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Abstract. The bit-sliding work of Jean et al. (CHES 2017) showed that the smallest-
size circuit for SPN based blockciphers such as AES, SKINNY and, PRESENT can be
achieved via bit-serial implementations. Their technique decreases the bitsize of the
datapath, and it naturally leads to significant loss in latency (as well as the maximum
throughput). Their designs complete a single round of the encryption in 168, 168
(for 128-bit blocks), 68 clock cycles (for 64-bit block) respectively. A follow-up work
by Banik et al. (FSE 2020) introduced the swap-and-rotate technique that both
eliminates this loss in latency and achieves even smaller footprint.
In the paper, we extend these results on bit-serial implementations all the way to three
authenticated encryption schemes from NIST LWC. Our first focus is to decrease
latency and improve throughput with the use of swap-and-rotate technique. Our
blockcipher implementations have the most efficient round operations in the sense
that a round function of a n-bit blockcipher is computed in exactly n clock cycles.
This leads to implementations that are similar in size to the state-of-the-art, but have
much lower latency (savings up to 20 percent).
Though these results are promising, blockciphers themselves are not end-user primi-
tives, as they need to used together with a mode of operation. Hence, in the second
part of the paper, we use our blockciphers in bit-serial implementations for three active
NIST authenticated encryption candidates: SUNDAE-GIFT, Romulus and SAEAES.
We provide the smallest blockcipher-based authenticated encryption circuits known
in the literature so far.
Keywords: lightweight, latency, swap, rotate, blockcipher, authenticated encryption,
NIST LWC, AES, SKINNY, GIFT

1 Introduction
The number of applications that rely on standard cryptographic primitives to establish
a secure communication and transmit their data grow larger each day. Given the large
variety of platforms these applications are run by, the available device resources spread to
a large spectrum. In this spectrum, those applications related to IoT, sensor networks,
RFID, vehicle-to-vehicle communication, suffer from having tight budget for security.
These applications hence rely on the future promise by the emerging field lightweight
cryptography, where new standards aiming primitives that are cheaper in terms of hardware
footprint, energy, power and latency are anticipated. NIST’s ongoing standardization
process for lightweight cryptography (NIST LWC) clearly reflects the vivid effort in this
domain. Candidates, 32 of which are elected for the second round, provide new designs
for an authenticated encryption primitive, with the final goal of attaining security and
lightweighness at the same time.

Lightweight metric. In the crypto community, the definition of security is defined with
rigor, generally by resorting to algorithmic games. However, the term lightweight does not
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primary alternative
candidate cipher size (block+key) cipher size (block+key) cipher calls
COMET AES 128+128 CHAM, Speck 64/128+128 enc
ESTATE TweAES 128+128 TweGIFT 128+128 enc+dec
ForkAE ForkSKINNY 128+288 ForkSKINNY 64/128+192/256/288 enc+dec
GIFT-COFB GIFT∗ 128+128 - - enc
Hyena GIFT 128+128 - - enc
LOTUS-AEAD TweGIFT 64+128 - - enc
mixFeed AES 128+128 - - enc
Pyjamask Pyjamask 128+128 Pyjamask 96+128 enc
Romulus SKINNY 128+384 SKINNY 128+256/384 enc
SAEAES AES 128+128 - - enc
Saturnin Saturnin 256+256 - - enc
SKINNY-AEAD SKINNY 128+384 SKINNY 128+256/384 enc
SUNDAE-GIFT GIFT∗ 128+128 - - enc

Table 1: The list of second-round candidates of NIST LWC that are based on blockciphers.
GIFT refers to the original blockcipher from [BPP+17], and GIFT∗ refers to the version
that assumes different ordering of the input bits and the key [BCI+19, BBP+19].

hold up to the same precision.
First, there is a question of which metric should be focused. In practice, each application

is concerned most about the particular implementation aspect of the cryptographic primitive
that conflicts with its own tight-budget. For battery-powered sensors, the energy spent
per encrypted bit is a matter of priority, and directly determines how long the battery
lasts. Sometimes, multiple metrics must be taken into consideration. As an example, an
RFID device might prioritize power, but at the same time the silicon area footprint is also
crucial.

Secondly, there is a question of how to quantify this metric. This is highly dependent
on how the scheme is implemented, e.g. as an application-specific integrated circuit (ASIC),
with field-programmable gate array (FPGA) or programmed to a microprocessor. This
further depends on the specific details, e.g. the transistor-size of the cell library in ASIC
plays a key role in area, power consumption as well as response time of the gates.

In this paper, the term lightweight refers to the combination of both the area (in
terms of gate-equivalence GE) and the latency (in terms of clock cycles) of an architecture
realized as ASIC. We believe that these two metrics are most easily reproducible, in the
sense that given two implementations A and B, there is a methodological and fair approach
to decide which one performs better1. In our implementations, we prioritize area, and take
the latency as the second goal. Therefore, our goal is to remain in the same area budget
of the ultra-small (i.e. 1-bit datapath) implementations and reduce the latency (i.e. the
number of clock cycles) as much as possible.

Reducing latency is an important goal, as it directly translates into a gain in the
throughput, as well as a reduction in the energy consumption2. Given the variety of
application profiles, it is worth noting that the ideal goal from an implementation is to
lower the cost in one or few metrics so that the design is sufficient to meet the expectation
of most (if not all) applications.

Mode of operations. Among the active second round candidates, 13 out of 32 are
based on blockciphers. These candidates simply design a mode of operation around a given
blockcipher to function as an authenticated encryption scheme. From Table 1, note that:

1GE measurements are not perfectly reliable across different technology libraries. For fairness, we
compare GE-sizes of two implementations A and B synthesized in the same technology library.

2The energy consumption is lower, if we assume that the power consumption remains same. This holds
true for our most of our implementations.
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• 4 candidates use either the standard or a tweaked version of AES as their primary
choice. These are COMET, ESTATE, mixFeed, SAEAES [GJN19, CDJ+19a, CN19,
NMMaS+19].

• 3 candidates use either the standard or a forked version of SKINNY as their primary
choice. These are ForkAE, Romulus, SKINNY-AEAD [ALP+19, IKMP19, BJK+19].

• 2 candidates use either the standard or a tweaked version of 128-bit variant of
GIFT. Namely, ESTATE uses the tweaked version of GIFT as the alternative choice
[CDJ+19a], whereas Hyena uses the original version [CDJN19, BPP+17]. Besides
these two, LOTUS-AEAD also employs the 64-bit variant of GIFT [CDJ+19b, BPP+17].

• 2 candidates use GIFT∗. These two candidates are GIFT-COFB, SUNDAE-GIFT
[BCI+19, BBP+19]. The difference between GIFT∗ and GIFT is that the latter assumes
a different indexing of the input and output bits. We denote their modified version
with GIFT∗, as it leads to a significant difference from design and implementation
perspective.

• Pyjamask and Saturnin are the exceptions to the popular approach, as they bring
their own dedicated blockcipher design into the standardization [GJK+19, CDL+19].

Given the modular approach taken by these candidates, one can pose the two following
questions, from the lightweight perspective. (1) How lightweight is the blockcipher employed
at the core? (2) What is the cost of the surrounding mode of operation? Our work and
results are tightly related to these two important questions.

Bottleneck of storage. Most low-area implementations of SPN-based blockciphers
eventually face a dilemma of storage. Namely, all implementations (except full unrolling)
need to store the key and the cipher state during the encryption operation. For a blockcipher
with `b-bit block and `k-bit key, this requires the use of `b + `k flip-flops. More concretely,
we measured the area-cost of storing 256-bit as 1088 GE, 832 GE and 1451 GE for the
cell libraries UMC90, STM90 and Nangate45 respectively. It naturally follows that for
the smallest implementations of AES (resp. SKINNY-128-128, GIFT), the 73% (resp. 83%,
69%) of the circuit is due to merely D flip-flops [JMPS17, BPP+17]. Therefore, the
state-of-the-art ultra-small ASIC implementations of blockciphers contain mostly storage
elements, and space for further area optimizations is limited. We take this as an indicator
that we should divert our focus to the other aspects of the circuit while remaining in the
same area budget.

Contributions. In the first part of the paper, we provide 1-bit serial architectures for
the popular 128-bit blocksize variants of the blockciphers AES, SKINNY, GIFT, and GIFT∗,
which are popular among NIST candidates. Our implementations can be employed by 10
candidates out of 13 listed in Table 1. Our approach have the following benefits, and the
detailed comparison with the state-of-the-art is given in Table 2:

• In terms of circuit area, each of our blockcipher implementations is an evident
contender to be the smallest implementation.

• Each implementation fully utilizes both the state and the key pipelines. Each round
consisting of 128-bit is executed exactly in 128 clock cycles. This ensures that
we get the maximum throughput from 1-bit serial implementation. This leads to
approximately a 20% reduction in latecy (in clock cycle units) over the circuits
reported in [JMPS17, BPP+17] (note that the AES, SKINNY, GIFT circuits in these
papers report a latency of 168, 168, 160 cycles per round respectively). Our circuit
design is novel in the sense that both pipelines are continuously active.
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Area (GE) Power (µW) @ 100 KHz Latency Energy (nJ/128-bit) Ref.
blockcipher Nangate45 UMC90 Nangate45 UMC90 round total Nangate45 UMC90
AES (standard) 1974 1600 102.4 0.55 128 1408 1441.8 7.7 Sec. 3
AES (non-standard) 1982 1596 100.2 0.67 168 1776 1779.6 11.9 [JMPS17]
AES (standardized)a 2029 1641 - - 168 1904 [JMPS17]
SKINNY-128-128 1748 1355 87.69 0.43 128 5248 4602.0 22.6 Sec. 4
SKINNY-128-128 1740 1363 86.66 0.56 168 6976 6045.4 39.1 [JMPS17]
SKINNY-128-256 2502 1927 124.96 0.62 128 6272 7837.5 38.9 Sec. 4
SKINNY-128-256 2501 1937 123.49 1.15 168 8448 10432.4 97.2 [JMPS17]
SKINNY-128-384 3263 2518 162.79 0.82 128 7296 11877.2 59.8 Sec. 4
SKINNY-128-384 3260 2508 160.03 1.55 168 9920 15875.0 153.8 [JMPS17]

Power (µW) @ 10 MHz
STM90 UMC90 STM90 UMC90 STM90 UMC90

GIFT 1215 1531 51.8 51.3 128 5248 27.2 26.9 Sec. 5.3
GIFT 1213 - 40.3 - 160 6528 26.3 [BPP+17]
GIFT∗ b 1108 1332 49.8 48.7 128 5248 26.1 25.5 Sec. 5

Table 2: The comparison of our work with the state-of-the-art in terms of latency, area,
power and energy. The measurements respect to the use of the same library and clock
frequency, Nangate45 and UMC90 for AES, SKINNY and STM90 for GIFT∗. For UMC90,
the power measurements are taken with low leakage cell library. For comparison purposes,
all power figures are measured at frequencies as reported in the original papers [JMPS17,
BPP+17]. aIt has been estimated in [MPL+11] that converting a non-standardized to
a standardized circuit requires an additional 20 muxes. The area figures in this row is
obtained by adding the area of 20 muxes to the figures in the previous row. bGIFT∗ refers
to the slightly modified version of GIFT used in SUNDAE-GIFT [BBP+19].

• Each implementation respects the standard ordering of input and output bits. We do
not make a non-standard assumption on the ordering of the bits to reduce the area and
latency. Namely, we ensure that an implementation from our paper is readily usable
from a NIST LWC candidates without having to modify and deal with the ordering
the bits. Some implementations of AES, e.g. [MPL+11, JMPS17, BBR16, BBR17],
assume that plaintext and the key is arranged in a row major fashion (which we
call non-standard), even though the original specification of AES assumes a column
major arrangement [DR02].

• We avoid techniques such as clock-gating, which might sometimes result in timing
inconsistencies during synthesis phase and cost additional circuit area. We also use
simple D flip-flops that are smaller than their siblings (with added enable or reset
functionalities) in some libraries.

In the second part of the paper, we direct our attention to implementation of three
AE schemes, one for each blockcipher: SAEAES (1350 GE), Romulus (1779 GE) and
SUNDAE-GIFT (1108 GE). We have chosen these candidates, because the mode of operation
part of the circuit has the minimal storage requirement, thus leading to very compact
implementations. To the best of our knowledge these are the smallest blockcipher-based
authenticated encryption schemes reported so far3.

2 Preliminaries
Notation. We denote the set of integers {a, a + 1, . . . , b} with [a, b]. Furthermore, we
define (a, b) = [a, b] \ {a, b}, (a, b] = [a, b] \ {a} and [a, b) = [a, b] \ {b}. [n] is a shorthand

3It is authors’ intention to make the source code available and cite the source. For anonymity reasons,
the citation is removed and the HDL source code of the implementations are submitted as supporting
document along with this submission.
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for [0, n]. The bit string concatenation is denoted with ||.

Pipelines. In a circuit, a bit-serial pipeline is a series of flip flops that are arranged in
a way that allows the stored value to be shifted in a fixed direction, one bit position at
each clock cycle. In mathematical terms, an n-bit pipeline can be denoted with a series
of 1-bit variables FF0,FF1, . . . ,FFn−1 that support two main operations: shift and swap
(that takes two hard-wired indices u and v as extra input). This corresponds to storage
elements (flip flops) in circuit, and we simply write FF to represent this series. The two
operations could be better explained with the following algorithmic descriptions, which
take the previous state FF and returns the updated state FF′:

shift(FF, bin):
1: FF′n−1 ← bin
2: FF′i−1 ← FFi for i ∈ [1, n)
3: bout ← FF0
4: return (FF′, bout)

swapu,v(FF):
1: FF′i ← FFi for i ∈ [0, n) \ {u, v}
2: FF′u ← FFv

3: FF′v ← FFu

4: return FF′

Here, the shift operation additionally takes a new bit to be loaded into the first flip flop
FFn−1 of the pipeline, and outputs the bit at the last flip flop FF0

4. The swap operation
on the other hand, which we simply refer with a tuple (u, v) hereafter, only swaps the
contents of FFu and FFv and does not touch other values.

What makes these two operations special is that (1) bit-sliding implementations already
contain a pipeline, hence a shift operation is already available, and (2) a swap operation
(u, v) can be implemented by replacing two regular flip flops with two scan flip flops, which
brings a quite small cost to the circuit in terms of area footprint. However, it must be
noted that u and v values must be hard coded into the swap operation, as the positions of
scan flips are fixed. Therefore, each distinct (u, v) swap brings an extra cost.

An interesting observation is that given any single swap operation (u, v) (with u 6= v
and gcd(u− v, n) = 1) and the shift operation, one could execute an arbitrary permutation
of the bits through a finite calls of shift and swap calls, as pointed out by Banik et al.
[BBRV19]. Therefore, in theory, one could implement any permutation layer in any block
cipher through a single swap operation as long as the the correct sequence of shift and
swap calls are made by the controller circuit. However, this approach would take large
number of shift calls, hence lead to unrealistically many number of clock cycles. A good
approach therefore is to add few other swap operations to strike a balance between the
circuit size and the reasonable latency.

3 AES
For the rest of this section, we assume familiarity with the round function and the key
scheduling algorithms of AES [DR02]. Our circuit simply consists of the following circuits
in the main hierarchy: (1) a state pipeline, (2) a key pipeline, (3) a controller, (4) a shared
S-box.

3.1 State Pipeline
The state in our design uses the following components/techniques:

• nibble-level MixColumns circuit introduced by Jean et al. [JMPS17],

• the smallest known S-box “bonus” from Maximov et al. [ME19],
4The indexing might come as counter intuitive at the first sight. However, if we load the bit sequence

b0, b1, . . . , bn−1 to the pipeline respectively, after n shift calls, each FFi stores exactly bi.
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row: 1 1 5 9 D 15 9 D 15 9 D 15 9 D

2 6 A E 26A E 2 6A E

3 7 B F 37 BF F 7B 3

row: 2

row: 3

Figure 1: The transition diagram for rows 1, 2, 3; where the colored cells denote the
recently-modified values. Note that there are three distinct swap operations, with distance
0, 1 and 2 cells in-between.

One can easily notice that given that state and key bits are stored in a pipelined
fashion, AddRoundKey can be performed without much hassle as long as each of the state
and key pipelines produces the correct bit per clock cycle. Hence, the main challenges on
the state pipeline part is to (1) execute all SubBytes, ShiftRows, MixColumns operations
simultaneously, (2) complete the operations in 128 clock cycles, while (3) following the
standard ordering of bits for the plaintext and the key. Below, we first describe each layer
separately, and show how we can fuse them into one operation that executes over the state
pipeline continuously.

3.2 ShiftRows with swaps
Assume that the 128-bit pipeline is defined in the same fashion in Section 2, i.e. the bits
are loaded into FF127 and they are flushed out by FF0. We use three swap operations to
execute the ShiftRows layer: (80, 112), (56, 120) and (25, 121). The timetable for scheduling
these swaps are given in Table 3. Below, we explain how we came up with these swap
sequences and the mechanism in which they work for shifting rows correctly.

For simplicity, let us forget about the pipeline and shift operations for the moment,
and focus on the nature of ShiftRows in the 16-byte state. We try to express ShiftRows in
terms of byte-swaps. Suppose that the values contained in the state are the hexadecimal
characters 0, 1, . . . ,F. Considering the standard byte arrangement for loading the initial
data [FIP], row 0 contains the values 0, 4, 8,C; row 1 contains the values 1, 5, 9,D etc. We
then devise a sequence of swap operations over the rows 1, 2, 3 to perform ShiftRows. Our
three distinct swaps are denoted with distinct colors in Figure 1. This figure shows the
movement of the bytes as they arrive to their final position implied by ShiftRows.

We point out two important observations: (1) each byte-swap operation can be executed
by a bit-swap circuit through 8 consecutive calls interleaved by shift operation, (2) the
swap operations denoted with the same color can actually be executed by a single swap
operation as long as it is enabled in the correct clock cycle. Therefore, the choice of swaps
and the timetable in Table 3 are straightforward extensions of this example into the 128-bit
state pipeline.

To help understand how the structure helps perform the ShiftRows operation, we note
that since the pipeline is always evolving, the shift operation is performed in every clock
cycle. To additionally perform the swap 80↔ 112, in any clock cycle, we need to place
scan flip-flops at locations 79 and 111 (and wire the output of 80 to the input of 111; wire
the output of 112 to the input of 79) as is shown in Figure 2. So assuming that the bits
indexed 0 to 127 enter the pipelines through the location 127. At clock cycle k ≤ 127, the
pipeline stores exactly k bits. For instance, at 56-th clock cycle, the bits indexed 8, 40
are at locations 80, 112 respectively. Effecting swaps for cycles 56 to 63 therefore swaps
bits 8, . . . , 15 with 40, . . . , 47, which is essentially bytes indexed 1 and 5. It can be verified
without difficulty that performing the same swap in cycles [88, 96), swaps bytes 1 and 9.
Similarly the same swap in cycles [120, 127) swaps bytes 1 with 13, which completes the
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pipeline operation active cycles

state swap (80, 112) [56, 64) ∪ [88, 96) ∪ [120, 127] ∪ [8, 16)
swap (56, 120) [88, 96) ∪ [120, 127] ∪ [0, 8)
swap (25, 121) {127} ∪ [0, 6]
load S-box {8k + 7 : k ∈ [0, 15]}

load Mix Col. [32, 40) ∪ [64, 72) ∪ [96, 104) ∪ [0, 8)

key swap (96, 128) [0, 8)
swap (40, 72) [56, 64)
load S-box {112} ∪ {120} ∪ {0} ∪ {8}
key XOR [0, 96)
add RC (look up table)

Table 3: The timetable of operations for bit-serial AES encryption.

ShiftRows operation on row 1. It is not too difficult to verify that the other swaps at
cycles as listed in Table 1 faithfully perform the remaining ShiftRows operations.

3.3 The nibble MixColumns
The nibble MixColumns was introduced by Jean et al. [JMPS17]. The multiplication
over a single column is completed over 8 clock cycles, updating each nibble at a time. To
simplify, we first represent a single column of bytes as 8 vertical nibble vectors as below.
Namely, from the pipeline given in Figure 2, the vectors Mi are defined for 0 ≤ i ≤ 7 as
below:

Mi :=


FFi

FFi+8
FFi+16
FFi+24

 R(M0) :=


FF8
FF16
FF24
FF0


The nibble MixColumns architecture employs an additional set of 4 flip-flops to help
with the serialized computation of this functionality. Define the vector M8 to denote
this additional internal 4-bit storage this architecture employs. During its 8 clock cycle
operation, these flip flops are used to keep the value of the leftmost bit of each one of the
four bytes. We define a function upward rotation R that rotates the elements in a given
vertical matrix by one position, as exemplified above. The circuit essentially performs
the following sequence of operations to derive the new value of Mi for each i = 0, 1, . . . , 7,
starting from i = 0 respectively:

• if i = 0, store M8 ←M0 before any of the following computation.

• update Mi ← R(Mi)⊕R2(Mi)⊕R3(Mi)⊕Mi+1 ⊕R(Mi+1)

• if i ∈ {3, 4, 6}, further update Mi ←Mi ⊕M8 ⊕R(M8)

In other words, at each clock cycle, based on the internal 7-bit counter, we can execute
a single slice of the previous computation. In total, it takes 8 clock cycles for a single
column, and 32 clock cycles for the whole MixColumns layer. This serial circuit can be
realized with with 8 XOR, 8 NAND gates and 4 flip flops (see Figure 1 of [JMPS17]).

3.4 Combined state pipeline
In the controller, the circuit contains an 11-bit counter to keep both the round (4-bit) and
the phase (7-bit). We split this counter into two parts and refer to them respectively by
variables 0 ≤ round ≤ 10 for the upper 4-bit and 0 ≤ count ≤ 127 for the lower 7-bit.
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Figure 2: The state (above) and key (below) pipelines of AES-128 encryption with colored
scan flip-flops.

In contrast to previous work [JMPS17], we follow the standard ordering of bits in our
implementation. That is given a plaintext and a key, the bits are loaded into the circuit
starting from the leftmost bits, and following the natural order [FIP]. This becomes a
crucial aspect of a blockcipher implementation, if it is meant to be used in a mode of
operation that needs to comply with a fixed standard.

At the beginning of its operation, the 11-bit counter is reset to zero. During initialization,
i.e. round = 0, the white-colored MUXes in Figure 2 are configured so that the next bit s
of the state is received from the input port PT but after the XOR is performed with KEY,
which is also being loaded at the same time. For round > 0, we select the state bit to be
loaded from the exit of the state pipeline.

SubBytes Meanwhile, we proceed with executing the SubBytes layer, by enabling the S-box
at every 8-th cycle. More precisely, the S-box is configured to take FF121,FF122, . . . ,FF127, s
as input, and the scan flip flops FF120, . . . ,FF127 are instructed to load the output from
the S-box if count mod 8 = 7.

ShiftRows Starting from count = 56, the swap operations become active. Many of the
bits need to make a couple of jumps before they are located into their ultimate position
implied by ShiftRows, as demonstrated in Figure 1. Hence, position-wise, many bits
are incorrectly located and look garbled as they pass through flip flops FF24, . . . ,FF120.
Nonetheless as soon as they exit the last swap position FF24, they are guaranteed to be
in their final position. See Table 3 to notice that the last swap operation executed on a
layer actually happens when count = 15 in the next round. In other words, performing
ShiftRows over the i-th state uses the last 72 cycles of the round i and the first 16 cycles
of the round i+ 1, and it is not aligned with the counter round itself .

MixColumns The input ports to the nibble MixColumns circuit are flip flops FFi for
i ∈ {0, 1, 8, 9, 16, 17, 24, 25}, and the output ports are input to the exit MUX of the pipeline
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and FF7,FF15,FF23 respectively. The MixColumns of round i is performed at round = i+ 1
and it is active during 0 ≤ count mod 32 ≤ 7, except the last round where MixColumns
must be skipped.
Resolving overlaps. Note that there are two clock cycles, i.e. count values, during which
two operations modify the same FF simultaneously in Table 3. First, at clock cycle 127
both S-box and swap (25, 121) attempts to overwrite FF120. Here, the operation precedence
is given to the S-box (as SubBytes comes before ShiftRows), meaning that the leftmost
output bit of the S-box is fed to the swap operation (instead of FF120). A second overlap
occurs when count = 3, as MixColumns circuit attempts to read FF25 before its value
is updated correctly by the swap (25, 121). Here, the precedence is given to the swap
operations, meaning that the output of the swap operation is fed as input to MixColumns
circuit (instead of FF25).

3.5 Key Pipeline
Suppose that K0,K1, . . . ,K15 represent the key bytes of a particular round. Then the
next round key sequence K16, . . . ,K31 is computed as follows:

K16 K20 K24 K28
K17 K21 K25 K29
K18 K22 K26 K30
K19 K23 K27 K31

←

K0 K4 K8 K12
K1 K5 K9 K13
K2 K6 K10 K14
K3 K7 K11 K15

⊕


S(K13)⊕ rc K16 K20 K24
S(K14) K17 K21 K25
S(K15) K18 K22 K26
S(K12) K19 K23 K27


where rc denotes the round constant byte.

In summary, the first column requires special treatment, because it involves S-box calls,
and the remaining three columns can be updated smoothly (by simply XORing with a
neighboring bit). In particular, one can notice the disarrangement in the update of the
first column, as it takes the current last columns bytes with a downward rotation (by
one byte). If we implement this in a straightforward fashion by updating each byte when
they arrive to position 0, we would have to choose the input of the S-box either from the
position 13 (for computing K16, K17, K18) or 9 (for computing K19). This means that
we would have to put an extra 8-bit MUX to choose which value needs to be fed to the
S-box. Instead, we decided to temporarily move the byte K12 to position 13 before it is
fed to S-box, and then return back to its original position after the S-box operation is
done. Therefore the pipeline performs the following operations in sequence:
• In the first 8 clock cycles, we activate the swap (96, 128) so that the key byte K12 is
temporarily moved such that it comes after K15. Here, FF128 actually refers to the
new key bit that is about to be loaded into the key pipeline. With this operation,
the key pipeline contains K13,K14,K15,K12 in this order. Hence, it respects the
order they are being used to update the first key column.

• In clock cycles 112, 120 (of the current round) and 0, 8 (of the next round); the S-box
is used by the key pipeline. During these cycles, the S-box reads K13,K14,K15,K12
from FF120, . . . ,FF127 in given order. The output from the S-box is XORed with
FF16, . . . ,FF23 and the result is loaded into FF15, . . . ,FF22.

• The round constant is added as the bit FF24 is loaded into FF23. We use a look-up
table to decide when the round constant bit is enabled. In total, this bit is enabled
16 times during the whole encryption.

• During the clock cycles [56, 64), we activate the swap (40, 72) to return K12 back to
its original relative position. Hence the internal ordering of the bytes becomes K12,
K13,K14,K15 again.

• For the rest of the key bits, by activating FF31 ← FF0 ⊕ FF32 during the clock cycles
[0, 96).
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Library Area (µm2) Area (GE) Power (µW) Latency Energy Throughput Ref.
@ 10 MHz round total (nJ) Mbps

STM 90 5562.6 1267 73.6 128 1408 10.4 14.43 Sec. 3
UMC 90 5016.8 1600 65.2 128 1408 9.2 13.45 Sec. 3
TSMC 90 4692.2 1663 56.1 128 1408 7.9 15.57 Sec. 3
Nangate 15 441.8 2247 18.4 128 1408 2.6 315.56 Sec. 3
Nangate 45 1575 1974 143 128 1408 20.1 49.25 Sec. 3

Table 4: AES-128 Enc only

pipeline operation active cycles

state swap (112, 120) [112, 120) ∪ [120, 127] ∪ [0, 8) ∪ [64, 72)
swap (104, 120) [64, 72) ∪ [88, 96) ∪ [96, 104)
swap (96, 120) [64, 72)
load S-box {8k : k ∈ [0, 15]}
rc addition. (look-up table + lfsr)
load Mix Col. [0, 32)

tweakey 1,2,3 swap (56, 120) [72, 127] ∪ [0, 8)
swap (48, 56) [120, 127]
swap (24, 56) [112, 120) ∪ [120, 127] ∪ [0, 8)
swap (8, 24) [120, 127] ∪ [0, 8) ∪ [24, 32)

tweakey 2 swap (0, 1) [0, 6] ∪ [8, 14] ∪ [16, 22] ∪ [24, 30] ∪ [32, 38] ∪ [40, 46] ∪ [48, 54] ∪ [56, 62]
lfsr xor {8k : k ∈ [0, 7]}

tweakey 3 lfsr (8-bit) {8k : k ∈ [0, 7]}

Table 5: The timetable of operations for bit-serial SKINNY-128-384 encryption.

4 SKINNY
SKINNY provides six different variants [BJK+16]. In this paper, we consider the the
variants that are used by NIST LWC candidates, i.e. these are 128-bit blocksize variants,
as given in Table 1. In these variants, the tweakey size is variable, i.e. it can consists of
128z bits for z = 1, 2, 3. For the remainder of the paper, we refer to these three versions
by SKINNY-128-128, SKINNY-128-256 and SKINNY-128-384 respectively.

SKINNY is quite similar to AES in design, but it employs more lightweight operations
for the round function. Prominently S-box and MixColumns can be realized with much
smaller circuitry compared to AES. The round function consists of SubCells, AddConstants,
AddRoundTweakey, ShiftRows, MixColumns. For the fine details of these layers, we refer
the reader to the original SKINNY paper [BJK+16].

Hence, our design follows a similar architecture to that of AES. The circuit simply
consists of the following parts in the main hierarchy: (1) a state pipeline (which includes a
dedicated S-box), (2) a key pipeline, (3) a controller.

4.1 Combined state pipeline
In the controller, the circuit contains an 13-bit counter to keep both the round (6-bit) and
the phase (7-bit). We split this counter into two parts and refer to them respectively by
variables 0 ≤ round ≤ 56 for the upper 4-bit and 0 ≤ count ≤ 127 for the lower 7-bit.

Because SKINNY is already designed with hardware-friendliness in mind, we load the bits
into the circuit starting from the leftmost bits, and following the standard [BJK+16]. In our
implementations the key blocks and the plaintext are loaded simultaneously and completed
in 128 cycles. This applies to all three versions of SKINNY-128-128, SKINNY-128-256,
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SKINNY-128-384.
At the beginning of its operation, the 13-bit counter is reset to zero. Then during

initialization, i.e. round = 0, the plaintext is loaded through 1-bit input port, and the key
is loaded through z-bit input port into their respective pipelines without modification.
Each tweakey block has its own dedicated input port. These ports are denoted with PT
(for plaintext) and KEY1, KEY2, KEY3 for the tweakey. Below, we describe the layers of
operations executed on the state pipeline, in an order observed by the incoming bits.
SubCells SubCells layer is executed by enabling the S-box at every 8-th cycle. More
precisely, the S-box is configured to read FF120,FF121, . . . ,FF127 as input, and the scan flip
flops FF119, . . . ,FF126 are instructed to be loaded with the S-box output if count mod 8 = 0.
AddConstants The round constants are added right after the S-box operation. An XOR
gate is placed between FF119 and FF120 and the round constant bit rc is added. We use a
7-bit LFSR circuit (not shown in the figure) to produce the round constant bit.
AddRoundTweakey The key bits are added at the same position with the round constant
bit, i.e. between FF119 and FF120. In order to synchronize this with the key pipeline, the
key bits k0, k1, k2 are read from FF120 of the key pipelines. The key addition is active
during 8 ≤ count < 72. This corresponds to adding the first half of each tweakey.
ShiftRows This layer is executed with 3 swap operations, similar to AES, and the timetable
of swaps are given in Table 5.Position-wise, bits are incorrectly located and look garbled as
they pass through flip flops FF95, . . . ,FF119, but as soon as they exit the last swap position
FF95, they are guaranteed to be in their final position.
MixColumns The input ports to the nibble MixColumns circuit are flip flops FFi for
i ∈ {0, 32, 64, 96}, and the output ports are input to the exit MUX of the pipeline and
FF31,FF63,FF95 respectively. The MixColumns is active during the first 32 clock cycles of
a round.
Resolving overlaps. Note that during clock cycles 64 ≤ count < 72 three swaps
(112, 120), (104, 120), (96, 120) are active at the same time and overlap at the same flip
flop FF120. The order of execution here is (96, 120), (104, 120) and (112, 120) respectively.

4.2 Key Pipeline
SKINNY can have up to three block of tweakey, referred to as TK1, TK2, TK3 [BJK+16].
The key schedule algorithm is quite similar in all three key blocks. More precisely, suppose
that K0,K1, . . . ,K15 represent the key bytes of a particular tweakey block. Then the next
round key sequence K16, . . . ,K31 is computed as follows:

K16 K17 K18 K19
K20 K21 K22 K23
K24 K25 K26 K27
K28 K29 K30 K31

←

Li(K9) Li(K15) Li(K8) Li(K13)
Li(K10) Li(K14) Li(K12) Li(K11)
K0 K1 K2 K3
K4 K5 K6 K7


where the operation Li are 8-bit permutations given below:

L1(x7||x6||x5||x4||x3||x2||x1||x0) := x7||x6||x5||x4||x3||x2||x1||x0

L2(x7||x6||x5||x4||x3||x2||x1||x0) := x6||x5||x4||x3||x2||x1||x0||(x7 ⊕ x5)
L2(x7||x6||x5||x4||x3||x2||x1||x0) := (x0 ⊕ x6)||x7||x6||x5||x4||x3||x2||x1

Therefore, our key pipelines do the following operations in sequence. First, we swap the
first and the last eight bytes by using the swap (56, 120). Then we perform the local byte
permutations on the upper half (i.e. the first 8 bytes) of the key through swaps (48, 56),
(24, 56), (8, 24). Finally we apply the 8-bit permutation L2 through another swap (0, 1)
for TK2, and a dedicated 8-bit LFSR circuit for L3 in TK3.
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SKINNY encryption.
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Library Area (µm2) Area (GE) Power (µW) Latency Energy Throughput Ref.
@ 10 MHz round total (nJ) Mbps
SKINNY-128-128

STM 90 4697.7 1070 51.47 128 5248 27.0 13.43 Sec. 4
UMC 90 4249.3 1355 52.08 128 5248 27.3 11.51 Sec. 4
TSMC 90 4022.6 1425 47.12 128 5248 24.7 15.42 Sec. 4
Nangate 15 391.7 1992 15.89 128 5248 8.3 277.51 Sec. 4
Nangate 45 1394.9 1748 122.06 128 5248 64.1 41.63 Sec. 4

SKINNY-128-256
STM 90 6642.7 1513 75.30 128 6272 47.2 10.72 Sec. 4
UMC 90 6043.9 1927 75.70 128 6272 47.5 9.46 Sec. 4
TSMC 90 5730.9 2030 69.25 128 6272 43.4 12.90 Sec. 4
Nangate 15 561.0 2853 22.99 128 6272 14.4 219.98 Sec. 4
Nangate 45 1996.9 2502 175.28 128 6272 109.9 34.26 Sec. 4

SKINNY-128-384
STM 90 8631.5 1966 99.36 128 7296 72.5 6.37 Sec. 4
UMC 90 7895.7 2518 99.73 128 7296 72.8 7.68 Sec. 4
TSMC 90 7465.2 2645 91.38 128 7296 66.7 11.44 Sec. 4
Nangate 15 733.7 3732 30.22 128 7296 22.0 163.32 Sec. 4
Nangate 45 2603.6 3263 229.10 128 7296 167.2 29.94 Sec. 4

Table 6: Encryption only circuits for SKINNY.

Index 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S0 29 25 21 17 13 9 5 1 30 26 22 18 14 10 6 2 31 27 23 19 15 11 7 3 28 24 20 16 12 8 4 0
S1 30 26 22 18 14 10 6 2 31 27 23 19 15 11 7 3 28 24 20 16 12 8 4 0 29 25 21 17 13 9 5 1
S2 31 27 23 19 15 11 7 3 28 24 20 16 12 8 4 0 29 25 21 17 13 9 5 1 30 26 22 18 14 10 6 2
S3 28 24 20 16 12 8 4 0 29 25 21 17 13 9 5 1 30 26 22 18 14 10 6 2 31 27 23 19 15 11 7 3

Table 7: Bit-sliced GIFT∗ permutation where index 0 is the rightmost bit of a row segment.

5 GIFT∗

We will be focusing our efforts on the bitsliced design of the GIFT blockcipher, as utilized
in the NIST LWC candidates GIFT-COFB and SUNDAE-GIFT [BCI+19, BBP+19]. We
denote it by GIFT∗ as it differs from the original construction in the way data bits are
organized. The specification is laid out in the appendix of [BPP+17]. In this variant,
the cipher state is reordered and interpreted as a two-dimensional array, i.e. four 32-bit
segments S0, S1, S2, S3 such that


S0
S1
S2
S3

 =


s3 s7 . . . s127
s2 s6 . . . s126
s1 s5 . . . s125
s0 s4 . . . s124

 ,
where s0s1 . . . s127 are the state bits. In this ordering s3 is the most significant bit in the
state pipeline and s124 the least significant. The 4-bit S-box is applied column-wise and
the permutation layer consists of four independent row-wise permutations as shown in
Table 7.

In contrast the key state is not reordered and remains unchanged with respect to the
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regular GIFT∗ specification, i.e.
K0 || K1
K2 || K3
K4 || K5
K6 || K7

 =


k0 k1 . . . k31
k32 k33 . . . k63
k64 k65 . . . k95
k96 k97 . . . k127

 ,
where k0k1 . . . k127 are the key bits. The key schedule consists of two 16-bit internal
rotations and an external rotation that spans the entire state. More specifically, K6 is
rotated 2 positions to right, K7 is rotated 12 position to the right and the entire key state
is rotated concurrently by 32 positions to the right.[

K0,K1,K2,K3,K4,K5,K6,K7
]

=
[
K6 � 2,K7 � 12,K0,K1,K2,K3,K4,K5

]
.

In each round 64-bits of the key are mixed into the cipher state as follows

S2 = S2 ⊕ U
S1 = S1 ⊕ V,

where U = K2 || K3 and V = K6 || K7. Alongside the round keys, in each round there
is also a 6-bit (c5, c4, c3, c2, c1, c0) round constant that is added to the state and updated
such that

S3 = S3 ⊕ 0x800000XY,

where XY = 00c5c4c3c2c1c0.

5.1 State Pipeline
The bitwise nature of both the GIFT∗ and GIFT permutation complicates matters in a
swap-and-rotate setting, since each state bit needs to be moved to its designated position
individually. As a consequence, a simple solution with few swaps as devised for the AES
ShiftRows procedure, detailed in Section 3.2 is not achievable.

Nevertheless, the GIFT∗ permutation can be partitioned into three layers each can be
generated with three separate swaps, thus, in total, we allocate nine swaps.

Layer 1. Consists of the swaps (FF31,FF30), (FF31,FF28) and (FF31,FF29).

Layer 2. Consists of the swaps (FF28,FF24), (FF28,FF26) and (FF28,FF26).

Layer 3. Consists of the swaps (FF22,FF4), (FF22,FF10) and (FF22,FF16).

Due to the column-wise application of the substitution layer in GIFT∗, the s-box ports
in the state pipeline are FF31, FF63, FF95 and FF127 which are active during the cycles 96
to 127.

A graphical depiction of the GIFT∗ state pipeline is given in Figure 4.

5.2 Key Pipeline
The bitsliced interpretation of GIFT∗ significantly simplifies how the 64-bit round keys are
extracted in each round since they are now mixed into a continuous stretch of the cipher
state. For this we can assume, without loss of generality, that the master key K is loaded
in the following order as to simplify the swapping algorithm.

K =


K0 || K1
K6 || K7
K2 || K3
K4 || K5

 ,
14
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Figure 4: 128-cycle, bit-serial GIFT∗ key round function implementation using nine swaps.

In this scenario the 64-bit round keys K2 || K3 || K6 || K7 is added to the blockcipher
states during the cycles 32 to 96.

The swap sequence for the GIFT∗ key schedule is partitioned into four phases.

Phase 1 (Rotating the state). We rotate the entire key state by 64 positions to the
left. This operation can be achieved with a single swap during 64 active cycles. Preferably,
the transformation should occur concurrently with the addition of the round key into the
cipher state, i.e. we allocate FF0 and FF64 to perform the rotation during the cycles 32 to
96.

Phase 2 (Swapping the precedence). To achieve a full emulation of the 96-bit
rightward rotation of the key schedule it further necessary to swap the precedence of the
utilized round key halves, i.e. K2||K3 and K6 ||K7. This again only requires a single swap
during 32 cycles and can be performed subsequently to the first phase, hence we allocate
FF0 and FF96 for this second phase.

Phase 3 (Rotating K6). This transformation can been seen as a 14-bit leftward rotation
that can be achieved by composing three leftward rotations of magnitude 8, 4, and 2. The
position and the interval of those three swaps can be chosen relatively freely, as K6||K7
is not part of the current round key, as long as they occur after the second phase has
terminated. To simplify the matter we chose to perform them back-to-back during the
cycles 32 and 66. More concretely, the 4-bit rotation is done during the cycles 32 to 44
using a swap at register FF95 and FF99. Subsequently, we perform the 8-bit rotation during
cycles 44 to 52 with the registers FF83 and FF91, followed by the 2-bit rotation during
cycles 52 to 66 using the registers FF75 and FF77.

Phase 4 (Rotating K7). Phase 3 is followed by a 4-bit leftward rotation of K7 that is
congruent to the 12-bit rightward rotation of the specification. This necessitates a single
swap of size 4 for which we can reuse the same swap as utilized in phase 3, i.e. FF99 and
FF95 during the cycles 48 to 60.

A summary of both the key schedule and round function swaps is tabulated in Table 8.

5.3 GIFT
The regular GIFT specification is significantly harder to transform into a low-latency
swap-and-rotate circuit due to the fact that the round key bits are not added to cipher
state in a continuous stretch. Namely, if U = K5||K4 and V = K1||K0 represent the 64-bit
round key than its individual bits are mixed into the state S as follows,

s4i+2 = s4i+2 ⊕ ui, s4i+1 = s4i+1 ⊕ vi, ∀i ∈ {0, . . . , 31}.
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pipeline operation active cycles
state swap (31, 30) {8k + 7 : k ∈ [0, 15]}

swap (31, 28) {8k + 5 : k ∈ [0, 15]} ∪ {8k + 7 : k ∈ [0, 15]}
swap (31, 29) {8k + 5 : k ∈ [0, 15]}
swap (28, 24) {0, 1, 42, 43, 50, 51, 58, 59, 66, 67, 104, 105, 112, 113, 120, 121}
swap (28, 26) {6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31}

∪{34, 35, 72, 73, 80, 81, 88, 89, 96, 97}
swap (28, 22) {74, 75, 82, 83, 90, 91, 98, 99}
swap (22, 4) {2, 3, 34, 35, 66, 67, 98, 99}
swap (22, 10) {4, 5, 26, 27, 36, 37, 58, 59, 68, 69, 90, 91, 100, 101, 122, 123}
swap (22, 16) {6, 7, 18, 19, 28, 29, 38, 39, 50, 51, 60, 61, 70, 71}

∪{82, 83, 92, 93, 102, 103, 114, 115, 124, 125}
key addition [32, 96)
rc addition (look up table)
load S-box [96, 128)

key swap (64, 128) [32, 96)
swap (32, 128) [96, 128]
swap (96, 100) [32, 44)
swap (84, 92) [44, 52)
swap (76, 78) [52, 66)
swap (96, 100) [48, 60)

Table 8: The timetable of operations for bit-serial GIFT∗ encryption.
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Library Area (µm2) Area (GE) Power (µW) Latency Energy Throughput Ref.
@ 10 MHz round total (nJ) Mbps

GIFT∗
STM 90 nm 4863.5 1108 48.7 128 5248 25.5 9.76 Sec. 5
UMC 90 nm 4410.8 1332 49.8 128 5248 26.1 10.49 Sec. 5
TSMC 90 nm 4176.5 1480 45.1 128 5248 23.7 13.43 Sec. 5
Nangate 15 nm 402.3 2047 15.4 128 5248 8.1 192.12 Sec. 5
Nangate 45 nm 1432.1 1791 122.3 128 5248 64.2 32.02 Sec. 5

GIFT
STM 90 nm 5334.3 1215 51.3 128 5248 26.9 7.35 Sec. 5
UMC 90 nm 4801.2 1531 51.8 128 5248 27.2 6.32 Sec. 5
TSMC 90 nm 4507.3 1597 45.9 128 5248 24.1 8.61 Sec. 5
Nangate 15 nm 430.5 2190 16.1 128 5248 8.4 146.92 Sec. 5
Nangate 45 nm 1528.4 1915 131.8 128 5248 69.2 23.34 Sec. 5

Table 9: GIFT∗ bit-serial, low-latency synthesis figures.
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pipeline operation active cycles
state swap (39, 71) [0, 8) ∪ [8, 16) ∪ [16, 24) ∪ [121, 128)

swap (38, 22) [0, 9] ∪ [58, 73] ∪ [122, 127]
swap (98, 110) [10, 13] ∪ [34, 37] ∪ [54, 57] ∪ [74, 77] ∪ [98, 101] ∪ [118, 121]
swap (109, 85) [7, 10] ∪ [51, 54] ∪ [71, 74] ∪ [115, 118]
swap (108, 72) [4, 7] ∪ [68, 71]

∪{34, 35, 72, 73, 80, 81, 88, 89, 96, 97}
swap (121, 117) {16k + 5 : k ∈ [0, 15]} ∪ {16k + 13 : k ∈ [0, 15]} ∪ {16k + 15 : k ∈ [0, 15]}
swap (122, 114) {16k + 1 : k ∈ [0, 15]} ∪ {16k + 3 : k ∈ [0, 15]}
swap (123, 111) {16k + 1 : k ∈ [0, 15]}
swap (22, 4) {2, 3, 34, 35, 66, 67, 98, 99}
swap (22, 10) {4, 5, 26, 27, 36, 37, 58, 59, 68, 69, 90, 91, 100, 101, 122, 123}
swap (22, 16) {6, 7, 18, 19, 28, 29, 38, 39, 50, 51, 60, 61, 70, 71}

∪{82, 83, 92, 93, 102, 103, 114, 115, 124, 125}
key addition {4k + 1 : k ∈ [0, 31]} ∪ {4k + 2 : k ∈ [0, 31]}
rc addition (look up table)
load S-box {4k + 3 : k ∈ [0, 31]}

key swap (120, 128) {4k : k ∈ [3, 16]} if round mod 4 = 0
{4k − 1 : k ∈ [3, 16]} if round mod 4 = 1
{4k + 1 : k ∈ [3, 16]} if round mod 4 = 2
{4k − 2 : k ∈ [3, 16]} if round mod 4 = 3

swap (112, 128) {1} ∪ {4k − 2 : k ∈ [5, 16] ∪ [21, 32]} if round mod 4 = 0
{4k : k ∈ [5, 16] ∪ [21, 31]} if round mod 4 = 1

{1} ∪ {4k − 1 : k ∈ [5, 16] ∪ [21, 32]} if round mod 4 = 2
{4k + 1 : k ∈ [5, 16] ∪ [21, 31]} if round mod 4 = 3

swap (1, 128) {4k : k ∈ [1, 31]} if round mod 4 = 0
{0} if round mod 4 = 1

{4k + 2 : k ∈ [0, 31]} if round mod 4 = 3
swap (1, 33) {4k + 1 : k ∈ [0, 7]} if round mod 4 = 0

{4k + 3 : k ∈ [0, 7]} if round mod 4 = 1
{4k + 2 : k ∈ [0, 7]} if round mod 4 = 2
{4k : k ∈ [1, 8]} if round mod 4 = 3

swap (4, 5) {4k : k ∈ [0, 31]} if round mod 4 = 0
swap (2, 3) {4k : k ∈ [0, 31]} if round mod 4 = 3

Table 10: The timetable of operations for bit-serial GIFT encryption.

By reordering the key bits in this manner such that the bits of U and V exit the pipeline
during the correct cycles we can reuse the rotation techniques to obtain a key schedule
with 6 different swaps.

However, we can transfer the intuition for the state pipeline of Section 5.1 in order to
generate the swap sequence for the GIFT round function. The summary of all GIFT key
schedule and round function swaps is tabulated in Table 10.

6 AEAD
As standalone blockciphers are not ready-to-use primitives they are usually wrapped in
mode of operation. In this section, we investigate three NIST LWC candidates which
are bootstrapped with the improved bit-slided implementations of AES, SKINNY and
GIFT∗ presented in the previous sections: SUNDAE-GIFT, Romulus and COMET. For all
three schemes we report the hitherto smallest blockcipher-based authenticated encryption
circuits in the literature.

The choice of these three particular candidates in our work is influenced by the
observation that the area of a blockcipher is determined, to a large extend, by the
amount of storage elements, rather than how lightweight the round operations are. This
is more evident when one compares SKINNY-128-256, whose round function comprises
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lightweight operations, to AES, whose S-box and Mix columns circuits are significantly
large. Nevertheless, AES beats SKINNY-128-256 in terms of area, because the latter requires
256-bits of storage for the tweakey, whereas the former only needs 128-bit for the key.

Because an authenticated encryption scheme produces a tag besides ciphertext blocks,
it is natural to expect a particular value that is initialized at the beginning and updated
repetitively after processing each new block of data. We refer to this value as the running
state. The running state is eventually used to compute the tag, so that all blocks contribute
to its value. From the area perspective, an important question is whether storing the
running state requires an extra register or not. For the chosen candidates, the running
state is not actually a separate value, but it is passed between consecutive encryption
calls. In other words, we can use the state register inside the blockcipher to keep this value
temporarily until the next encryption starts. It is precisely the reduction in the storage
area that yields the impressive area results for the three candidates.

In the special case of Romulus, which actually defines six different variants, we chose
the one that is likely to use the smallest area in ASIC circuit. This is Romulus-N3, because
it uses the smaller SKINNY-128-256, while its nonce-based siblings all use SKINNY-128-384.

Another important detail about our AEAD implementations, which directly concerns
the hardware API, is that we assume the padding is done a priori to AEAD call. In
other words, our implementations leave padding task to the caller, and assume that the
associated data and message bits are well aligned with block boundaries. This is in contrast
to CAESAR Hardware API, which assumes the padding as the responsibility of the circuit
[HDF+16]. Hence, our reported area figures should be carefully interpreted, if one happens
to compare them with other implementations which contain the padding circuit.

AEAD mode of operations generally treat the last, empty or partial blocks specially
through some allocated bits in the domain separator. Hence, when assuming that the
associated data and message are properly chopped into blocks and passed to the circuit,
information lost during the padding must also be passed along. In our lightweight API,
we use few input signals to indicate if the current data block must be specially processed,
e.g. whether the current data block is the last block of associated data, or a padded block.

6.1 SUNDAE-GIFT
The SUNDAE-GIFT AEAD scheme was proposed by Banik et al. and is based on the
SUNDAE mode of operation and features the GIFT∗ blockcipher at its core [BBP+19,
BBLT18]. It is a bare-bones construction that does not require any additional registers
aside the ones used within the blockcipher. After the encryption of the nonce each data
block is mixed into the AEAD state between the encryption calls. A field multiplication over
GF (2128) is applied after the last associated data has been added to the state. Analogously,
the same multiplication is performed for the last message block. The multiplication is
either ×2 when the last AD or message block have been padded or ×4 whenever the last
blocks are complete. More formally, the multiplication ×2 is encoded as a byte-wise shift
and the addition of the most significant byte into other bytes of the state such that if
B0||B1|| . . . ||B15 represent the 16 bytes of the intermediate AEAD state with B0 being
the most significant byte we have that

2× (B0||B1|| . . . ||B15) = B1||B2|| . . . B10||B11 ⊕B0||B12||B13 ⊕B0||B14||B15 ⊕B0||B0,

and 4× (B0||B1|| . . . ||B15) = 2× (2× (B0||B1|| . . . ||B15)). The tag is produced after pro-
cessing all AD and message blocks and the ciphertext blocks are generated by reprocessing
the message blocks afterwards. A schematic of the SUNDAE-GIFT is depicted in Figure 6.

The simplicity of SUNDAE-GIFT can be exploited in a bit-serial implementation to
attain a circuit with very low overhead in terms of area. In fact, aside a more involved
control logic the sole addition to the GIFT∗ circuit presented in Section 5 is the field
multiplication.
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Figure 6: SUNDAE-GIFT high-level overview. The figure depicts the processing of two
message and two associated data blocks.

The multiplier can be achieved with a single swap and a one additional 1-bit multiplexer
and XOR gate. More concretely, we allocate 128 rounds for the multiplication ×2 and
twice the amount for the multiplication ×4 during which the blockcipher round function
and key swaps are disabled. In other words while the ciphertext bits exit the last round
function computation we swap FF120 and FF0 during the cycles 8 to 127 which rotates the
state by 8 positions to the left. Hence in the worst case we require 4×128 = 512 additional
cycles for multiplications. The addition of B0 into the other state bytes occurs during the
cycles 88 to 96, 104 to 112 and 120 to 128. In terms of latency, each new encryption call is
loaded with the new plaintext while the ciphertext bits of the previous computation exit
the pipeline. As a consequence the very first encryption operates over 41× 128 = 5248
cycles while the remaining encryption each take 40× 128 = 5120 cycles.

After synthesis the resulting SUNDAE-GIFT architecture is the to-date smallest authen-
ticated encryption circuit at around 1200 gate equivalents for the STM 90 nm process
which is only a 8 percent increased compared to the bit-serial GIFT∗ implementation
presented in Section 5. The exact synthesis figures for various cell libraries are tabulated
in Table 11.

6.2 SAEAES
The SAEAES AEAD scheme was proposed by Naito et al. [NMMaS+19] and uses the AES
blockcipher as the underlying encryption core. The SAEAES document proposes a number
of parameters according to which the mode can be operated, but the primary candidate of
these is SAEAES128_64_128 which implies keysize of 128 bits, message/AD blocks of 64
bits and tag size of 128 bits. This effectively makes the primary mode of rate 1/2, since 2
blockcipher calls are required per 128 bits of message/AD. However the mode requires no
additional state other than those required in the calculation of the blockcipher encryption
and so a very compact implementation is possible.
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Figure 7: SAEAES high-level overview.

A high level description of the mode of operation is presented in Figure 7. It is easy to
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Library Area Area Power(µW) Latency Energy Throughput
(µm2) (GE) (@ 10 MHz) (cycles) (nJ) (Mbit/s)

SUNDAE-GIFT
STM 90 nm 5273.9 1201 50.1 92800 464.9 4.80
UMC 90 nm 4729.9 1508 51.1 92800 474.2 5.00
TSMC 90 nm 4444.6 1663 45.9 92800 426.0 5.75
Nangate 15 nm 426.6 2170 15.9 92800 147.6 90.80
Nangate 45 nm 1527.9 1915 130.3 92800 1209.2 15.13

SAEAES
STM 90 nm 5938.0 1350 77.2 24448 188.7 6.58
UMC 90 nm 5381.4 1716 66.9 24448 163.6 10.22
TSMC 90 nm 4942.7 1751 56.9 24448 139.1 7.63
Nangate 15 nm 464.3 2362 18.8 24448 46.0 152.69
Nangate 45 nm 1653.5 2067 148.8 24448 363.8 22.76

Romulus
STM 90 nm 7812.7 1779 79.1 61447 486.1 5.72
UMC 90 nm 7155.6 2282 81.6 61447 501.3 6.10
TSMC 90 nm 6658.8 2359 74.0 61447 454.4 8.99
Nangate 15 nm 650.8 3310 25.0 61447 153.7 145.14
Nangate 45 nm 2304.1 2887 199.0 61447 1222.8 19.16

Table 11: Low-latency synthesis figures for selected AEAD Schemes. Energy and through-
put calculated for processing 1 KB of plaintext and 128 bits of AD

see that the mode does not require additional storage other than the ones required in the
blockcipher. From a circuit designer’s point of view, it is not very difficult to implement
the mode as the only real challenge is to ensure that at the beginning of a particular
encryption operation the circuit feeds the correct input vectors to the blockcipher circuit
which are as follows

A: Inpi = ADi||064⊕EK(Inpi−1) or AD1 (if i = 1) during the associated data processing
stage, where (Inpi is the i-th input to the blockcipher).

B: Inpa = ADa||const64 ⊕ EK(Inpa−1) for the last AD block.

C: IV = N ⊕ 3128 ⊕ EK(Inpa) before the processing of the plaintext begins.

D: Inp′i = Mi⊕EK(Inp′i−1) during the plaintext processing stage, where (Inp′i is the i-th
input to the blockcipher during plaintext processing). It can also be seen that Inp′i
is also incidentally the i-th ciphertext block, and the Tag is simply the outcome of
the final encryption call that the mode performs.

A bitwise AES encryption core produces output one bit per clock cycle during the last
128 cycles of the 1408 clock encryption cycle. Since we are using no additional storage
blocks, the output bits once produced need to be XORed with the appropriate input signal
and concurrently fed back to the blockcipher as inputs to the encryption call. Essentially
cycles 1281 to 1408 not only produce the output of the i-th encryption but also serve as
the input period for the (i+ 1)-th encryption. Thus one needs to exercise some more fine
grained control over the circuit, to ensure that during cycles 1281 to 1408 the blockcipher
circuit is able to perform the dual role. This means that effectively all encryption calls
except the first requires 1280 cycles. Hence to process a AD and n plaintext blocks the
circuit requires a+ n+ 1 encryption calls and hence 1408 + 1280 ∗ (a+ n) cycles.
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Table 11 tabulates the synthesis figures for the mode with different standard cell
libraries. The smallest implementation takes around 1350 GE in the STM 90 library which
is only around 83 GE (6.5%) more than the standalone blockcipher circuit.

6.3 Romulus
Romulus is an AEAD scheme designed by Iwata et al. [IKMP19], and uses the SKINNY
family of blockciphers. In this work, we choose the member Romulus-N3, because it belongs
to the same nonce-based family with the primary member Romulus-N1, but it uses smaller
SKINNY-128-256 instead of SKINNY-128-384. Given the measurements in Table 6, our
estimate is that the primary member would take an additional 450 GE of area compared
to Romulus-N3, which would roughly correspond to 2200-2300 GE.

In order to reduce the number of blockcipher calls, and make use of the large tweakey
space, Romulus-N3 makes 1/2 blockcipher call per associated data block, and 1 blockcipher
call per message block. Romulus-N3 member admits 128-bit key, 96-bit nonce, variable-
length message chopped into 128-bit blocks, and produces 128-bit tag. An interesting
design choice here is that associated data has alternating blocksize. In particular for some
integer i, AD2i−1 blocks are 128-bit, and AD2i blocks are 96-bit. Alternatively, to ease
notation and the description, one can actually treat AD2i−1||AD2i as a single 224-bit block,
assuming that the original padding is preserved during this conversion.
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Figure 8: Processing associated data ADi and message Mi blocks in Romulus-N3.

Figure 8 describes the three phases a full AEAD operation passes through, namely
processing of (1) associated data, (2) nonce and (3) messages.

During associated data phase, each combined 224-bit AD2i−1||AD2i block is processed
with a single blockcipher call EK. For each of these SKINNY-128-256 calls, the plaintext
is AD2i−1, and the tweakey is concatenation of 24-bit counter5, 8-bit domain separator,
96-bit AD2i block and the 128-bit key K. The output from the blockcipher is treated as
the running state, and XORed with each new AD2i−1 blocks.

Once, all AD2i−1||AD2i combined blocks are processed, the running state is encrypted
by using the nonce N itself as part of the tweakey. We refer to this as processing of nonce.

During the message phase, for each of the 128-bit message blocks, the running state
and message block Mi are passed through ρ function defined below. Essentially ρ acts as
XOR in the lateral direction, hence the running state is XORed with the message blocks
as before. Once all message blocks are processed, the final blockcipher output is passed
through ρ with 0128 to produce the tag. ρ(S,M) = (S′, C) is defined as S′ ← S ⊕M and
C ← G(S)⊕M . For each byte, G performs the following operation:

G(x7||x6||x5||x4||x3||x2||x1||x0) := (x0 ⊕ x7)||x7||x6||x5||x4||x3||x2||x1

It is clear then how we can use 1-bit serial SKINNY-128-256 to realize Romulus-N3.
Except for the computation of the ciphertext blocks through ρ, we can simply reuse the
state pipeline of SKINNY-128-256 to store the running state. In order to compute G, we

524-bit counter is defined with regards to a LFSR (see [IKMP19]), and counts the number of blockcipher
calls during a phase.
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use two external 7-bit buffer pipelines, which keeps the copy of the last 7 bits that exits
the state pipeline and the last 7-bit of message blocks fed to the circuit. This leads to 7
clock cycle of delay in between the time a message block is fed and the time the ciphertext
bits become available. This similarly applies to the tag as well, hence a last 7 clock cycle
delay must is also considered during latency calculation.

As a concrete example, the circuit would process 2× 224 bits of associated data and
1× 128 bits of message as follows:

• During the first 128 cycles, the key K, associated data blocks AD1 are loaded
simultaneously. Starting from clock cycle 32, 96-bit AD2 is also being loaded6. After
loading is complete, the circuit becomes busy for 47 more rounds (for SKINNY-128-256
encryption), i.e. this takes 47× 128 clock cycles. At the last clock cycle, the circuit
signals that it is ready for receiving the next data block, be it AD3 or M1.

• For the following 128 cycles, the state pipeline XORs its content with AD3, and at
the same time initiates the first round of encryption simultaneously. Again, the key
is reloaded starting from cycle 0 and AD4 is also loaded Starting from clock cycle 32.
The circuit becomes busy for 47 rounds to compute the encryption. At the last cycle,
the circuit signals that the key and the nonce must be reloaded the following round.

• The running state is encrypted, i.e. the state pipeline reloads its own content and
start encryption. No data block needs to be loaded, but the key and the nonce must
be loaded simultaneously. Since nonce and 96-bit AD blocks are using the exact same
positions in the tweakey, the nonce is loaded starting from clock cycles 32. After 47
rounds, the circuit signals that the next data (i.e. message) block can be loaded.

• The message block is loaded, which happens simultaneously with reloading the key.
The nonce also follows the key with 32 clock cycles delay, as before. The ciphertext
bits become available with 7 clock cycles of delay. The circuit again takes 47 rounds
to perform the final encryption.

• A final ρ operation is performed with the running state and the 0128 vector. The tag
becomes available with 7 clock cyles.

7 Conclusion
Bit serial implementation of blockcipher and authenticated encryption schemes provide
the smallest known implementations, because they reduce the number of gates on the
datapath, such as MUXes, XOR gates etc. In this paper we implemented compact bit serial
implementations of 3 blockciphers with around 20 % lesser latency when compared to the
state of the art, with the added advantage that we do not alter the standard arrangement
of bits as recommended in their specifications. As a result they are readily usable in any
mode of operation that uses them as an underlying encryption primitive. As a proof of
concept, we implement 3 lightweight AEAD schemes from NIST LWC project that also
turn out to be the most compact implementation of these schemes reported in literature.
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