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Abstract. Search for the right pairs of inputs in difference-based distinguishers is an
important task for the experimental verification of the distinguishers in symmetric-key
ciphers. In this paper, we develop an MILP-based approach to verify the possibility
of difference-based distinguishers and extract the right pairs. We apply the proposed
method to some presented difference-based trails (Related-Key Differentials (RKD),
Rotational-XOR (RX)) of block ciphers SIMECK, and SPECK. As a result, we show
that some of the reported RX-trails of SIMECK and SPECK are incompatible, i.e. there
are no right pairs that follow the expected propagation of the differences for the
trail. Also, for compatible trails, the proposed approach can efficiently speed up
the search process of finding the exact value of a weak-key from the target weak-
key space. For example, in one of the reported 14-round RX trails of SPECK, the
probability of a key pair to be a weak-key is 2−94.91 when the whole key space is
296; our method can find a key pair for it in a comparatively short time. It is worth
noting that it was impossible to find this key pair using a traditional search. As
another result, we apply the proposed method to SPECK block cipher, to construct
longer related-key differential trails of SPECK which we could reach 15, 16, 17, and 19
rounds for SPECK32/64, SPECK48/96, SPECK64/128, and SPECK128/256, respectively.
It should be compared with the best previous results which are 12, 15, 15, and 20
rounds, respectively, that both attacks work for a certain weak key class. It should
be also considered as an improvement over the reported result of rotational XOR
cryptanalysis on SPECK.
Keywords: Experimental verification · Differential-based distinguishers · Weak keys ·
Related-key · MILP · SPECK · SIMECK

1 Introduction
Mixed Integer Linear Programming (MILP) was introduced in [49, 38] to evaluate the
security of a block cipher against differential and linear cryptanalysis. Mouha et al. [38]
used MILP method to minimize the number of active S-boxes in a differential or linear
trail. Later, Sun et al. in [47, 46] extended Mouha et al.’s work from byte-oriented ciphers
to bit-oriented ciphers. Recently, MILP has been widely used for the cryptanalysis of block
ciphers so that [17, 13, 42, 40, 39, 53] can be mentioned as some examples among others.
Other automatic tools for the cryptanalysis of block ciphers are constraint programming
see [19, 45, 18], SAT/SMT/CryptoSMT see [12, 35, 29, 21].
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ARX-based ciphers are designed using only modular Addition, Rotation, and XOR. In
particular, the only source of non-linearity in an ARX scheme is the modular addition.
Algorithms built in this fashion are usually faster and smaller than S-Box-based algorithms
in software, and have some inherent security against side-channel attacks as modular
addition leaks less information than table look-ups. However, modular addition is not
very attractive in designing hardware optimized algorithms due to its latency and “large”
input and output size. Some examples of ARX ciphers are: the block ciphers SPECK [5],
HIGHT [23], LEA [22], the stream cipher SALSA20 [6], and the SHA-3 finalists SKEIN [16]
and BLAKE [4]. SPECK is a family of lightweight block ciphers that uses an ARX structure
that was publicly released by the National Security Agency (NSA) in 2013 [5]. SPECK has
been optimized for performance in software implementations. SPECK is evaluated by many
cryptanalysis techniques [11, 2, 10, 14, 43, 17, 52, 34, 24].

The probability of difference trails (in differential [8] or rotational XOR [3] cryptanalysis)
is usually built by multiplying the probabilities of each non-linear operation, but this
approach can lead to very misleading results in some ciphers. For example, in some
ARX-based ciphers, the independence assumption does not hold since it is possible for
an output of modular addition to be directly given as input to another modular addition.
Therefore, in such cases, the probabilities of modular additions cannot be computed as
the product of probabilities of the individual modular additions. It is important to note
that in the case of ARX ciphers such differences were already described for some attacks.
For example, Knudsen et al. in [28], treated this issue for the differential attack on RC2
block cipher. As another example, the authors of [26], investigated this issue for the
rotational cryptanalysis on ARX structures. Several recent works have found trails that
were incompatible when analyzing ARX hash functions [48, 37, 9, 31, 41, 30] and many
others. Also, Elsheikh et al. in [15] recently studied this issue and proposed an MILP
model to describe the differential propagation through the modular addition considering
the dependency between the consecutive modular additions and utilized their approach to
automate the search process for the differential trails for Bel-T cipher.

Recently, Liu et al. presented an MILP model for the automatic verification of
differential characteristics in permutation-based primitives [33]. Their main idea is modeling
the difference transitions and value transitions simultaneously for permutation-based
primitives and then connecting the value transitions and difference transitions for non-
linear operations used in primitives. They successfully applied their approach to reduced
Gimli hash function [7]. To this end, in a part of their work, they described how they
connected the value and difference transitions of AND and OR operations (the only non-
linear operations used in Gimli). However, they did not explain how one can connect the
value and difference transitions simultaneously for the other non-linear operations. Hence,
our work has some advantages over [33]. In fact, our approach in this paper can be applied
easily to any cipher structure with usual non-linear operations such as AND, OR, Addition
modulo 2n, S-boxes layers, and others. Also, as will be explained later, our approach can
be efficiently used to verify the differential, related-key differential, and rotational XOR
trails of ciphers.

In this paper, for the first time, to the best of our knowledge, we present an MILP-based
approach to experimentally verify whether a difference-based distinguisher includes any
right pair. As for the applications, we apply our approach to the obtained difference trails
of SIMECK and SPECK family of block ciphers. Also, the designers of SPECK family claim
that SPECK is designed to have resistance against related-key attacks. Part of this paper,
focuses on the automatic related-key differential cryptanalysis of a reduced SPECK block
cipher to find distinguishers covering more rounds than those found previously. Moreover,
the SPECK family of block ciphers is standardized by ISO in the RFID area of Sc31. Hence,
analysis from various aspects is important.
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1.1 Our Contribution
Our contribution in this paper is as follows:

• To the best of our knowledge, for the first time we applied the MILP approach
to identify incompatible difference trails of block ciphers. Moreover, we applied
the MILP approach to efficiently speed up the search process of finding the exact
value of a weak key from the target weak key space. As the applications, we apply
our approach to verify the presented Rotational XOR (RX) trails of SPECK and
SIMECK family of block ciphers based on papers [34] and [36], respectively.

• We find some weak-keys for 15 and 20-round RX-trails of SIMECK32/64, according
to the tables 4 and 6 of [36]. Also, our approach return this fact that the RX-trails
for 27 and 35 rounds of SIMECK48/96, and SIMECK64/128, based on tables 7 and 8,
respectively in [36], are incompatible.

• Our approach can find the weak keys for 12, 13, and 15-round RX-trail of SPECK48/96
based on tables 3 and 4 in [34]. Moreover, our approach shows that RX-trails for 11
and 12 rounds of SPECK32/64, and 14 rounds of SPECK48/96, according to tables 2
and 4 in [34], are incompatible trails.

• In addition, we explain how we can search compatible difference trails in block ciphers
and apply it to search related-key differential trails of some variants of SPECK family.
As a result, we present a search strategy for the searching of related-key differential
trails of SPECK family. We also present several distinguishers for the reduced version
of SPECK32/64, SPECK48/96, SPECK64/128, and SPECK128/256, in related key mode.
We consider our result for related-key differential as an improvement over Liu et
al.’s work [34], but from differential view. For SPECK32/64, the longest distinguisher
proposed in this paper covers 15 rounds of the cipher while the best previous related
work, i.e., rotational-XOR difference trail, covers only 12-round [34] (of course we
show that this 12 rounds is an invalid trail). In total, for this version of SPECK,
we present distinguishers for 10 to 15 rounds which work for a certain weak key
class. It is worth noting that the proposed distinguishers for 13 to 15 rounds are the
new distinguishers for these rounds of SPECK32/64. For SPECK48/96, our longest
distinguishers cover 16 rounds, while the best previous related work covers 15 rounds
[34] and both work for a certain weak key class. We present the distinguishers for 13
to 17 rounds of SPECK64/128 so that the distinguishers for 16 and 17 rounds are the
new distinguishers for these rounds of SPECK64/128, for a certain weak key class.
Also, we present the distinguishers for 16 and 19 rounds of SPECK128/256.

• Moreover, for every obtained related-key differentials of SPECK family, we use our
MILP-based approach to test whether the key differential trails are valid. For each
one, we report a weak key to verify it. Based on our experimental verification, our
results are consistent with the theoretical predictions.

In this paper, the computations are performed on PC (Intel Core (TM)i-5, CPU 3.50 GHz,
8 Gig RAM, Windows 10 x64) and also on a server (36 Core, Intel(R) Xeon(R) CPU
E5-2695, 2.10GHz) with the optimizer Gurobi [20].

1.2 Outline
The remainder of this paper is organized as follows. Section 2 provides the required
preliminaries, including a brief description of SPECK and SIMECK block ciphers and as well
as Rotational XOR cryptanalysis. In Section 3, our MILP-based method in searching for
the right pairs of difference-based trails is presented. In Section 4, some applications of
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our approach are given. We explain how we can search compatible difference trails in
block ciphers and apply it to search related-key differential trails of some variants of SPECK
family. Finally, the paper is concluded in Section 6.

2 Preliminaries
2.1 Notations
In this paper, we denote an n-bit vector by x = (xn−1, · · · , x1, x0), where x0 is the least
significant bit. Also, the logical operation XOR, left circular rotation, right circular
rotation, the concatenation of x and y, the modular addition of bit string x and y, and
the bit-wise AND are referred to as ⊕,≪,≫, x‖y, x� y, and &, respectively. Also, all
input/output differentials (or values) are hexadecimal form and we omit the 0x symbol.

2.2 A brief description of SPECK

SPECK is a family of lightweight block ciphers designed by NSA in 2013 [5]. Generally,
SPECKb/mn will denote SPECK with b = 2n bit block size (n ∈ {16, 24, 32, 48, 64}) and mn
bits key size (m ∈ {2, 3, 4}). The round function F : Fn2 × F2n

2 → F2n
2 of SPECK takes as

input a n bit sub-key ki−1 and a cipher state consisting of two n bit words (xi−1, yi−1)
and produces the next round state (xi, yi) as follows:

xi :=
(
(xi−1 ≫ α)� yi−1)⊕ ki−1, yi :=

(
yi−1 ≪ β

)
⊕ xi

The value of rotation constant α and β are specified as: α = 7, β = 2 for SPECK32/64
and α = 8, β = 3 for all other variants. The SPECK key schedules algorithm uses
the same round function to generate the round keys. Let K = (lm−2, · · · , l0, k0) be a
master key for SPECK2n/mn where li, k0 ∈ F2n . The round keys ki+1 is generated as
ki = ((li−1 ≫ α) � ki) ⊕ c ⊕ (ki−1 ≪ β) for li+m−2 = ((li−1 ≫ α) � ki−1) ⊕ c, with
c = i− 1 the round number starting from 1.

A single round of SPECK with m = 4 is depicted in Figure 1a.

>>>

<<<




<<<





1ik −

1il +

il

1il −

>>>

ix
iy

1ix − 1iy −

1i −

(a) One round of SPECK (for m = 4)

<<< 5

&

<<< 1 <<< 5
&

<<< 1

1ix − 1iy −

ik
1ik +

2ik +

3ik +

4ik +ix
iy

CC
i

C
i

(b) One round of SIMECK

Figure 1: Illustration of the SPECK and SIMECK ciphers

In this paper, we consider those members of SPECK family for which the parameter of
m is 4, i.e., SPECK32/64, SPECK48/96, SPECK64/128, and SPECK128/256 that respectively
include 22, 23, 27, and 34 rounds, to produce a ciphertext from a plaintext.

2.3 A short description of SIMECK

SIMECK is a family of block ciphers that was proposed at CHES 2015 [51]. For n = 16, 24,
and 32, SIMECKb/k has a block size of b = 2n and a key size of k = 2b. It is a classical Feistel
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network shown in Figure 1b where the function F is defined as F (xi−1) = xi−1&(xi−1 ≪ 5).
In the key schedule of SIMECK, the round keys Ki (i = 0, · · · , r) are generated from a
given master key (K3,K2,K1,K0) with the help of the feedback shift registers as follows:

Ki+4 = Ki ⊕ fci(Ki+1)⊕ ci, i = 0, 1, · · · , r − 4, (1)

where r for SIMECK32/64, SIMECK48/96, and SIMECK64/128 is 32, 36, and 44, respectively.
Also, ci ∈ {1n−201, 1n−200} is predefined constants (1n−2 is a sequence of n− 2 bit 1) and
f ic is the SIMECK round function with ci acting as the round key.

2.4 Rotational XOR(RX) cryptanalysis
Rotational cryptanalysis is a generic attack targeting ARX structures [25, 27]. RX-
cryptanalysis is a recent technique as a related-key chosen plaintext attack to ARX
structures proposed by Ashur and Liu in 2016 [3]. This attack was applied to the block
cipher SPECK [34], SIMECK [36] and the hash function SipHash [50]. An RX-pair is defined
as a rotational pair with rotational offset γ under translation a as (x, (x≪ γ)⊕ a).

Definition 1. (RX-difference [3]) The RX-difference of x and x′ = (x≪ γ)⊕ a with
rotational offset γ, and translation a is denoted by

∆γ(x, x
′
) = (x≪ γ)⊕ x

′
.

Furthermore, we will argue that RX difference of a pair (x, x′) is ∆γ(x, x′) if (x≪
γ)⊕ x′ = ∆γ(x, x′). It is clear that the rotation of an RX pair is an RX pair, the XOR
of two RX pairs is also an RX pair, and that the XOR with a constant c with RX-pair
(x, (x≪ γ) ⊕ a) is the RX-pair (x ⊕ c, (x≪ γ) ⊕ a ⊕ c) with the corresponding RX-
difference ∆γc = c⊕(c≪ γ). For modular addition, in ([3], theorem 1) the authors showed
how one can calculate the transition probability of RX pair through modular addition. In
addition, the authors of [36] extended the idea of RX-cryptanalysis to AND-RX ciphers
with applications to SIMON and SIMECK. We assume that γ = 1 throughout this paper.

3 MILP-based method to identify incompatible difference
trails

In this section, we explore a simple approach based on the MILP method to verify whether
the difference trails are compatible. Also, it must be noted that our method in this section
can be very useful in most cases to find weak keys in related key scenarios.

3.1 Our approach
To experimentally verify whether an RX or differential distinguisher includes any right pair,
a common way is to use a simple method of guessing the keys and check the differences
of the states. However, it is often infeasible becaues of the size of the cipher space and
the probability of the distinguisher. In this section, we model an MILP-based method to
detremine whether there exist right pairs for the difference trails. To this end, suppose f is
a function with variables x1, x2, · · ·xnv . In our approach, we built some linear inequalities
to ensure that the following conditions are exactly established and added them to the
MILP model.

f(x1, x2, . . . , xnv
) = y , f(x

′

1, x
′

2, . . . , x
′

nv
) = y

′
,

∆(x1, x
′

1) = X1, ∆(x2, x
′

2) = X2, . . . ,∆(xnv
, x
′

nv
) = Xnv

,

∆(y, y
′
) = Y,
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where the difference ∆(a, b) is defined as a⊕ b and ∆1(a, b) in case of differential and RX
trails, respectively. In this paper, the function f is considered as the encryption function
or key expansion function of a block cipher. It is obvious that for a given difference trail
of a cipher, if its MILP model, as shown above is infeasible then the trail will be an
incompatible trail; otherwise, the model returns the right pairs.

Each cipher is designed by combining several operations. The most important operations
used in cryptographic algorithms are AND, modular addition, rotation, XOR operations.
In the following section, we show that there is a set of linear inequalities which can exactly
describe all valid values of these operators in the MILP model.

3.1.1 Modeling the XOR operation

For every XOR operation, with bit-level input values x1, x2, and bit-level output value y,
the constraints are as follows1:{

x1 + x2 + y ≤ 2, x1 + x2 − y ≥ 0,
x1 + y − x2 ≥ 0, x2 + y − x1 ≥ 0. (2)

3.1.2 Modeling the modular addition

In the following section, we present the basic definition of modular addition that will be
used to model the modular addition.

Definition 2. (Addition modulo 2n [32]) The carry, carry(x, y) := c ∈ {0, 1}n, x, y ∈
{0, 1}n, of addition x + y is defined recursively as follows. First, c0 := 0. Second,
ci+1 := (xi∧yi)⊕(xi∧ci)⊕(yi∧ci), for every i ≥ 0. Equivalently, ci+1 = 1⇔ xi+yi+ci ≥ 2.

Property 1. ([32]) If (x, y) ∈ {0, 1}n × {0, 1}n, then x+ y = x⊕ y ⊕ carry(x, y).

Based on Definition 2 and Property 1, to model the addition modulo (z = x+ y) in
the MILP model, we must consider the linear inequalities whose solution set is exactly
satisfied in the following conditions.

1. c0 = 0.
2. ci+1 = 1⇔ xi + yi + ci ≥ 2, for i = 0, · · · , n− 2. (3)
3. zi = xi ⊕ yi ⊕ ci, for i = 0, · · · , n− 1.

Therefore, it is enough to describe these conditions of (3) as linear inequalities. The
first condition is obvious. To model the second condition, we can consider the vector
(xi, yi, ci, ci+1) as follows.

(xi, yi, ci, ci+1) ∈
{

(0, 0, 0, 0) (0, 0, 1, 0) (0, 1, 0, 0) (0, 1, 1, 1)
(1, 0, 0, 0) (1, 0, 1, 1) (1, 1, 0, 1) (1, 1, 1, 1)

}
.

Therefore, we consider the equations which prohibit the invalid (xi, yi, ci, ci+1). Hence, for
i = 0, · · · , n− 2, we have{

xi + yi − ci+1 ≥ 0, xi + ci − ci+1 ≥ 0, yi + ci − ci+1 ≥ 0,
yi + ci − ci+1 ≤ 1, xi + ci − ci+1 ≤ 1, xi + yi − ci+1 ≤ 1,

To model the third condition, we can consider the following equations.

xi + yi + zi + ci − 2di = 0, di = 0 or 1 or 2, i = 0, · · · , n− 1.

Therefore, with these inequalities, we can model the exact values of addition modulo
operation to the MILP.

1XOR operation is a linear operations and can be modeled similar to the differential behavior of XOR
based on [1].
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3.1.3 Modeling the AND operation

For every AND operation with bit-level input values x1, x2. and bit-level output value y,
the constraints are as follows:

x1 − y > 0, x2 − y > 0, x1 + x2 − y 6 1.

4 Applications
In this section, we apply our method to verify RX trails for SPECK and SIMECK presented
in [34] and [36], respectively.

4.1 Verifying the previous reported RX trails on SIMECK

The authors of [36] analyzed the propagation of RX-differences through AND-RX rounds
and developed a formula for their expected probability. Also, they formulated an SMT
model for searching RX-trails in SIMON and SIMECK. They found RX-distinguishers up to
20, 27, and 35 rounds with respective probabilities of 2−26,2−42, and 2−54 for SIMECK32/64,
SIMECK48/94, and SIMECK64/128, for a weak-key class of size 230, 244 and 256 respectively.
In most cases, these are the longest published distinguishers for the respective variants
of SIMECK. The authours of [36] only presented the details of a 15 and 20-round RX
trail in SIMECK32/64, a 27-round RX trail in SIMECK48/96, and a 35-round RX trail in
SIMECK64/128 (see [36], tables 4, 6, 7, and 8, respectively). Here we inted to find the right
key pairs that satisfy the required RX-difference of the sub-keys in tables mentioned in
[36].

The SIMECK key schedule algorithm is designed by combining AND, bit rotation, and
XOR operations. Hence, we can model the SIMECK key schedule with the method described
in section 3 and then fix the RX-difference in sub-keys based on the mentioned RX trails.
Our model returned the following result:

• For 15 and 20-round RX trails of SIMECK32/64 ([36], tables 4, 6), our method found
some weak keys (see Table 1).

Table 1: Some master key values to satisfy the RX-differences in 15 and 20-round of
SIMECK32/64 based on tables 4 and 6 in [36].

(∆1k3, ∆1k2, ∆1k1, ∆1k0) = (0001, 0004, 0008, 0014)
(k3, k2, k1, k0) (k

′3, k
′2, k

′1, k
′0)

15-round

(0166, DB05, 5662, C5B3) (02CD, B60F, ACCC, 8B73)
(82EF, D0A1, 454C, 1625) (05DE, A147, 8A90, 2C5E)
(B1C3, BB1F, 1443, D4E2) (6386, 763B, 288E, A9D1)
(B26B, 9338, 1504, F7BC) (64D6, 2675, 2A00, EF6D)
(916B, D43C, 1C04, E4BC) (22D6, A87D, 3800, C96D)

...
...

(∆1k3, ∆1k2, ∆1k1, ∆1k0) = (0002, 0001, 0000, 0004)

20-round

(5D08, 1D23, FAB7, B1BC) (BA12, 3A47, F56F, 637D)
(5D0C, 1D2B, FBA7, 918E) (BA1A, 3A57, F74F, 2319)
(7D08, 7D23, 1AB7, 31A9) (FA12, FA47, 356E, 6356)
(6D08, 5D23, 7AB7, A1AD) (DA12, BA47, F56E, 435F)
(4D08, 3D23, 9AB7, 21B8) (9A12, 7A47, 356F, 4374)

...
...

• The RX trails in [36] for 27 and 35 rounds of SIMECK48/96 and SIMECK64/128,
respectively, are incompatible.
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In the following lemma, we prove the incompatibility of RX trail related to 27 rounds of
SPECK48/96 in [36].

Lemma 1. There are no right pair to satisfy the RX-difference of the sub-keys of 27
rounds of SIMECK48/96 based on the table 7 in [36].

Proof. To find a contradiction in the RX-difference of sub-keys in this table 7 of [36], we
only consider the rounds 2, 3, and 6 of the trail. These rounds are shown in Figure 2 in
details. The red numbers show the RX-differences. As can be seen in Figure 2, the AND
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Figure 2: Part of the 27-round RXD-trail of sub-keys for SIMECK48/96 based on table 7 in
[36]

operations in rounds 2, 3, and 6 satisfy the conditions of Lemma 1 in [36] and so they
hold with probabilities of 2−2, 2−4, and 2−4, respectively. Assuming independency, the
RX-difference probability of these three rounds should hold with a probability of 2−32;
however, we show that it is an incompatibility RX trail. To this end, let f(x) = x&(x≪ 5)
be the F-function of key schedule of SIMECK. Also, assume that ∆1α and ∆1β respectively
are RX-differences of the input and output of f(x), such that the probability ∆1α to ∆1β
is non-zero. If we consider the input pairs of f(x) as (x, (x≪ 1)⊕∆1α), then there is
the following relation between ∆1α,∆1β, and x:

(f(x)≪ 1)⊕ f(x≪ 1⊕∆1α) = ∆1β.

By considering x as x = (x0, x1, · · · , x23), the j-th bit of ∆1β (i.e., ∆1βj) is determined
as follows.

(xj+1&xj+6)⊕ ((xj+6 ⊕∆1αj+5)&(xj+1 ⊕∆1αj+1) = ∆1βj . (4)

Now, in the second round by considering the sub-key k2 as the input of f(x) and for
j = 17, we have (

k2
18&k2

23
)
⊕
(
(k2

23 ⊕∆1α22)&(k2
18 ⊕∆1α18

)
= ∆1β17,

since in the second round ∆1α = ∆1β = 000002, we have(
k2

18&k2
23
)
⊕
(
(k2

23 ⊕ 1)&k2
18
)

= 0,

and this gives k2
18 = 0. Now, in the third round by considering the sub-key k3 as the input

of f(x), for j = 17, and due to the ∆1α = 000003 and ∆1β = 000001 we have(
k3

18&k3
23
)
⊕
(
(k3

23 ⊕ 1)&(k3
18
)

= 0,
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so we have k3
18 = 0. Also, for j = 18,(

k3
19&k3

0
)
⊕
(
(k3

0 ⊕ 1)&(k3
19
)

= 0,

so this concludes
k3

19 = 0. (5)
In the sixth round, k6 will be the input of f(x) and also ∆1α = ∆1β = 000003, therefore,
by considering j = 17 in (4), we have(

k6
18&k6

23
)
⊕
(
(k6

23 ⊕ 1)&(k6
18
)

= 0,

so we have k6
18 = 0. On the other hand according to the third round, we have

k6
18 =

(
(k3

23&k3
18)⊕ k3

19 ⊕ k2
18 ⊕ c18

)
.

For the third round the constant c = fffffd and so c18 = 1. As was shown above, we
have k2

18 = k3
18 = k6

18 = 0 so the equation above concludes k3
19 = 1. Hence, by considering

the equation 5, we reach a contradiction.

4.2 Verifying the previous reported RX trails on SPECK

In [34], the authors formulated a SAT/SMT model for RX cryptanalysis in the ARX
primitives and applied it to the block cipher family SPECK. They obtained longer distin-
guishers than the ones previously published for the block cipher family SPECK working for a
certain weak-key class. They presented several distinguishers for SPECK32/64, SPECK48/96,
SPECK64/128, SPECK96/144, and SPECK128/256. Note that the authors only presented
the details of several trails and for other trails they only reported the probabilities. Hence,
in this section, we just verified the trails that are presented in detail in [34]. We modeled
the SPECK key schedule with the method described in Section 3 to verify the trails in [34].
Our MILP model returned the following result.

• Our model found the weak-keys for 12, 13, and 15-round RX-difference of SPECK48/96
with respective probabilities of 2−26.75, 2−31.98, and 2−43.81, for a weak-key class of
size 243.51, 224.51, and 21.09, respectively (for more details of these trails refer to tables
3 and 4 in [34]). Note that the authors failed to find such weak-keys. Also, based on
the authors’ claim, for experimental verification of trails they injected key differences
artificially and only tested the probability of the RX characteristics over the cipher
part. The resultant weak-key for these RX trails are listed in Table 2. Note that, [34]
did not report the RX-differences for the master keys (∆1l

2,∆1l
1,∆1l

0). Therefore,
in our MLP model we did not fix the Rx-differences of these master keys and let the
MILP model choose any appropriate differences.

• Our model did not find any weak-keys for the following RX trails:

◦ RX trails for 11 and 12 rounds of SPECK32/64 with respective probabilities of
2−22.15 and 2−25.57, for a weak-key class of size 218.68 and 24.92, respectively
(for more details of these trails refer to table 2 in [34]).
◦ RX trails for 14 rounds of SPECK48/96 with respective probabilities of 2−37.40,

for a weak-key class of size 20.34 (for more details of this trail refer to table 4 in
[34]).

In the following lemma, we prove the incompatibility of RX trail related to 11
rounds of SPECK32/64 in [34]. In fact, the reason for this incompatibility is that the
independence assumption in the key schedule algorithm of SPECK does not hold since
an output of modular addition is given as input to another modular addition. A
schematic view of this fact is depicted in Figure 3.
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Table 2: Some master key values to satisfy the RX-differences in 12, 13, and 15-round of
SPECK48/96 based on tables 3 and 4 in [34].

12-round

(∆1l2, ∆1l1, ∆1l0, ∆1k0)

(003E00, 104F00, 0E0900, 000008)

(l2, l1, l0, k0)

(CC2F12, 0BBC98, EB5E6F, 375180)

(l
′2, l

′1, l
′0, k

′0)

(986025, 073630, D8B5DF, 6EA308)
13-round

(003F00, F1C000, 060900, 000008)
(8FCFF8, 4070DA, 7DA7EF, CA1913)
(1FA0F1, 7121B4, FD46DE, 94322F)

15-round
(001F00, 744000, 021800, 000008)
(62C8CC, 253EA3, 14D708, 8D41E7)
(C58E98, 3E3D46, 2BB610, 1A83C7)

Lemma 2. There are no right pairs to satisfy the RX-difference of the sub-keys of
11 rounds of SPECK32/64 based on the table 2 in [34].

Proof. Let x and y be the inputs and z is the output of an addition modulo with
the carry c, then based on Inequalities (3), the bit values of x, y, z, and c belong to
the following set.

(xj , yj , zj , cj , cj+1) ∈
{

(0, 0, 0, 0, 0), (0, 0, 1, 1, 0), (0, 1, 1, 0, 0), (0, 1, 0, 1, 1)
(1, 0, 1, 0, 0), (1, 0, 0, 1, 1), (1, 1, 0, 0, 1), (1, 1, 1, 1, 1)

}
(6)

We denote the two n-bit vectors representing RX-differences at the input of modular
addition in the round i where i = 5, 8, as ∆1x

i = (∆1x
i
n−1, · · · ,∆1x

i
1,∆1x

i
0) and

∆1y
i = (∆1y

i
n−1, · · · ,∆1y

i
1,∆1y

i
0) and the n-bit vectors representing Rx-difference

for output of modular addition as ∆1z
i = (∆1z

i
n−1, · · · ,∆zi1,∆1z

i
0) and the n-bit

vectors representing Rx-difference for carry as ∆1c
i = (∆1c

i
n−1, · · · ,∆1c

i
1,∆1c

i
0). It

should be noted that based on the third condition of Inequality (3), the Rx-difference
of carry bit ci can be obtained as ∆1c

i = ∆1x
i ⊕ ∆1y

i ⊕ ∆1z
i. Therefore, the

input/output Rx-differences and the carry RX-difference of modular additions for
the 5-th and 8-th rounds based on Figure 3 can be written as binary notation as
follows.

∆1x
5 = 0000000000000000, ∆1x

8 = 0000011000000000,
∆1y

5 = 0000000000000000, ∆1y
8 = 0000001000000101,

∆1z
5 = 0000000000001111, ∆1z

8 = 0000000000011100,
∆1c

5 = 0000000000001111, ∆1c
14 = 0000010000011001.

By considering the modular addition operation for the 11-th round, we have
(∆1x

5
0,∆1y

5
0 ,∆1z

5
0 ,∆1c

5
0,∆1c

5
1) = (0, 0, 1, 1, 1). It should be noted that the pair values

that can have Rx-difference (0, 0, 1, 1, 1) must be selected from the set (6). Therefore,
according to the set (6), the following pairs have the differential (0, 0, 1, 1, 1).

{
(x5

0, y
5
0 , z

5
0 , c

5
0, c

5
1)
}
∈
{{

(0, 1, 1, 0, 0)
(0, 1, 0, 1, 1)

}
,

{
(1, 0, 1, 0, 0)
(1, 0, 0, 1, 1)

}}
.

So, for each pair we get the condition

z5
0 = c5

1, (7)

where c is the bit-wise NOT of c. Now, in a similar way and by considering the
Rx-difference (∆1x

5
1,∆1y

5
1 , ∆1z

5
1 ,∆1c

5
1,∆1c

5
2) = (0, 0, 1, 1, 1), for each possible pair

we have
z5

1 = c5
1, (8)
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Figure 3: Part of the 11-round RXD-trail of sub-keys for SPECK32/64 based on Table 2 in
[34].

By considering the Equations (7) and (8), we have

z5
0 = z5

1 . (9)

Now, in the modular addition operation for the 8-th round, we have

(∆1x
8
9,∆1y

8
9 ,∆1z

8
9 ,∆1c

8
9,∆1c

8
10) = (1, 1, 0, 0, 1).

Thus, from (6) the following pairs will lead to the Rx-difference (1, 1, 0, 0, 1).

(x8
9, y

8
9 , z

8
9 , c

8
9, c

8
10) ∈

{{
(0, 0, 1, 1, 0)
(1, 1, 1, 1, 1)

}
,

{
(0, 0, 0, 0, 0)
(1, 1, 0, 0, 1)

}}
.

Hence, for these pairs we can get the condition

x8
9 = c8

10. (10)
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Now, by considering the Rx-difference (∆1x
8
10,∆1y

8
10,∆1z

8
10,∆1c

8
10,∆1c

8
11) = (1, 0, 0, 1, 0)

for the 10-th bit, the following pairs will lead to this differential.

(x8
10, y

8
10, z

8
10, c

8
10, c

8
11) ∈

{{
(0, 0, 1, 1, 0)
(1, 0, 1, 0, 0)

}
,

{
(0, 1, 0, 1, 1)
(1, 1, 0, 0, 1)

}}
.

Therefore, we have the condition

x8
10 = c8

10. (11)

By combining the Equations (10) and (11), we have

x8
9 = x8

10. (12)

Since x8 = (z5 ⊕ 0004)≫ 7) (see Figure 3), we have z5
0 = x8

9 and z5
1 = x8

10. Hence,
by considering the equations (9) and (12), we reach a contradiction.

5 Searching compatible difference trails in block ciphers
The two following steps can help us to search the compatible differential trails in the block
ciphers.

1 Build an MILP-based model for Searching a (related-key) differential trail or a SMT-
based model for a RX trail (targeting ARX/AND structures) to obtain a satisfactory
difference trail2.

2 Check if there exists a right pair of messages/keys based on the method mentioned
in Section 3.

It is worth noting that if there exist no right pairs, the difference trail found above is an
incompatible difference trail3.

5.1 Application on SPECK family of block ciphers
In the following section, we search the compatible related-key differential trails of SPECK
family of block ciphers.

5.1.1 Searching the Related-key differential trails of SPECK family of block ciphers

In this section, first, thanks to the MILP method, we present several distinguishers for the
reduced version of SPECK32/64, SPECK48/96, SPECK64/128, and SPECK128/256, in related
key mode. Then, we apply the method described in Section 3 to find the incompatible
trails. Our result in this section should be considered as an improvement over Liu et al.’s
work [34], but from differential view. Both works analyze SPECK-family in weak-key
models but Liu et al. presented RX trails while we intend to present differential trails.
However, as can be seen in the following section, we obtain significantly better results, in
terms of weak-key(s), class-size, or the number of rounds of the distinguishers.

2The papers [47, 46, 34, 36] can help to model the difference behavior of the ciphers based on MILP
and SMT methods. Even though, this step can perform with other automated solvers.

3In this case, we can check the alternative solutions in step 1. For example, by using "PoolSearchMode"
function in the optimizer Gurobi solver [20].
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5.1.2 Attack models

Let QD be the encryption datapath and QK be the key expansion datapath of SPECK
block cipher and Pr(QD) and Pr(QK) show probability over the data path and the key
expansion path, respectively. In this paper, inspired by the rotational-XOR analysis [34],
we also consider 3 models of weak key attacks. In these models, an adversary can obtain
data encrypted under two different keys with a known relation, for plaintexts that are
chosen by the adversary. Attack models considered in this paper are as follows where
b = 2n, and mn denote the length of the block size and the length of the key, respectively.

1. Finding a good Related-Key Differential trail of the cipher such that Pr(QD) ×
Pr(QK) > 2−b.

2. Finding a good Related-Key Differential trail of the cipher with probability Pr(QD) >
2−b such that Pr(QD)×Pr(QK) > 2−mn. This case of attacks is in a weak-key class
and the results are marked with † in the results tables.

3. Finding a good Related-Key Differential trail of the cipher with probability Pr(QD) >
2−b over the data part, and the key schedule part with probability Pr(QK) > 2−mn

(i.e., ensuring that at least one weak-key exists). This case of attack can only be
used in the open-key model, i.e., in addition to being in the weak-key class and
knowing the differential of the two related-keys; the adversary also knows the key
values. These results are marked with ‡ in the results tables.

5.1.3 MILP-based differential trail search for SPECK family block cipher

In order to model the differential behavior of SPECK block cipher with the linear constraints
expression in the MILP, it is sufficient to express XOR, bit-wise rotation, and addition
modulo. Both XOR and bit rotation are linear operations and can be modeled similar to
the ones in section 3.

MILP model for modular addition

Definition 3. (The differential of addition modulo 2n [32]) We define the differential
of addition modulo 2n as a triplet of two input and one output differences, denoted as
(α, β 7→ γ), where (α, β, γ) ∈ {0, 1}n. The differential probability of addition (DP+) is
defined as follows:

DP+(α, β 7→ γ) := 2−2n.# {x, y : (x+ y)⊕ ((x⊕ α) + (y ⊕ β)) = γ} .

In order to characterize the feasible differential trails for the modular addition and
their corresponding probabilities, Lipmaa and Moriai in [32] proposed two theorems as
follows.

Theorem 1. The necessary and sufficient condition for the differential (α, β → γ) to have
a probability > 0 is the following two conditions.

1. α0 ⊕ β0 ⊕ γ0 = 0,

2. if αi−1 = βi−1 = γi−1, thenαi−1 = βi−1 = γi−1 = αi ⊕ βi ⊕ γi, i = 1, · · · , n− 1.

Theorem 2. When the differential (α, β → γ) has a probability > 0, the probability is

2
−

n−2∑
i=0

∼eq(αi,βi,γi)

where
eq (αi, βi, γi) = eqi =

{
1 αi = βi = γi
0 o.w

(13)



14

Figure 4: Our strategy for searching the differential trails of SPECK.

Based on these theorems, Fu et al. proposed an MILP modeling method for addition
modulo operation in [17]. The first feasibility condition α0 ⊕ β0 ⊕ γ0 = 0, in theorem 1
can be represented in MILP model as Inequalities (2). To describe the second conditions
of theorem 1 and also the definition of eqi in the MILP model, Fu et al. considered the
vectors (αi−1, βi−1, γi−1, αi, βi, γi,∼ eqi−1) (for i = 1, · · · , n− 1) such that it is satisfied in
the conditions. For example, the differential patterns (0, 0, 0, 1, 0, 1, 0) and (1, 0, 0, 0, 0, 1, 1)
are possible patterns and the differential pattern (0, 0, 0, 1, 0, 0, 0) is an impossible pattern
as αi−1 = βi−1 = γi−1 6= αi⊕βi⊕ γi. Hence, 56 vectors were generated in each bit in total.
Fu et al. used the "inequality generator()" function in the sage. geometry. polyhedron class
of SAGE [44] and the greedy algorithm in [46] to get 13 linear inequalities satisfying all
these 56 possible transitions. Then, given theorem 2, it is sufficient to set the objective
function as sum of ∼ eqi−1’s for i = 1, · · · , n− 1.

Hence, for n-bit words of the addition modulo, the total number of the constraints
contains 13(n− 1) + 4 linear inequalities.

5.1.4 Searching for differential trails of SPECK

In this paper, we use the MILP model for Related-Key Differential (RKD) cryptanalysis
of reduced SPECK block cipher. Hence, first, we explain our strategy for searching the
RKD trails and then present the searching result of SPECK.

Our searching strategy

We will give the details on how to search for the differential trails for SPECK. Based on the
structure of the key schedule of SPECK, the maximum number of the consecutive rounds of
sub-keys that can have zero differential is 3 rounds. Based on the observation from our
identified differential trail for the small number of rounds, we found that the differential
probability is better when these 3 consecutive rounds of sub-keys lead to four consecutive
rounds with zero input differential in the encryption datapath of SPECK. The details of
this strategy are shown in Figure 4. In this figure, we do not have any differentials in the
input of i-th round to (i+ 3)-th round, such that i can be 2 to r− 3 for r-round of SPECK.

The only non-linear operation in the SPECK round function is the modular addition, and
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the only key-dependent operation is the sub-key addition. Given that the sub-key addition
happens after the modular addition, i.e., the cipher operation is completely predictable
until this first sub-key addition, we can ignore the modular addition in the first round of
the distinguishers.

5.1.5 Search results

In this section, we apply the technique described above in order to find a good differential
trail of the reduced-round variants of SPECK.

Differential Trails of SPECK32/64

Table 3 shows the RKD trail covering up to 15 rounds found by our model. To the best
of our knowledge, the best published distinguisher trail so far has covered 12 rounds of
SPECK32/64 with a probability of 2−25.57 for a weak-key class of size 24.92 [34]. Based on
Table 3, our 13-round trail has a much better probability of 2−23.85 for a weak-key class of
size 241. Tables 9 to 14 in the Appendix A.1, show the differential trails covering 10 to 15
rounds found by our program.

Table 3: The comparison of our Related-Key Differentials (RKD) with Rotational Xor
(RX) result of [34] for SPECK32/64.

Ver. Rounds
Data Prob. Data Key Prob. Method Ref.trail differential (Key class size)(] trails)

32/64

10 † 2−19.15 - 2−35.9 (228.10)
RX [34]11 ‡ 2−22.15 - 2−45.32 (218.68)

12 ‡ 2−25.57 - 2−59.08 (24.92)
10 2−13 2−12.95(3) 2−7 (257)

RKD Our

11 2−17 2−16.85(15) 2−14 (250)
12 † 2−24 2−23.79(90) 2−13 (251)
13 † 2−24 2−23.85(27) 2−23 (241)
14† 2−30 2−29.17(≥ 180)∗ 2−29 (235)
15‡ 2−32 2−31.73(≥ 100) 2−62 (22)

∗: The (≥ a) means we can have more than a trails for this differential but at least a
trails are enough to have the mentioned differential. For example, for 14 rounds, the
program finds 2181 trails, while only 180 trails affect the increase of the probability of
differential and other trails do not have more effect on the probability of differential.

It has been pointed out the authors of [34] wrote that " We extended our search to
13-round trails and found that none exists, suggesting that a 12-round RX-trail is the
longest possible one." So, our result shows that the related-key differential is more powerful
against SPECK32/64, compared to the rotational-XOR.

Differential Trails of SPECK48/96

We found RKD trails covering up to 16 rounds for SPECK48/96. Table 4 shows the
summary of searching result and also a comparison of our results with [34] for SPECK48/96.
The trails for 11 to 16 rounds are shown in Table 15 to 20 in the Appendix A.2.

Differential Trails of SPECK64/128

For SPECK64/128, we successfully extended a distinguisher up to 17 rounds with a prob-
ability of 2−60.81 for a weak-key class of size 278. Our results for 13 to 17 rounds of
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Table 4: The comparison of our Related-Key Differentials (RKD) with Rotational Xor
(RX) result of [34] for SPECK48/96.

Ver. Rounds
Data Prob. Data Key Prob. Method Ref.trail differential (Key class size)(] trails)

48/96

11 † 2−24.15 - 2−70.32 (225.68)

RX [34]

11 ‡ 2−23.15 - 2−81.07 (214.93)
12 † 2−26.57 - 2−68.5 (227.5)
12 † 2−26.57 - 2−52.49 (243.51)
13 ‡ 2−31.98 - 2−71.49 (224.51)
14 ‡ 2−37.40 - 2−95.66 (20.34)
15 ‡ 2−43.81 - 2−94.91 (21.09)
11 2−17 2−16.95(3) 2−13 (283)

RKD Our

12 2−21 2−20.90(20) 2−23 (273)
13 † 2−33 2−32.69(≥ 50) 2−18 (278)
14 † 2−43 2−42.38(≥ 200) 2−25 (271)
15† 2−46 2−45.63(≥ 100) 2−43 (253)
16‡ 2−47 2−46.61(≥ 100) 2−94 (22)

SPECK64/128 are shown in Table 5. Tables 21 to 25 in the Appendix A.3, show the RKD
trail for these 13 to 17 rounds of SPECK64/128.

Table 5: The comparison of our Related-Key Differentials (RKD) with Rotational Xor
(RX) result of [34] for SPECK64/128.

Ver. Rounds
Data Prob. Data Key Prob. Method Ref.trail differential (Key class size)(] trails)

64/128

13 ‡ 2−37.98 - 2−106.08(221.92) RX [34]
13 2−36 2−35.67(≥ 150)) 2−18 (2110)

RKD Our
14 † 2−37 2−36.81(≥ 50)) 2−51 (277)
15 † 2−45 2−44.81(≥ 30) 2−60 (268)
16 † 2−60 2−58.81(≥ 200) 2−43 (285)
17 † 2−62 2−60.81(≥ 200) 2−50 (278)

Differential Trails of SPECK128/256

We present the distinguishers for 16 and 19 rounds of SPECK128/256 as shown in Table
6. Also, Tables 26 and 27 in the Appendix A.4, show the RKD trail for these 16 and 19
rounds of SPECK128/256.

5.1.6 Experimental verification

Here, we intend to examine the extent to which our estimate for probabilities is close, and
therefore, we first try to identify a weak key and then encrypt 232 (for case of SPECK32/64)
plaintexts, and measure the probability such that the differential feature is met.

We modeled the SPECK key schedule with the method described in section 3 and fixed
the key input differentials based on Tables 9 to 14 for rounds 10 to 15 of SPECK32/64,
respectively. The time of solving the model to find the first weak key is shown in the third
column of Table 7. Also in this table, the number of pairs that is satisfied in the encryption
datapath are listed in the fifth column. This table shows that the results matched the
theoretical predictions. For all versions of SPECK mentioned above, we tested whether the
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Table 6: The comparison of our Related-Key Differentials (RKD) with Rotational Xor
(RX) result of [34] for SPECK128/256.

Ver. Rounds
Data Prob. Data Key Prob. Method Ref.trail differential (Key class size)(] trails)

128/256
13 2−31.98 - 2−73.49(2182.51) RX [34]
16 2−76 2−75.19(≥ 100) 2−45 (2211) RKD Our19† 2−111 2−109.75(≥ 250) 2−79(2177)

key differential trail is followed. For each version, we reported a weak key (see Tables 9 to
27 in Appendix A)

Table 7: The number of pairs for rounds 10 to 15 of SPECK32/64 with a weak key. In this
table, we show the values of two input keys as: K = (l2, l1, l0, k0), K ′ = (l′2, l

′

1, l
′

0, k
′

0) and
the differential of them as ∆K = (∆l2,∆l1,∆l0,∆k0).

Rounds Tested weak key Time ] right pairs ] right pairs
expected obtained

10
K = (10CD, 31BF, A172, E11F)

≤ 1 Sec. 219.05 524729 w 219
K
′

= (38CD, 33BF, A1F2, E11E)
∆K = (2800, 0200, 0080, 0001)

11
K = (8D43, 1D53, ED28, C242)

≤ 1 Sec. 215.15 32922 w 215
K
′

= (8F43, 1DD3, ED59, 8842)
∆K = (0200, 0080, 0071, 4A00)

12
K = (89C6, B836, 00B4, B223)

≤ 1 Sec. 28.21 287 w 28.16
K
′

= (8946, B867, 00BC, A023)
∆K = (0080, 0051, 0008, 1200)

13
K = (0502, DB48, E36E, 75EC)

141 Sec. 28.15 246 w 27.95
K
′

= (4502, C3C8, E76E, 75E5)
∆K = (4000, 1880, 0400, 0009)

14
K = (96D6, C06E, 877E, 8860)

75 Sec. 22.83 8 = 23
K
′

= (8256, C4AE, 8656, 9862)
∆K = (8256, C4AE, 8656, 9862)

15
K = (7A1F, D850, C89F, B35A)

2420 Sec. 20.27 3 w 21.58
K
′

= (3A1F, CDD0, CC9F, B353)
∆K = (4000, 1580, 0400, 0009)

5.1.7 Incompatible trails

It must be noted that the method mentioned in Section 3 can be very useful in most
cases to find a weak key. For example, our MILP model to find the related-key trails
can find a 14-round related-key trail with the input differential (1805, 1281), the output
differential (DA52, 25AD), and the key input differential (0201, 4080, 1891, 4A25) with the
data probability of 2−26 and key probability of 2−63 (key class size of 21). In this case, our
model, after 150 seconds shows that there are no keys which can satisfy the differentials
of round keys. Note that without using our MILP method, we had to run the SPECK key
schedule algorithm for 264 times to know it. As a few other examples, in Table 8, we
listed some of the differential trails for which there are not any key values to reach the
differentials of round-keys. In fact, the independency assumption between the two
continuous modular addition of the key schedule algorithm of SPECK is not enough to
ensure the validity of the some of the differential trails. As an example, in the following
lemma, we show that the modular additions used in the key schedule algorithm of SPECK
are not independent. To show this, we consider one of the differential trails shown in
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Table 8: The list of some of the related-key differential trails of SPECK for which there are
not any key values to satisfy the differential of key rounds.

Ver. # rounds Pr(QK) Pr(QD) Ref.

32/64 14 2−36 2−27 Table 28
48/96 16 2−69 2−47 Table 29
64/128 16 2−41 2−57 Table 30
128/256 21 2−94 2−122 Table 31

Table 8 and show that the cause of the invalidity of that trail is the dependence of the
modular additions.

Lemma 3. There are no right pair to satisfy the RK-difference of the sub-keys of 16
rounds of SPECK48/96 as shown in Table 29.

Proof. The proof is almost the same with proof of Lemma 2 and its details are presented
in Appendix C.

6 Conclusion
In this study, thanks to the MILP method, we presented an efficient method to verify
difference trails and also search for the right pairs. We applied our approach to the
presented RX trails of SIMECK and SPECK family of block ciphers. In addition, in this
paper, thanks to the MILP method, we presented related-key differential distinguishers on
different variants of the SPECK block cipher and obtained longer distinguishers compared to
the ones previously published. For each member of the SPECK family of block ciphers, we
presented several distinguishers. The longest distinguishers for SPECK32/64, SPECK48/96,
SPECK64/128, and SPECK128/256, cover 15, 16, 17, and 19 rounds, respectively, which
are working on a certain weak key class. In addition, we showed that the transitional
probability over two consecutive modular addition operations in the key schedule structure
of SPECK is not independent and our approach in this paper could find this case of the
trails. Note that, in our analysis to find a good distinguisher for SPECK family, we noticed
that most of the obtained trails are incompatible (especially in case of SPECK128/256).
Thus, considering a direct approach to find a valid differential trail may help improve
the results (e.g., inspired by [15, 33]). As future works, we consider the search for longer
distinguishers on all versions of SPECK. Also, as another work, considering our search to
find a weak-key in this paper may help find a collision in hash functions at a reasonable
time. Besides, the results of this paper could be used to verify many differential trails
which have been already considered as theoretical trails and we were not sure whether
there could be any pair of inputs following that trail (as we did this for recent results on
SPECK and SIMECK, in this article).
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A RK-Differential trails of SPECK variants

A.1 RK-Differential trails of SPECK32/64

Tables 9 to 14.

Table 9: 10-round related-key differential trail in SPECK32/64 with (∆l2,∆l1,∆l0,∆k0) =
(2800, 0200, 0080, 0001).

Round Differential log2 Pr Differential log2 Prin Key in Data
0 0001 0204||0005
1 0004 -1 0205||0200
2 0010 -1 0800||0000 -3
3 0000 -2 0000||0000 -1
4 0000 0 0000||0000 0
5 0000 0 0000||0000 0
6 8000 0 0000||0000 0
7 8002 0 8000||8000 0
8 8008 -1 0102||0100 -1
9 812A -2 850A||810A -3
10 152A||1100 -5

log2
(

Pr(QK)
)

: -7 log2
(

Pr(QD)
)

: -13
A pair of weak keys:
K = (10CD, 31BF, A172, E11F)
K
′

= (38CD, 33BF, A1F2, E11E)

A.2 RK-Differential trails of SPECK48/96

Tables 15 to 20.

A.3 RK-Differential trails of SPECK64/128

Tables 21 to 25.
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Table 10: 11-round related-key differential trail in SPECK32/64 with (∆l2,∆l1,∆l0,∆k0) =
(0200, 0080, 0071, 4A00).

Round Differential log2 Pr Differential log2 Prin Key in Data
0 4A00 4B21||C121
1 0008 -4 0121||C000
2 0004 -1 0203||0200 -3
3 0010 -1 0800||0000 -4
4 0000 -2 0000||0000 -1
5 0000 0 0000||0000 0
6 0000 0 0000||0000 0
7 8000 0 0000||0000 0
8 8002 0 8000||8000 0
9 8008 -1 0102||0100 -1
10 812A -2 850A||810A -3
11 152A||1100 -5

log2
(

Pr(QK)
)

: -11 log2
(

Pr(QD)
)

: -17
A pair of weak keys:
K = (8D43, 1D53, ED28, C242)
K
′

= (8F43, 1DD3, ED59, 8842)

A.4 RK-Differential trails of SPECK128/256

Tables 26 to 27.

B Some of incompability RK-differential trails of SPECK
variants

Tables 28 to 31.

C Manual verification of one of the incompatible RKD
trails

Lemma 4. There are no right pair to satisfy the RK-difference of the sub-keys of 16
rounds of SPECK48/96 as shown in Table 29.

Proof. To find a contradiction in the key expansion datapath of the key differences of the
trails in Table 29, we fixed the input differential of sub-keys in all 16 rounds. Our MILP
model gives us an infeasible solution. This means that there are not any key values to
satisfy the differential of round keys for 16 rounds of SPECK48/96 based on Table 29. After
that, we tried to find the key values for fewer rounds by removing some last rounds. When
we removed the fourteenth round, the MILP model found two key values whose differential
was the differential of the key rounds for 14 rounds of SPECK48/96. So, the fourteenth
round of key expansion datapath can be effective in finding a contradiction. Note that the
left input differential of round 14 is the same as the left output differential of round 11
(see Figure 5).

We denote the two n-bit vectors representing differentials at the input of modular
addition in the round i where i = 11, 14, as ∆xi = (∆xin−1, · · · ,∆xi1,∆xi0) and ∆yi =
(∆yin−1, · · · ,∆yi1,∆yi0) and the n-bit output differential as ∆zi = (∆zin−1, · · · ,∆zi1,∆zi0)
and the n-bit vectors representing carry differential as ∆ci = (∆cin−1, · · · ,∆ci1,∆ci0). It
should be noted that based on the third condition of Inequality (3), the differential of
carry bit ci can be obtained as ∆ci = ∆xi ⊕∆yi ⊕∆zi.
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Table 11: 12-round related-key differential trail in SPECK32/64 with (∆l2,∆l1,∆l0,∆k0) =
(0080, 0051, 0008, 1200).

Round Differential log2 Pr Differential log2 Prin Key in Data
0 1200 16E4||144C
1 4A00 -2 04E4||10A8
2 0008 -4 02A1||4001 -7
3 0004 -1 0205||0200 -4
4 0010 -1 0800||0000 -3
5 0000 -2 0000||0000 -1
6 0000 0 0000||0000 0
7 0000 0 0000||0000 0
8 8000 0 0000||0000 0
9 8002 0 8000||8000 0
10 8008 -1 0102||0100 -1
11 812A -2 850A||810A -3
12 152A||1100 -5

log2
(

Pr(QK)
)

: -13 log2
(

Pr(QD)
)

: -24
A pair of weak keys:
K = (89C6, B836, 00B4, B223)
K
′

= (8946, B867, 00BC, A023)

>>>8

<<<3

>>>8

<<<3

8000019C8C20

07EC80 239184

07EC80 0EC884

000080 812480

Round 11 
of key path

Round 14
of key path

The key 

differential 

for round 10 

of data path

The key 

differential 

for round 13 

of data path

000008

812480

07EC80

>>>8

239184

9C8C20

000008

812480

07EC80

>>>8

239184

9C8C20

8007EC

Figure 5: Part of the 16-round impossible trail of SPECK48/96 based on Table 29.

Therefore, the input/output differentials and the carry differentials of modular additions
for the 11-th and 14-th rounds based on Figure 5, can be written as binary notation as
follows.

∆x11 = 100000000000000000000000, ∆x14 = 100000000000011111101100,
∆y11 = 100000010010010010000000, ∆y14 = 001000111001000110000100,
∆z11 = 000001111110110010000000, ∆z14 = 100111001000110000100000,
∆c11 = 000001101100100000000000, ∆c14 = 001111110001101001001000.

As can be seen in Figure 5, the modular addition operations in rounds 11 and 14 satisfy



Sadegh Sadeghi, Vincent Rijmen and Nasour Bagheri 25

Table 12: 13-round related-key differential trail in SPECK32/64 with (∆l2,∆l1,∆l0,∆k0) =
(4000, 1880, 0400, 0009).

Round Differential log2 Pr Differential log2 Prin Key in Data
0 0009 560B||020A
1 0025 -2 5602||5408
2 0080 -4 5081||00A0 -7
3 0200 -1 0281||0001 -4
4 0800 -1 0004||0000 -3
5 0000 -2 0000||0000 -1
6 0000 0 0000||0000 0
7 0000 0 0000||0000 0
8 0040 -1 0000||0000 0
9 01C0 -2 0040||0040 0
10 0140 -5 8100||8000 -2
11 8440 -2 8042||8040 -2
12 1543 -3 8100||8002 -3
13 9443||9449 -2

log2
(

Pr(QK)
)

: -23 log2
(

Pr(QD)
)

: -24
A pair of weak keys:
K = (0502, DB48, E36E, 75EC)
K
′

= (4502, C3C8, E76E, 75E5)

the conditions of Theorem 1 and they hold with probabilities of 2−9 and 2−17, respectively.
Assuming independency, the differential probability of these two rounds should hold
with probability of 2−26; however, we show that it is an incompatibility differential. To
this end, by considering the modular addition operation for the 11-th round, we have
(∆x11

13,∆y11
13 ,∆z11

13 ,∆c11
13,∆c11

14) = (0, 1, 1, 0, 1). It should be noted that the values that
can have this differential must be selected from the set (6). According to the set (6), the
following pairs have the differential (∆x11

13,∆y11
13 ,∆z11

13 ,∆c11
13,∆c11

14) = (0, 1, 1, 0, 1).{
(x11

13, y
11
13 , z

11
13 , c

11
13, c

11
14)
}
∈
{{

(0, 0, 1, 1, 0)
(0, 1, 0, 1, 1)

}
,

{
(1, 0, 1, 0, 0)
(1, 1, 0, 0, 1)

}}
.

So, for each pair we get the condition

z11
13 = c11

14, (14)

where c is the bit-wise NOT of c. Now, by considering the differential (∆x11
14,∆y11

14 ,∆z11
14 ,∆c11

14,
∆c11

15) = (0, 0, 1, 1, 1), for the 14-th bit, the following pairs can reach to this differential.

(x11
14, y

11
14 , z

11
14 , c

11
14, c

11
15) ∈

{{
(0, 1, 1, 0, 0)
(0, 1, 0, 1, 1)

}
,

{
(1, 0, 1, 0, 0)
(1, 0, 0, 1, 1)

}}
.

So, these pairs conclude the condition

z11
14 = c11

14. (15)

By combining the equations (14) and (8), we have

z11
13 = z11

14 . (16)

Now, in the modular addition operation for 14-th round, we have (∆x14
5 ,∆y14

5 ,∆z14
5 ,∆c14

5 ,∆c14
6 ) =

(1, 0, 1, 0, 1). Thus, the following pairs will lead to the differential (1, 0, 1, 0, 1).

(x14
5 , y

14
5 , z14

5 , c14
5 , c

14
6 ) ∈

{{
(0, 0, 1, 1, 0)
(1, 0, 0, 1, 1)

}
,

{
(0, 1, 1, 0, 0)
(1, 1, 0, 0, 1)

}}
.
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Table 13: 14-round related-key differential trail in SPECK32/64 with (∆l2,∆l1,∆l0,∆k0) =
(1480, 04C0, 0128, 1002).

Round Differential log2 Pr Differential log2 Prin Key in Data
0 1002 1418||A418
1 8008 -3 041A||A002
2 0023 -2 5402||D408 -6
3 0080 -5 5083||00A0 -6
4 0200 -2 0281||0001 -5
5 0800 -1 0004||0000 -3
6 0000 -3 0000||0000 -1
7 0000 0 0000||0000 0
8 0000 0 0000||0000 0
9 0040 -1 0000||0000 0
10 01C0 -2 0040||0040 0
11 0140 -5 8100||8000 -2
12 8440 -2 8042||8040 -2
13 1543 -3 8100||8002 -3
14 9443||9449 -2

log2
(

Pr(QK)
)

: -29 log2
(

Pr(QD)
)

: -30
A pair of weak keys:
K = (96D6, C06E, 877E, 8860)
K
′

= (8256, C4AE, 8656, 9862)

Hence, for these pairs, we can get the condition

x14
5 = c14

6 . (17)

Now, by considering the differential (∆x14
6 ,∆y14

6 ,∆z14
6 ,∆c14

6 ,∆c14
7 ) = (1, 0, 0, 1, 0) for the

6-th bit, the following pairs will lead to this differential.

(x14
6 , y

14
6 , z14

6 , c14
6 , c

14
7 ) ∈

{{
(0, 0, 1, 1, 0)
(1, 0, 1, 0, 0)

}
,

{
(0, 1, 0, 1, 1)
(1, 1, 0, 0, 1)

}}
.

Therefore, we have the condition
x14

6 = c14
6 . (18)

By combining the equations (17) and (18), we have

x14
5 = x14

6 . (19)

Since x14 = (z11 ≫ 8) (see Figure 5), we have z11
13 = x14

5 and z11
14 = x14

6 . Hence, by
considering the equations (16) and (19), we reach a contradiction.
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Table 14: 15-round related-key differential trail in SPECK32/64 with (∆l2,∆l1,∆l0,∆k0) =
(4000, 1580, 0400, 0009).

Round Differential log2 Pr Differential log2 Prin Key in Data
0 0009
1 0023 -4 543E||D408
2 0080 -5 5083||00A0 -6
3 0200 -1 0281||0001 -5
4 0800 -3 0004||0000 -3
5 0000 -3 0000||0000 -1
6 0000 0 0000||0000 0
7 0000 0 0000||0000 0
8 0040 -1 0000||0000 0
9 01C0 -2 0040||0040 0
10 0140 -5 8100||8000 -2
11 8440 -2 8042||8040 -2
12 6AFD -15 8100||8002 -3
13 C01E -12 EBFD||EBF7 -2
14 4753 -9 2FC0||801F -5
15 476D||4713 -3

log2
(

Pr(QK)
)

: -62 log2
(

Pr(QD)
)

: -32
A pair of weak keys:
K = (7A1F, D850, C89F, B35A)
K
′

= (3A1F, CDD0, CC9F, B353)

Table 15: 11-round related-key differential trail in SPECK48/96 with (∆l2,∆l1,∆l0,∆k0) =
(020000, 004000, 000882, 120008).

Round Differential log2 Pr Differential log2 Prin Key in Data
0 120008 12504A||405040
1 000040 -3 005042||400002
2 000200 -1 020012||020000 -5
3 001000 -1 100000||000000 -3
4 000000 -2 000000||000000 -1
5 000000 0 000000||000000 0
6 000000 0 000000||000000 0
7 000080 -1 000000||000000 0
8 000480 -1 000080||000080 0
9 002080 -2 800400||800000 -1
10 812480 -2 80A084||80A080 -2
11 VV8504A0||8000A4 -5

log2
(

Pr(QK)
)

: -13 log2
(

Pr(QD)
)

: -17
A pair of weak keys:
K = (426E81, 01E2A0, 23AD82, 401C62)
K
′

= (406E81, 01A2A0, 23A500, 521C6A)
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Table 16: 12-round related-key differential trail in SPECK48/96 with (∆l2,∆l1,∆l0,∆k0) =
(020000, 004000, 000882, 120008).

Round Differential log2 Pr Differential log2 Prin Key in Data
0 120008 12504A||405040
1 000040 -3 005042||400002
2 000200 -1 020012||020000 -5
3 001000 -1 100000||000000 -3
4 000000 -2 000000||000000 -1
5 000000 0 000000||000000 0
6 000000 0 000000||000000 0
7 000080 -1 000000||000000 0
8 000780 -3 000080||000080 0
9 000080 -7 800400||800000 -3
10 800480 -1 808084||808080 -2
11 002085 -4 840480||800084 -3
12 00A405||00A021 -4

log2
(

Pr(QK)
)

: -23 log2
(

Pr(QD)
)

: -21
A pair of weak keys:
K = (3BC6A8, 4B6ED8, EBC297, C8A20E)
K
′

= (39C6A8, 4B2ED8, EBCA15, DAA206)

Table 17: 13-round related-key differential trail in SPECK48/96 with (∆l2,∆l1,∆l0,∆k0) =
(000200, 0000C0, 820008, 081200).

Round Differential log2 Pr Differential log2 Prin Key in Data
0 081200 4A12D0||4040D0
1 400000 -4 4200D0||024000
2 000002 -1 120200||000200 -5
3 000010 -1 001000||000000 -3
4 000000 -2 000000||000000 -1
5 000000 0 000000||000000 0
6 000000 0 000000||000000 0
7 800000 0 000000||000000 0
8 800004 0 800000||008000 0
9 800020 -1 008004||008000 -1
10 808124 -2 8480A0||8080A0 -3
11 840800 -4 A08504||A48000 -5
12 A0C804 -3 242885||002880 -7
13 25CCAC||2488AC -8

log2
(

Pr(QK)
)

: -18 log2
(

Pr(QD)
)

: -33
A pair of weak keys:
K = (34AF36, 1AA373, C48D92, 2B0794)
K
′

= (34AD36, 1AA3B3, 468D9A, 231594)
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Table 18: 14-round related-key differential trail in SPECK48/96 with (∆l2,∆l1,∆l0,∆k0) =
(020000, 004010, 248801, 102088).

Round Differential log2 Pr Differential log2 Prin Key in Data
0 102088 10625A||5042C2
1 900040 -6 0042D2||500010
2 000204 -2 120012||920090 -6
3 001024 -2 841449||141010 -8
4 008000 -4 A08400||000480 -9
5 040000 -1 002404||000004 -5
6 200000 -1 000020||000000 -3
7 000000 -2 000000||000000 -1
8 000000 0 000000||000000 0
9 000000 0 000000||000000 0
10 010000 -1 000000||000000 0
11 090000 -1 010000||010000 0
12 410000 -2 080100||000100 -2
13 490102 -3 410901||410101 -3
14 09410A||014900 -6

log2
(

Pr(QK)
)

: -25 log2
(

Pr(QD)
)

: -43
A pair of weak keys:
K = (A45E80, E09F24, F047C1, 4608BA)
K
′

= (A65E80, E0DF34, D4CFC0, 562832)

Table 19: 15-round related-key differential trail in SPECK48/96 with (∆l2,∆l1,∆l0,∆k0) =
(000010, 000002, 441000, 004090).

Round Differential log2 Pr Differential log2 Prin Key in Data
0 004090 825092||820202
1 020000 -4 821002||001200
2 100000 -1 009010||000010 -5
3 800000 -1 000080||000000 -3
4 000000 -1 000000||000000 0
5 000000 0 000000||000000 0
6 000000 0 000000||000000 0
7 040000 -1 000000||000000 0
8 1C0000 -4 040000||040000 0
9 040000 -5 200400||000400 -5
10 240400 -2 042404||040404 -3
11 042001 -6 240420||042400 -4
12 240409 -7 202005||010005 -5
13 042044 -6 20242C||282404 -6
14 250664 -5 002464||410445 -7
15 C00245||C8206F -8

log2
(

Pr(QK)
)

: -43 log2
(

Pr(QD)
)

: -46
A pair of weak keys:
K = (0C8E5B, 240ABD, 8BFBE8, 73CFA3)
K
′

= (0C8E4B, 240ABF, CFEBE8, 738F33)



30

Table 20: 16-round related-key differential trail in SPECK48/96 with (∆l2,∆l1,∆l0,∆k0) =
(000010, 000020, 00441000, 004090).

Round Differential log2 Pr Differential log2 Prin Key in Data
0 004090 825092||820202
1 020000 -4 821002||001200
2 100000 -1 009010||000010 -5
3 800000 -1 000080||000000 -3
4 000000 -1 000000||000000 0
5 000000 0 000000||000000 0
6 000000 0 000000||000000 0
7 040000 -1 000000||000000 0
8 1C0000 -4 040000||040000 0
9 040000 -5 200400||000400 -5
10 240400 -2 042404||040404 -3
11 042001 -6 240420||042400 -4
12 1A1C77 -19 202005||010005 -5
13 DA03C7 -15 183C54||103C7C -8
14 FFFEC1 -21 FE1FFF||7FFC1F -8
15 83C4D4 -14 8000FF||7FE004 -3
16 FC24D0||0324F3 -3

log2
(

Pr(QK)
)

: -94 log2
(

Pr(QD)
)

: -47
A pair of weak keys:
K = (E768B7, 64197F, A32B17, E346B7)
K
′

= (E768A7, 64197D, E73B17, E30627)

Table 21: 13-round related-key differential trail in SPECK64/128 with (∆l2,∆l1,∆l0,∆k0) =
(00000200, 00000040, 00820008, 08001200).

Round Differential log2 Pr Differential log2 Prin Key in Data
0 08001200 18421240||10404040
1 40000000 -4 10420040||00024000
2 00000002 -1 00120200||00000200 -5
3 00000010 -1 00001000||00000000 -3
4 00000000 -2 00000000||00000000 -1
5 00000000 0 00000000||00000000 0
6 00000000 0 00000000||00000000 0
7 80000000 0 00000000||00000000 0
8 80000004 0 80000000||80000000 0
9 80000020 -1 00800004||00800000 -1
10 80800124 -2 84808020||80808020 -3
11 84000800 -4 20840184||24800080 -6
12 A0804804 -3 24A08481||00A08080 -9
13 20046800||25006C00 -8

log2
(

Pr(QK)
)

: -18 log2
(

Pr(QD)
)

: -36
A pair of weak keys:
K = (10477738, AA9DC904, 8E451208, 7556C2C3)
K
′

= (10477538, AA9DC944, 8EC71200, 7D56D0C3)
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Table 22: 14-round related-key differential trail in SPECK64/128 with (∆l2,∆l1,∆l0,∆k0) =
(00000002, 40000000, 08008200, 00080012).

Round Differential log2 Pr Differential log2 Prin Key in Data
0 00080012 40184212||40104040
1 00400000 -4 40104200||00000240
2 02000000 -1 00001202||00000002 -5
3 10000000 -1 00000010||00000000 -3
4 00000000 -1 00000000||00000000 -1
5 00000000 0 00000000||00000000 0
6 00000000 0 00000000||00000000 0
7 00800000 -1 00000000||00000000 0
8 07800000 -3 00800000||00800000 0
9 00800000 -7 04008000||00008000 -4
10 03808000 -5 00848080||00808080 -3
11 00840000 -9 84008400||80048000 -7
12 05A08000 -7 80048084||80208080 -5
13 10A50080 -12 01000400||00040004 -6
14 10A00080||108000A0 -3

log2
(

Pr(QK)
)

: -51 log2
(

Pr(QD)
)

: -37
A pair of weak keys:
K = (BE466B7E, F02B57A6, 6F474116, 3E245A23)
K
′

= (BE466B7C, B02B57A6, 6747C316, 3E2C5A31)

Table 23: 15-round related-key differential trail in SPECK64/128 with (∆l2,∆l1,∆l0,∆k0) =
(00000002, 40000000, 08008200, 00080012).

Round Differential log2 Pr Differential log2 Prin Key in Data
0 00080012 40184212||40104040
1 00400000 -4 40104200||00000240
2 02000000 -1 00001202||00000002 -5
3 10000000 -1 00000010||00000000 -3
4 00000000 -1 00000000||00000000 -1
5 00000000 0 00000000||00000000 0
6 00000000 0 00000000||00000000 0
7 00800000 -1 00000000||00000000 0
8 07800000 -3 00800000||00800000 0
9 00800000 -7 04008000||00008000 -4
10 038080000 -5 00848080||00808080 -3
11 00840000 -9 84008400||80048000 -7
12 05A08000 -7 80048084||80208080 -5
13 10A50080 -12 01000400||00040004 -6
14 95908480 -9 10A00080||108000A0 -3
15 04002420||800002120 -8

log2
(

Pr(QK)
)

: -60 log2
(

Pr(QD)
)

: -45
A pair of weak keys:
K = (BE466B7E, F02B57A6, 6F474116, 3E245A23)
K
′

= (BE466B7C, B02B57A6, 6747C316, 3E2C5A31)
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Table 24: 16-round related-key differential trail in SPECK64/128 with (∆l2,∆l1,∆l0,∆k0)
= (00000200, 00000040, 00820008, 08001200).

Round Differential log2 Pr Differential log2 Prin Key in Data
0 08001200 18421240||10404040
1 40000000 -4 10420040||00024000
2 00000002 -1 00120200||00000200 -5
3 00000010 -1 00001000||00000000 -3
4 00000000 -2 00000000||00000000 -1
5 00000000 0 00000000||00000000 0
6 00000000 0 00000000||00000000 0
7 80000000 0 00000000||00000000 0
8 80000004 0 80000000||80000000 0
9 80000020 -1 00800004||00800000 -1
10 80800124 -2 84808020||80808020 -3
11 84000800 -4 20840184||24800080 -6
12 A0804804 -3 24A08C81||00A08880 -8
13 84020821 -6 21046000||24002400 -10
14 8092592C -8 A0232801||80220800 -8
15 84808078 -11 01104004||00000000 -11
16 80819038||80819038 -4

log2
(

Pr(QK)
)

: -43 log2
(

Pr(QD)
)

: -60
A pair of weak keys:
K = (7009EF82, 01B2A171, C4E14153, 2A5CEE20)
K
′

= (7009ED82, 01B2A131, C463415B, 225CFC20)

Table 25: 17-round related-key differential trail in SPECK64/128 with (∆l2,∆l1,∆l0,∆k0)
= (00000200, 00000040, 00820008, 08001200).

Round Differential log2 Pr Differential log2 Prin Key in Data
0 08001200 18421240||10404040
1 40000000 -4 10420040||00024000
2 00000002 -1 00120200||00000200 -5
3 00000010 -1 00001000||00000000 -3
4 00000000 -2 00000000||00000000 -1
5 00000000 0 00000000||00000000 0
6 00000000 0 00000000||00000000 0
7 80000000 0 00000000||00000000 0
8 80000004 0 80000000||80000000 0
9 80000020 -1 00800004||00800000 -1
10 80800124 -2 84808020||80808020 -3
11 84000800 -4 20840184||24800080 -6
12 A0804804 -3 24A08C81||00A08880 -8
13 84020821 -6 21046000||24002400 -10
14 8092592C -8 A0232801||80220800 -8
15 84811040 -12 01104004||000000000 -11
16 A409920C -6 80800000||80800000 -4
17 2409120C||20091208 -2

log2
(

Pr(QK)
)

: -50 log2
(

Pr(QD)
)

: -62
In this case, after limiting the time for two weeks of running the MILP
model, we could not find a weak key, while based on our test for each
of the two consecutive rounds there are not any independed modular
addition.
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Table 26: 16-round related-key differential trail in SPECK128/256 with (∆l2,∆l1,∆l0,∆k0)
= (0200000000000000, 0040000000000010, 0008000001248000, 1000080000002080).

Round Differential log2 Pr Differential log2 Prin Key in Data
0 1000080000002080 50402c02c0442012||40002426c0944082
1 9000400000000000 -6 40402402C0440092||0040000400D04010
2 0002000000000004 -2 0200002002100410||0000000004920490 -13
3 0010000000000024 -2 0200002002100410||0000000004920490 -14
4 0080000000000000 -4 8000000000208400||000000000000480 -10
5 0400000000000000 -1 0000000000002404||0000000000000004 -5
6 2000000000000000 -1 0000000000000020||0000000000000000 -3
7 0000000000000000 -2 0000000000000000||0000000000000000 -1
8 0000000000000000 0 0000000000000000||0000000000000000 0
9 0000000000000000 0 0000000000000000||0000000000000000 0
10 0100000000000000 -1 0000000000000000||0000000000000000 0
11 0F00000000000000 -3 0100000000000000||0100000000000000 0
12 0100000000000000 -7 0801000000000000||0001000000000000 -4
13 0901000000000000 -2 0109010000000000||0000000000000000 -3
14 4108000000000000 -5 0801080100000000||0009000100000000 -5
15 C947000000000002 -9 4109010901000000||4141010101000000 -6
16 0841080008010002||0249000800010000 -12

log2
(

Pr(QK)
)

: -45 log2
(

Pr(QD)
)

: -76
A pair of weak keys:
K = (535876A8F21D9DE0, 3CCC449DCEECCBFE, A0BAEDD3FAF2F38F, 6032F128F67FD07E)
K
′

= (515876A8F21D9DE0, 3C8C449DCEECCBEE, A0B2EDD3FBD6738F, 7032F928F67FF0FE)

Table 27: 19-round related-key differential trail in SPECK128/256 with (∆l2,∆l1,∆l0,∆k0)
= (0200000000000000, 0040000000000010, 0008000001248000, 1000080000002080).

Round Differential log2 Pr Differential log2 Prin Key in Data
0 1000080000002080 50402C02C0442012||40002406C0944082
1 9000400000000000 -6 40402402C0440092||0040000400D04010
2 0002000000000004 -2 0200002002100410||0000000004920490 -13
3 0010000000000024 -2 0200002002100410||0000000004920490 -14
4 0080000000000000 -4 8000000000208400||000000000000480 -10
5 0400000000000000 -1 0000000000002404||0000000000000004 -5
6 2000000000000000 -1 0000000000000020||0000000000000000 -3
7 0000000000000000 -2 0000000000000000||0000000000000000 -1
8 0000000000000000 0 0000000000000000||0000000000000000 0
9 0000000000000000 0 0000000000000000||0000000000000000 0
10 0100000000000000 -1 0000000000000000||0000000000000000 0
11 0F00000000000000 -3 0100000000000000||0100000000000000 0
12 0100000000000000 -7 0801000000000000||0001000000000000 -4
13 0901000000000000 -2 0109010000000000||0000000000000000 -3
14 4108000000000000 -5 0801080100000000||0009000100000000 -5
15 C947000000000002 -9 4109010901000000||4141010101000000 -6
16 03F8010000000010 -11 0841080008010002||0249000800010000 -12
17 0001090000000090 -13 0249400000090110||1001404000010110 -14
18 0148400000000410 -10 0002000000010881||8008020000090001 -12
19 0040400000090509||0000500000410505 -9

log2
(

Pr(QK)
)

: -79 log2
(

Pr(QD)
)

: -111
A pair of weak keys:
K = (A86999C9C3C38FDA, 800A91FA534F6705, 843997FC7C0B7F01, CE6525B90E522DB6)
K
′

= (AA6999C9C3C38FDA, 804A91FA534F6715, 843197FC7D2FFF01, DE652DB90E520D36)



34

Table 28: An incompatible trail for 14 rounds of SPECK32/64 with (∆l2,∆l1,∆l0,∆k0) =
(0001, 4000, 0880, 0025).

Round Differential log2 Pr Differential log2 Prin Key in Data
0 0025 50A4||5021
1 0080 -4 5081||00A0
2 0200 -1 0281||0001 -4
3 0800 -1 0004||0000 -3
4 0000 -2 0000||0000 -1
5 0000 0 0000||0000 0
6 0000 0 0000||0000 0
7 0040 -1 0000||0000 0
8 0140 -1 0040||0040 0
9 0240 -4 8100||8000 -1
10 87C0 -5 8142||8140 -3
11 0042 -7 8002||8500 -5
12 8140 -4 8042||9440 -2
13 0557 -6 9000||C102 -4
14 C575||C17E -4

log2
(

Pr(QK)
)

: -36 log2
(

Pr(QD)
)

: -27

Table 29: An incompatible trail for 16 rounds of SPECK48/96 with (∆l2,∆l1,∆l0,∆k0) =
(020000, 004000, 000882, 120008).

Round Differential log2 Pr Differential log2 Prin Key in Data
0 120008 12504A||405040
1 000040 −3 005040||400002
2 000200 −1 020012||020000 −5
3 001000 −1 100000||000000 −3
4 000000 −2 000000||000000 −1
5 000000 0 000000||000000 0
6 000000 0 000000||000000 0
7 000080 −1 000000||000000 0
8 000480 −1 000080||000080 0
9 002080 −2 800400||800000 −1
10 812480 −2 80A084||80A080 −2
11 0EC884 −9 84C4A0||81C0A4 −6
12 840CA0 −11 2E03A4||200680 −11
13 239184 −11 002421||001020 −9
14 800001 −17 008180||000080 −6
15 00F245 −8 000000||000400 −2
16 00F645||00D645 −1

log2
(

Pr(QK)
)

: −69 log2
(

Pr(QD)
)

: −47
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Table 30: An incompatible trail for 16 rounds of SPECK64/128 with
(∆l2,∆l1,∆l0,∆k0)=(00208002, 40000000, 08000200, 00080012).

Round Differential log2 Pr Differential log2 Prin Key in Data
0 00080012 82888292||90C09080
1 00400080 -3 82808280||12401200
2 02000480 -2 92829202||00820202 -10
3 10000000 -4 04108010||00009000 -11
4 80000000 -1 00048080||00000800 -5
5 00000004 0 00000400||00000000 -2
6 00000000 -2 00000000||00000000 -1
7 00000000 0 00000000||00000000 0
8 00000000 0 00000000||00000000 0
9 20000000 -1 00000000||00000000 0
10 E0000001 -2 20000000||20000000 0
11 20000000 -6 00200001||00200000 -3
12 20200001 -2 21202000||20202000 -3
13 21000008 -5 00210021||01200020 -5
14 20200049 -7 01202128||08202028 -6
15 21002200 -6 00010040||41000100 -8
16 A0002200||A8002A02 -3

log2
(

Pr(QK)
)

: -41 log2
(

Pr(QD)
)

: -57

Table 31: An incompatible trail for 21 rounds of SPECK128/256 with (∆l2,∆l1,∆l0,∆k0)=
(00500040000005A4, 0008000800000034, 4001400100010400, 0240014001000024).

Round Differential log2 Pr Differential log2 Prin Key in Data
0 0240014001000024 1248414801001224||100A000800001202
1 1000080008000000 -9 1008400800001200‖0002400000000002
2 A400500040000000 -6 1012404000000010||1000404000000000 -8
3 2002000200000000 -8 8410020000000000||0412000000000000 -8
4 001C001000000000 -6 2C90100000000000||0C00100000000000 -8
5 0000008000000000 -7 0400800000000000||6400000000000000 -9
6 0700040000000000 -4 E404000000000000||C404000000000003 -5
7 0000200000000000 -8 C06000000000001F||E040000000000001 -14
8 0001000000000000 -3 030000000000000F||0100000000000000 -15
9 0008000000000000 -3 0800000000000000||0000000000000000 -6
10 0000000000000000 -4 0000000000000000||0000000000000000 -1
11 0000000000000000 0 0000000000000000||0000000000000000 0
12 0000000000000000 0 0000000000000000||0000000000000000 0
13 0000400000000000 -1 0000000000000000||0000000000000000 0
14 0003C00000000000 -3 0000400000000000||0000400000000000 0
15 0000400000000000 -7 0002004000000000||0000004000000000 -4
16 0002404000000000 -2 0000424040000000||0000404040000000 -3
17 0010420000000000 -5 0002004200400000||0000024000400000 -5
18 0092404000000000 -7 0010424042404000||0010504040404000 -6
19 0400420040000000 -6 0082004200020040||0000824002000040 -10
20 2402504240000000 -5 4400424000000240||4404504010000040 -8
21 2042004010000042||0060824090000240 -12

log2
(

Pr(QK)
)

: -94 log2
(

Pr(QD)
)

: -122


	Introduction
	Our Contribution
	Outline

	Preliminaries
	Notations
	A brief description of SPECK
	A short description of SIMECK
	Rotational XOR(RX) cryptanalysis

	MILP-based method to identify incompatible difference trails
	Our approach

	Applications 
	Verifying the previous reported RX trails on SIMECK 
	Verifying the previous reported RX trails on SPECK 

	Searching compatible difference trails in block ciphers
	Application on SPECK family of block ciphers

	Conclusion
	RK-Differential trails of SPECK variants
	RK-Differential trails of SPECK32/64
	RK-Differential trails of SPECK48/96 
	RK-Differential trails of SPECK64/128
	RK-Differential trails of SPECK128/256

	Some of incompability RK-differential trails of SPECK variants
	Manual verification of one of the incompatible RKD trails

