
Efficient Simultaneous Deployment of Multiple
Lightweight Authenticated Ciphers

Behnaz Rezvani, Thomas Conroy, Luke Beckwith, Matthew Bozzay, Trevor
Laffoon, David McFeeters, Yijia Shi, Minh Vu, and William Diehl

Virginia Tech, Blacksburg, VA 24061, USA
email: {behnaz, tconroy, luke98, mb20022, tslaffoon98,

davidmm, yijiashi, minv17, wdiehl}@vt.edu

Abstract. Cryptographic protections are ubiquitous in information tech-
nology, including the emerging Internet of Things (IoT). As a result of
technology migration to a resource-challenged landscape and new threats
to cryptographic security, governments and industry are exploring new
cryptographic algorithms. While new standards will emerge, however, old
standards will not disappear for the time being. It is therefore important
to explore platforms where multiple cryptographic deployments can be
dynamically interchanged and even share resources. In this research we
build on the Development Package for the Applications Programming In-
terface for Hardware Implementations of Lightweight Cryptography (DP
API HW LWC). In this construct, developers design hardware implemen-
tations of authenticated encryption with associated data (AEAD) inside a
cryptographic core (CryptoCore) encapsulated by input/output utilities.
While CryptoCore is intended for single register-transfer level (RTL)
implementations, we install a custom-designed soft core microprocessor
inside CryptoCore to run underlying block ciphers, along with a shell to
facilitate AEAD processing. Through dynamic loading and execution of
block ciphers on the core, we demonstrate a single LWC deployment on
an Artix-7 FPGA, capable of executing 3 NIST LWC Standardization
Process Round 2 AEAD candidates (COMET-AES, COMET-CHAM
and GIFT-COFB) using only 55% of the combined area of separate RTL
implementations of the same ciphers.

Keywords: NIST · Lightweight cryptography · FPGA · Implementation
· Authenticated encryption · AES · CHAM · GIFT · COMET · GIFT-
COFB · Microprocessor · Instruction Set Extension

1 Introduction

Cryptographic protections, consisting of mathematically secure and ideally effi-
cient algorithms, are an important part of many information technology sectors,
including national security, finance, transportation, energy, medical, and personal
privacy. Cryptographic services include confidentiality, i.e., preventing a 3rd
party from reading a transmission, authenticity, i.e., verification that a transmis-
sion originated from a particular sender, and integrity, i.e., assurance that the
transmission was not altered between sender and receiver.

2 B. Rezvani et al.

At present, the state of cryptography is at a point of inflection not observed
in the past several decades. One driver is the ubiquitous nature of the Internet
of Things (IoT), where small, intelligent devices pervade many aspects of our
daily lives and communicate with one another as well as with centralized ap-
plications. Much of the data handled by IoT devices is sensitive and requires
cryptographic protections. However, existing secret key cryptographic standards,
e.g., the Advanced Encryption Standard (AES) [41], were designed for larger
desktop computers and centralized servers. Government and industry are seeking
alternatives for resource-constrained devices; an example of such a search is
the U.S. National Institute of Standards and Technology (NIST) Lightweight
Cryptography (LWC) Standardization Process, which is investigating lightweight
authenticated encryption with associated data (AEAD) and optional hash func-
tions [30].

A second driver is a potential upending of security premises due to the
emergence of quantum computing. Known quantum algorithms can handily
defeat security premises based on integer factorization and discrete logarithms,
which would render current public key cryptographic standards such as RSA
(Rivest-Shamir-Adelman) and ECC (Elliptic Curve Cryptography) ineffective
[38]. While secret key algorithms would not be completely defeated by known
quantum attacks, security could be reduced necessitating the adoption of longer
keys [16]. NIST is preparing to adopt new standards through its Post-Quantum
Cryptography (PQC) Standardization Process [3].

At the end of both of the above standardization efforts, it is unlikely that
there will be a single secret or public key standard. Rather, legacy and newer
standards will likely be simultaneously employed in the near- and mid-term. As
an example, consider the case of Google’s experimentation with dual public key
deployments in its Chrome browser [12]. In this experiment, transmissions would
be authenticated using simultaneous ECC and a post-quantum solution (i.e., an
earlier version of the NIST PQC candidate New Hope [4]). Additionally, the idea
of investigating convergence in proposed PQC and LWC algorithms was proposed
in [34]. Similar situations can be contemplated for secret key cryptography in
IoT Devices; for example, a lightweight hub might communicate with wireless
sensors using ZigBee protocol using a very lightweight cipher, but use a higher
throughput AES-GCM/CCM scheme with a remote command post using WiFi.

Candidate ciphers in cryptographic contests and standardization processes
are evaluated by many metrics, including performance, required resources, and
security, prior to being finally standardized. However, most evaluations consider
ciphers individually, e.g., “which of ciphers A, B, or C is most efficient?” However,
an emerging question to ask is “which group of ciphers {A, B, C} or {D, E, F}
is most efficient when operated together?”

To address the former question, the Applications Programming Interface for
Hardware Implementations of Lightweight Cryptography (API HW LWC) has
been proposed for fair benchmarking and evaluation of candidates in the NIST
LWC Standardization Process [25]. To facilitate adaption of HW implementations
to the API HW LWC, a developer’s package, the Developer’s Package (DP) for

Efficient Simultaneous Deployment of Multiple LW Authenticated Ciphers 3

API HW LWC (DP API HW LWC) is available [40]. Using the DP, a designer
inserts a hardware implementation of an authenticated cipher in a centralized
wrapper called “CryptoCore,” and encapsulates CryptoCore in a top module
called “LWC,” which also contains input and output modules called “Preprocessor”
and “Postprocessor” which comply with the API HW LWC.

However, the DP API HW LWC is only designed to operate with one authen-
ticated cipher at a time. In fact, while HW implementations (e.g., designed using
register transfer level (RTL) or high level synthesis (HLS)) of ciphers are more
efficient than software implementations running on generalized processors, they
rapidly lose advantage when combining functionality of multiple ciphers.

In this research, we prepare an environment to answer the latter question of
“which groups of ciphers are more efficient?” We modify CryptoCore in the DP
API HW LWC to include a common controller and datapath capable of handling
AEAD functionality for a number of authenticated ciphers, and embed a soft core
processor (i.e., “core”) to run the underlying block cipher associated with one of
several authenticated ciphers. The core is a lightweight 8-bit custom-designed soft
core processor called “HOKSTER,” although any number of existing or future
processors could be substituted. An advantage of this architecture is that test
vectors and other facilities of the DP API HW LWC are fully compatible (although
we have made a small addition to the API to dynamically select algorithm in
use), which enables comparison of multiple HW and SW combinations of AEAD
along many dimensions.

We demonstrate the common CryptoCore with embedded processor using
a concatenation of test vectors (TVs) consisting of TVs for the COMET-AES,
COMET-CHAM, and GIFT-COFB NIST LWC Round 2 candidate authenticated
ciphers. Whenever a TV from a new algorithm commences processing, the
CryptoCore controller loads the corresponding block cipher into the core (i.e., AES,
CHAM, and GIFT, respectively). We then evaluate the resulting implementation,
capable of executing multiple ciphers, in terms of area and throughput versus
previous RTL implementations of the individual ciphers.

Our contributions in this work are as follows:

1. We demonstrate a model for reducing the costs of simultaneous deployment
of existing and newly-emerging cryptographic standards, which could be
required during extended transitional periods between standards.

2. We open new arenas for comparison of cipher hardware implementations,
including hybrid AEAD implementations consisting of a rigid outer hardware
layer and a flexible inner software core, and combinations of groups of ciphers
versus single implementations or other groups, using the existing API HW
LWC framework.

3. We develop, test, and integrate a new 8-bit soft core microprocessor, which
adds to the variability of 8-bit platforms on which NIST candidate authenti-
cated ciphers and associated primitives can be evaluated.

4. We investigate instruction set extensions for cryptographic applications, with
focus on newly-fielded CHAM and GIFT block ciphers.

4 B. Rezvani et al.

2 Background

2.1 Authenticated encryption with associated data

Authenticated encryption with associated data (AEAD) is introduced in [33], and
in one algorithm can provide confidentiality, authenticity and integrity without
relying on composition of distinct ciphers and hashes. “Associated data” (AD)
refers to data which does not require encryption, but for which authenticity and
integrity are important, such as protocol or header information. Inputs to AEAD
include message or plaintext (PT), a public message number (npub) (e.g., nonce
or “number used once”), AD, and secret key (K). Outputs from authenticated
encryption are ciphertext (CT) and a tag (Tag). During authenticated decryption,
CT is converted back to PT , but only released if Tag is verified to be correct.

Underlying cryptographic primitives of AEAD, such as block ciphers, are
“data-intensive;” they are highly parallel and repeatable transactions with simple
and highly-predictable control process. Therefore, they can be implemented very
efficiently in hardware using a variety of architectures. By contrast, AEAD algo-
rithms are, with the exception of underlying primitives, “control-intensive;” they
have complex and irregular control processes which must allow for a wide variety
of circumstances (e.g., missing AD or PT , partial or incomplete blocks, padding,
etc.) Therefore, fully-functional single-algorithm AEAD HW implementations
are more complex than block ciphers, and multi-algorithm implementations can
be very costly.

COMET COunter Mode Encryption with authentication Tag (COMET) is
a combination of Beetle and CTR modes of operation that provides AEAD
functionality [24]. COMET is single-pass and inverse-free. It has three members;
in this paper, we consider two of them: COMET-128 AES-128/128 (the primary
member) and COMET-128 CHAM-128/128. The authors’ recommendations are
key size k = 128 bits, data block size n = 128 bits, nonce size n = 128 bits, and
tag size τ = 128 bits. The n-bit Y -state (cipher state) and the k-bit Z-state (key
state) are concatenated to form the (n + k)-bit state of COMET. The initial
state (Y0||Z0) is formed by using the nonce (Z0 = Ek(N)) and the secret key
(Y0 = K). There are 5-bit control constants that are used as domain separators to
differentiate between AD, PT , and Tag processes, and moreover, to distinguish
between partial and full blocks.

GIFT-COFB GIFT-COFB refers to the COmbined FeedBack (COFB) mode
of operation using the underlying cipher GIFT-128 [6]. Similar to COMET,
GIFT-COFB is also inverse-free and single-pass. It processes 128-bit data blocks
using a 128-bit key and a 128-bit nonce, and it also provides a 128-bit tag. The
initial state is loaded by a nonce (N) and after 40 iterations of the GIFT round
function, the state is updated. The upper 64 bits of the updated state are stored
in a register called delta state. For each block of AD or PT , the delta state is
multiplied by 2 in GF(264) and then added to the state before the start of the

Efficient Simultaneous Deployment of Multiple LW Authenticated Ciphers 5

round function process. However, in some special cases, such as partial blocks of
AD or PT , or null AD or PT segments, the delta state is multiplied by 3.

2.2 Block Cipher Primitives

In most hardware and software implementations of authenticated ciphers, under-
lying primitives such as block ciphers can be invoked in a “black box” approach,
from which the possibility of dynamically-varying implementations arises. The
AES, CHAM, and GIFT block ciphers are described below.

AES AES [41], or Advanced Encryption Standard, has been a U.S. and worldwide
secret key standard for two decades. AES-128 (with 128-bit plaintext blocks
and 128-bit key) consists of 10 rounds of several transformations, including the
linear ShiftRows and MixColumns, the non-linear SubBytes consisting of 16 8-bit
S-Boxes, and the addition of round keys, including an initial prewhitening stage
before Round 1. A simplified rendition of AES is shown in Fig. 1; MixColumns
is not performed in Round 10, which is indicated by the path with dashed lines
in the figure.

CHAM CHAM [27] is in the family of ARX (Addition, Rotation, XOR) ciphers
which use modulo-addition to develop non-linearity. It is designed to be smaller in
area in hardware than SIMON [8] and is made of features which are simple
to implement in lightweight processors, including 1) simple key scheduling;
2) 1- and 8-bit left rotations only; and 3) round numbers reused as round
constants. CHAM128/128 consists of a 4-branch Generalized Feistel Structure
(GFS), executes a block encryption in 80 rounds, and is shown in Fig. 1.

GIFT GIFT [7] is an update to the popular PRESENT cipher [11]. Several
NIST LWC Round 2 candidates use GIFT, including ESTATE [15], GIFT-
COFB [6], LOTUS/LOCUS-AED [14] and SUNDAE-GIFT [5]. GIFT is a simple
substitution-permutation network (SPN), consisting of 32 4-bit S-Boxes, a 128-bit
permutation, round constant addition, and round key updates at each of 40
rounds. A simplified block diagram is shown in Fig. 2.

2.3 NIST LWC Standardization Process

In 2018, NIST established the Lightweight Cryptographic (LWC) Standardization
Process to investigate new AEAD and optional hash algorithms which perform
significantly better than current standards. 56 candidates were accepted to
Round 1 in April 2019, and 32 candidates were selected to Round 2 in August
2019. The standardization process is expected to last several years, after which
new LWC standards could be formalized. Submissions should be optimized for
short messages (e.g., 8 bytes), and should demonstrate good performance in
resource-constrained environments, including 8-bit processors. NIST especially
encourages 3rd-party (i.e., parties other than a submission’s author) evaluations
of candidates.

6 B. Rezvani et al.

Fig. 1: AES (left) and CHAM (right). AES consists of 16 8-bit S-Boxes (Sub-
Bytes), permutations (ShiftRows and MixColumns), and round key addition
(AddRoundKey). CHAM (depicting rounds i and i + 1) consists of a Feistel
structure with 32-bit modular addition, 1-bit and 8-bit rotations, and XORs,
including round constant additions. Round key computation is not shown.

2.4 Applications Programming Interface for Hardware
Implementations of Lightweight Cryptography

Experience from previous cryptographic competitions, such as the NIST SHA-
3 and Competition for Authenticated Encryption: Security, Applicability and
Robustness (CAESAR) have shown the importance of having a standardized
API for HW implementations, in order to facilitate fair comparisons among a
large number of ciphers. Accordingly the Applications Programming Interface
for Hardware Implementations of Lightweight Cryptography (API HW LWC)
was proposed [25]. This API establishes a standard set of external AXI-capable
interfaces and protocols, such as pdi (public data interface), sdi (secret data
interface), and do (data output), on which all data arrive and depart. pdi, sdi
and do can have bus widths w = 8, 16, or 32 bits; we use 32-bit external bus
widths in our implementations. TVs are formatted using a protocol which defines

Efficient Simultaneous Deployment of Multiple LW Authenticated Ciphers 7

Fig. 2: GIFT block cipher, consisting of substitution (32 4-bit S-Boxes), 128-bit
permutation, and round constant addition. Round key computation is not shown.
Note: the permutation (middle) block is an abstract rendering not intended to
convey the full permutation.

all authenticated encryption and decryption (and optionally hash) operations
on npub, PT , AD, K, CT and Tag. To facilitate easy deployment of the API
HW LWC, a Development Package (DP API HW LWC) is provided [40]. Using
the DP, a designer encapsulates their design in CryptoCore (Fig. 3), with no
changes required to surrounding modules. Automated TVs are generated using
a Python script called cryptotvgen, which can be functionally verified using
a Hardware Description Language (HDL) test bench in an simulator such as
Vivado Simulator or ModelSim. However, the API and DP are only designed to
encapsulate a single AEAD or hash algorithm at a time; there is no support for
deployment and evaluation of simultaneous multiple algorithms.

Fig. 3: LWC top module used in the Development Package for the Applications
Programming Interface for Hardware Implementations of Lightweight Cryptogra-
phy.

8 B. Rezvani et al.

2.5 Hardware implementations of NIST LWC AEAD candidates

Hardware implementations in either FPGA or ASIC have been provided by
NIST LWC candidate authors for many ciphers, including Ascon, ESTATE,
SAEAES, Oribadita, LOTUS, and ACE [23, 13, 29, 10, 14, 1]. However, these
implementations do not use a uniform implementation standard such as the API
HW LWC, making a cross-comparison difficult. One study performs a direct
comparison of several NIST LWC Round 2 candidate HW implementations in the
API HW LWC, including Ascon, COMET-AES, COMET-CHAM, GIFT-COFB,
SpoC, and Schwaemm & Esch (SPARKLE) [32]. Data derived from individual
cipher implementations in the Artix-7 FPGA from that work can be used for a
direct comparison with the simultaneous multiple deployment in this research;
results are reported subsequently.

2.6 Software implementations of NIST LWC AEAD and block
cipher primitives

Since our architecture includes a processor core to run software implementations
of AEAD-associated block ciphers, it is helpful to examine the history of software
benchmarking on lightweight processors.

A significant study of multiple NIST LWC AEAD implementations is con-
ducted in [31]. Authors benchmark applications on the Arduino Uno R3 with
8-bit ATmega328P, STM32F1 “bluepill” with 32-bit ARM Cortex M3, STM32
NUCLEO-F746ZG with 32-bit ARM Cortex M4, and Espressif ESP32 WROOM
with 32-bit Xtensa LX6. All 56 NIST Round 1 candidate ciphers were bench-
marked, including 213 variants using C/C++ implementations. Results pertinent
to this research are reported and compared subsequently.

Another prominent study is FELICS (Fair Evaluation of Lightweight Crypto-
graphic Systems), which evaluates multiple AEAD candidates and block ciphers
using C and assembly language (ASM) implementations in 8-bit AVR ATmega128,
16-bit MSP430, and 32-bit ARM Atmel SAM3X8 with Cortex M3 [36]. Specif-
ically, ciphers are evaluated in many lightweight-application scenarios, and a
FELICS-AEAD framework has been proposed for authenticated ciphers. However,
to date there has been no evaluation of the authenticated or block ciphers in this
research, with the exception of AES.

We note that both of the above software studies propose tailored APIs and
test frameworks which are a close analogies to the API for HW implementations,
and all APIs closely resemble the SW API specified in [30].

2.7 Custom processor implementations including Instruction Set
Extensions

Custom instruction set extensions (ISEs) for reconfigurable processors are an
open and fast-moving area of research. The study of ISEs for cryptographic
applications can generally be grouped into those that seek to improve efficiency
and those that address security concerns, such as side channel and fault attacks.

Efficient Simultaneous Deployment of Multiple LW Authenticated Ciphers 9

The long-term desire is for security and efficiency enhancements to converge, but
this is a challenging open problem.

Efficiency In [28] the authors present XCrypto, an ISE for RISC-V to perform
bit permutations, S-Boxes, look up tables, and randomness generation. They also
include a 16-entry 32-bit register file, which makes their enhancement similar to
a co-processor. In [21] authors explore tightly coupled accelerators, including 28
new instructions, to address lattice-based post-quantum cryptography (PQC).
In [35], authors show that the inclusion of two simple custom instructions to
the RISC-V RV321 ISA leads to a 5-fold speed up of the permutation in the
SNEIK authenticated cipher. Additionally, in [39], authors estimate the effect of
implementing bit manipulations instructions in the RISC-V on the speed up for
cryptographic operations, such as AES, ChaCha, and Keccak.

Security In [26] authors introduce SKIVA, based on the SPARC-V8 instruction
set architecture and 32-bit LEON3 open-source soft core processor [17], with
custom instructions to defend against side channel and fault attacks. Based
on programs partially or wholly transformed into bitsliced applications, the
ISE provide support for instruction redundancy and conversion to and from
bitslice representations. In [22], authors introduce an ISE concept called FENL to
prevent micoarchitectural leakage present during interactions between instructions
due to Hamming Weight, distance across pipeline stages or physical electrical
transactions. The ISE concept is agnostic to ISA or platform, but demonstrated
on RISC-V. In [18], authors develop a custom side channel protected soft core
processor, which includes ISEs for lightweight block ciphers such as PRESENT,
LED, and TWINE protected against power analysis side channel attacks.

In this research, we introduce several ISEs, with efficiency and security as the
near-term and long-term goals, respectively.

3 Design

3.1 Modified CryptoCore

In this research, we modify the internals of CryptoCore to enable simultaneous
deployment of multiple lightweight authenticated ciphers, while all deployed
ciphers remain compliant with the API HW LWC. Specifically, CryptoCore is
modified from its traditional RTL single-cipher structure in Fig. 3 to a new form
shown in Fig. 4.

We make one modification to the API HW LWC, which is to add an m-bit
code (4 bits in this research) indicating the block cipher in use. The code is
appended to the TV by creating a new API instruction (INS = 0x1) per the
format in [25]. In this research, 0x2 = COMET-AES, 0x1 = COMET-CHAM,
and 0x0 = GIFT-COFB. For example, a TV for COMET-CHAM would be
preceeded by INS = 11000000, which is padded to 32 bits since w = 32 in these

10 B. Rezvani et al.

implementations. The Preprocessor is also modified to read and interpret the
cipher initialization instruction, which is subsequently passed to CryptoCore.

The modified CryptoCore is further detailed in Fig. 5, and includes a datapath
and controller which are common to the AEAD-layer functions of the COMET
and GIFT-COFB authenticated ciphers, and the soft core processor, itself encap-
sulated in a loader. Common AEAD-layer functionality includes buffering and
assembling strings of PT , CT , AD, npub; loading the expected Tag and perform-
ing tag verification during authenticated decryption, loading and buffering of
secret keys, assembly of initialization vectors, control decisions based on various
lengths of PT , CT and AD (including null PT or AD), and padding.

The combined datapath for this research is shown in Fig. 6; the solid lines
are common between COMET and GIFT-COFB, the dashed lines are only used
in COMET, and the dotted lines are only used in GIFT-COFB. The datapath
first designates the specified cipher to the loader on the 8-bit din bus in one
clock cycle. Then, it stores the 128-bit secret key (K) from the 32-bit key bus
in the Key register in 4 clock cycles. GIFT-COFB uses the same secret key for
all encryption blocks (Ek) during each encryption/decryption process. However,
as we mentioned before, COMET is based on the CTR mode of operation, so it
exploits the ϕ permutation to update the Z-state for each block of data. The
domain separation constants (Ctrl) are also combined with the ϕ permutation to
indicate the proper location of the encryption/decryption process. Then, based
on the specified cipher, either the secret key (for GIFT-COFB) or the Z-state
(for COMET) is selected to be passed to the core via the loader. Since the Ek-key
is 128 bits and the din size is 8 bits, this process takes 16 clock cycles.

The datapath gets the 128-bit nonce (N), AD, PT , and expected tag (T)
from the 32-bit bdi bus and stores them in the iData register, for which loading
each block takes 4 clock cycles. Then if it is necessary, the AD and PT blocks are
padded before inserting to the state. In GIFT-COFB, the updated state (Ek-out)
is passed through the G module and then combined with both the delta state
(explained in the GIFT-COFB section) and the AD/PT block. In COMET, the
AD/PT block and the Ek-out are combined in the % module and then update
the Y -state. Similar to Ek-key, either the GIFT-COFB state or the Y -state is
chosen as the core input (Ek-in) and passed to the loader in 16 clock cycles.

The datapath receives the updated state (Ek-out) from the core on the 8-bit
dout bus in 16 clock cycles. The CT is obtained from the combination of Ek-out
and AD/PT , and if it is necessary, is truncated. The 32-bit output bus (bdo)
receives either the CT block or the Tag (during encryption only) in 4 clock cycles.
In decryption, the expected Tag and the computed Tag′ are compared, and
based on the result, the msg auth signal is set to one or zero, which respectively
shows whether the tag verification step passed or failed.

The communication and signaling to the core is simple, and helps preserve
flexibility to enable additional authenticated and block ciphers. Data is exchanged
via din and dout, which are n-bit (8 bits in this case, corresponding to an 8-bit
processor core). Data exchanged includes bytes of PT , AD, CT , Tag, npub,
or K, using a protocol agreed to by the CryptoCore and loader controllers. A

Efficient Simultaneous Deployment of Multiple LW Authenticated Ciphers 11

Fig. 4: LWC top module with modified CryptoCore and Preprocessor, including
multi-algorithm datapath and controller and embedded processor core.

Fig. 5: Internal construction of CryptoCore, including encapsulation of core in
loader, and signaling to loader.

header signal (2 bits in this version) signals the context of din, i.e., PT , K, or
control information. Upon receipt of a new TV, the CryptoCore can take several
actions: 1) if the desired block cipher is not currently loaded into the core, the
CryptoCore controller directs the loader controller to load the new block cipher;
or 2) if the desired block cipher is already loaded, applicable data (e.g., PT , K,
etc.) is loaded to core, and the block cipher commences.

The loader (detailed in Fig. 7) contains its own API to load and retrieve data
from the core, load and run programs, reset the core, and perform other system
calls from the core; it functions as an operating system for the core. Block cipher
programs and initialization data for AES, CHAM, and GIFT block ciphers are

12 B. Rezvani et al.

bdi
32

iData

Delta

||

×2×3
64 64 64

Ek_out[127:64]

64

64

6400...0}

64

G

Pad

Ystate

N
ϱ Ek_outEk_out

N

Hard

Loader

Trunc

msg auth
1 φ

Zstate

Key

key
32

Ctrl

K

Ek_outK

K

E
k

_k
ey

bdo

8

Cipher

= =
ϱ

HL_D

8

8

8 8

Ek_out

E
k

_o
u

t

Ek_out

32

32

32

32

E
k

_i
n

Fig. 6: Common datapath for AEAD-layer functionality for COMET and GIFT-
COFB authenticated ciphers.

prestored in .vhd look up tables (ROM), and are loaded on command by the
loader controller. By convention in our implementation, PT is always loaded
into, and CT extracted from, Data RAM locations 0x00 – 0x0F, and K is always
loaded to 0x10 – 0x1F. Other conventions are possible.

3.2 Custom-Designed Soft Core Processor

An embedded soft core processor is used to compute block cipher encryptions
in this research. We introduce the HOKSTER custom-designed 8-bit soft core
processor; HOKSTER stands for Hardware-oriented Kustom Security Test &
Evaluation Resource, since it is ultimately intended for prototyping protections
against active and passive side channel attacks. Although any number of popular
soft core microprocessors could be included as the embedded core, our motivations
for including a custom-designed processor are as follows:

Efficient Simultaneous Deployment of Multiple LW Authenticated Ciphers 13

Fig. 7: Loader encapsulates core, and loads and runs block cipher operations in
core upon command from CryptoCore.

1. [30] calls for evaluation of candidates in 8-bit processors, yet most modern
8-bit evaluations take place exclusively on the AVR ATmega series. We
provide an alternative to increase breadth of comparison.

2. The ATmega128 is billed as a Reduced Instruction Set Computer (RISC)
but has 133 instructions with 32 general purpose (GP) registers. We provide
a more parsimonious architecture consisting of only 38 instructions with 16
(nearly) GP registers, which allows analysis of SW efficiency from a different
perspective.

3. Our architecture allows for experimentation with cryptographic-specific in-
struction set extensions (ISEs) and memory-mapped accelerators at low
overhead.

4. Microprocessor design is a living art that did not “die” with the roll-out of
the RISC-V; alternative designs should be investigated and encouraged.

HOKSTER is an 8-bit RISC processor with a baseline Instruction Set Archi-
tecture (ISA) of 38 instructions and 16 (nearly) GP registers. It uses a Harvard
architecture with up to 4K of Program RAM (PRAM) and 64K of Data RAM
(DRAM), each of which are instantiated by the user in blocks of 2n bytes at
synthesis time. Instructions (8 or 16 bits long) are drawn 8 bits at a time from
PRAM, and executed in 1 or 2 clock cycles per instruction. It is an expanded
and improved version of the soft core processor used in [19, 18].

14 B. Rezvani et al.

HOKSTER is a classic load-store architecture where arithmetic operations are
only permitted on values in registers, although increments and decrements are
permitted on immediate values of 1 to 16. HOKSTER has 8 8-bit “a” registers
and 8 8-bit“r” registers. While all arithmetic operations are permitted on a and
r registers, concatenations of like-numbered a and r registers (labeled ai : ri)
are used to represent 16-bit values, such as DRAM addresses or interrupt masks.
There are also special purpose registers such as pc (program counter), sp (stack
pointer), sr (status register), and ie (interrupt enable) which are accessible only
through ISA instructions.

There are two functional units: the Arithmetic Logic Unit (ALU) and the
custom ALU (ALUc). While 16 operations are pre-defined on ALU, ALUc
allows user implementation of 2-operand ISEs, which can execute in an arbitrary
number of clock cycles. In our research we implement ISEs for hardware-friendly
cryptographic operations such as S-Boxes, column multiplications in finite fields,
and complex bitwise permutations. For more complex operations HOKSTER
supports memory-mapped peripherals and up to 16 priority encoded vectored
interrupts, including user-defined interrupt service routines (ISR).

The HOKSTER source code, development tools, documentation, and applica-
tion base are provided at [9]. Development tools include assembler and simulator
coded in Python, and simulation tools designed primarily for Xilinx Vivado.
Sample applications include the AES, CHAM and GIFT source code used in
this research, classic computational benchmarks like BubbleSort and TreeSort,
and a Direct Memory Access (DMA) external peripheral used to demonstrate
memory-mapped accelerators and interrupts.

A simplified overview of HOKSTER is shown in Fig. 8. HOKSTER signals
are grouped into a number of buses, including d-bus (n-bit data communications),
p-bus (8-bit words and 12-bit program addresses), a-bus (16-bit DRAM address
bus), i-bus (16-bit incoming pending interrupts), and s-bus (8-bit communication
for core to external entities, including interrupt acknowledgement). The i-bus is
not used in this research.

3.3 Instruction Set Extensions

We implement instruction set extensions (ISEs) for several transformations
associated with the subject block ciphers. ISEs are executed by the custom ALU
(ALUc) in the format <opcode> <op1, op2>, e.g., asb r1, r2 computes the
AES S-Box on contents of Register r1 and puts the result in Register r2. ISEs
implemented in this research are shown in Table 1. The numbers of clock cycles
for an atomic ISE operation are shown in the “Cycles per operation” column, and
the effective cycles per byte are shown in the “cpb” column. In this architecture,
ISEs can occur on long word or block sizes, e.g., swd or gsp, which require calls
in a particular sequence; otherwise indeterminate results can occur.

For AES, the asb instruction computes 1 8-bit S-Box per call. The amc

instruction loads and computes a 32-bit column multiplication on Galois Fields
(i.e., AES MixColumns transformation). For CHAM, the swd instruction loads
a 32-bit field (i.e., one Feistel branch) and performs arbitrary rotations on the

Efficient Simultaneous Deployment of Multiple LW Authenticated Ciphers 15

Fig. 8: Simplified block diagram of HOKSTER soft core processor.

Table 1: Instruction Set Extensions.
Cipher ISE Description Cycles per operation cpb

AES asb 8-bit S-Box 2 per S-Box=2 2.0000
AES amc 32-bit Col. Mult. 2x5 calls/column+3=13 3.2500
CHAM swd ROT (1 - 31 bits) on 32-bit word 2x6 calls/32-bit word+1=13 3.2500
GIFT gsp 32 4-bit S-Box & 128-bit Perm. 2x23 calls/128-bit block+1=47 2.9375

field. For GIFT, the gsp instruction loads an entire 128-bit block, and computes
32 4-bit S-Boxes and 128-bit permutations in parallel.

ISEs must be designed to not adversely affect the critical path of the core,
which sometimes necessitates distributing ISE computations over multiple clock
cycles. As shown in Table 1, effectively 2 to 3 cycles per byte are required for
these ISEs.

4 Results

4.1 Simultaneous deployment of multiple ciphers vs. individual
ciphers

The modified CryptoCore enabling simultaneous deployment of 3 authenticated
ciphers, COMET-AES, COMET-CHAM, and GIFT-COFB, is implemented in
VHDL as described above, and functionally verified in Vivado Simulator using
the test benches included in the DP API HW LWC. The combined LWC platform
is implemented on the Xilinx Artix-7 (xc7a100tcsg324-3) FPGA, and further
optimized using the Minerva Automated Hardware Optimization Tool [20].

16 B. Rezvani et al.

Table 2: AEAD Implementations.
Cipher
Implementation

Frequency
MHz

Area
LUT

TP Formula
Cycles/Block

TP
Mbps

SW Comparison
µs [31]

Individual [32] - - - - -

COMET-AES 251.0 2753 20 1606 -
COMET-CHAM 201.0 2214 91 283 -
GIFT-COFB 263.0 1932 53 635 -

Multiple [TW] 104.0 3785 - - -

COMET-AES - - 14380 0.926 529
COMET-CHAM - - 20456 0.651 1534
GIFT-COFB - - 59661 0.223 3495

Although no hybrid HW/SW implementations of this type are known to exist,
we can confidently compare our simultaneous deployment of 3 ciphers against
individual RTL hardware implementations constructed with similar methodology.
For example, individual implementations of COMET-AES, COMET-CHAM, and
GIFT-COFB, which are compliant with the API HW LWC, use the associated
development package, and are implemented in the Artix-7 FPGA (optimized
by Minerva), are available in [32]. In our implementation, resource savings in
terms of FPGA area (e.g., Look Up Tables – LUTs) are significant. Specifically,
our combined LWC deployment requires 3785 LUTS, while the combined area
of COMET-AES, COMET-CHAM and GIFT-COFB implementations in [32] is
6899 LUTs, i.e., our implementation is 55% the size of the separately packaged
implementations. However, software implementations can rarely rival the high
performance (e.g., throughput (TP)) of tailored RTL implementations, as shown
in our results. Specifically, TP of our COMET-AES, COMET-CHAM, and GIFT-
COFB implementations are only 0.06%, 2.3%, and 0.035% of their respective
HW implementations; our implementation sacrifices performance for resources
and flexibility.

An interesting indirect comparison can be made with NIST LWC AEAD
software benchmarking performed in [31], where the authors compute total run
times for a number of TVs on various 32-bit processors; we include their least
capable 32-bit processor, the STM32F1 with Arm Cortex M3, for purposes of
comparison. Even though the F1 implementations in [31] do not employ ISEs,
the order of latencies (least to greatest) corresponds to order in this work (TW),
namely COMET-AES, COMET-CHAM, and GIFT-COFB, whereas GIFT-COFB
and COMET-CHAM are reversed when comparing basic-iterative architectures
using pure RTL design in [32].

4.2 Comparison of HOKSTER core with popular cores

Although designing a microprocessor to outperform existing processors was not
a goal of this research, a comparison of HOKSTER with some contemporary
soft core processors is provided for the interested reader (shown in Table 3).
HOKSTER results are as implemented in this research; Microblaze and VexRiscv

Efficient Simultaneous Deployment of Multiple LW Authenticated Ciphers 17

results are based on [45], and [43, 42], respectively. All FPGA areas in LUTs are
synthesized results on the Artix-7 FPGA. A HOKSTER core implemented at
50 MHz frequency with no ISEs, including 512 bytes of Program RAM and 128
bytes of Data RAM, uses 803 LUTs; The HOKSTER core as implemented in
this project with 4 ISEs requires 1130 LUTs (results are shown in parenthesis).
A HOKSTER core with these 4 ISEs capable of 105 MHz, implemented using
[20], required 1323 LUTs. Microblaze and VexRiscv do not include memory or
instruction extensions in the listed results.

Table 3: Soft Core Processor Comparisons. “GP” is general purpose; “ISE” is
instruction set extension; “FSL” is Fast Simplex Link.
Field HOKSTER Microblaze (Default) RISC-V (VexRiscv)

LUTs 803(1130) 1190 556
Max Frequency (MHz) 105 174 240
Architecture Harvard Harvard Harvard
Bus Size 8-bit 32-bit 32-bit
GP Registers 16 32 31
Co-processors ISE FSL Accelerators ISE; Core extension
Interrupt Support Yes Yes Yes
Mem. Mapped Devices Allowed AXI DMA Allowed

Memory
0-4kB Program
0-64kB Data

0-4GB Data
0-4GB Program
0-64kB Data Cache
0-64kB Instruction Cache

0-4GB Data
0-4GB Program
Variable Data +
Instruction Caches

ISA Instruction Count 38(42) 79
47 Base,
>115 with extensions

4.3 SW Implementations of Block Ciphers

Results of block cipher implementations are shown in Table 4. Cipher implemen-
tations are shown without, and with ISEs (indicated by ∗). Program and Data
RAM bytes are shown; Data RAM includes any stack usage. Latency (cycles)
is encryption time for 1 128-bit block, and cpb is cycles per byte. Speed Up
(Spd. Up) is latency improvement using ISE. ISE area (LUTs) is the synthesized
area of additional HW components in the Artix-7 FPGA. Latency-to-area (L/A)
ratio is shown, where area is basic core area (Table 3), along with change in L/A
ratio L/A’ (denoting (L/A)/(L/A)∗), where area is (basic core + ISE) area. “NE”
indicates that this combination was not evaluated.

Based on these results, we provide the following points of analysis:

Bitwise Permutations Bitwise permutations in GIFT, PRESENT, and other
block ciphers are known to be easy in HW but challenging in SW [2]. This is
why Feistel structures often have advantages in SW, as they are able to conduct

18 B. Rezvani et al.

Table 4: SW Implementations.
Cipher Program Data Latency cpb Spd. Up ISE Area L/A L/A’
∗=ISE Bytes Bytes Cycles LUT Ratio

AES NE - - - - - - -
AES* 363 64 14332 896 - 98 15.90 -

CHAM 396 64 25832 1615 - - 32.17 -
CHAM* 320 64 20312 1270 1.27 86 22.85 0.71

GIFT 448 128 156884 9805 - - 195.37 -
GIFT* 355 128 59564 3722 2.63 140 63.16 0.32

wholesale permutations on fields of 8, 16, 32, or 64 bits, sometimes at the cost of
more rounds. In our non-ISE GIFT implementations, permutations account for
81200 cycles out of 156884, or 52% of total cycles. In contrast, computation of
32 4-bit S-Boxes requires only 21160 cycles (13% of total). However, since we are
required to load all 128 bits into an ISE “permutator,” we can easily perform
all S-Box conversions at only the cost of LUT area for S-Boxes. Therefore, we
implement a single substitution + permutation ISE gsp. Since a substitution
+ permutation sequence requires 47 clock cycles per round, 102360 cycles are
reduced to 1880 in the ISE version, for a transactional speed up of 54× (with
overall block encryption speed up of 2.6×). The speed up comes at a 17% increase
in processor area, but reduces the L/A ratio by 68%. Further improvements in
GIFT and permutation-based ciphers can be realized using innovative bitsliced
implementations e.g., [2], and the impending adoption of bit manipulation ISEs
and peripherals for open-source architectures, e.g., [44].

Light processor-friendly rotations Our CHAM results back up claims in [27,
37] of CHAM’s efficiency in software. In particular, CHAM uses only 1-bit and
8-bit left rotations. The 8-bit rotation can be implemented in a series of byte
swaps in 8- or 16-bit processors; the 1-bit rotations are more complex, and are
implemented as a series of shifts and concatenations across 4 consecutive bytes
with wrap-around. We provide an ISE for rotations on a 32-bit field called swd,
which solves any rotations in a 32-bit Feistel branch. However, we note a speed
up of only 1.3× using this ISE. This speed up comes with an 11% increase in
processor area, which reduces L/A ratio by 29%. If we are resource-limited for
ISEs, we should first choose a generalized bitwise permutator (e.g., for GIFT)
before fixed short-distance rotators used in CHAM.

Key scheduling Another CHAM efficiency claim in [27] is “stateless-on-the-
fly” key scheduling. Since our block ciphers all include organic on-the-fly key
scheduling, the total key scheduling overhead significantly impacts performance.
CHAM key scheduling, for example, incurs a one-time cost of 687 clock cycles
per block encryption (with the same key), while GIFT requires 236 cycles per
round (9204 cycles total), and AES requires 648 per round (6480 total). CHAM

Efficient Simultaneous Deployment of Multiple LW Authenticated Ciphers 19

key scheduling uses only 7.4% of the cycles of GIFT key scheduling; this leads to
a significant performance improvement.

Auto post-increment indexing Although the HOKSTER architecture con-
tains nearly only essential instructions for an orthogonal ISA, it includes auto
post-increment loads and stores (lpb and spb, respectively), which load/store a
byte from/to memory, and then increment the register holding the address (index).
We note that without the use of l/spb, CHAM∗ takes 5520 clock cycles (or 20%)
longer, than with the auto post-increment, while added core HW complexity is
only negligibly increased.

5 Conclusions

In this work we expanded the applicability of the Development Package for Ap-
plications Programming Interface for Hardware Implementations of Lightweight
Cryptography (DP API HW LWC), from its base-case of one cryptographic
implementation, to a construct allowing simultaneous deployments of multiple
algorithms. We demonstrated a modification of CryptoCore to include a common
datapath and control segment for the authenticated encryption layers of 3 NIST
LWC Standardization Process Round 2 candidates COMET-AES, COMET-
CHAM and GIFT-COFB, and a processor core running AES, CHAM, or GIFT
block ciphers. For the core, we designed, tested, and installed a custom 8-bit soft
core processor, although substitutions with other popular cores is possible. The
core implementations consisted of tailored software for AES, CHAM, and GIFT,
and selected instruction set extensions (ISE) shown to improve performance for a
modest cost in additional resources. We showed that our simultaneous deployment
of multiple ciphers consumed only 55% of the combined FPGA resources of sepa-
rate individual cipher implementations using identical benchmarking frameworks.
This work has demonstrated a model in which legacy and emerging cryptographic
standards can be simultaneously deployed, during a lengthy standards transition
period, at reduced cost. Additionally, this research opens the door to a sound
benchmarking methodology to compare hybrid hardware and software cipher
implementations to pure hardware implementations, or for comparing various
groups and combinations of ciphers to determine their ability to efficiently share
resources.

Acknowledgement

This research was supported by National Institute of Standards and Technology
(NIST) Award 70NANB18H219 for Lightweight Cryptography in Hardware and
Embedded Systems.

20 B. Rezvani et al.

References

1. Aagaard, M.D., Sattarov, M., Zidaric, N.: Hardware Design and Analysis of the
ACE and WAGE Ciphers. arXiv:1909.12338 [cs] (Jan 2020), http://arxiv.org/
abs/1909.12338, arXiv: 1909.12338

2. Adomnicai, A., Najm, Z., Peyrin, T.: Fixslicing: A New GIFT Representation.
Cryptology ePrint Archive, Report 2020/412 (2020), https://eprint.iacr.org/
2020/412

3. Alagic, G., Alperin-Sheriff, J., Apon, D., Cooper, D., Dang, Q., Miller, C., Moody,
D., Peralta, R., Perlner, R., Robinson, A., Smith-Tone, D., Liu, Y.: Status Report
on the First Round of the NIST Post-Quantum Cryptography Standardization
Process. Tech. rep. (2019)

4. Alkim, E., Avanzi, R., Bos, J., Ducas, L., de la Piedra, A., Pöppelmann, T., Schwabe,
P., Stebila, D., Albrecht, M., Orsini, E., Osheter, V., Paterson, K., Peer, G., Smart,
N.: NewHope Algorithm Specifications and Supporting Documentation Version
1.03 (Jul 2019), https://newhopecrypto.org/data/NewHope_2019_07_10.pdf

5. Banik, S., Bogdanov, A., Peyrin, T., Sasaki, Y., Sim, S.M., Tischhauser, E., Todo, Y.:
SUNDAE-GIFT: An Authenticated Cipher Submission to the NIST LWC Competi-
tion (Mar 2019), https://csrc.nist.gov/Projects/Lightweight-Cryptography/
Round-2-Candidates

6. Banik, S., Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M., Peyrin, T.,
Sasaki, Y., Sim, S.M., Todo, Y.: GIFT-COFB: An Authenticated Cipher Submission
to the NIST LWC Competition (Mar 2019), https://csrc.nist.gov/Projects/
lightweight-cryptography/Round-2-candidates

7. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A Small
Present - Towards Reaching the Limit of Lightweight Encryption. In: International
Conference on Cryptographic Hardware and Embedded Systems (CHES). pp. 321–
345 (Sep 2017)

8. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: Si-
mon and Speck: Block Ciphers for the Internet of Things (July 2015), https://csrc.
nist.gov/csrc/media/events/lightweight-cryptography-workshop-2015/

documents/papers/session1-shors-paper.pdf

9. Beckwith, L., Bozzay, M., Conroy, T., Diehl, W., Laffoon, T., McFeeters, D.,
Rezvani, B., Shi, Y., Vu, M.: HOKSTER Custom Microprocessor (2020), https:
//github.com/willja001/hokster

10. Bhattacharjee, A., List, E., López, C.M., Nandi, M.: The Oribatida Family of
Lightweight Authenticated Encryption Schemes (Mar 2019), https://csrc.nist.
gov/Projects/Lightweight-Cryptography/Round-2-Candidates

11. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) Cryptographic Hardware and Embedded
Systems - CHES 2007. pp. 450–466. Springer Berlin Heidelberg, Berlin, Heidelberg
(2007)

12. Braithwaite, M.: Experimenting with Post-Quantum Cryptog-
raphy (Jul 2016), https://security.googleblog.com/2016/07/

experimenting-with-post-quantum.html

13. Chakraborti, A., Datta, N., Jha, A., Lopez, C.M., Nandi, M., Sasaki, Y.: ESTATE:
Hardware Benchmarking and Security Analysis (Nov 2019), https://csrc.nist.
gov/Events/2019/lightweight-cryptography-workshop-2019

Efficient Simultaneous Deployment of Multiple LW Authenticated Ciphers 21

14. Chakraborti, A., Datta, N., Jha, A., Lopez, C.M., Nandi, M., Sasaki, Y.: LOTUS
and LOCUS AEAD: Hardware Benchmarking and Security (Nov 2019), https:
//csrc.nist.gov/Events/2019/lightweight-cryptography-workshop-2019

15. Chakraborti, A., Datta, N., Jha, A., Lopez, C.M., Nandi, M., Sasaki, Y.: ESTATE
(Mar 2019), https://csrc.nist.gov/Projects/Lightweight-Cryptography/

Round-2-Candidates

16. Chen, L., Jordan, S., Liu, Y., Moody, D., Peralta, R., Perlner, R., Smith-Tone, D.:
Report on Post-Quantum Cryptography. Tech. rep., National Institute of Standards
and Technology (2016)

17. Cobham Gaisler Research: LEON-3 Processor (2018), https://www.gaisler.com/
index.php/products/processors/leon3

18. Diehl, W., Abdulgadir, A., Kaps, J., Gaj, K.: Side-channel resistant soft core
processor for lightweight block ciphers. In: 2017 International Conference on Re-
ConFigurable Computing and FPGAs (ReConFig). pp. 1–8 (2017)

19. Diehl, W., Farahmand, F., Yalla, P., Kaps, J., Gaj, K.: Comparison of hardware
and software implementations of selected lightweight block ciphers. In: 2017 27th
International Conference on Field Programmable Logic and Applications (FPL).
pp. 1–4 (2017)

20. Farahmand, F., Ferozpuri, A., Diehl, W., Gaj, K.: Minerva (Dec 2017), https:
//cryptography.gmu.edu/athena/index.php?id=Minerva

21. Fritzmann, T., Sigl, G., Sepúlveda, J.: RISQ-V: Tightly Coupled RISC-V Accelera-
tors for Post-Quantum Cryptography. Cryptology ePrint Archive, Report 2020/446
(2020), https://eprint.iacr.org/2020/446

22. Gao, S., Marshall, B., Page, D., Pham, T.: FENL: an ISE to mitigate
analogue micro-architectural leakage. IACR Transactions on Cryptographic
Hardware and Embedded Systems (TCHES) 2020(2), 73—-98 (3 2020).
https://doi.org/https://doi.org/10.13154/tches.v2020.i2.73-98

23. Gross, H., Wenger, E., Dobraunig, C., Ehrenhöfer, C.: Ascon hardware implemen-
tations and side-channel evaluation. Microprocessors and Microsystems 52, 470–
479 (Jul 2017). https://doi.org/10.1016/j.micpro.2016.10.006, https://linkinghub.
elsevier.com/retrieve/pii/S0141933116302721

24. Gueron, S., Jha, A., Nandi, M.: COMET: COunter Mode Encryption with
authentication Tag. Tech. rep. (Nov 2019), https://csrc.nist.gov/Projects/

lightweight-cryptography/round-2-candidates

25. Kaps, J.P., Diehl, W., Tempelmeier, M., Homsirikamol, E., Gaj, K.: Hardware API
for Lightweight Cryptography. Tech. rep. (Oct 2019), https://cryptography.gmu.
edu/athena/index.php?id=LWC

26. Kiaei, P., Mercadier, D., Dagand, P.E., Heydemann, K., Schaumont, P.: Custom
Instruction Support for Modular Defense against Side-channel and Fault Attacks.
Cryptology ePrint Archive, Report 2020/466 (2020), https://eprint.iacr.org/
2020/466

27. Koo, B., Roh, D., Kim, H., Jung, Y., Lee, D.G., Kwon, D.: CHAM: A Family of
Lightweight Block Ciphers for Resource-Constrained Devices. In: Kim, H., Kim,
D.C. (eds.) Information Security and Cryptology – ICISC 2017, vol. 10779, pp.
3–25. Springer International Publishing, Cham (2018)

28. Marshall, B., Page, D., Pham, T.: XCrypto: a cryptographic ISE for RISC-V (2019),
https://github.com/scarv/xcrypto

29. Naito, Y., Matsui, M., Sakai, Y., Suzuki, D., Sakiyama, K., Sugawara, T.: SAEAES
(Feb 2019), https://csrc.nist.gov/Projects/Lightweight-Cryptography/

Round-2-Candidates

22 B. Rezvani et al.

30. National Institute for Standards and Technology: Submission Requirements and
Evaluation Criteria for the Lightweight Cryptography Standardization Process. Tech.
rep. (Aug 2018), https://csrc.nist.gov/projects/lightweight-cryptography

31. Renner, S., Pozzobon, E., Mottok, J.: Benchmarking Software Implementations of
1st Round Candidates of the NIST LWC Project on MCUs. Tech. rep., Laboratory
for Safe and Secure Systems, OTH Regensburg (2019)

32. Rezvani, B., Coleman, F., Sachin, S., Diehl, W.: Hardware Implementations of
NIST Lightweight Cryptographic Candidates: A First Look p. 26 (Feb 2020),
https://eprint.iacr.org/2019/824/20190716:135314

33. Rogaway, P.: Authenticated-encryption with associated-data. p. 98 (01 2002).
https://doi.org/10.1145/586123.586125

34. Saarinen, M.J.O.: Exploring NIST LWC/PQC Synergy with R5Sneik: How SNEIK
1.1 Algorithms were Designed to Support Round5. Cryptology ePrint Archive,
Report 2019/685 (2019), https://eprint.iacr.org/2019/685

35. Saarinen, M.J.O.: SNEIK on Microcontrollers: AVR, ARMv7-M, and RISC-V
with Custom Instructions. Cryptology ePrint Archive, Report 2019/936 (2019),
https://eprint.iacr.org/2019/936

36. dos Santos, L.C., Großschädl, J., Biryukov, A.: FELICS-AEAD: Benchmarking
of Lightweight Authenticated Encryption Algorithms. Tech. rep., University of
Luxembourg – CryptoLux (2020)

37. Seok, B., Lee, C.: Fast implementations of ARX-based lightweight block ciphers
(SPARX, CHAM) on 32-bit processor. International Journal of Distributed Sensor
Networks 15(9), 10 (Sep 2019). https://doi.org/10.1177/1550147719874180

38. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring.
In: Proceedings 35th Annual Symposium on Foundations of Computer Science. pp.
124–134 (1994)

39. Stoffelen, K.: Efficient Cryptography on the RISC-V Architecture. In: Schwabe, P.,
Thériault, N. (eds.) Progress in Cryptology – LATINCRYPT 2019. pp. 323–340.
Springer International Publishing, Cham (2019)

40. Tempelmeier, M., Farahmand, F., Homsirikamol, E., Diehl, W., Kaps, J.P., Gaj, K.:
Implementer’s Guide to Hardware Implementations Compliant with the Hardware
API for Lightweight Cryptography (Nov 2019), https://cryptography.gmu.edu/
athena/index.php?id=LWC

41. U.S. Commerce Department: Announcing the Advanced Encryption Standard
(AES). Tech. rep., National Bureau of Standards (2001)

42. Verbeure, T.: SpinalHDL/VexRiscv (2018), https://github.com/SpinalHDL/

VexRiscv#area-usage-and-maximal-frequency

43. Waterman, A., Asanovic, K.: The RISC-V Instruction Set Manual Volume I:
User-Level ISA (2017), https://content.riscv.org/wp-content/uploads/2017/
05/riscv-spec-v2.2.pdf

44. Wolf, C.: RISC-V Bitmanip Extension (2020), https://github.com/riscv/

riscv-bitmanip

45. Xilinx: Microblaze Processor Reference Guide (2008), https://www.xilinx.com/
support/documentation/sw_manuals/mb_ref_guide.pdf

