
Masking in Fine-Grained Leakage Models:
Construction, Implementation and Verification

Gilles Barthe1,2, Marc Gourjon3,4, Benjamin Grégoire5, Maximilian Orlt6,
Clara Paglialonga6, and Lars Porth6

1 MPI-SP, Germany
2 IMDEA Software Institute, Spain gjbarthe@gmail.com

3 Hamburg University of Technology, Germany, firstname.lastname@tuhh.de
4 NXP Semiconductors, Germany

5 Inria, France, firstname.lastname@inria.fr
6 TU Darmstadt, Germany, firstname.lastname@tu-darmstadt.de

Abstract. We propose a new approach for building efficient, provably
secure, and practically hardened assembly implementations of masked al-
gorithms. Our approach is based on a Domain Specific Language in which
users can write efficient assembly implementations and fine-grained leak-
age models. The latter are then used as a basis for formal verification,
allowing for the first time formal guarantees for a broad range of leakage
effects not addressed by prior work. The practical benefits of our ap-
proach are demonstrated through a case study of the PRESENT S-Box:
we develop a highly optimized and provably secure masked implementa-
tion, and show through practical evaluation based on TVLA that our im-
plementation is practically resilient. Our approach significantly narrows
the gap between formal verification of masking and practical security.

Keywords: Side-channel resilience · Higher-order masking · Probing se-
curity · Verification · Domain-Specific-Languages

1 Introduction

Physical measurements (noise, time, power, EM radiations) of program execution
on physical devices reveal information beyond the program inputs and outputs,
for instance values of intermediate computations. This information, known as
side-channel leakage, can be used to mount effective side-channel attacks.

The masking countermeasure splits secret data a into d shares (a0, . . . , ad−1)
such that it is easy to compute a from all shares but impossible from less than
d shares [CJRR99, ISW03]. This requires attacks to recover d shares instead of
a single secret value. An active line of research considers the construction of
masked algorithms, denoted “gadgets”, which compute some functionality on
masked inputs while enforcing that secrets cannot be recovered from less than d
intermediate values.

Construction of gadgets is particularly difficult when considering side-channel
leakage which allows to observe more than just the intermediate computation

steps. Extended leakage models have been devised to consider additional side-
channel information in systematic manner [FGP+18,PR13,DDF14,BGI+18].

Naturally, the question arises whether the masking countermeasure has been
applied correctly to a gadget and whether it provides an improvement of se-
curity. There exist two main, and fairly distinct, approaches to evaluate ef-
fectiveness of the applied countermeasures: (I) Physical validation performing
specific attacks or statistical tests on physical measurements [DSM17, DSV14,
SM15, PV17, MOW17] and (II) Provable resilience based on attacker and leak-
age models [CJRR99, ISW03, FGP+18, PR13, DDF19] and automated verifica-
tion [BBD+15,BBD+16,Cor18,EWS14]. We review the strengths and weaknesses
of both approaches.

The main benefit of reproducing attacks is the close correspondence to se-
curity; a successful attack implies a real threat, an unsuccessful attack rules
out a vulnerability from exactly this attack under the specific evaluation pa-
rameters. The drawback is the inherently limited attacker scope to only those
attacks which have been performed and the fact that exhaustive evaluation of
all attacks remains untractable in most cases. Statistical evaluation allows to
bound the retrievable side-channel information, the success rate of retrieval,
or to detect side-channel information leakage without considering actual at-
tacks [SM15, DSM17, DSV14]. Nonetheless, the evaluation remains specific to
the input data and measurement environment used during assessment. In both
cases it is difficult to decide at which point to stop the evaluation and to declare
an implementation to be secure. In addition, these methods have large com-
putational requirements which imply an increased wait time for the evaluation
results. This prevents fast iterative development cycles with repeated proposal
of implementations and evaluation thereof. Put vice versa; the implementer has
to carefully produce good implementations to avoid too frequent evaluation, lim-
iting creative freedom.

Provable resilience provides a rigorous approach for proving the resilience of
masked algorithms. The main benefit of this approach is that guarantees hold
in all environments which comply with the assumptions of the proof and that
assessment ends when such a proof is found. Inherent to all formal security
notions for side-channel is (I) a formal leakage model which defines the side-
channel characteristics considered in the proof and (II) an attacker model. The
leakage model defines which side-channel information leakages (observations)
are accessible to the attacker during execution of a masked program whereas
the formal attacker model defines the capabilities of the attacker exploiting this
information, e.g. how many side-channel measurements an attacker can perform.

Threshold probing security is arguably the most established approach for
provable resilience. In this approach, execution leaks the value of intermediate
computations, and the attacker can observe at most t side-channel leakages dur-
ing an execution of a program masked with d > t shares. The notion of threshold
probing security proves perfect resilience against adversaries observing at most
t leakages but cannot provide assurance for attackers which potentially observe
more. In case the side-channel model accurately captures the device’s leakage

2

characteristics the program enjoys security against practical attackers s.t. the
chosen notion. The main benefit of probing security is that it can be used to
rule out classes of attacks entirely, in difference to physical evaluation such as
Test Vector Leakage Assessment (TVLA). Variations of threshold probing secu-
rity such as the t–Non-interference (t–NI) and t–Strong-Non-interference (t–SNI)
refinements exist which are easier to evaluate (check) or guarantee additional
properties [BBD+16].

A further benefit of provable resilience, and in particular of threshold probing
security, is that it is amenable to automated verification. The main benefit of
automated verification is that it delegates the formal analysis to a computer
program and overcomes the combinatorial explosion that arises when analyzing
complex gadgets at high orders.

The main critique of formal security notions for side-channel security is
related to the large gap between formal model and behavior in practice, re-
sulting in security assurance that are sometimes hard to interpret. In particu-
lar, implementations of verified threshold probing secure algorithms frequently
enjoy much less practical side-channel resilience as precisely analyzed by Bal-
asch et al. [BGG+14]. The advantage of physical evaluation is preeminent in
that the increasing diversity of discovered side-channel leakage effects is not
entirely considered by existing verification frameworks. One of the reasons be-
ing that the considered leakage effects are inherently integrated into the tool
and therefore prevent flexible and fine-grained modeling. In the current setting,
new leakage behavior with distinct behavior requires to modify the tool’s im-
plementation to be considered. But the diversity of power side-channel leakage
encountered in practice is expected to grow as long as new execution platforms
are developed [PV17,BGG+14,CGD18,MOW17,SSB+19,Ves14].

1.1 Our Work

In this paper, we illustrate that automated verification can deliver provably
resilient and practically hardened masked implementations with low overhead.

Fine-Grained Modelling of Leakage We define a Domain-Specific Language, called
IL, for modelling assembly implementations and specifying fine-grained leakage
models. The dual nature of the Domain-Specific Language IL has significant ben-
efits. First, it empowers implementers to capture leakage models encountered in
practice, and ultimately ensures that the purported formal resilience guarantees
are in close correspondence with practical behavior. Second, it supports efficient
assembly level implementations of masked algorithms, and bypasses thorny issues
with secure compilation. Third, it forms the basis of a generic automated verifica-
tion framework in which assembly implementations can be analyzed generically,
without the need to commit to a fixed or pre-existing leakage model. Specifi-
cally, we present a tool (built as a front-end to MaskVerif) that takes as input
an implementation and checks whether the implementation is secure w.r.t. the
security notion associated with the leakage models given with the implementa-

3

tion. This stands in sharp contrast with prior work on automated verification,
which commits to one or a fixed set of leakage models.

Optimized Hardening of Masking The combination of fine-grained leakage models
and reliable verification enables construction of masked implementations which
exhibit no detectable leakage in physical assessment, known as “hardened mask-
ing” or “hardening” of masked implementations. We demonstrate several im-
provement in constructing hardened gadgets and a hardened PRESENT S-Box
at 1st and 2nd order which exhibit no detectable leakage beyond one Million mea-
surements in TVLA. We provide generic optimization strategies which reduce the
overhead from hardening by executing the code of a secure composition of gad-
gets in an altered order instead of introducing overhead by inserting additional
instructions as countermeasure. The resulting overhead reduction of almost 73%
for the first order implementation and of 63% for the second order shows a need
to consider composition strategies in addition to established secure composition
results. Our contributions outperforms the “lazy strategy” [BGG+14] of doubling
the number of shares in masking instead of performing hardening; Our contri-
butions allow to gain a security or for free as our optimized 2nd order hardened
PRESENT S-Box is as fast as a non-optimized 1st order hardened PRESENT
S-Box.

1.2 Related Work

For the sake of clarity, we organize related work by areas:

Provable Resilience Provable resilience of masked implementations was initi-
ated by Chari et al. [CJRR99], and later continued by Ishai, Sahai and Wagner
(ISW) [ISW03] and many others. As of today, provable resilience remains a thriv-
ing area of research, partially summarized in [KR19], with multiple very active
sub-areas. One such relevant area is the study of leakage models, involving the
definition and comparison of new models, including the noisy leakage model, the
random probing model, the threshold probing model with glitches [PR13,DDF14,
BGI+18]. Leakage effects were for the first time summarized in a general model
by the Robust Probing model [FGP+18]. Later, Meyer et al. in [DBR19], in-
troduce their concept of glitch immunity and unify security concepts such as
(Strong) Non-Interference in an information theoretic manner. In comparison to
these works, our Domain Specific Language (DSL) offers a much higher flexibil-
ity in terms of leakages, since it allows to take into account a broader class of
leakages, and consequently more realistic scenarios. Another relevant area tack-
les the problem of composing secure gadgets; a prominent new development is
the introduction of strong non-interference, which achieves desirable composition
properties that cannot be obtained under the standard notion of threshold prob-
ing security [BBD+16]. Belaid, Goudarzi et Rivain present an elegant alternative
approach to solve the problem of composition; however their approach is based
on the assumption that only ISW gadgets are used [BGR18]. The formal analysis
of composability in extended leakage models started to receive more attention

4

with the analysis of Faust et al. in [FGP+18], which formalized the physical leak-
ages of glitches, transitions and couplings with the concept of extended-probes
and proved the ISW multiplication scheme to be probing secure against glitches
in two cycles. Later, Cassiers et al. in [CGLS20] proposed the concept of Hard-
ware Private Circuits, which formalizes compositional probing security against
glitches, and presented gadgets securely composable at arbitrary orders against
glitches. Our work augments the t–NI and t–SNI notions to capture resilience
and composition in any fine-grained model which can be expressed using our
DSL and in the presence of stateful execution, as required for provably secure
compilers such as MaskComp and Tornado [BBD+16, BDM+20]. The research
area of optimization of hardened masking did not receive much attention in the
literature, for the best of our knowledge.

Automated Verification Proving resilience of masked implementations at high or-
ders incurs a significant combinatorial cost, making the endeavour error-prone,
even for relatively simple gadgets. Moss et al [MOPT12] were the first to show
how this issue can be managed using program analysis. Although their work is
focused on first-order implementations, it has triggered a spate of works, many
of which accomodate high orders [BRNI13, EWS14, BBD+15, Cor18, ZGSW18].
MaskVerif [BBD+15, BBC+19], which we use in our work, is arguably one of
the most advanced tools, and is able to verify different notions of security, in-
cluding t–NI and t–SNI at higher orders, for different models, including ISW,
ISW with transitions, and ISW with glitches. Furthermore, the latest version of
MaskVerif captures multiple side-channel effects for hardware platforms, which
are configurable by the user. However, the input language of MaskVerif lacks
the expressiveness of IL, making it difficult to capture the rich class of potential
leakage in assembly implementations.

Modeling Side-Channel Behavior Side-channel behavior is also expressed for anal-
ysis purposes other than provable resilience. Papagiannopoulos and Veshchikov
construct models of platform specific side-channel effects they discover in prac-
tice [PV17]. Their tool ASCOLD prevents combinations of shares in the consid-
ered leakage effects, which are hard-coded into the tool. Most importantly, they
are successful in showing that implementations enjoy improved practical security
when no shares are combined in their leakage model, which is reminiscent of first
order probing security in extended leakage models. Our contributions allow users
to provide fine-grained leakage specifications in IL to verify widely established
formal security notions at higher orders.

ELMO [MOW17], MAPS [CGD18] and SILK [Ves14] intend to simulate phys-
ical measurements based on detailed models. The tools assume fixed leakage
effects but allow customization by the user in form of valuation functions. This
degree of detail is relevant to simulate good physical measurements but not nec-
essary for our information theoretic notions of security. The authors of MAPS
distinguish effects which are beyond what is captured in ELMO’s fixed set of
combinations and show the need to remain unbiased towards leakage specifica-
tions when developing tools for side-channel resilience evaluation. Most notably,

5

ELMO is able to accurately simulate measurements from models inferred in an
almost automated manner and is now being used in works attempting to auto-
mate the construction of hardened implementations [SSB+19].

2 Expressing Side-Channel Leakage

Verification of side-channel resilience requires suitable representation of the im-
plementation under assessment. This representation must express a program’s
functional semantic and information observable per side-channel. It is well known
that the leakage behavior of execution platforms differs and this diversity must
be expressible to gain meaningful security assurance from verification.

2.1 A Domain Specific Language with Explicit Leakage

Already at CHES 2013 the authors of [BRNI13] point out the difficulty of ex-
pressing arbitrary side-channel leakage behavior yet providing a “good interface”
to users willing to specify individual side-channel characteristics. The reason can
be related to the fundamental approach of implicitly augmenting the underlying
language’s operators with side-channel. In such setting, the addition of two vari-
ables c ← a + b; implicitly models information observable by an adversary, but
what is leaked (e.g. a, b, or a + b) must be encoded in the language semantics
(i.e., the meaning of ← and +) and thus prevents flexible adoption of leakage
characteristics.

The concept of “explicit leakage” is an alternative as it requires to explic-
itly state what side-channel information is emitted. We present a Domain Spe-
cific Language (DSL) exerting this concept as the language is free of side-channel,
except for a dedicated statement “leak” which can be understood as providing
specific information to an adversary. The given example can now be stated as
c← a+ b; leak {a+ b} ;. This has two important benefits: First, verification and
representation of programs can be decoupled to become two independent tasks.
Second, specification of side-channel behavior becomes more flexible in that a
diverse set of complex side-channel can be expressed and altered without effort.

Our DSL, named “IL” for “intermediate language” has specific features to
support representation of low-level software. A Backus Normal Form represen-
tation is given in Figure 1. Its building blocks are states χ, expressions e, com-
mands (statements) c and global declarations g of variables and macros with
local variables x1, . . . , xk.

6

χ ::= x | x[e] | ⟨e⟩
e ::= χ | n ∈ Z | l | o (e1, . . . , ej)
i ::= χ← e | leak {e1, . . . , ej} | m (e1, . . . , ej)
| label | goto e
| if e then c else c | while e do c

c ::= i∗
g ::= var x | macro m (x1, . . . , xj) x1, . . . , xk {c}

Fig. 1: Simplified syntax of the intermediate language where n ranges on integers,
x on variables, m on macro identifiers, o on operations and l on label identifiers.

A state element χ is either a variable x, an array x with an indexing expres-
sion e, or a location in memory ⟨e⟩. Memory is distinguished to allow specifica-
tions of disjoint memory regions which enables formal verification to circumvent
aliasing problems of pointer operations. Expressions are built from state elements
χ, constant integers n, unique labels l, and operators o applied to expressions.
Infix abbreviations for logical “and” ⊗, “exclusive-or” ⊕, addition + and right
shift ≫ are used in the following.

Allowed statements i are assignments χ ← e, explicit leaks leak {e1, . . . , ej}
of one or more expressions and call to a previously defined macro m(e1, . . . , ej)
where m is the name of the macro. Additional statements for if conditionals and
while loops are supported as well.

Labels l are needed to represent the execution of microcontrollers (MCUs)
which is based on the address of an instruction. They are defined by a dedicated
statement, enabling execution to proceed at the instruction subsequent to this
label. Static jumps to unique labels and indirect jumps based on expressions of
labels are supported to represent control-flow.

In a nutshell, executable implementations consist of an unstructured list of
hardware instructions where each instruction is located at a specific address and
execution steps over addresses. In the following we represent implementations
as a list of IL label definitions and macro calls: every instruction is represented
by an IL label corresponding to the address of this instruction and a macro
call representing the hardware instruction and its operands. A line of Assem-
bly code “0x16E: ADDS R0 R1” becomes almost identical IL code: label 0x16E;
ADDS(R0, R1) ;.

The DSL enables construction of individual leakage models of instructions
specifying fine-grained semantic and side-channel behavior. Leakage models are
then used to express implementations of masked algorithms in the manner ex-
plained above, such that formal verification can operate on a close representation
of real side-channel behavior yet remain free of assumptions on leakage behavior.
In this light, verifying side-channel resilience of implementations involves three
steps: (I) modeling behavior of instructions, (II) representing an implementation
using such a model and (III) analyzing or verifying the representation (Section 3).

We stress the significant benefit: verification and representation become sep-
arate concerns, i.e., automated verification is now defined over the semantic of

7

our DSL and the separate leakage model of step (I) can be freely modified or
exchanged without altering the work-flow in stages (II) and (III). In particular,
our tool, named “scVerif” allows the user to provide such leakage specification
in conjunction with an implementation for verification of side-channel resilience.

2.2 Modeling Instruction Semantics

The DSL allows to construct models which are specific to the device executing an
implementation by attaching device specific side-channel behavior. This is espe-
cially, important for the Arm and RISC-V Instruction Set Architectures (ISAs)
since these are implemented in various MCUs which execute instructions dif-
ferently, causing potentially distinct side-channel information. The instruction
semantic must be modeled since some leakage effects depend not only on in-
termediate state but also on the order of execution (e.g. control flow). In the
following, we show construction of models for Arm Cortex M0+ (CM0+) in-
structions which are augmented with leakage in Section 2.3. The DSL enables
construction of leakage models for other architectures or programming languages
as well.

IL enables to express architecture flags, carry bits, unsigned/signed opera-
tions, cast between data types, bit operations, control flow, etc. in close corre-
spondence to ISA specifications. The instructions of the CM0+ ISA operate on
a set of globally accessible registers and flags, denoted architecture state. They
can be modeled as global variables in IL: var R0; var R1; . . . var PC; var apsrc;
(carry flag) var apsrv; (overflow flag) var apsrz; (zero flag) var apsrn; (negative
flag).

Addition is used in the adds instruction and instructions operating on point-
ers such as ldr (load) and str (store). Expressing the semantic of addition
with carry requires casting 32 bit values to unsigned, respective signed values
and comparing the results of addition to assign the carry and overflow flags
correctly. The IL model of adds is expressed in Algorithm 1, closely following
the Arm ISA specification in [ARM18] with six parameters for inputs, output,
carry and overflow flags7. unsignedSum and signedSum are local values. The
adds instruction is modeled by calling the macro and expressing the side-effect
to global flags. A special case of addition to pc requires to issue a branch to the
resulting address (represented as a label). The operator ≃n is used to compare
whether the parameter rd is equal to register with name pc and conditionally
issue the branch.

IL does not provide an operator for sampling randomness. Sampling random-
ness, e.g. in the form of queries to random number generators, can be expressed
by reading from a tape of pre-sampled randomness in global state and augment-
ing the tape pointer successively.

7 Called macros are substituted in-place and modify input parameters instead of re-
turning values.

8

Algorithm 1 Low-level model of addition with carry and instruction for addi-
tion.
1: macro AddWithCarry (x, y, carry, result, carryOut, overflow)
2: var unsignedSum,var signedSum {
3: signedSum← (uint) x + (uint) y + (uint) carry;
4: unsignedSum← (int) x + (int) y + (int) carry;
5: result← (w32) unsignedSum;
6: carryOut← ¬ ((uint) result = unsignedSum) ;
7: overflow← ¬ ((int) result = signedSum) ;
8: }
9: macro ADDS (rd, rn) { ▷ model of rd← rd + rn

10: AddWithCarry(rd, rn, 0, rd, apsrc, apsrv) ;
11: apsrz← rd = 0;
12: apsrn← (rd≫ 31) = 1;
13: if rd ≃n pc then
14: goto rd;
15: end if
16: }

2.3 Modeling Leakage

We augment the instruction models with a representation of power side-channel
specific to threshold probing security. For this security notion it is sufficient to
model the dependencies of leakages, which is much simpler and more portable
than modeling the constituting function defining the actual value observable by
an adversary. Specifying multiple expressions within a single leak{e1, e2, . . .}
statement allows the threshold probing attacker to observe multiple values (ex-
pressions) at the cost of a single probe. On hardware this is known from “glitch”
leakage effect which allows to observe multiple values at once [FGP+18]. The
leak statement allows generic specification of such multi-variate leakage both
for side-channel leakage effects but also as worst-case specifications of observa-
tions. In particular, a program which is resilient w.r.t. leak{e1, e2} is necessarily
resilient w.r.t. any function f(a, b) in leak{f(e1, e2)} but not vice versa. We
proceed to model the worst case in the following.

The adds instruction is augmented with leakage, which is representative
for ands (logical conjunction) and eors (exclusive disjunction) as they behave
similar in our model. Observable leakage arises from computing the sum and can
be modeled by the statement leak {rd + rn} ;. Transient leakage as in the robust
probing model of [FGP+18] are modeled in worst case manner, i.e., instead of a
single, combined value there are two values leakaged at the cost of a single probe:
leak {rd, rd + rn} ;. The order of execution matters, thus this leakage must be
added at the top of the function, before assigning rd8.

For better clarity we expose these two leakage effects as macros. The resulting
specification of adds can be found in Algorithm 2.
8 The order in which leak statements are placed does not matter since leaks have no

semantic side-effect.

9

Definition 1 (Computation Leakage Effect). The computation leakage ef-
fect produces an observation on the value resulting from the evaluation of an
expression e.

1: macro EmitComputationLeak (e) {
2: leak {e} ;
3: }

Definition 2 (Transition Leakage Effect). The transient leakage effect pro-
vides an observation on state x and the value e which is to be assigned.

1: macro EmitTransitionLeak (x, e) {
2: leak {x, e} ;
3: }

Algorithm 2 Leakage model of adds instruction.
1: macro LEAKYADDS (rd, rn) {
2: EmitComputationLeak(rd + rn) ;
3: EmitTransientLeak(rd, rd + rn) ;
4: EmitRevenantLeak(opA, rd) ;
5: EmitRevenantLeak(opB, rn) ;
6: ADDS(rd, rn) ;
7: }

Power side-channel encountered in practice sometimes depends on previously
executed instructions. Corre et al. encounter a leakage effect, named “operand
leakage”, which leaks a combination of current and previous operands of two
instructions (e.g. parameters to adds) [CGD18]. A similar effect on memory ac-
cesses was encountered by Papagiannopoulos and Veshchikov, denoted as “mem-
ory remnant” in [PV17]. The explicit leak statements enables modeling of such
cross-instruction leakage effects by introducing additional state elements χ. We
denote this additional state as “leakage state”, which enables modeling side-
channel effects which depend on past execution. In general, leakage effects which
depend on one value p from past execution and one value c from current instruc-
tion can be modeled by placing p in global state opA during the first instruction
and emitting a leak of global state and current value in leak {opA, p} in the
latter instruction.

The operand and memory remnant leakage effects always emit leakage and
update leakage state jointly. We put forward a systematization under the name
“revenant leakage”, leaning its name to the (unexpected) comeback of sensitive
data from past execution steps and, in the figurative sense, haunting the living
cryptographer during construction of secure masking. The leakage effect is mod-
eled in Definition 3 and applied to the adds instruction in Algorithm 2. The
definition can easily be modified such that the state change is conditional to a

10

user-defined predicate or the leakage is extended to a history of more than one
instruction.

Definition 3 (Revenant Leakage Effect). The “revenant” leakage effect re-
leases a transition leakage prior updating some leakage state x← p.

1: macro EmitRevenantLeak (x, p) {
2: leak {x, p} ;
3: x← p;
4: }

The leakage effects are applied within instruction models by calling the
EmitRevenantLeak macro with the distinct leakage state used for caching
the value (e.g. opA) and the value leaking in combination, e.g. the first operand
to an addition.

The overall leakage model for a simplified ISA is depicted in Algorithm 3, it
corresponds to the model used for CM0+ Assembly9. In our model the leakage
state elements are denoted by opA, opB, opR, opW to model four distinct revenant
effects for the 1st and 2nd operand of computation as well as for load and store
separately. Some effects have been refined to match the behavior encountered in
practice, which diverges in the mapping of operands and an unexpected propa-
gation of the destination register in load instructions.

Veshchikov and Papagiannopoulos report the “neighboring” leakage effect,
representing a coupling between registers [PV17]. We did not encounter this be-
havior on CM0+ microcontrollers, although [MOW17] indicate different leakage
behavior in the higher registers R8 to R12 which we have not used for sensitive
data so far. Neighboring leakage can be modeled by using the ≃n operator as
shown in Definition 4.

Definition 4 (Neighboring Leakage Effect). The neighboring leakage effect
causes a leak of an unrelated register RN when register RM is accessed.

1: macro EmitNeighborLeak (e) {
2: if e ≃n RM then
3: leak {RN, RM} ;
4: end if
5: }

The DSL in combination with the concept of explicit leakage enables to
model all leakage effects known to us such that verification of threshold probing
security becomes aware of these additional leakages. Our effect definitions can
serve as building block to construct models such as our model in Algorithm 3 but
can be freely modified to model behavior not yet publicly known. In particular,
the expressiveness of modeling appears not to be limited except in that further
computation operations o might need to be added to our small DSL.
9 The full model is provided in combination with our tool scVerif at https://github.

com/scverif/scverif

11

Algorithm 3 Simplified power side-channel leakage model for CM0+ instruc-
tions.
1: var R0; var R1; . . . var R12; var PC; ▷ Global registers
2: var opA; var opB; var opR; var opW; ▷ Global leakage state
3: macro XOR (rd, rn) {
4: leak {opA, rd, opB, rn} ; ▷ combination of revenants
5: EmitTransientLeak(rd, rd⊕ rn) ;
6: EmitRevenantLeak(opA, rd) ;
7: EmitRevenantLeak(opB, rn) ;
8: rd← rd⊕ rn;
9: }

10: macro AND (rd, rn) {
11: leak {opA, rd, opB, rn} ; ▷ combination of revenants
12: EmitTransientLeak(rd, rd⊗ rn) ;
13: EmitRevenantLeak(opA, rd) ;
14: EmitRevenantLeak(opB, rn) ;
15: rd← rd⊗ rn;
16: }
17: macro LOAD (rd, rn, i) {
18: leak {opA, rn, opB, i} ; ▷ Manual multivariate leakage
19: EmitRevenantLeak(opA, rn) ; ▷ mixed mapping
20: EmitRevenantLeak(opB, rd) ; ▷ note: destination register propagated
21: EmitRevenantLeak(opR, ⟨rn, i⟩) ;
22: EmitTransientLeak(rd, ⟨rn, i⟩) ;
23: rd← ⟨rn, i⟩ ;
24: }
25: macro STORE (rd, rn, i) {
26: leak {opA, rn, opB, i} ; ▷ Manual multivariate leakage
27: EmitRevenantLeak(opA, rn) ; ▷ mixed mapping
28: EmitRevenantLeak(opB, rd) ; ▷ mixed mapping
29: EmitRevenantLeak(opW, rd) ; ▷ note: individual state
30: ⟨rn, i⟩ ← rd;
31: }

3 Stateful (S)NI and Automated Verification

In this section, we lay the foundations for proving security of IL implementations.
We first define security notions for IL gadgets: following a recent trend [BBD+16],
we consider two notions: non-interference (NI) and strong non-interference (SNI),
which achieve different composability properties. Then, we present an effective
method for verifying whether an IL gadget satisfies one of these notions.

3.1 Security Definitions

We first start with a brief explanation of the need for a new security definition.
At a high level, security of stateful computations requires dealing with residual
effects on state. Indeed, when a gadget is executed on the processor, it does not

12

only return the computed output but it additionally leaves “residue” in registers,
memory, or leakage state. Code subsequently executed might produce leakages
combining these residues with output shares, breaking secure composability. As
an example, let us consider the composition of a stateful refreshing gadget with
a stateful multiplication scheme: Refr

(
Mult(x, y)

)
. In the case of non-stateful

gadgets, if Mult is t–NI and Refr is t–SNI, such a composition is t–SNI. However,
if the gadgets are stateful this is not necessarily anymore the case. We give a
concrete example: Consider a modified ISW multiplication such that it is t–SNI
even with the leakages defined in the previous chapter, the output state sout
of the multiplication, in combination with the revenant leakage effect in the
scmacroload of Algorithm 3 can be used to retrieve information about the secret
as follows: After the multiplication one register could contain the last output
share of the multiplication gadget and the gadget is still secure. If the refreshing
first loads the first output share of the multiplication in the same register, the
revenant effect emits an observation containing both values (the first and last
output share of the multiplication) in a single probe. Thus the last probes can
be used to get the remaining output shares of the multiplication which means
that the composition is clearly vulnerable.

We first introduce the notion of gadget, on which our security definitions are
based. Informally, gadgets are IL macros with security annotations.

Definition 5 (Gadget). A gadget is an IL macro with security annotations:

– a security environment mapping inputs and outputs to a security level: secret
(H) or public (L),

– a memory typing mapping memory locations to a security level: secret (H),
public (L), random (R),

– share declarations, consisting of tuples of inputs and outputs. We adopt the
convention that all tuples are of the same size, and disjoint, and that all
inputs and outputs must belong to a share declaration.

We now state our two notions of security. Our first notion is an elaboration of
the usual notion of non-interference, and is stated relative to a public input state
sin and public output state sout. The definition is split in two parts: the first
part captures that the gadget does not leak, and the second part captures that
the gadget respects the security annotations.

Definition 6 (Stateful t–NI). A gadget with input state sin and output state sout
is stateful t-Non-Interfering (t–NI) if every set of t observations can be simulated
by using at most t shares of each input and any number of values from the input
state sin. Moreover, any number of observations on the output state sout can be
simulated without using any input share, but using any number of values from
the input state sin.

Our second notion is an elaboration of strong non-interference. Following stan-
dard practice, we dinstinguish between internal observations (i.e., observations
that differ from outputs) and output observations.

13

Definition 7 (Stateful t–SNI). A gadget with input state sin and output state sout
is stateful t-Strong-Non-Interfering (t–SNI), if every set of t1 observations on the
internal observations, t2 observations on the output values, combined with any
number of observations on the output state sout can be simulated by using at
most t1 shares of each input and any number of values from the input state sin.

We note that there exists a third notion of security, called probing security. We
do not define this notion formally here, but note that for stateful gadgets t–SNI
implies probing security, provided the masked inputs are mutually independent
families of shares, and the input state is probabilistic independent of masked
inputs and internal randomness.

We validate our notions of security through a proof that they are composable—
Section 4 introduces new and optimized composition theorems.

Proposition 1. Let G1(·, ·) and G2(·) two stateful gadgets as in Figure 2. As-
suming G2 is stateful t–SNI and G1 is stateful t–NI, then the composition G2(G1(·), ·)
is stateful t–SNI.

Proof. Let s1in and s1out be respectively the state input and state output of G1

and s2in and s2out respectively the state input and state output of G2. We prove
in the following that the composition G2(G1(·), ·) is stateful t–SNI.

Let Ω = (I,O) be the set of observations on the whole composition, where
Ii are the observations on the internal observations of Gi, I = I1 + I2 ≤ t1
and |I|+ |O| ≤ t.

Since G2 is stateful t–SNI and |I2 ∪ O| ≤ t, then there exist observation
sets S21 and S22 such that |S21 | ≤ |I2|, |S22 | ≤ |I2| and all the observations on
internal and output values combined with any number of observations on the
output state s2out can be simulated by using any number of values from the input
state s2in and the shares of each input with index respectively in S21 and S22 .

Since G1 is stateful t–NI, |I1 ∪ S21 | ≤ |I1 ∪ I2| ≤ t and s1out = s2in, then it
exists an observation set S1 such that |S1| ≤ |I1|+ |S21 | and all the observations
on internal and output values combined with any number of observations on the
output state s2out can be simulated by using any number of values from the input
state s1in and the shares of the input with index in S1.

Now, composing the simulators that we have for the two gadgets G1 and G2,
all the observations on internal and output values of the circuit combined with
any number of observations on the output state can be simulated from |S1| ≤
|I1|+ |S21 | ≤ |I1|+ |I2| ≤ t1 shares of the first input and |S22 | ≤ |I2| shares of the
second input and any number of values from the input state s1in. Therefore we
conclude that the circuit is stateful t–SNI.

3.2 Automated Verification

In this section, we consider the problem of formally verifying that an IL program
is secure at order t, for t ≥ 1. The obvious angle for attacking this problem is
to extend existing formal verification approaches to IL. However, there are two

14

important caveats. First, some verification approaches make specific assump-
tions on the programs—e.g. [BGR18] assumes that gadgets are built from ISW
core gadgets. Such assumptions are reasonable for more theoretical models, but
are difficult to transpose to a more practical model; besides they defeat the
purpose of our approach, which is to provide programmers with a flexible envi-
ronment to build verified implementations. Second, adapting formal verification
algorithms to IL is a very significant engineering endeavour. Therefore we follow
an alternative method: we define a transformation T that maps IL programs
into a fragment that coincides with the core language of MaskVerif, and reuse
the verification algorithm of MaskVerif for checking the transformed program.
The transformation is explained below, and satisfies correctness and precision.
Specifically, the transformation T is correct: if T (P) is secure at order t then
P is secure at order t (where security is either NI or SNI). The transformation
T is also precise: if P is secure at order t and T (P) is defined then T (P) is
secure at order t. Thus, the sole concern with the approach is the partiality of
the transformation T . While our approach rejects legitimate programs, it works
well on a broad range of examples.

Target language and high-level algorithm The core language of MaskVerif is a
subset of IL:

χ ::= x | x[n]
e ::= χ | n | o (e1, . . . , ej)
i ::= s← e | leak {e1, . . . , ej}
c ::= i∗

The main differences between IL and MaskVerif is that the latter:

– does not have memory accesses, macros and control-flow instructions;
– limits array accesses to constant indexes.

Our program transformation proceeds in two steps: first, all macros are inlined;
then the expanded program is partially evaluated.

Partial evaluation The partial evaluator takes as input an IL program and a
public initial state and returns another IL program. The output program is
equivalent to the original program w.r.t. functionality and leakage, under some
mild assumptions about initial memory layout, explained below.

G1

t–NI
S1

G2

t–SNI

S2
1

S2
2

Fig. 2: Example of composition

15

Our partial evaluator manipulates abstract values and tuples of abstract val-
ues, and abstract memories. An abstract value ϑ can be either a base value
corresponding to concrete base values like Boolean b or integer n, a label l
that represent abstract code pointers and are used for indirect jumps, and ab-
stract pointers ⟨x, n⟩. The latter are an abstract representation of a real pointer.
Initially the abstract memory is split into different (disjoint) regions modeled
by fresh arrays with maximal offset that do not exist in the original program.
Those regions is what we call the memory layout. A base value ⟨x, n⟩ represents
a pointer to the memory region x with the offset n (an integer). This encoding
is helpful to deal with pointer arithmetic. Formally,

ϑ ::= b | n | l | ⟨x, n⟩ | ⊥
v ::= ϑ | [ϑ; . . . ;ϑ]

For example:

region mem w32 a[0:1]
region mem w32 b[0:1]
region mem w32 c[0:1]
region mem w32 rnd[0:0]
region mem w32 stack[-4:-1]

means that the initial memory is split into 5 distinct region a, b, c, rnd, stack,
where a is an array of size 2 with index 0 and 1. Remark that the initial assump-
tion is not checked (and cannot be checked by the tool). Then another part of
the memory layout provides some initialisation for registers (IL variables):

init r0 <rnd, 0>
init r1 <c, 0>
init r2 <a, 0>
init r3 <b, 0>
init sp <stack, 0>

In particular, this assumes that initial the register r0 is a pointer to the region
rnd. Some extra information is also provided to indicate which regions initially
contain random values, or correspond to input/output shares.

The partial evaluator is parameterized by a state ⟨p, c, µ, ρ, ec⟩, where p is the
original IL program, c is the current command, µ a mapping from p variables to
their abstract value, ρ a mapping from variable corresponding to memory region
to their abstract value, and ec is the sequence of commands that have been
partially executed. The partial evaluator iteratively propagates values, removes
branching instructions, and replaces memory accesses by variable accesses (or
constant array accesses). Figure 3 provides some selected rules for the partial
evaluator. A complete description of the partial evaluator will appear in the
full version.

For expressions, the partial evaluator computes the value ϑ of e in µ and ρ
(which can be ⊥) and a expression e′ where memory/array accesses are replaced
by variables/constant array accesses, i.e. [[e]]ρµ = (ϑ, e′). If the expression is of the

16

[[ei]]
ρ
µ = (ϑi, e

′
i)

[[o(e1, . . . , en)]]
ρ
µ = (õ(ϑ1, . . . , ϑn), o(e

′
1, . . . , e

′
n)) [[x]]ρµ = (µ(x), x)

[[e]]ρµ = (n, e′)

[[x[e]]]ρµ = (µ(x)[n], x[n])

[[e]]ρµ = (⟨x, ofs⟩, e′)
[[⟨e⟩]]ρµ = (ρ(x)[ofs], x[ofs])

[[χ]]ρµ = (ϑ, χ′)

[[χ]]ρµ = χ′

i = χ← e i′ = χ′ ← e′ [[e]]ρµ = (v, e′) [[s]]ρµ = s′ (µ, ρ){s′ ← v} = (µ′, ρ′)

⟨p, i; c, µ, ρ, ec⟩⇝ ⟨p, c, µ′, ρ′, ec; i′⟩

[[ei]]
ρ
µ = (ϑi, e

′
i)

leak {e1, . . . , ej}⇝ leak
{
e′1, . . . , e

′
j

} i = goto e [[e]]ρµ = (l, e′) pl = c′

⟨p, i; c, µ, ρ, ec⟩⇝ ⟨p, c′, µ, ρ, ec⟩

i = if e ct cf [[e]]ρµ = (b, e′)

⟨p, i; c, µ, ρ, ec⟩⇝ ⟨p, cb; c, µ, ρ, ec⟩
i = while e cw i′ = (if e cw; i); c

⟨p, i; c, µ, ρ, ec⟩⇝ ⟨p, i′, µ, ρ, ec⟩

Fig. 3: Partial evaluation of expressions and programs

form o(e1, . . . , en) where all the arguments are partially evaluated, the resulting
expression is the operator applied to the resulting expressions e′i of the ei and
the resulting value is the partial evaluation of õ(ϑ1, . . . , ϑn) where õ check is the
ϑi are concrete values in that case it compute the concrete value else it return
⊥ (the partial evaluator sometime uses more powerful simplification rules like
0⊕̃ϑ⇝ ϑ).

If the expression is a variable, the partial evaluator simply return the value
stored in µ and the variable itself. The case is similar for array accesses, first
the index expression is evaluated and the resulting value should be an integer
n, the resulting expression is simple x[n] and the resulting value is the value
stored in µ(x) at position n (the partial evaluator checks that n is in the bound
of the array). For memory access ⟨e⟩ the partial evaluation of e should lead to
an abstract pointer ⟨x, ofs⟩, is this case the resulting expression is x[ofs] and the
value is ρ(x)[ofs].

To partially evaluate a left value [[χ]]ρµ, we partially evaluate the χ (viewing
it as an expression) using the partial evaluation of expressions. Note that the
resulting expression χ′ is itself a left value.

Partial evaluation of commands proceeds as expected. For assignment and
leak instructions, the partial evaluator simply propagates known information into
the command. For control-flow instructions, the partial evaluator tries to resolve
the control-flow and eliminates the instruction. For goto statements, the partial
evaluator tries to resolve the next instruction to be executed, and eliminates
the instruction.

The transformation is sound.

17

Proposition 2 (Informal). Let P and P ′ be an IL gadget and the correspond-
ing MaskV erif gadget output by the partial evaluator. For every initial state s
satisfying the memory layout assumptions, the global leakage of P w.r.t. s and
a set of inputs is equal to the global leakage of P ′ w.r.t. the same inputs.

We briefly comment on proving Proposition 2. In order to provide a formal proof,
a formal semantics of gadgets is needed. Our treatment so far has intentionally
been left informal. However, the behavior of gadgets can be made precise us-
ing programming language semantics. We briefly explain how. Specifically, the
execution of gadgets can be modelled by a small-step semantics that captures
one-step execution between states. This semantics is mostly standard, except for
the leak statements which generate observations. Using the small-step seman-
tics, one can model global leakage as a function that takes as input initial values
for the inputs and an initial state and produces a sequence of observations, a list
of outputs and a final state. Last, we transform global leakage into a probabilistic
function by sampling all inputs tagged with the security type R independently
and uniformly from their underlying set. This yields a function that takes as
input initial values for the inputs and an initial partial state (restricted to the
non-random values), a list of observations selected by the adversary and returns
a joint distribution over tuples of values, where each tuple corresponds to an
observation selected by the adversary.

3.3 Implementation

We have implemented the partial evaluator as a front-end to MaskVerif, named
“scVerif”. Users can write leakage models, annotations and programs in IL or
provide programs in Assembly code. If the output program lies in the MaskVerif
fragment, then verification starts with user specified parameters such as security
order, or which property to verify. Else, the program is rejected.

4 Representative Proofs of Efficient Masking

In this section, we describe the construction of gadgets that do not exhibit vul-
nerable leakage at any order t ≤ d− 1, where d is the number of shares. That is,
we harden masked implementations to be secure at the optimal order t = d− 1
in fine-grained leakage models, opposed to the “lazy” strategy of masking in
a basic model at higher orders with the intention to achieve security at lower
orders t < d− 1 in fine-grained leakage models [BGG+14].

Creating a secure gadget is an iterative process which involves three tasks:
(a) understanding and modeling the actual leakage behavior (b) constructing an
(efficient) implementation which is secure in the fine-grained model (c) optionally
performing physical evaluation of side-channel resilience to assess the quality of
the model for the specific target platform. Protecting an implementation against
side-channel effects mandates insertion of instructions to circumvent vulnerable
combination of masked secrets.

18

4.1 Hardened Masking

In this section, we discuss the development of gadgets which enjoy security in
any fine-grained leakage model. We design gadgets first in the simplified IL
model depicted in Algorithm 3. Designing in IL is more flexible than Assembly
since shortcuts such as leakage free operations and abstract countermeasures are
available. Once the gadget is hardened the gadget is implemented in assembly
and verified again, which is to large degree trivial but requires to substitute
abstract countermeasures by concrete instructions.

Each gadget takes as input one or two values a and b, respectively encoded in
(a0, . . . , ad−1) and (b0, . . . , bd−1), and gives as output the shares (c0, . . . , cd−1),
encoding of a value c. By convention, inputs and outputs are stored in memory
to allow construction of implementations at higher orders. Our gadgets, provided
in the Supplementary material, use the registers R0, R1, R2, and R3 as memory
address pointing to inputs, outputs and random values stored in memory. The
registers R4, R5, R6, and R7 are instead used to perform the elementary operations.
Registers beyond R7 are used rarely.

A gadget which is correctly masked in the basic leakage model, i.e., secure
against computation leakage (Definition 1), can be secured by purging the archi-
tecture and leakage state at selected locations within the code10. The reason is
simple: every leak must be defined over elements of the state and removing sen-
sitive data from these elements prior the instruction causing such leak mitigates
the ability to observe the sensitive data.

We distinguish “scrubbing” countermeasures, which purge architecture state,
and “clearing” countermeasures, which remove values residing in leakage state.
Two macros serve as abstract countermeasures, scrub(R0) and clear(opA) as-
sign some value which is independent of secrets to R0, respectively opA. On As-
sembly level these need to be substituted by available instructions. Clearing opA
or opB is mostly done by ANDS(R0, R0) ; since R0 is a public memory address.
Purging opR (respective opW) requires to execute LOAD (respectively STORE)
instruction reading (writing) a public value from memory, but the side-effects of
both instructions require additional care. Sometimes multiple countermeasures
can be combined in Assembly.

Moreover we approach the problem of securing a composition against the leak-
age effects introduced in Section 2.1 by ensuring that all the registers involved
in the computation of a gadget are completely cleaned before the composition
with the next gadget. This, indeed, easily guarantees the requirements of state-
ful t–SNI in Definition 7. We use fclear as abstract placeholder for the macro
run after each gadget to clear the state sout. Additional clearings are needed be-
tween intermediate computations in the gadgets; these macros are represented
as cleari, where the index distinguishes between the different macros in the
gadget since each variety of leakage needs a different countermeasure.

Finally, randomness is employed in order to randomize part of the computa-
tion, especially in the case of non-linear gadgets, where otherwise with one probe
10 All t–NI and t–SNI algorithms enjoy this property since computation leakage is

inherent to masking.

19

Algorithm 4 Addition scheme at 1st order of security
Input: a = (a0, a1), b = (b0, b1)
Output: c = (c0, c1), where c0 = a0 + b0 and c1 = a1 + b1

1: load(R4, R1, 0); ▷ Load a0 into register r4
2: load(R5, R2, 0); ▷ Load b0 into register r5
3: xor(R4, R5); ▷ after XOR r4 contains a0 + b0
4: store(R4, R0, 0); ▷ Store the value of r4 as output share c0
5: clear(opW);
6: load(R5, R1, 1); ▷ Load a1 into register r5
7: load(R6, R2, 1); ▷ Load b1 into register r6
8: xor(R5, R6); ▷ after XOR r5 contains a1 + b1
9: store(R5, R0, 1); ▷ Store the value of r5 as output share c1

10: scrub(R4); scrub(R5); scrub(R6);
11: clear(opA); clear(opB); clear(opR); clear(opW);

the attacker could get the knowledge of several shares of the inputs. We indicate
with rnd a value picked uniformly at random from F32

2 , prior execution.
For giving an intuition of our strategy, we depict in Algorithm 4 and Al-

gorithm 5 respectively an addition and a multiplication scheme at 1st order
of security. Some other examples of stateful-t–SNI addition, multiplication and
refreshing schemes for different orders can be found in section A of the Sup-
plementary material. They have all been verified to be stateful-t–SNI with the
use of our new tool. Some algorithms are clearly inspired by schemes already
existing in the literature, as the ISW multiplication [ISW03] and the schemes
in [BBP+16]. The methodology just described, despite being easy to apply, can
be expensive, as it requires an extensive use of clearings, especially for guarantee-
ing secure composition. However, a couple of strategies can be adopted in order
to overcome this drawback and optimize the use of clearings. We describe such
optimization strategies in the following.

4.2 Optimized Composition of Linear Gadgets

The first scenario of optimization we analyze the case when linear gadgets are
composed to each other. In the rest of the paper, we refer to this situation as
linear composition. In this case, we exploit the fact that operations are performed
independently share-wise and we modify the order in which the operation are
usually performed, in such a way that initially all the operations of the first
shares are applied, then all the ones on the second shares, and so on.

More formally, let a, b, c be d-shared encodings (ai)i∈[d], (bi)i∈[d], (ci)i∈[d] and
let F(a, b) := (F0(a0, b0),clear0, . . . ,Fd−1(ad−1, bd−1),cleard−1, fclear) be
a share wise simulatable linear gadget with, e.g. Fi(ai, bi) outputs ai ⊕ bi as
described in Figure 4 (left) and clear are the leakage countermeasures be-
tween each share-wise computation as explained in Sections 4.1. In the follow-
ing we consider a composition F(F(a, b), c) and present a technique to opti-
mize the efficiency of both gadgets. Instead of performing first the inner func-

20

Algorithm 5 FIRSTMULT: Multiplication scheme at 1st order of security
Input: a = (a0, a1), b = (b0, b1)
Output: c = (c0, c1), such that

c0 = a0b0 + rnd0 + a0b1

c1 = a1b1 + rnd0 + a1b0

1: load(R4, R2, 0);
2: load(R5, R1, 0);
3: and(R4, R5); ▷ after AND r4 contains a0b0
4: load(R6, R3, 0);
5: xor(R6, R4); ▷ after XOR r6 contains a0b0 + rnd0

6: load(R7, R2, 1);
7: and(R5, R7); ▷ after AND r4 contains a0b1
8: xor(R5, R6); ▷ after XOR r5 contains a0b1 + a0b0 + rnd0

9: store(R5, R0, 0); ▷ Store the value of r5 as output share c0
10: clear(opW);
11: scrub(R4);
12: scrub(R6);
13: load(R4, R1, 1);
14: and(R7, R4); ▷ after AND r7 contains b1a1

15: load(R6, R3, 0);
16: xor(R6, R7); ▷ after XOR r7 contains b1a1 + rnd0

17: load(R5, R2, 0);
18: and(R5, R4); ▷ after AND r5 contains b0a1

19: xor(R6, R5); ▷ after XOR r6 contains b0a1 + b1a1 + rnd0

20: store(R6, R0, 1); ▷ Store the value of r6 as output share c1
21: scrub(R4);
22: scrub(R5);
23: scrub(R6);
24: scrub(R7);
25: clear(opA);
26: clear(opB);
27: clear(opR);
28: clear(opW);

tion F(a, b) =: m and then the outer function F(m, c) =: o, our idea is to perform

F̂(a, b, c) =
((
F̂i(ai, bi, ci),cleari

)
i∈[d]

, fclear
)

with F̂i(ai, bi, ci) = Fi(Fi(ai, bi), ci). In other words, we change the order of
computation to m0, o0, . . . ,md−1, od−1, rather than m0, . . . ,md−1, o0, . . . , od−1.

This method allows us to save up on the number of clear, load, and store
operations. In a normal execution, we first need to m when it is given as output
of the first gadget, and then we need to load it for injecting it as the input of the
second gadget. With the optimized execution, instead, we do not need to have
such loads and stores, since the two gadgets are performed at the same time.

21

⊕

⊕
m

a b c

o

⊗ ⊗
a b c

•

o(1)o(2)

Fig. 4: Examples of linear composition (left) and non-linear composition (right)

Additionally, by considering the composition as a unique gadget, we can save on
the clearings that would be otherwise needed after the first gadget to ensure the
stateful t–SNI. In the following, we give a security proof for F̂(a, b, c).

Proposition 3. The optimized gadget F̂(a, b, c) as described above, is stateful-
t–NI.

Proof. We show that all observations in the gadget depend on at most one
share of each input. Since the attacker can perform at most n− 1 observations,
this implies that any combination of its observations is independent of at least
one share of each input. More precisely, the computation of the ith output of
F̂(a, b, c) only depends on the ith shares of a, b or c. Hence the observations
in each iteration only leak information about the ith share since we clear the
state after the computation of each output share. Therefore any combination of
t ≤ d − 1 observations is dependent on at most t shares of each input, and any
set t observations is simulatable with at most t shares of each input bundle.

In the supplementary material we give a concrete construction how to apply
Proposition 3 to Algorithm 4.

4.3 Optimized Composition of Gadgets with (partly) Independent
Inputs

The second scenario that we take into account is the one described in Figure 4
(right), where two non-linear gadgets, e.g. two multiplication algorithms, sharing
one of the inputs are performed. We refer in the following to this situation
as non-linear composition. In this case, it is possible to reduce the number of
loadings and clearings, by re-using the shares in common, once loaded into the
registers and replacing the intermediate clearings of a gadget by independent
computations of another gadget. The optimization technique described to save
clearings also holds for two gadgets with independent inputs. The intermediate
clearings in a gadget ensure that two computations on two different shares of
the same secret do not leak together. Since this clearing is only a computation

22

independent of the secret, the clearing can be replaced by a useful computation
of another gadget. With our tool, we have proven that the merge of stateful
t–SNI multiplications, given in Section A of the Supplementary material, is also
stateful t–SNI. Since we only need the more efficient special optimization for
the present S-Box, we will continue to focus on two multiplications with shared
input. In total, we save 59% cycles for second order. The overhead from clearings
and scrubs is reduced by 75%, and the amount of loads and stores is reduced by
47%.

4.4 Case study: Masking the PRESENT S-Box

To estimate the impact of our methodology on a complex circuit, we apply to
the PRESENT block cipher masked at first and second order the basic rules
for composability, defined in Section 3, and successively the optimizations of
Section 4.2 and 4.3. We found out that the structure of the S-Box of PRESENT
allows the adoption of the optimization techniques, both in the linear and in the
non-linear composition.

We consider the first and second order implementation of the S-Box. Based
on [CFE16], the S-Box consists of two affine functions and a non-affine one. The
non-affine part is depicted in Figure 5. A more complete description of the S-Box
is provided in the supplementary material.

Our masked implementation of the PRESENT S-Box, using the trivial solu-
tion for composability, is provided as a Supplementary material. Algorithm 12
in Section C depicts the masked S-Box, where the subroutines calcA in Al-
gorithm 14, calcB in Algorithm 15 and calcG in Algorithm 16 are first
order NI gadgets. The optimized version of it, instead, employs our optimiza-
tion techniques which are given in the subroutines calcA_opt, calcB_opt
and calcG_opt, respectively in Algorithms 17, 18 and 19. The optimized S-
Box implementation is given in Algorithm 13.

As metric to measure the improvements of our optimization techniques, we
take the amount of basic operations used in the implementations, as shown in
Figure 1. From this comparison, we can see that both implementations use almost
the same amount of core operations (xor and and), since the two versions im-
plement the same algorithm. More precisely, the non-optimized version requires

a

b

c

d

⊗⊕ ⊗⊕

⊗⊕
⊗⊕

⊗⊕ ⊗⊕

⊗⊕
⊗⊕

G G

Fig. 5: The Non-Linear Layer of the Present S-Box

23

1st order 2nd order
composition optimized opt

comp
composition optimized opt

comp

load 115 60 0.52 251 136 0.54
and 24 24 1 54 54 1
xor 57 59 1.054 133 142 1.07
store 72 48 0.67 93 48 0.52
scrub 95 16 0.17 211 53 0.25
clear_opA 35 12 0.34 67 20 0.3
clear_opB 130 43 0.33 314 80 0.25
clear_opR 130 26 0.2 260 73 0.28
clear_opW 56 4 0.07 93 10 0.11
cycles 1097 440 0.4 2173 883 0.41

Table 1: Operation and cycle count for the normally composed and optimized
PRESENT s-Box at 1st and 2nd order

1st order 2nd order
Normal composition Optimization Normal composition Optimization

#clearings
#operations 1.66 0.45 1.78 0.62

Table 2: Density of PRESENT S-Box, defined as the ration between the clearings
count and the operation count

two xor operations less, thanks to the parallel calculation of all output values
in calcG_opt, where b · d needs to be added to a′ and d′. On the other hand,
since in the non-optimized version more intermediate values need to be stored
and loaded inside the functions, while in the optimized version it is only needed
to store intermediate values between the functions, the number of stores and
loads employed is lower, producing an improvement in terms of operation count.
Additionally, the amount of loads is reduced further in the optimized version
by loading every input share once per output share. This holds with exception of
the limited amount of registers requiring to load a1 and d1 twice for the second
output share and b0 and b1 only are needed to load once in the whole gadget.

In Table 1 we evaluate the efficiency of our approach, by comparing the ratio
between the operation needed for the calculation and the overhead given by
the clearings in both the normally composed and the optimized versions of the
PRESENT S-Box. The comparison shows an efficiency improvement of almost
73% for the first order implementation and of 63% for the second order.

In these regards, we underline how the aforementioned optimization is possi-
ble thanks to the use of our new tool. The latter, indeed, allows us to first prove
the security of combination of stateful gadgets, i.e., the optimized compositions
discussed above, and then to verify their security in the biggest context of the
S-Box, which would otherwise be too exhaustive to prove pen and paper.

24

4.5 Resilience in Practice

In this work we enable proofs of threshold probing security in fine-grained mod-
els of side-channel behavior. The remaining question is whether the proofs are
representative in that proofs in a specific model connect to resilience in practice.

Physical attacks exploit information contained in measurement samples which
correspond to the power consumption at a specific time during execution. Re-
silience in practice is achieved when the information retrievable from measure-
ments provides no benefit for an attacker. In this context, masking a secret
requires the attacker to recover multiple pieces of information spread over multi-
ple measurement samples which is known to be hard for high number of shares
in environments with sufficient noise.

The connection between threshold probing security and resilience in practice
is straightforward: the formal property that no combination of t (modeled) obser-
vations provides benefit to an attacker can directly be transposed to the physical
setting where no combination of t measurement samples should provide valuable
information on secrets. A threshold probing proof is thus representative whenever
the specified leakage model contains all information derivable from measurement
samples, i.e., the model is sufficiently complete. Our work enables verification in
leakage models with the mandated precision.

The assurance of representative proofs is important in that it provides a lower
bound on the attack complexity since at least t pieces of information have to be
recovered and this difficulty is exponential in t when sufficient noise is present.
Our systematic approach allows to get the most out of masking by achieving the
optimal resilience at security order t = d− 1 in practice which is important for
efficient implementations.

The question of evaluating the quality of a model is still unanswered for
this new kind of specification which expresses data dependency only. Leakage
certification is an established approach to systematically validating the quality
of leakage models but requires more detail than needed for threshold probing
security since the constituting function for each measurement sample must be
modeled [DSM17, DSV14]. Leakage detection is a good candidate due to direct
connection to threshold probing security and the way models are shared across
implementations. Representative proofs of threshold probing security correspond
to the hypothesis that the distribution of every combination of t leakage observa-
tions is independent of secrets. Leakage detection methods such as TVLA assess
exactly this hypothesis in comparing the distribution of measurement samples
taken during execution on a fixed secret with execution on random secrets [SM15].
Informally, TVLA evaluates whether the observable leakage of computation on
secrets can be distinguished from leakage generated by random inputs, which
should be indistinguishable for secure implementations. In this assessment strat-
egy a model becomes stronger the more verified implementations are evaluated
using leakage detection, which is a significant benefit of systematic hardening.

We evaluate the quality of our model by constructing multiple implemen-
tations in a shared model and apply physical leakage detection independently
on each implementation. The model is (empirically) qualitative since all imple-

25

0 250 500 750 1000 1250 1500 1750 2000

sample point

0

1

2

3

4

5

t-
st

at
ist

ics

Fig. 6: Physical leakage detection t-statistics of optimized 1st order PRESENT
S-Box assessment, x axis represents sample points.

mentations are leakage free at their optimal order in physical leakage detection
assessment at a minimum of one million traces. The source code of and, xor,
copy, negation, compositions thereof and the optimized PRESENT S-Box all
masked at 1st and 2nd order, as well as the full leakage model are provided in
the supplementary material11.

The power consumption of an CM0+ MCU is measured with an oscilloscope
sampling the current consumption via an inductive current probe at 2.5 GS/s,
a bandwidth of 500 MHz and 8bit quantification. The MCU is clocked at 4
MHz and every 125 samples are averaged resulting in 5 samples per cycle. Every
execution is measured repeatedly for 4 times and averaged to reduce the noise
further, which allows an assessment in a setting with very little noise. Sets of
one million measurements each are compared in random vs. fixed Welch t-test
TVLA with an alpha certainty of 0.0001. Detectable leakage is significant when
the t-statistics are larger than the (non-adopted) threshold of 4.5.

Our 1st order PRESENT S-Box is free of significant leakage. At two sample
points in Figure 6 the TVLA assessment indicates a small distinguishing factor,
far from the significance threshold of 4.5 which might lead to an extension of
our model to achieve resilience at even higher number of traces in the future.

To show the applicability at second order we evaluate our 2nd order PRESENT
S-Box in 2nd order multivariate TVLA by processing the measurements such that
every pair of sample points is combined and evaluated. This results in a com-
binatorial blow-up which requires multiple hundred CPU hours to evaluate the
S-box, compared to a verification time of less than a minute when using scVerif.
The t-statistics are shown in Figure 7.

We conclude the model sufficiently representing leakage up to one million
traces even at higher orders and as such threshold probing security proofs in

11 The implementations in IL and Assembly code are provided at https://github.
com/scverif/gadgets

26

Fig. 7: Bivariate TVLA of the optimized 2nd order PRESENT S-Box detecting
no leakage for every pair of a sample points on the x and y axis.

this particular model are representative. The combination of probing security
and TVLA evaluation is in general beneficial as strict verification of many im-
plementations depends on a single, shared specification of leakage behavior while
physical evaluation strengthens the shared specification by assessing in different
contexts. This forms a powerful systematic approach consisting of representative
verification and practical validation to the construction of concrete implementa-
tions with security in practice. Moreover, our approach allows to verify concrete
implementations at higher orders of security with predictable resilience in prac-
tice, scaling beyond the computational bound of multivariate TVLA.

5 Conclusion

In this paper, we show how automated verification can deliver provably resilient
and practically hardened masked implementations with low overhead.

Our DSL allows to construct fine-grained models of side-channel behavior
which can be adopted flexibly to specific contexts. For the first time, this ap-
proach allows to verify formal notions of side-channel resilience in user-provided
models at higher orders. The combination of representative leakage models and
formal verification enables to rule out entire classes of practical side-channel
attacks backed by provable security statements.

New generic optimization strategies are introduced to reduce the overhead
mandated by additional countermeasures for security in fine-grained leakage
models. The optimizations are applied to a masked PRESENT S-Box and vali-
dated to be leak free up to a high number of traces in physical leakage assessment
despite the high efficiency of the constructions. Moreover, the optimized construc-

27

tions show that hardened masking does not necessarily incur large overhead and
motivates further research.

Our tool scVerif serves as front-end to MaskVerif but the presented concept to
model side-channel behavior explicitly is likely adoptable to verification of other
security notions such as noisy or random probing security, given that sufficient
information such as signal-to-noise ratio or occurrence probabilities are encoded
in the model. This could allow to bound the success rate of attacks at order t > d
in combination with the powerful but bounded assurance from probing security
for t ≤ d.

References
[ARM18] ARM Limited. Arm v6-m architecture reference manual. Technical report,

ARM Limited, 2018. ARM DDI 0419E (ID070218).
[BBC+19] Gilles Barthe, Sonia Belaïd, Gaëtan Cassiers, Pierre-Alain Fouque, Ben-

jamin Grégoire, and François-Xavier Standaert. maskVerif: Automated ver-
ification of higher-order masking in presence of physical defaults. In ES-
ORICS 2019 , Part I, Lecture Notes in Computer Science, pages 300–318.
Springer, Heidelberg, Germany, 2019.

[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, and Pierre-Yves Strub. Verified proofs of higher-order mask-
ing. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015,
Part I, volume 9056 of Lecture Notes in Computer Science, pages 457–485.
Springer, Heidelberg, Germany, 2015.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Edgar R. Weippl, Ste-
fan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, ACM CCS 16, pages 116–129. ACM Press, 2016.

[BBP+16] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff,
Adrian Thillard, and Damien Vergnaud. Randomness complexity of private
circuits for multiplication. In Marc Fischlin and Jean-Sébastien Coron, edi-
tors, EUROCRYPT 2016, Part II, volume 9666 of Lecture Notes in Computer
Science, pages 616–648. Springer, Heidelberg, Germany, 2016.

[BDM+20] Sonia Belaïd, Pierre-Évariste Dagand, Darius Mercadier, Matthieu Rivain,
and Raphaël Wintersdorff. Tornado: Automatic generation of probing-secure
masked bitsliced implementations. In Anne Canteaut and Yuval Ishai, editors,
Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Za-
greb, Croatia, May 10-14, 2020, Proceedings, Part III, volume 12107 of Lec-
ture Notes in Computer Science, pages 311–341. Springer, 2020.

[BGG+14] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and
François-Xavier Standaert. On the cost of lazy engineering for masked soft-
ware implementations. In Marc Joye and Amir Moradi, editors, CARDIS
2014, volume 8968 of Lecture Notes in Computer Science, pages 64–81.
Springer, 2014.

[BGI+18] Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina Könighofer, Stefan
Mangard, and Johannes Winter. Formal verification of masked hardware im-
plementations in the presence of glitches. In Jesper Buus Nielsen and Vincent

28

Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of Lecture Notes
in Computer Science, pages 321–353. Springer, Heidelberg, Germany, 2018.

[BGR18] Sonia Belaïd, Dahmun Goudarzi, and Matthieu Rivain. Tight private circuits:
Achieving probing security with the least refreshing. In ASIACRYPT 2018,
Part II, Lecture Notes in Computer Science, pages 343–372. Springer, Heidel-
berg, Germany, 2018.

[BRNI13] Ali Galip Bayrak, Francesco Regazzoni, David Novo, and Paolo Ienne.
Sleuth: Automated verification of software power analysis countermeasures.
In Guido Bertoni and Jean-Sébastien Coron, editors, CHES 2013, volume
8086 of Lecture Notes in Computer Science, pages 293–310. Springer, Heidel-
berg, Germany, 2013.

[CFE16] Cong Chen, Mohammad Farmani, and Thomas Eisenbarth. A tale of two
shares: Why two-share threshold implementation seems worthwhile - and why
it is not. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016,
Part I, volume 10031 of Lecture Notes in Computer Science, pages 819–843.
Springer, Heidelberg, Germany, 2016.

[CGD18] Yann Le Corre, Johann Großschädl, and Daniel Dinu. Micro-architectural
power simulator for leakage assessment of cryptographic software on ARM
cortex-M3 processors. Lecture Notes in Computer Science, pages 82–98, 2018.

[CGLS20] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier Stan-
daert. Hardware private circuits: From trivial composition to full verification.
Cryptology ePrint Archive, Report 2020/185, 2020. https://eprint.iacr.
org/2020/185.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. To-
wards sound approaches to counteract power-analysis attacks. In Michael J.
Wiener, editor, CRYPTO’99, volume 1666 of Lecture Notes in Computer Sci-
ence, pages 398–412. Springer, Heidelberg, Germany, crypto99month 1999.

[Cor18] Jean-Sébastien Coron. Formal verification of side-channel countermeasures
via elementary circuit transformations. In ACNS 18, Lecture Notes in Com-
puter Science, pages 65–82. Springer, Heidelberg, Germany, 2018.

[DBR19] Lauren De Meyer, Begül Bilgin, and Oscar Reparaz. Consolidating security
notions in hardware masking. TCHES, 2019(3):119–147, 2019. https://
tches.iacr.org/index.php/TCHES/article/view/8291.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage
models: From probing attacks to noisy leakage. In Phong Q. Nguyen and
Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of Lecture Notes
in Computer Science, pages 423–440. Springer, Heidelberg, Germany, 2014.

[DDF19] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leak-
age models: From probing attacks to noisy leakage. Journal of Cryptology,
32(1):151–177, January 2019.

[DSM17] François Durvaux, François-Xavier Standaert, and Santos Merino Del Pozo.
Towards easy leakage certification: extended version. 7(2):129–147, June
2017.

[DSV14] François Durvaux, François-Xavier Standaert, and Nicolas Veyrat-Charvillon.
How to certify the leakage of a chip? In Phong Q. Nguyen and Elisabeth Os-
wald, editors, EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer
Science, pages 459–476. Springer, Heidelberg, Germany, 2014.

[EWS14] Hassan Eldib, Chao Wang, and Patrick Schaumont. Formal verification of
software countermeasures against side-channel attacks. ACM Trans. Softw.
Eng. Methodol., 24(2):11:1–11:24, 2014.

29

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglia-
longa, and François-Xavier Standaert. Composable masking schemes
in the presence of physical defaults & the robust probing model.
TCHES, 2018(3):89–120, 2018. https://tches.iacr.org/index.php/TCHES/
article/view/7270.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hard-
ware against probing attacks. In Dan Boneh, editor, CRYPTO 2003, volume
2729 of Lecture Notes in Computer Science, pages 463–481. Springer, Heidel-
berg, Germany, 2003.

[KR19] Yael Tauman Kalai and Leonid Reyzin. A survey of leakage-resilient cryp-
tography. In Providing Sound Foundations for Cryptography: On the Work
of Shafi Goldwasser and Silvio Micali, pages 727–794. 2019.

[MOPT12] Andrew Moss, Elisabeth Oswald, Dan Page, and Michael Tunstall. Com-
piler assisted masking. In Emmanuel Prouff and Patrick Schaumont, editors,
CHES 2012, volume 7428 of Lecture Notes in Computer Science, pages 58–75.
Springer, Heidelberg, Germany, ches12month 2012.

[MOW17] David McCann, Elisabeth Oswald, and Carolyn Whitnall. Towards practical
tools for side channel aware software engineering: ’grey box’ modelling for
instruction leakages. pages 199–216, 2017.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks:
A formal security proof. In Thomas Johansson and Phong Q. Nguyen, edi-
tors, EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science,
pages 142–159. Springer, Heidelberg, Germany, eurocrypt13month 2013.

[PV17] Kostas Papagiannopoulos and Nikita Veshchikov. Mind the gap: Towards
secure 1st-order masking in software. Lecture Notes in Computer Science,
pages 282–297, 2017.

[SM15] Tobias Schneider and Amir Moradi. Leakage assessment methodology - A
clear roadmap for side-channel evaluations. In Tim Güneysu and Helena
Handschuh, editors, CHES 2015, volume 9293 of Lecture Notes in Computer
Science, pages 495–513. Springer, Heidelberg, Germany, 2015.

[SSB+19] Madura A Shelton, Niels Samwel, Lejla Batina, Francesco Regazzoni,
Markus Wagner, and Yuval Yarom. Rosita: Towards automatic elimina-
tion of power-analysis leakage in ciphers. Cryptology ePrint Archive, Report
2019/1445, 2019. https://eprint.iacr.org/2019/1445.

[Ves14] Nikita Veshchikov. SILK: high level of abstraction leakage simulator for side
channel analysis. In Mila Dalla Preda and Jeffrey Todd McDonald, editors,
PPREW@ACSAC 2014, pages 3:1–3:11. ACM, 2014.

[ZGSW18] Jun Zhang, Pengfei Gao, Fu Song, and Chao Wang. Scinfer: Refinement-
based verification of software countermeasures against side-channel attacks.
In Computer-Aided Verification, 2018.

30

Supplementary material

A Basic algorithms

A.1 Addition gadgets

Algorithm 6 SECXOR: Addition scheme at 2nd order of security
Input: a = (a0, a1, a2), b = (b0, b1, b2)
Output: c = (c0, c1, c2), such that

c0 = a0 + b0

c1 = a1 + b1

c2 = a2 + b2

1: load(R4, R1, 0);
2: load(R5, R2, 0);
3: xor(R4, R5);
4: store(R4, R0, 0);
5: clear(opB);
6: clear(opW);
7: load(R6, R1, 1);
8: load(R7, R2, 1);
9: xor(R7, R6);

10: store(R7, R0, 1);
11: clear(opB);
12: clear(opW);

13: scrub(R6);
14: load(R5, R1, 2);
15: load(R6, R2, 2);
16: xor(R5, R6);
17: store(R5, R0, 2);
18: scrub(R4);
19: scrub(R5);
20: scrub(R6);
21: clear(opA);
22: clear(opB);
23: clear(opR);
24: clear(opW);

Algorithm 7 Addition scheme at nth order of security
Input: a = (a0, ..., an), b = (b0, ..., bn)
Output: c = (c0, ..., cn), such that

ci = ai + bi, 0 ≤ i ≤ n

1: for (i = 0 to n) do
2: load(R4, R1, i);
3: load(R5, R2, i);
4: xor(R4, R5);
5: store(R4, R0, i);
6: clear(opW);
7: scrub(R4);
8: scrub(R5);
9: end for

10: clear(opA);
11: clear(opB);
12: clear(opR);

31

A.2 Multiplication gadgets

Algorithm 8 SECMULT: Multiplication scheme at 2nd order of security
Input: a = (a0, a1, a2), b = (b0, b1, b2)
Output: c = (c0, c1, c2), such that

c0 = a0b0 + rnd0 + a0b1 + rnd1 + a1b0

c1 = a1b1 + rnd1 + a1b2 + rnd2 + a2b1

c0 = a2b2 + rnd2 + a2b0 + rnd0 + a0b2

1: load(R5, R1, 0);
2: load(R4, R2, 0);
3: and(R4, R5);
4: load(R6, R3, 0);
5: xor(R6, R4);
6: clear(opB);
7: load(R7, R2, 1);
8: and(R7, R5);
9: xor(R6, R7);

10: scrub(R4);
11: load(R4, R1, 1);
12: load(R5, R2, 0);
13: clear(opB);
14: and(R4, R5);
15: xor(R6, R4);
16: clear(opA);
17: scrub(R5);
18: load(R5, R3, 1);
19: xor(R6, R5);
20: store(R6, R0, 0);
21: clear(opW);
22: scrub(R4);
23: scrub(R5);
24: scrub(R7);
25: load(R5, R1, 1);
26: load(R4, R2, 1);

27: and(R4, R5);
28: load(R6, R3, 1);
29: xor(R6, R4);
30: clear(opB);
31: load(R7, R2, 2);
32: and(R7, R5);
33: xor(R6, R7);
34: scrub(R4);
35: load(R4, R1, 2);
36: load(R5, R2, 1);
37: clear(opB);
38: and(R4, R5);
39: xor(R6, R4);
40: clear(opA);
41: scrub(R5);
42: load(R5, R3, 2);
43: xor(R6, R5);
44: store(R6, R0, 1);
45: clear(opW);
46: scrub(R4);
47: scrub(R5);
48: scrub(R7);
49: load(R5, R1, 2);
50: load(R4, R2, 2);
51: and(R4, R5);
52: load(R6, R3, 2);

53: xor(R6, R4);
54: clear(opB);
55: load(R7, R2, 0);
56: and(R7, R5);
57: xor(R6, R7);
58: scrub(R4);
59: load(R4, R1, 0);
60: load(R5, R2, 2);
61: clear(opB);
62: and(R4, R5);
63: xor(R6, R4);
64: clear(opA);
65: scrub(R5);
66: load(R5, R3, 0);
67: xor(R6, R5);
68: store(R6, R0, 2);
69: scrub(R4);
70: scrub(R5);
71: scrub(R6);
72: scrub(R7);
73: clear(opA);
74: clear(opB);
75: clear(opR);
76: clear(opW);

32

A.3 Refreshing gadgets

Algorithm 9 FIRSTREF: Refreshing scheme at 1st order of security
Input: a = (a0, a1)
Output: c = (c0, c1), such that

c0 = a0 + rnd0

c1 = a1 + rnd0

1: load(R4, R1, 0); ▷ Load a0 into register r4
2: load(R5, R3, 0); ▷ Load rnd0 into register r5
3: xor(R4, R5); ▷ after XOR r4 contains a0 + rnd0
4: store(R4, R0, 0); ▷ Store the value of r4 as output share c0
5: clear(opW);
6: load(R6, R1, 1); ▷ Load a1 into register r6
7: xor(R6, R5); ▷ after XOR r4 contains a1 + rnd0
8: store(R4, R0, 1); ▷ Store the value of r4 as output share c1
9: scrub(R4);

10: scrub(R5);
11: scrub(R6);
12: clear(opA);
13: clear(opB);
14: clear(opR);
15: clear(opW);

Algorithm 10 SECREF: Refreshing scheme at 2nd order of security
Input: a = (a0, a1, a2)
Output: c = (c0, c1, c2), such that

c0 = a0 + rnd0

c1 = a1 + rnd1

c2 = a2 + rnd0 + rnd1

1: load(R4, R3, 0);
2: load(R6, R1, 0);
3: clear(opR);
4: load(R5, R3, 1);
5: xor(R6, R4);
6: store(R6, R0, 0);
7: clear(opW);
8: scrub(R6);
9: load(R7, R1, 1);

10: clear(opA);
11: xor(R7, R5);
12: store(R7, R0, 1);
13: clear(opW);
14: clear(opB);

15: xor(R4, R5);
16: scrub(R5);
17: clear(opB);
18: load(R5, R1, 2);
19: xor(R5, R4);
20: store(R5, R0, 2);
21: scrub(R4);
22: scrub(R5);
23: scrub(R6);
24: scrub(R7);
25: clear(opA);
26: clear(opB);
27: clear(opR);
28: clear(opW);

33

B Optimization with Proposition 3

In Algorithm 11, we give the concrete construction of how Proposition 3 is applied to the standard xor given
in Algorithm 7. We point out that we analyzed the worst-case scenario in Proposition 2, and in Algorithm 11, a
complete clear is not needed between the computation of each output share. Table 3 illustrates that all observa-
tions never depend on two different shares of the same input and t–NI security holds with the same arguments
as in the proof.

Algorithm 11 Optimized addition scheme at nth order of security
Input: a = (a0, ..., an), b = (b0, ..., bn) and c = (c0, ..., cn)
Output: d = (d0, ..., dn), such that

di = ai + bi + ci, 0 ≤ i ≤ n

1: for (i = 0 to n) do
2: load(R5, R2, i);
3: load(R4, R1, i);
4: xor(R4, R5);
5: load(R5, R3, i);
6: xor(R4, R5);
7: store(R4, R0, i);
8: clear(opW);
9: scrub(R4);

10: end for
11: scrub(R5);
12: clear(opA);
13: clear(opB);
14: clear(opR);

Leakage effect line 2 line 3 line 4 line 5 line 6 line 7
Computation - - (ai + bi) (ai + bi + ci)

Transition (ci−1, bi) (pub, ai) (ai, bi, ai + bi) (bi, ci) (ai + bi, ci, ai + bi + ci)

Revenant (bi, ci−1) (bi, ai) (pub, ai)
(bi, bi),
(bi, ci)

(bi, ci)
(pub, ai + bi + qci),
(ci, ai + bi + ci)

Table 3: Observations captured in the ith loop iteration of Algorithm 11

34

C PRESENT Sbox

The PRESENT S-box S of the first order implementation, based on [CFE16], is expressed in the following way:

S(x) = A(G(G(B(x))))

with the affine functions A and B:

A(x) =


1 0 1 0
0 1 0 0
1 0 0 0
1 0 1 1

x⊕


0
1
0
1

 B(x) =


1 1 0 0
0 1 1 0
0 0 1 0
0 1 0 1

x⊕


0
0
0
1



and the function G : {0, 1}4 7→ {0, 1}4

G(a, b, c, d) = (a′, b′, c′, d′)

a′ = a+ bc+ bd

b′ = d+ ab

c′ = b

d′ = c+ bd

C.1 first order

Algorithm 12 PRESENT s-Box at 1st order of secu-
rity
Input: x = (x0, x1)
Output: y = (y0, y1), such that

y0 ⊕ y1 = A(G(G(B(x0 ⊕ x1))))

1: calcB();
2: calcG();
3: calcG();
4: calcA();

Algorithm 13 optimized PRESENT s-Box at 1st or-
der of security
Input: x = (x0, x1)
Output: y = (y0, y1), such that

y0 ⊕ y1 = A(G(G(B(x0 ⊕ x1))))

1: calcB_opt();
2: calcG_opt();
3: calcG_opt();
4: calcA_opt();

Algorithm 14 calcA: function A of the PRESENT s-Box at 1st order of security
Input: x = (x0, x1)
Output: y = (y0, y1), such that

y0 ⊕ y1 = A(x0 ⊕ x1)

1: firstxor(x0, x2, y0);
2: firstxorone(x1, y1);
3: firststore(x0, y2);
4: firstxor(x0, x2, y3);
5: firstxor(y3, x3, y3);
6: firstxorone(y3, y3);

35

Algorithm 15 calcB: function B of the PRESENT s-Box at 1st order of security
Input: x = (x0), (x1)
Output: y = (y0, y1), such that

y0 ⊕ y1 = B(x0 ⊕ x1)

1: firstxor(x1, x3, y3);
2: firstxorone(y3, y3);
3: firststore(x2, y2);
4: firstxor(x1, x2, y1);
5: firstref(y1, R3, 0, y1);
6: firstxor(x0, x1, y0);

Algorithm 16 calcG: function G of the PRESENT s-Box at 1st order of security
Input: x = (x0, x1)
Output: y = (y0, y1), such that

y0 ⊕ y1 = G((x0 ⊕ x1))

1: firstmult(bin, din, rndloc, dout);
2: firstmult(bin, cin, rndloc, aout);
3: firstxor(aout, ain, aout);
4: firstxor(aout, dout, aout);
5: firstxor(cin, dout, dout);
6: firstmult(ain, bin, rndloc, bout);
7: firstxor(bout, din, bout);
8: firststore(bin, cout);

36

Algorithm 17 calcA_opt: optimized function A of the PRESENT s-Box at 1st order of security
Input: x = (x0, x1)
Output: y = (y0, y1), such that

y0 ⊕ y1 = A(x0 ⊕ x1)

1: load(R4, ain, 0); ▷ Load a0 into register r4
2: store(R4, cout, 0); ▷ Store the value of r4 as output share c′0
3: load(R5, cin, 0);
4: xor(R5, R4); ▷ after XOR r5 contains c0 + a0

5: store(R5, aout, 0); ▷ Store the value of r5 as output share a′
0

6: xor(R5, (w32)0XFFFFFFFF); ▷ after XOR r5 contains c0 + a0 + 1
7: load(R6, din, 0);
8: xor(R5, R6); ▷ after XOR r5 contains c0 + a0 + 1 + d0
9: store(R5, dout, 0); ▷ Store the value of r5 as output share d′0

10: load(R5, bin, 0);
11: xor(R5, (w32)0XFFFFFFFF); ▷ after XOR r5 contains b0 + 1
12: store(R5, bout, 0); ▷ Store the value of r5 as output share b′0
13: load(R5, ain, 1); ▷ Load a1 into register r5
14: store(R5, cout, 1); ▷ Store the value of r5 as output share c′1
15: load(R4, cin, 1);
16: xor(R4, R4); ▷ after XOR r4 contains c1 + a1

17: store(R4, aout, 1); ▷ Store the value of r4 as output share a′
1

18: load(R5, din, 1);
19: xor(R4, R5); ▷ after XOR r4 contains c1 + a1 + d1
20: store(R4, dout, 1); ▷ Store the value of r4 as output share d′1
21: load(R5, bin, 1); ▷ Load b1 into register r5
22: store(R5, bout, 1); ▷ Store the value of r5 as output share b′1
23: scrub(R4);
24: scrub(R5);
25: scrub(R6);
26: clear(opA);
27: clear(opB);
28: clear(opR);
29: clear(opW);

37

Algorithm 18 calcB_opt: optimized function B of the PRESENT s-Box at 1st order of security
Input: x = (x0, x1)
Output: y = (y0, y1), such that

y0 ⊕ y1 = B(x0 ⊕ x1)

1: load(R4, bin, 0);
2: load(R5, din, 0);
3: xor(R5, R4);
4: xor(R5, (w32)0XFFFFFFFF);
5: store(R5, dout, 0);
6: load(R6, ain, 0);
7: xor(R6, R4);
8: store(R6, aout, 0);
9: load(R5, cin, 0);

10: xor(R4, R5);
11: load(R6, rndloc, 2 + rndindex);
12: xor(R4, R6);
13: store(R4, bout, 0);
14: store(R5, cout, 0);
15: load(R4, bin, 1);
16: load(R5, din, 1);
17: xor(R5, R4);
18: store(R5, dout, 1);
19: load(R6, ain, 1);
20: xor(R6, R4);
21: store(R6, aout, 1);
22: load(R5, cin, 1);
23: xor(R4, R5);
24: load(R6, rndloc, 2 + rndindex);
25: xor(R4, R6);
26: store(R4, bout, 1);
27: store(R5, cout, 1);
28: scrub(R4);
29: scrub(R5);
30: scrub(R6);
31: clear(opA);
32: clear(opB);
33: clear(opR);
34: clear(opW);

38

Algorithm 19 calcG_opt: optimized function G of the PRESENT s-Box at 1st order of security
Input: x = (x0, x1)
Output: y = (y0, y1), such that

y0 ⊕ y1 = G(x0 ⊕ x1)

1: load(R4, bin, 0);
2: load(R6, cin, 1);
3: and(R6, R4);
4: load(R5, din, 0);
5: and(R5, R4);
6: xor(R6, R5);
7: load(R7, rndloc, 0 + rndindex);
8: xor(R6, R7);
9: load(R7, rndloc, 1 + rndindex);

10: xor(R5, R7);
11: load(R7, cin, 0);
12: xor(R5, R7);
13: and(R7, R4);
14: xor(R6, R7);
15: load(R7, din, 1);
16: and(R7, R4);
17: xor(R5, R7);
18: store(R5, dout, 0);
19: clear(opR);
20: load(R5, ain, 0);
21: xor(R6, R5);
22: and(R5, R4);
23: clear(opA);
24: xor(R6, R7);
25: store(R6, aout, 0);
26: load(R6, din, 0);
27: clear(opB);
28: xor(R5, R6);
29: store(R4, cout, 0);
30: clear(opR);
31: load(R7, ain, 1);
32: and(R4, R7);
33: load(R7, rndloc, 2 + rndindex);
34: clear(opB);
35: xor(R5, R7);
36: clear(opB);
37: clear(opA);
38: xor(R5, R4);
39: store(R5, bout, 0);
40: load(R7, bin, 1);
41: load(R5, cin, 0);
42: and(R5, R7);
43: and(R6, R7);
44: xor(R5, R6);

45: load(R4, rndloc, 0 + rndindex);
46: clear(opB);
47: xor(R5, R4);
48: load(R4, rndloc, 1 + rndindex);
49: xor(R6, R4);
50: load(R4, cin, 1);
51: xor(R6, R4);
52: and(R4, R7);
53: xor(R5, R4);
54: load(R4, din, 1);
55: and(R4, R7);
56: xor(R6, R4);
57: store(R6, dout, 1);
58: load(R6, ain, 1);
59: xor(R5, R6);
60: and(R6, R7);
61: clear(opA);
62: xor(R5, R4);
63: store(R5, aout, 1);
64: load(R5, din, 1);
65: clear(opB);
66: xor(R6, R5);
67: store(R7, cout, 1);
68: scrub(R4);
69: clear(opR);
70: load(R4, ain, 0);
71: clear(opB);
72: and(R7, R4);
73: load(R4, rndloc, 2 + rndindex);
74: clear(opB);
75: xor(R6, R4);
76: clear(opB);
77: clear(opA);
78: xor(R5, R4);
79: store(R5, bout, 1);
80: scrub(R5);
81: scrub(R6);
82: scrub(R4);
83: scrub(R7);
84: clear(opR);
85: clear(opW);
86: clear(opA);
87: clear(opB);

39

C.2 second order

Algorithm 20 calcA_opt: optimized function A of the PRESENT s-Box at 2nd order of security
Input: x = (x0, x1, x2)
Output: y = (y0, y1, y2), such that

y0 ⊕ y1 ⊕ y2 = A(x0 ⊕ x1 ⊕ x2)

1: load(R4, ain, 0);
2: store(R4, cout, 0);
3: load(R5, cin, 0);
4: xor(R5, R4);
5: store(R5, aout, 0);
6: xor(R5, (w32)0xFFFFFFFF);
7: load(R6, din, 0);
8: xor(R5, R6);
9: store(R5, dout, 0);

10: load(R5, bin, 0);
11: xor(R5, (w32)0xFFFFFFFF);
12: store(R5, bout, 0);
13: load(R5, ain, 1);
14: store(R5, cout, 1);
15: clear(opB);
16: load(R4, cin, 1);
17: clear(opB);
18: xor(R4, R5);
19: store(R4, aout, 1);
20: load(R5, din, 1);
21: xor(R4, R5);
22: store(R4, dout, 1);

23: load(R5, bin, 1);
24: store(R5, bout, 1);
25: load(R5, ain, 2);
26: store(R5, cout, 2);
27: clear(opB);
28: load(R4, cin, 2);
29: clear(opB);
30: xor(R4, R5);
31: store(R4, aout, 2);
32: load(R5, din, 2);
33: xor(R4, R5);
34: store(R4, dout, 2);
35: load(R5, bin, 2);
36: store(R5, bout, 2);
37: scrub(R4);
38: scrub(R5);
39: scrub(R6);
40: clear(opA);
41: clear(opB);
42: clear(opR);
43: clear(opW);

40

Algorithm 21 calcB_opt: optimized function B of the Present s-Box at 2nd order of security
Input: x = (x0, x1, x2)
Output: y = (y0, y1, y2), such that

y0 ⊕ y1 ⊕ y2 = B(x0 ⊕ x1 ⊕ x2)

1: load(R4, bin, 0);
2: load(R5, din, 0);
3: xor(R5, R4);
4: xor(R5, (w32)0xFFFFFFFF);
5: load(R6, rnd, 0);
6: xor(R5, R6);
7: store(R5, dout, 0);
8: load(R6, ain, 0);
9: xor(R6, R4);

10: load(R5, rnd, 2);
11: xor(R6, R5);
12: store(R6, aout, 0);
13: load(R5, cin, 0);
14: xor(R4, R5);
15: load(R6, rnd, 4);
16: xor(R4, R6);
17: store(R4, bout, 0);
18: load(R6, rnd, 6);
19: xor(R5, R6);
20: store(R5, cout, 0);
21: scrub(R4);
22: scrub(R5);
23: scrub(R6);
24: clear(opA);
25: clear(opB);
26: clear(opR);
27: clear(opW);
28: load(R4, bin, 1);
29: load(R5, din, 1);
30: xor(R5, R4);
31: load(R6, rnd, 1);
32: xor(R5, R6);
33: store(R5, dout, 1);
34: load(R6, ain, 1);
35: xor(R6, R4);
36: load(R5, rnd, 3);
37: xor(R6, R5);

38: store(R6, aout, 1);
39: load(R5, cin, 1);
40: xor(R4, R5);
41: load(R6, rnd, 5);
42: xor(R4, R6);
43: store(R4, bout, 1);
44: load(R6, rnd, 7);
45: xor(R5, R6);
46: store(R5, cout, 1);
47: scrub(R4);
48: scrub(R5);
49: scrub(R6);
50: clear(opA);
51: clear(opB);
52: clear(opR);
53: clear(opW);
54: load(R4, bin, 2);
55: load(R5, din, 2);
56: xor(R5, R4);
57: scrub(R6);
58: load(R6, rnd, 0);
59: clear(opR);
60: load(R7, rnd, 1);
61: clear(opB);
62: xor(R6, R7);
63: clear(opA);
64: clear(opB);
65: xor(R5, R6);
66: store(R5, dout, 2);
67: load(R6, ain, 2);
68: xor(R6, R4);
69: scrub(R5);
70: load(R5, rnd, 2);
71: clear(opR);
72: load(R7, rnd, 3);
73: clear(opB);
74: xor(R5, R7);

75: clear(opA);
76: clear(opB);
77: xor(R6, R5);
78: store(R6, aout, 2);
79: load(R5, cin, 2);
80: clear(opB);
81: xor(R4, R5);
82: scrub(R6);
83: load(R6, rnd, 4);
84: clear(opR);
85: load(R7, rnd, 5);
86: clear(opB);
87: xor(R6, R7);
88: clear(opA);
89: clear(opB);
90: xor(R4, R6);
91: store(R4, bout, 2);
92: scrub(R6);
93: load(R6, rnd, 6);
94: clear(opR);
95: load(R7, rnd, 7);
96: clear(opB);
97: xor(R6, R7);
98: clear(opA);
99: clear(opB);
100: xor(R5, R6);
101: store(R5, cout, 2);
102: scrub(R4);
103: scrub(R5);
104: scrub(R6);
105: scrub(R7);
106: clear(opA);
107: clear(opB);
108: clear(opR);
109: clear(opW);

41

Algorithm 22 calcG_opt: optimized function G of PRESENT s-Box at 2nd order of security
Input: x = (x0, x1, x2)
Output: y = (y0, y1, y2), such that

y0 ⊕ y1 ⊕ y2 = G(x0 ⊕ x1 ⊕ x2)

1: load(R4, bin, 0);
2: load(R5, din, 1);
3: load(R6, cin, 1);
4: load(R7, ain, 1);
5: and(R5, R4);
6: and(R6, R4);
7: and(R7, R4);
8: xor(R6, R5);
9: load(R0, rnd, 0);

10: xor(R5, R0);
11: load(R0, rnd, 3);
12: xor(R6, R0);
13: load(R0, rnd, 6);
14: xor(R7, R0);
15: load(R0, ain, 0);
16: xor(R6, R0);
17: and(R0, R4);
18: xor(R7, R0);
19: load(R0, cin, 0);
20: xor(R5, R0);
21: and(R0, R4);
22: xor(R6, R0);
23: load(R0, din, 0);
24: xor(R7, R0);
25: and(R0, R4);
26: xor(R5, R0);
27: xor(R6, R0);
28: scrub(R0);
29: clear(opR);
30: load(R0, rnd, 1);
31: clear(opA);
32: clear(opB);
33: xor(R5, R0);
34: load(R0, rnd, 4);
35: xor(R6, R0);
36: load(R0, rnd, 7);
37: xor(R7, R0);
38: load(R0, ain, 2);
39: and(R0, R4);
40: xor(R7, R0);
41: load(R0, cin, 2);
42: and(R0, R4);
43: xor(R6, R0);
44: load(R0, din, 2);
45: and(R0, R4);

46: xor(R5, R0);
47: xor(R6, R0);
48: store(R6, aout, 0);
49: store(R7, bout, 0);
50: store(R4, cout, 0);
51: store(R5, dout, 0);
52: scrub(R0);
53: scrub(R5);
54: scrub(R6);
55: scrub(R4);
56: scrub(R7);
57: clear(opR);
58: clear(opW);
59: clear(opA);
60: clear(opB);
61: load(R4, bin, 1);
62: load(R5, din, 2);
63: load(R6, cin, 2);
64: load(R7, ain, 2);
65: and(R5, R4);
66: and(R6, R4);
67: and(R7, R4);
68: xor(R6, R5);
69: load(R0, rnd, 1);
70: xor(R5, R0);
71: load(R0, rnd, 4);
72: xor(R6, R0);
73: load(R0, rnd, 7);
74: xor(R7, R0);
75: load(R0, ain, 1);
76: xor(R6, R0);
77: and(R0, R4);
78: xor(R7, R0);
79: load(R0, cin, 1);
80: xor(R5, R0);
81: and(R0, R4);
82: xor(R6, R0);
83: load(R0, din, 1);
84: xor(R7, R0);
85: and(R0, R4);
86: xor(R5, R0);
87: xor(R6, R0);
88: scrub(R0);
89: clear(opR);
90: load(R0, rnd, 2);

91: clear(opB);
92: clear(opA);
93: xor(R5, R0);
94: load(R0, rnd, 5);
95: xor(R6, R0);
96: load(R0, rnd, 8);
97: xor(R7, R0);
98: load(R0, ain, 0);
99: and(R0, R4);
100: xor(R7, R0);
101: load(R0, cin, 0);
102: and(R0, R4);
103: xor(R6, R0);
104: load(R0, din, 0);
105: and(R0, R4);
106: xor(R5, R0);
107: xor(R6, R0);
108: store(R6, aout, 1);
109: store(R7, bout, 1);
110: store(R4, cout, 1);
111: store(R5, dout, 1);
112: scrub(R0);
113: scrub(R5);
114: scrub(R6);
115: scrub(R4);
116: scrub(R7);
117: clear(opR);
118: clear(opW);
119: clear(opA);
120: clear(opB);
121: load(R4, bin, 2);
122: load(R5, din, 0);
123: load(R6, cin, 0);
124: load(R7, ain, 0);
125: and(R5, R4);
126: and(R6, R4);
127: and(R7, R4);
128: xor(R6, R5);
129: load(R0, rnd, 2);
130: xor(R5, R0);
131: load(R0, rnd, 5);
132: xor(R6, R0);
133: load(R0, rnd, 8);
134: xor(R7, R0);
135: load(R0, ain, 2);

136: xor(R6, R0);
137: and(R0, R4);
138: xor(R7, R0);
139: load(R0, cin, 2);
140: xor(R5, R0);
141: and(R0, R4);
142: xor(R6, R0);
143: load(R0, din, 2);
144: xor(R7, R0);
145: and(R0, R4);
146: xor(R5, R0);
147: xor(R6, R0);
148: scrub(R0);
149: clear(opR);
150: load(R0, rnd, 0);
151: clear(opB);
152: clear(opA);
153: xor(R5, R0);
154: load(R0, rnd, 3);
155: xor(R6, R0);
156: load(R0, rnd, 6);
157: xor(R7, R0);
158: load(R0, ain, 1);
159: and(R0, R4);
160: xor(R7, R0);
161: load(R0, cin, 1);
162: and(R0, R4);
163: xor(R6, R0);
164: load(R0, din, 1);
165: and(R0, R4);
166: xor(R5, R0);
167: xor(R6, R0);
168: store(R6, aout, 2);
169: store(R7, bout, 2);
170: store(R4, cout, 2);
171: store(R5, dout, 2);
172: scrub(R0);
173: scrub(R5);
174: scrub(R6);
175: scrub(R4);
176: scrub(R7);
177: clear(opR);
178: clear(opW);
179: clear(opA);
180: clear(opB);

42

