, we denote the
number of queries moved from τc into the primitive transcript τ0 and τ1 by s0
and s1. We define s = s0 + s1 for brevity.
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The number of queries in the new construction transcript is denoted by q′ =
qc − s. In the following, for a given transcript τnewp , it remains to count the
number of permutations π that are compatible with the transcript. The set of
occurred (i.e., prohibited) outputs V0 (for some U0 with lsbd(U0) = 0) and V1

(for some U1 with lsbd(U1) = 1) of π are denoted by V out
0 and V out

1 , respectively.
For α = 0, . . . , q′ − 1, let

λα+1
def
=
∣∣{(V 1

0 , . . . , V
α+1
0 , V 1

1 , . . . , V
α+1
1 )

}∣∣ (7)

be the number of solutions that satisfy

(1)
{
(V 1

0 , . . . , V
α
0 , V 1

1 , . . . , V
α
1 )
}
satisfy the conditions recursively,

(2) It holds that

V α+1
0 ⊕ V α+1

1 = Cα+1 ⊕K0 ⊕K1. (8)

(3.0) It holds that V α+1
0 6∈ {V 1

0 , . . . , V
α
0 , V 1

1 , . . . , V
α
1 } ∪ V out

0 ∪ V out
1 .

(3.1) It holds that V α+1
1 6∈ {V 1

0 , . . . , V
α
0 , V 1

1 , . . . , V
α
1 } ∪ V out

0 ∪ V out
1 .

Then, the goal is to define a recursive expression for λα+1 from λα such that a
lower bound can be found for the expression λα+1/λα. It holds that

|Compreal(τ)| = λq′ · (2n − (q1 + q2 + 2q′))! .

We obtain

Pr[Θreal = τ ]

Pr[Θideal = τ ]
=

λq′ · (2n − (q1 + q2 + 2q′))! · (2n)qc
(2n − 2qp)!

. (9)

Let B(1,2) denote the set of solutions that comply with only Conditions (1)
and (2), without considering Condition (3). Moreover, let B(3.0:i) denote the set
of solutions compatible with Conditions (1) and (2), but not with (3.0 : i) and
define B(3.1:i) in the natural manner. From the inclusion-exclusion principle, it
follows that

λα+1 =
∣∣B(1,2)

∣∣−

∣∣∣∣∣∣

α+|V out

0 |+|V
out

1 |⋃

i=1

B(3.0:i) ∪
α+|V out

0 |+|V
out

1 |⋃

i=1

|B(3.1:i)|

∣∣∣∣∣∣

≥
∣∣B(1,2)

∣∣−




α+|V out

0 |+|V
out

1 |∑

i=1

∣∣B(3.0:i)
∣∣

 −




α+|V out

0 |+|V
out

1 |∑

i=1

∣∣B(3.1:i)
∣∣



+




α+|V out

0 |+|V
out

1 |∑

i=1

α+|V out

0 |+|V
out

1 |∑

i′=1

∣∣B(3.0:i) ∩ B(3.1:i′)
∣∣



≥
∣∣B(1,2)

∣∣−




α+|V out

0 |+|V
out

1 |∑

i=1

∣∣B(3.0:i)
∣∣

 −




α+|V out

0 |+|V
out

1 |∑

i=1

∣∣B(3.1:i)
∣∣


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≥ 2n · λα −
α+|V out

0 |+|V
out

1 |∑

i=1

λα −
α+|V out

0 |+|V
out

1 |∑

i=1

λα.

So, it follows that

λα+1 ≥ 2n · λα − (α+ q1 + q2) · λα − (α+ q1 + q2) · λα

= 2n · λα − 2(α+ q1 + q2) · λα.

Therefore,

λα+1

λα
≥ 2n − 2α− 2q1 − 2q2 ≥ 1 ,

with λ0 = 1. It follows from Equation (9) that

(9) =

s0+s1−1∏

j=0

2n

2n − 2qp − j
·
q′−1∏

i=0

λi+1

λi
· 2n

(2n − q1 − q2 − i)(2n − q1 − q2 − q′ − i)

≥
q′−1∏

i=0

(2n − 2i− 2q1 − 2q2) · 2n
(2n − q1 − q2 − i)(2n − q1 − q2 − q′ − i)

≥
q′−1∏

i=0

(
1− (q1 + q2 + q′ + i)(q1 + q2 + i)− 2nq′

(2n − q1 − q2 − i)(2n − q1 − q2 − q′ − i)

)

≥
q′−1∏

i=0

(
1− (q1 + q2 + q′ + i)(q1 + q2 + i)

(2n − q1 − q2 − q′)(2n − q1 − q2 − q′ − q′)

)

≥
q′−1∏

i=0

(
1− (q1 + q2 + 2q′)2

(2n − q1 − q2 − 2q′)2

)

≥
(
1− (q1 + q2 + 2q′)2

(2n − q1 − q2 − 2q′)2

)q′

≥ 1− q′(q1 + q2 + 2q′)2

(2n − q1 − q2 − 2q′)2

≥ 1− 2q′(q1 + q2 + 2q′)2

22n
≥ 1− 2qc(2qp + 2qc)

2

22n
,

where we used that qp + qc ≪ 2n−3.

Our claim in Theorem 3 follows from Lemma 1, 5, and 6.

9 Security Analysis of DS-CENCPP

In what remains, we study the nE security of DS-CENCPP. As before, let π և

Perm(Fn
2 ) and K0, . . . ,Kw և K be independent secret keys; we write K =

28



(K0, . . . ,Kw) for brevity. Again, we conduct a two-step analysis, where we con-
sider (1) the PRF security of DS-XORPP[π,w] and (2) the PRF security of
DS-CENCPP[π,w].

Theorem 4. It holds that

AdvnE

DS-CENCPP[π,w]K(qp, qc, σ) ≤ AdvPRF

DS-XORPP[π,w]K

(
qp,

m

w
qc, σ

)
.

The proof follows a similar argumentation as that of CENCPP.

Theorem 5. Let v =def w + 1, qc + vqp ≤ 2n−w, and qp, qc > 9n. It holds that

AdvPRF

DS-XORPP[π,w]K(qp, qc, σ) ≤
(
v222d + v22d + v32d

)
qcq

2
p + v32dqcqp

22n
+

v422dq2cq
2
p

23n
+

v2qc
2n

+
3v2q3c + 6v3q2cqp + 4v4qcq

2
p

22n
+

(w + 1)2 + (w + 1)2qp
√
3nqc

2n
.

Proof. Again, we employ the proof strategy from XORPP. Here, the adversary
can query qp primitive queries to each domain-separated primitive π±(· ‖ 〈i〉d).
We define sets Sα,β,γ =def {(i, j, k) : Ci

α⊕ (1+ 2
α)K0⊕ (1+ 2

2α)K1 = V j
β ⊕V k

γ }
for i ∈ [qc], j, k ∈ [qp], α ∈ [w] and β, γ ∈ [0..w]. Let θ = q2pqc/2

n + qp
√
3nqc be

the threshold from Lemma 2.

Bad Events. We study the following bad events:

– bad1: There exists a construction query index j ∈ [qc], two primitive query
indices i, k ∈ [qp] and distinct permutation indices α, β ∈ [0..w] such that

(Û j
α = U i

α) ∧ (Û j
β = Uk

β ).
– bad2: There exist α ∈ [w] and distinct β, γ ∈ [0..w] such that |Sα,β,γ | ≥ θ.
– bad3: There exists a construction query index j ∈ [qc], two primitive query

indices i, k ∈ [qp] and permutation indices α, β ∈ [0..w] such that (Û j
α =

U i
α) ∧ (V̂ j

β = V k
β ).

– bad4: There exists a construction query index j ∈ [qc], two primitive query
indices i, k ∈ [qp] and distinct permutation indices α, β ∈ [0..w] as well as

any γ ∈ [0..w] with β 6= γ such that (Û j
α = U i

α) ∧ (V̂ j
β = V k

γ ).
– bad5: There exists a construction query index j and a primitive query index i

and k and distinct permutation indices α, β ∈ [0..w] as well as any γ ∈ [0..w]

with β 6= γ such that (Û j
α = U i

α) ∧ (V̂ j
β = V̂ j

γ ).
– bad6: There exist distinct construction query indices j, ℓ and primitive query

indices i and k as well as distinct permutation indices α, β ∈ [0..w] and any

γ, δ ∈ [0..w] such that (Û j
α = U i

α) ∧ (Û j
γ = U i

γ) ∧ (V̂ j
β = V̂ ℓ

δ ).
– bad7: There exists a construction query index j and a permutation index

α ∈ [w] such that Cj
α = (K0 ⊕K1)⊕ (2αK0 ⊕ 22αK1).

Our claim in Theorem 5 follows from Lemmas 7, 8, and 1.
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Lemma 7. Let v =def w + 1 and qc + v · qp < 2n−3. It holds that

Pr [Θideal ∈ BadT] ≤
(
v222d + v22d + v32d

)
qcq

2
p + v32dqcqp

22n
+

v422dq2cq
2
p

23n
+

v2qc + v3 + v3qp
√
3nqc

2n
.

For space limitations, the proof is deferred to Appendix A.

Lemma 8. Let v =def w + 1 It holds that

Pr[Θreal = τ ]

Pr[Θideal = τ ]
≥ 1− 3v2q3c + 6v3q2c qp + 4v4qcq

2
p

22n
.

The proof is deferred to Appendix B.

10 Conclusion

This work has proposed a variant of CENC from public permutations, CENCPP.
Consequently, it is straight-forward to obtain a nonce-based encryption scheme
or in form of its underlying component XORPP, a fixed-input-length variable-
output-length PRF with security of up to O(22n/3/w2) queries. Our result can
be combined with a beyond-birthday-secure MAC from public permutations in
the close future to obtain an authenticated encryption scheme.
We note that the doubling-based key schedule ensures pairwise independent
keys for all pairs of permutation inputs in XORPP and DS-XORPP. Although
the key masks can be cached, for values of w ≤ 2, the choice of keys can be
improved in terms of computations. For w = 1, XORPP degenerates to the
SoEM construction, and can simply use (K0,K1) for the permutation calls. For
w = 2, XORPP can employ the key masks (K0,K0 ⊕K1,K1) for the three calls
to the permutations to ensure independent keys without the need for doubling.
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A Proof of Lemma 7

We restate the lemma to aid the reader.

Lemma 7. Let v =def w + 1 and qc + v · qp < 2n−3. It holds that

Pr [Θideal ∈ BadT] ≤
(
v222d + v22d + v32d

)
qcq

2
p + v32dqcqp

22n
+

v422dq2cq
2
p

23n
+

v2qc + v3 + v3qp
√
3nqc

2n
.
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Proof. Again, we can go through the bad events. The first event bad1 considers
the probability of two input collisions of a construction and two primitive queries.
Thus, the probability can be upper bounded by

Pr[bad1] =
∑

j∈[qc]

∑

i∈[qp]

∑

k∈[qp]

∑

0≤α<β≤w

Pr
[
Û j
α = U i

α ∧ Û j
β = Uk

β

]
≤
(
w+1
2

)
qcq

2
p

22(n−d)
.

The event bad2 considers the probability of a sum set with too many elements.
For fixed α, β, γ, the probability of this event is given by Lemma 2. Over the
union bound of all combinations of α and β, we obtain that

Pr[bad2] =
∑

α∈[w]

∑

0≤β<γ≤w

Pr [|Sα,β,γ | ≥ θ] ≤ 2w ·
(
w+1
2

)

2n
.

The event bad3 considers an input and an output collision. Given that bad2 does
not hold, we have

Pr[bad3|¬bad2] ≤
∑

j∈[qc]

∑

i∈[qp]

∑

k∈[qp]

∑

α,β∈[0..w]

Pr
[
Û j
α = U i

α ∧ V̂ j
β = V k

β

]

≤ (w + 1)2qcq
2
p

2n+(n−d)
+

(w + 1)3qp
√
3nqc

2n
.

The bound of bad4 considers an output collision between V̂ j
β = V k

γ for any
primitive query output. Given that bad2 does not hold, we have

Pr[bad4|¬bad2] ≤
∑

j∈[qc]

∑

i∈[qp]

∑

k∈[qp]

∑

α∈[0..w]

∑

0≤β<γ≤w

Pr
[
Û j
α = U i

α ∧ V̂ j
β = V k

γ

]

≤ (w + 1)3qcq
2
p

2n+(n−d)
+

(w + 1)3qp
√
3nqc

2n
.

The event bad5 studies an input collision between a construction and a primitive
query, that leads to a conflict of the other output for that construction query.
The probability can be upper bounded by

Pr[bad5] ≤
∑

j∈[qc]

∑

i∈[qp]

∑

α∈[0..w]

∑

0≤β<γ≤w

Pr
[
Û j
α = U i

α ∧ V̂ j
β = V̂ j

γ

]

≤ (w + 1)
(
w+1
2

)
qcqp

2n+(n−d)
.

The event bad6 requires first two separate input collisions between a construction
query and a primitive query each, and the output collisions between their other
permutation-calls outputs. This probability can be upper bounded by

Pr[bad6] ≤
∑

1≤j<k≤qc

∑

i∈[qp]

∑

ℓ∈[qp]

∑

α,β,γ,δ∈[0..w]

Pr
[
Û j
α = U i

α ∧ Ûk
γ = U ℓ

γ ∧ V̂ j
β = V̂ j

δ

]
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≤ (w + 1)4
(
qc
2

)
q2p

22(n−d)2n
.

Finally, bad7 represents the event that a construction query obtains equal out-
puts from both permutation calls, while the inputs are always distinct. Thus,
V̂ j
α ⊕ V̂ j

β = Cj
α ⊕Cj

β ⊕ (2αK0 ⊕ 22αK1)⊕ (2βK0 ⊕ 22βK1) can never be zero for
the real construction. The probability is upper bounded by

Pr[bad7] ≤
∑

j∈[qc]

∑

0≤α<β≤w

Pr
[
V̂ j
α = V̂ j

β

]
≤
(
w+1
2

)
qc

2n
.

The bound in Lemma 5 follows from the sum of probabilities of the individual
bad events.

B Proof of Lemma 8

It remains to consider the interpolation probability of good attainable tran-
scripts. Again, we restate the lemma to aid the reader.

Lemma 8. Let v =def w + 1 It holds that

Pr[Θreal = τ ]

Pr[Θideal = τ ]
≥ 1− 3v2q3c + 6v3q2c qp + 4v4qcq

2
p

22n
.

Proof. Given τ ∈ GoodT, we compute the probability of its occurrences in
both worlds. Let Allreal(τ) denote the set of all oracles in the real world, and
Allideal(τ) the set of all oracles in the ideal world. Let Compreal(τ) denote the
fraction of oracles in the real world that are compatible with τ and Compideal(τ)
the corresponding fraction in the ideal world. It holds that

Pr[Θreal = τ ]

Pr[Θideal = τ ]
=
|Compreal(τ)| · |Allideal(τ)|
|Compideal(τ)| · |Allreal(τ)|

.

We can easily bound three out of four terms:

|Allreal(τ)| = (2n)w+1 · (2n)!

since there exist (2n)w+1 keys and 2n! possible permutations. The same argument
holds in the ideal world

|Allideal(τ)| = (2n)w+1 · (2n!)w+1 · (2wn)2
n

,

combined with (2wn)2
n

random functions for the answers to the construction
queries. Moreover,

|Compideal(τ)| = (2wn)2
n−qc · (2n − (w + 1) · qp)!
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compatible oracles exist in the ideal world, where (2wn)2
n−qc are the oracles that

produce the correct construction-query outputs for the 2n − qc remaining non-
queried inputs, and for all permutations, there exist (2n−(w+1)qp)! compatible
primitives each.
It remains to determine |Compreal(τ)|. Chen et al. regrouped the queries from
the transcript parts. We generalize their claim [CLM19] to the following to cover
all w + 1 permutations:

Claim. For a good transcript, τ ∈ GoodT, any construction query (M j , Cj
α) ∈

τc collides with at most one primitive query (U i
α, V

i
α) for some α ∈ [0..w], but

never with multiple primitive queries.

We regroup the queries from τc, τ0, . . . , τw to τnewc , τnew0 , . . . , τneww . The new
transcript sets are initialized by their corresponding old parts, and reordered as
follows:
If there exist j ∈ [qc], i ∈ [qp], and α ∈ [0..w] such that Û j

α = U i
α, then (M j , Cj

α)

is removed from τnewc and (Uβ , Vβ) = (Û j
β, V̂

j
β ) is added to τnewβ , for all β ∈ [0..w]

with β 6= α.
Given qc constructions queries and qp primitive queries to each of the permuta-
tions π(· ‖ 〈i〉d), for i ∈ [0..w] in the original transcript, the numbers of queries
moved from τc into the primitive partial transcripts τi is denoted by si. The num-
ber of queries in the new construction transcript is denoted by q′ = qc−

∑w
i=0 si.

Moreover, we define qi = qp + si, for all 0 ≤ i ≤ w. In the following, for a given
transcript τnew0 of q′ elements, it remains to count the number of permutations
π that are compatible with the transcript. The set of occurred (i.e., prohibited)
outputs of π±(· ‖ 〈ι〉d) are denoted by V out

ι , for 0 ≤ ι ≤ w. For α = 0, . . . , q′ − 1,
let

λα+1
def
=
∣∣{(V 1

0 , . . . , V
α+1
0 , . . . , V 1

w , . . . , V
α+1
w )

}∣∣ (10)

be the number of solutions that satisfy

(1)
{
(V 1

0 , . . . , V
α
0 , . . . , V 1

w , . . . , V
α
w )
}
satisfy the conditions recursively,

(2) It holds that

V α+1
0 ⊕ V α+1

1 = Cα+1
1 ⊕K0 ⊕K1

...

V α+1
0 ⊕ V α+1

w = Cα+1
w ⊕K0 ⊕Kw. (11)

(3.0) It holds that V α+1
0 6∈ {V 1

0 , . . . , V
α
0 } ∪ V out

0 ∪ · · · ∪ V out
w .

– . . .
(3.w) It holds that V α+1

w 6∈ {V 1
w , . . . , V

α
w } ∪ V out

0 ∪ · · · ∪ V out
w .

Then, the goal is to define a recursive expression for λα+1 from λα such that a
lower bound can be found for the expression λα+1/λα. It holds that

|Compreal(τ)| = λq′ ·
(
2n −

(
w∑

i=0

qi + (w + 1)q′

))
!
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We obtain

Pr[Θreal = τ ]

Pr[Θideal = τ ]
=

λq′ · (2n − (
∑w

i=0 qi + (w + 1)q′))!

(2n − (w + 1)qp)!
· (2n)w·qc . (12)

Let B(1,2) denote the set of solutions that comply with only Conditions (1)
and (2), without considering Conditions (3.0) through (3.w). Moreover, let B(3.ι:i)
denote the set of solutions compatible with Conditions (1) and (2), but not with
(3.ι : i), for i = 1, . . . , α+

∑w
k=0 |V out

k |. From inclusion-exclusion, it follows that

λα+1 =
∣∣B(1,2)

∣∣−

∣∣∣∣∣∣

α+|V out

0 |+···+|V
out

w⋃

i=1

B(3.0:i)

∣∣∣∣∣∣
∪ · · · ∪

∣∣∣∣∣∣

α+|V out

0 |+···+|V
out

w⋃

i=1

|B(3.w:i)|

∣∣∣∣∣∣

≥
∣∣B(1,2)

∣∣−

∣∣∣∣∣∣

α+|V out

0 |+···+|V
out

w∑

i=1

|B(3.0:i)|

∣∣∣∣∣∣
− · · · −

∣∣∣∣∣∣

α+|V out

0 |+···+|V
out

w∑

i=1

|B(3.w:i)|

∣∣∣∣∣∣

+

α+|V out

0 |∑

i=1

α+|V out

1 |∑

i′=1

∣∣B(3.0:i) ∩ B(3.1:i′)
∣∣+ · · ·

+

α+|V out

0 |+···+|V
out

w |∑

i=1

α+|V out

0 |+···+|V
out

w |∑

i′=1

∣∣B(3.(w−1):i) ∩ B(3.w:i′)

∣∣

≥ 2n · λα −
α+|V out

0 |+···+|V
out

w |∑

i=1

λα − · · · −
α+|V out

0 |+···+|V
out

w |∑

i=1

λα .

So, it follows that

λα+1 ≥ 2n · λα − (α+ qp + s0) · λα − . . .− (α+ qp + sw) · λα.

Therefore,

λα+1

λα
≥ 2n − (w + 1)α− (w + 1)qp − (w + 1)

w∑

i=0

si

= 2n − (w + 1)α− (w + 1)

w∑

i=0

qi

with λ0 = 1. It follows from Equation (12) that

(12) =

w·s−1∏

j=0

2n

2n − (w + 1)qp − j
·
q′−1∏

j=0

λα+1

λα
· (2n)w∏w

i=0(2
n −∑w

k=0 qk − iq′ − j)

≥
q′−1∏

j=0

(2n − (w + 1)j − (w + 1)
∑w

i=0 qi)(2
n)w∏w

i=0(2
n −∑w

k=0 qk − iq′ − j)
.
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We use qsum =def
∑w

k=0 qk. Then

q′−1∏

j=0

(2n − (w + 1)(q′ + qsum)(2
n)w∏w

i=0(2
n − (qsum + q′))

≥
q′−1∏

j=0

(2n − (w + 1)(q′ + qsum)(2
n)w

(2n − (qsum + q′))w+1
. (13)

It holds that

1

(2n − (qsum + q′))w+1

=
1

(2n)w+1 −
(
w+1
1

)
(2n)w(qsum + q′) +

(
w+1
2

)
(2n)w−1(qsum + q′)2 − . . .

≥ 1

(2n)w+1 −
(
w+1
1

)
(2n)w(qsum + q′) +

(
w+1
2

)
(2n)w−1(qsum + q′)2

.

For the sake of format, we define a helping variable

z
def
= (2n)w+1 − (2n)w(w + 1)(q′ + qsum) +

(
w + 1

2

)
(2n)w−1(qsum + q′)2−

(
w + 1

2

)
(2n)w−1(qsum + q′)2 .

It follows that

(13) ≥
(

z

(2n)w+1 −
(
w+1
1

)
(2n)w(qsum + q′) +

(
w+1
2

)
(2n)w−1(qsum + q′)2

)q′

≥
(
1−

(
w+1
2

)
(2n)w−1(qsum + q′)2

(2n)w+1 −
(
w+1
1

)
(2n)w(qsum + q′) +

(
w+1
2

)
(2n)w−1(qsum + q′)2

)q′

≥ 1−
(
w+1
2

)
(2n)w−1(qsum + q′)2 · q′

(2n)w+1 −
(
w+1
1

)
(2n)w(qsum + q′) +

(
w+1
2

)
(2n)w−1(qsum + q′)2

≥ 1− 2
(
w+1
2

)
(qsum + q′)2 · q′
(2n)2

≥ 1− (w + 1)2(q′3 + q′2qsum + q′q2sum)

22n
.

Since q′ + qsum = s · w + q′ + (w + 1)qp and s ≤ qp, it follows that q′ + qsum ≤
qc + 2wqp:

1− (w + 1)2(q3c + q2c (qc + 2wqp) + qc(qc + 2wqp)
2

22n

≥ 1−
(w + 1)2(q3c + q3c + 2w · q2cqp + q3c + 4w · q2cqp + 4w2 · qcq2p)

22n

≥ 1−
3(w + 1)2q3c + 6(w + 1)3q2c qp + 4(w + 1)4qcq

2
p

22n
. (14)
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