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Abstract. We introduce a new primitive named Delay Encryption, and
give an efficient instantation based on isogenies of supersingular curves
and pairings. Delay Encryption is related to Time-lock Puzzles and Ver-
ifiable Delay Functions, and can be roughly described as “identity based
encryption with slow derived private key issuance”. It has several appli-
cations in distributed protocols, such as sealed bid Vickrey auctions and
electronic voting.

We give an instantiation of Delay Encryption by modifying Boneh and
Frankiln’s IBE scheme, where we replace the master secret key by a
long chain of isognies, as in the isogeny VDF of De Feo, Masson, Petit
and Sanso. Similarly to the isogeny-based VDF, our Delay Encryption
requires a trusted setup before parameters can be safely used; our trusted
setup is identical to that of the VDF, thus the same parameters can be
generated once and shared for many executions of both protocols, with
possibly different delay parameters.

We also discuss several topics around delay protocols based on isogenies
that were left untreated by De Feo et al., namely: distributed trusted
setup, watermarking, and implementations issues.

1 Introduction

The first appearance of delay cryptography was in Rivest, Shamir and Wag-
ner’s [25] Time-lock Puzzle, an encryption primitive where the holder of a trap-
door can encrypt (or decrypt) “fast”, but where anyone not knowing the trapdoor
can only decrypt (or encrypt) “slowly”.

Recently, a revival of delay cryptography has been promoted by research on
blockchains, in particular thanks to the introduction of Verifiable Delay Func-
tions (VDF') [2]: deterministic functions f that can only be evaluated “sequen-
tially” and “slowly”, but such that verifying that y = f(x) is “fast”.

After their definition, VDF's quickly gained attention, prompting two inde-
pendent solutions in the space of a few weeks [27,23]. Both proposals are based
on repeated squaring in groups of known order, and are similar in spirit to Rivest
et al.’s time-lock puzzle, however they use no trapdoor.

One year later, another VDF| based on a different algebraic structure, was
proposed by De Feo, Masson, Petit and Sanso [13]. This VDF uses chains of
supersingular isogenies as “sequential slow” functions, and pairings for efficient
verification. Interestingly, it is not known how to build a time-lock puzzle from
isogenies; in this work we introduce a new primitive, in some respects more
powerful than time-lock puzzles, that we are able to instantiate from isogenies.



Limitations of Time-lock puzzles. Time-lock puzzles allow one to “encrypt
to the future”, i.e., to create a puzzle 7 that encapsulates a message m for a set
amount of time T'. They have the following two properties:

— Puzzle generation is efficient: there exists an algorithm which, on input the
message m and the delay T, generates 7 in time much less than T

— Puazzle solving is predictably slow and sequential: on input m, the message
m can be recovered by a circuit of depth approximately T, and no a circuit
of depth less than T can recover m reliably.

Time-lock puzzles can be used to remove trusted parties from protocols,
replacing them with a time-consuming puzzle solving. Prototypical applications
are auctions and electronic voting, we will use auctions as a motivating example.

In a highest bidder auction, the easy solution in presence of a trusted au-
thority is to encrypt bids to the authority, who then decrypts all the bids and
selects the winner. Lacking a trusted authority, the standard solution is to divide
the auction in two phases: in the bidding phase all bidders commit to their bids
using a commitment; it the tallying phase bidders open their commitments, and
the highest bidder wins. However, this design has one flaw in contexts where it is
required that all bidders reveal their bids at the end of the auction. For example,
in Vickrey auctions, the highest bidder wins the auction, but only pays the price
of the second highest bid. If at the end of the auction some bidders refuse to
open their commitment, the result of the auction may be invalid.

Time-lock puzzles solve this problem: by having bidders encapsulate their
bid in a time-lock puzzle, it is guaranteed that all bids can be decrypted in the
tallying phase. However this solution becomes very expensive in large auctions,
because one puzzle per bidder must be solved: if several thousands of bidders
participate, the tallyers must strike a balance between running thousands of
puzzle solving computations in parallel, and having a tallying phase that is
a thousands times longer than the bidding phase. Since time-lock puzzles use
trapdoors for puzzle generation, a potential mitigation is to have the bidders
reveal their trapdoors in the tallying phase, thus speeding up decryption; however
this does not help in presence of a large number of uncollaborative bidders.

An elegant solution introduced in [22] is to use Homomorphic Time-lock Puz-
zles (HTLP), i.e., time-lock puzzles where the puzzles can be efficiently combined
homomorphically. Using these, the tallyers can efficiently evaluate the desired
tallying circuit on the unopen puzzles, and then run only a single slow puzzle-
solving algorithm. Unfortunately, the only efficient HTLPs introduced in [22] are
simply homomorphic (either additively or multiplicatively), and they are thus
only useful for voting; fully homomprphic TLPs, which are necessary for auc-
tions, are only known from indistinguishability obfuscation [16], and are thus
unpractical.

On top of that, it can be argued that time-lock puzzles are not the appropriate
primitive to solve the problem: why do the tallyers need to run one of two
different algorithms to open the puzzles? Are trapdoors really necessary. In this
work, we introduce a new primitive, Delay Encryption, that arguably solves the
problem more straightforwardly and elegantly.



Delay Encryption. Delay Encryption is related to both Time-lock puzzles and
VDFs, however it does not seem to be subsumed by either. It can be roughly
described as Identity Based Encryption (IBE) with sequential and slow derived
private key issuance. Recall that an IBE scheme is a public key encryption with
three parties: a dealer who possess a master private-public key-pair, a receiver
who has an identity that acts as its public key (e.g., its email address), and a
senders who wants to send a message to the receiver. In IBE, receivers get their
private keys from the dealer, who computes the private key associated to an iden-
tity using its master secret key; senders encrypt messages to the receivers using
both the master public key and the identity of the receiver; receivers decrypt
using the master public key and their private key.

In Delay Encryption there are no secrets. Receivers become sessions, with
an associated session identifier; it is important that session identifiers are un-
predictable, and are thrown away after the first use. The dealer is replaced by
a public functionality, that takes as input a session identifier and outputs a ses-
sion key; this functionality, named extraction, is guaranteed to be sequential and
slow. Senders encrypt messages to the sessions by using the public parameters,
and the identifier of the session. After extraction produces its output, everyone
can decrypt messages sent to the session using the session key.

Delay Encryption is different from known Time-lock puzzles in that it has no
trapdoor, and from VDFs in that it provides a fast encryption, rather than just
a fast verification. It has similar applications to Homomorphic time-lock puzzles,
it is however more efficient and solves problems more straightforwardly.

Applications of Delay Encryption. We already mentioned the two main
applications of Time-lock puzzles. We review here how Delay Encryption offers
better solutions.

Vickrey auctions. Sealed bid auctions are easily implemented with standard
commitments: in the bidding phase each bidder commits to its bid; later, in the
tallying phase each bidder opens their commitment. However this solution is
problematic when some bidders may refuse to open their commitments.

Delay Encryption provides a very natural solution: at the beginning of the
auction an auction id is selected using some unpredictable and unbiased random-
ness, e.g., coming from a randomness beacon. After the auction id is published,
all bidders encrypt to the auction as senders of a Delay Encryption scheme. In
the meantime, anyone can start computing the auction key using the extraction
functionality. When the auction key associated with the auction id is known,
anyone can decrypt all bids and check the winner.

Electronic voting. In electronic voting it is often required that the partial tally
of an election stays unknown until the end, to avoid influencing the outcome.

Delay Encryption again solves the problem elegantly: once the election id
is published, all voters can cast their ballot by encrypting under it. Only after
the election key is published, anyone can verify the outcome by decrypting the
ballots.



Of course this idea can be combined with classical techniques for anonymity,
integrity, etc.

In both applications it is evident that the session/auction/election id must be
unpredictable and unbiased: if it is not, someone may start computing the session
key before anyone else can, and thus break the delay property. Fortunately, this
requirement is easily satisfied by using randomness beacons, which, conveniently,
can be implemented using VDFs.

Plan. We start by defining Delay Encryption in Section 2, and give our instan-
tiation in Section 3. In the following sections, we discuss several topics related to
both Delay Encryption and VDF's from isogenies and pairings: Section 4 explains
how to efficiently implement the trusted setup, common to both our Delay en-
cryption and the isogeny based VDF, in a distributed manner; Section 5 covers
Watermarking, a mechanism to prove “ownership” of a “slow” computation; fi-
nally Section 6 discusses implementation details and challenges for isogeny based
delay functions.

2 Definitions

Our definition of Delay Encryption uses an API similar to a Key Encapsulation
Mechanism; the adaptation to a PKE-like API is straightforward. A Delay En-
cryption scheme consists of four algorithms: Setup, Extract, Encaps and Decaps:

Setup(\,T') — pp. Takes a security parameter X\, a delay parameter T, and pro-
duces a set of public parameters pp. Setup must run in time poly (A, T).
Extract(pp, id) — idk. Takes the public parameters pp and a session identifier
id € {0,1}*, and outputs a session key idk. Extract is expected to run in

time exactly T, see below.

Encaps(pp, id) — (¢, k). Takes the public parameters pp and a session identifier
id € {0,1}*, and outputs a ciphertext ¢ € C and a key k € K. Encaps must
run in time poly(\).

Decaps(pp, id, idk, c) — k. Takes the public parameters pp, a session identifier
id, a session key idk, a ciphertext ¢ € C, and outputs a key k € K. Decaps
must run in time poly ().

A Delay Encryption scheme is correct if for any pp = Setup(A, T') and any id
(c, Decaps(pp, id, idk, c)) = Encaps(pp, id),

whenever idk = Extract(pp, id). The security of Delay Encryption is defined simi-
larly to that of public key encryption schemes, and in particular of identity-based
ones; however one additional property is required of Extract: that for a randomly
selected identifier id, the probability that Extract outputs idk in time less than
T is negligible. We now give the formal definition.



The security game. It is apparent from the definitions that Delay Encryption
has no secrets: after public parameters pp are generated, anyone can run any of
the algorithms. Thus, the usual notion of indistinguishability will only be defined
with respect to the delay parameter T: no adversary is able to distinguish a key
k from a random string in time T — o(t), but anyone can in time 7. Properly
defining what is meant by “time” requires fixing a computation model. Here
we follow the usual convention from VDFs, and assume a model of parallel
computation: in this context, “time 77 may mean T steps of a parallel Turing
machine, or an arithmetic circuit of depth T. Crucially, we do not bound the
amount of parallelism of the Turing machine, or the breadth of the circuit, i.e.,
we focus on sequential delay functions.

We consider the following A-IND-CCA game. Note that the game involves
no oracles, owing to the fact that the scheme has no secrets.

Precomputation. The adversary receives pp as input, and outputs an algo-
rithm D.

Challenge. The challenger selects a random id and computes (¢, ko) < Encaps(pp, id).
It then picks a uniformly random k; € K, and a random bit b € {0,1}. Fi-
nally, it outputs (c, kp).

Guess. The algorithm D is run on input (c, ks, id). The adversary wins if D
terminates in time less than A, and the output is such that D(c, ky, id) = b.

We stress that the game is intrinsically non-adaptive, in the sense that no
computation is “free” after the adversary has seen the challenge.

We say a Delay Encryption scheme is A-Delay Indistinguishable under Cho-
sen Ciphertext Attacks if, for any efficient adversary running the precomputation
in time poly(A, T), the probability of winning the game is negligible. Obviously,
the interesting schemes are those where A =T — o(T).

3 Delay Encryption from isogenies and pairings

We instantiate Delay Encryption from the same framework De Feo, Masson,
Petit and Sanso used to instantiate Verifiable Delay Functions [13]. We briefly
recall it here for completeness.

An elliptic curve E over a finite field IF,» is said to be supersingular if the trace
of its Frobenius endomorphism is divisible by p, i.e., if #E(Fpn) = 1 mod p.
Over the algebraic closure of F,, there is only a finite number of isomorphism
classes of supersingular curves, and every class contains a curve defined over IF,,..

An isogeny is a group morphism of elliptic curves with finite kernel. In partic-
ular, isogenies preserve the group order of elliptic curves, and thus they preserve
supersingularity. Isogenies can be represented by ratios of polynomials, and, like
polynomials, have a degree. Isogenies of degree ¢ are also called ¢-isogenies; the
degree is multiplicative with respect to composition, thus deg ¢ot) = deg ¢p-deg 1.
The degree is an important invariant of isogenies, roughly measuring the amount
of information needed to represent them.



An isogeny graph is a graph whose vertices are isomorphism classes of elliptic
curves, and whose edges are isogenies, under some restrictions. Isogeny-based
cryptography mainly uses two types of isogeny graphs:

— The full supersingular graph of Fj,, whose vertices are all isomorphism classes
of supersingular curves over F)2, and whose edges are all isogenies of a prime
degree ¢; typically ¢ = 2, 3.

— The Fp-restricted supersingular graph, or supersingular CM graph of Fp,
whose vertices are all Fy-isomorphism classes of supersingular curves over
F,, and whose edges are /-isogenies for all primes ¢ up to some bound; typ-
ically ¢ < Alog A, where A is the security parameter.

Any f-isogeny ¢ : E — E’ has a unique dual f-isogeny ¢3 : B/ — E such that

en(¢(P), Q) = ey(P.4(Q)), (1)

for any integer N and any points P € E[N], Q € E’[N], where e is the Weil
pairing on E, and e’ the one on E’. The same equation, with the same gZ;, also
holds for any other known pairing, such as the Tate and Ate pairings.

The framework of De Feo et al. uses chains of small degree isogenies as
delay functions, and the pairing equation (1) as an efficient means to verify
the computation. Formally, they propose two related instantiations of VDF,
following the same pattern: they both use the same base field [F),, where p is a
prime of the form p+ 1 = N - f, chosen so that discrete logarithms in the group
of N-th roots of unity in F,2 (the target group of the pairing) are hard (i.e.,

N~ 22 and p ~ 2’\3). They have a common trusted setup, independent of the
delay parameter, and the usual functionalities of a VDF:

Trusted setup selects a random supersingular elliptic curve E over [Fp.
Setup takes as input p, N, F, a delay parameter T, and performs a walk in an

¢-isogeny graph to produce a degree ¢7 isogeny ¢ : E — E'.

It also computes a point P € F of order N. It outputs ¢, E’, P, $(P).
Evaluation takes as input a random point @ € E’[N] and outputs (;AS(Q)
Verification uses Eq. (1) to check that the value output by evaluation is QAS(Q)

as claimed.

The two variants only differ in the way the isogeny walk is set up, and in
minor details of the verification; these differences will be irrelevant to us.

The delay property of this VDF rests, roughly speaking, on the assumption
that a chain of T isogenies of small prime degree ¢ cannot be computed more
efficiently than by going through each of the isogenies one at a time, sequentially.
The case £ = 2 is very similar to repeated squaring in groups of unknown order as
used by other VDF's [27,23] and time-lock puzzles [25]: in the latter one iterates
T times the function z — 2, a polynomial of degree 2; in the former one iterates
rational fractions of degree 2. See Section 6 for more details.

It is important to remark that both setup and evaluation in these VDFs
are “slow” algorithms, indeed both need to evaluate an isogeny chain (either



¢, or (;Aﬁ) at one input point of order NV; this is in stark contrast with VDFs
based on groups of unknown order, where the setup, and thus its complexity, is
independent on the delay parameter T'.

3.1 Instantiation

The isogeny-based VDF of De Feo et al. can be understood as a modification on
the Boneh-Lynn—Shacham [5] signature scheme, where the secret key is replaced
by a long chain of isogenies: signing becomes a “slow” operation and thus realizes
the evaluation function, whereas verification stays efficient.

Similarly, we obtain a Delay Encryption scheme by modifying the IBE scheme
of Boneh and Franklin [3]: the master secret is replaced by a long chain of
isogenies, while session identifiers play the role of identities, so that producing
the decryption key for a given identity becomes a slow operation.

Concretely, setup is identical to that of the VDF. A prime of the form p =
4-N - f—1is fixed according to the security parameter, then setup is actually
split into two algorithms: a TrustedSetup independent of the delay parameter T’
and reusable for arbitrarily many untrusted setups, and a Setup which depends
on 7.

TrustedSetup()). Generate a nearly uniformly random supersingular curve E/F,
by starting from the curve y?> = 3 + 2 and performing a random walk in
the IF,-restricted supersingular graph. Output E.

Setup(E,T).

1. Perform an f-isogeny walk ¢ : E — E’ of length T;
2. Select a random point P € E(IF,) of order N, and compute ¢(P);
3. Output E', ¢, P, ¢(P).

We stress that known homomorphic time-lock puzzles [22] also require a
one-shot trusted setup. Furthermore, unlike constructions based on groups of
unknown order, there is no evidence that trusted setup is unavoidable for isogeny-
based delay functions, and indeed removing this trusted setup is an active area
of research [9,21].

The isogeny chain ¢ in Setup can be generated by any of the two methods
proposed by De Feo et al., the difference will be immaterial for Delay Encryption;
as discussed in [13], a (deterministic) walk limited to curves and isogenies defined
over ), will be more efficient, however a generic (pseudorandom) walk over F 2
will offer some partial protection against quantum attacks.

Before defining the other routines, we need two hash functions. The first,
H; : {0,1}* — E’[N], will be used to hash session identifiers to points of order
N in E'/F,. (although the curve E’ may be defined over F,). The second,
Hy :F,e — {0,1}*, will be a key derivation function.

Extract(E, E', ¢,id).
1. Let Q = Hy(id);
2. Output gﬁ(Q)



Encaps(E, E', P, ¢(P),id).
1. Select a uniformly random r € Z/NZ;
2. Let Q = Hy(id);
3. Let k = ey (o(P),Q)";
4. Output (rP, Hy(k)).
Decaps(E, E', (Q),rP).
1. Let k = en(rP,$(Q)).
2. Output Hy(k).

Correctness of the scheme follows immediately from Eq. (1) and the bilinear-
ity of the pairing.

Remark 1. Notice that two hashed identities ), Q' such that Q — Q' € (P) are
equivalent for encapsulation and decapsulation purposes, and thus an adversary
only needs to compute the image of one of them under (;3 However, thanks to
Hy, the probability of two identities colliding remains negligible (about 1/N).

Alternatively, if E' is defined over F),, one can restrict the image of H; to the
subgroup of E'[N] annihilated by m+1, where 7 is the Frobenius endomorphsim,
like in [13].

3.2 Security

The standard security hypothesis for isogeny-based delay schemes is the A-
hardness of the isogeny shortcut game [13]:

Precomputation. The adversary receives N, p, E, E’, ¢, and outputs an algo-
rithm S (in time poly (A, 7).

Challenge. The challenger outputs a uniformly random @ € E'[N].

Guess. The algorithm & is run on input ). The adversary wins if S terminates
in time less than A, and S(Q) = ¢(Q).

Unfortunately, it seems challenging to reduce A-IND-CCA security of our
Delay Encryption scheme to some A’-hardness of an isogeny shortcut game.
Indeed, even given a more powerful adversary that is able to correctly compute
k= en(rP,¢(Q)) in time A from the knowledge or Q and rP, it is not clear
how to efficiently extract the value of <ZA)(Q) from k, as this would amount to
efficiently solving a pairing inversion problem.

It is clear that the isogeny shortcut models a weaker notion of security for
Delay Encryption, one that states that it is hard to produce the output of Extract
in time less than A, however this is obviously insufficient to guarantee A’-IND-
CCA, as an alternative way to compute the key k is to evaluate ¢(rP) and
compute k = ey (¢(rP), Q). In practice, computing ¢(rP) is expected to be at
least as “slow” as computing gZA)(Q)7 however this idea is not captured by the
isogeny shortcut game; and, even then, that would not exclude other ways to
win the A-IND-CCA game, without the ability to extract ¢(rP) or ¢(Q) from
a successful adversary.



Replacing the isogeny shortcut game with a decision problem would not
help either, owing to the usual obstacle of decision problems being easy for
pairings; indeed, the decision version of the shortcut game is easily decided by
the verification procedure of the VDF mentioned above.

Faced with this difficulty, we simply chose to not provide a security proof,
and leave the search for meaningful security reductions for future work.

Attacks. We now shift our attention to attacks. As discussed in [13], there are
three types of known attacks: shortcut attacks, discrete logarithm attacks, and
attacks on the computation.

Parameters for a Delay Encryption scheme must be chosen so that all known
attacks have exponential difficulty in the security parameter A. Given that (total)
attacks successfully compute decapsulation in exponential time in A, it is evident
that the delay parameter T' must grow at most subexponentially in .

Shortcut attacks aim at computing a shorter path ¢ : F — E’ in the isogeny
graph from the knowledge of ¢ : E — E’. The name should not be confused with
the isogeny shortcut game described above, as shortcut attacks are only one of
the possible ways to beat the game.

De Feo et al. show that shortcut attacks are possible when the endomorphism
ring of at least one of E or E’ is known. Indeed, in this case, the isogeny ¢ can be
translated to an ideal class in the endomorphism ring, then smoothing techniques
similar to [20] let us convert the ideal to one of smaller norm, and finally to an
isogeny ¢ : E — E’ of smaller degree.

The only way out of these attacks is to select the starting curve E as a
uniformly random supersingular curve over F,, then no efficient algorithm is
known to compute End(E), nor End(E’). Unfortunately, the only way we cur-
rently know to sample nearly uniformly in the supersingular class over F,, is to
(paraphrasing) choose the endomorphism ring first, and then compute E given
End(E).

Thus, the solution put forth in [13] is to generate the starting curve E via a
trusted setup, that first selects End(E), and then outputs E and throws away
the information about its endomorphism ring. We stress that, given a random
supersingular curve E, computing End(F) is a well known hard problem, upon
which almost most of isogeny-based cryptography is founded. We explain in the
next section how to mitigate the inconvenience of having a trusted setup, using
a distributed protocol.

As stressed in [13], there is no evidence that “hashing” in the supersingular
class, i.e., sampling nearly uniformly without gaining knowledge of the endomor-
phism ring, should be a hard problem. But there is no evidence it should be easy
either, and several attempts have failed already [9,21].

Another possibility hinted at in [13] would be to generate ordinary pairing
friendly curves with large isogeny class, as the shortcut attack is then thwarted
by the difficulty of computing the order of the class group of the endomorphism
ring. However this possibly seems an even harder problem than hashing to the
supersingular class.



Discrete logarithm attacks compute é(Q) by directly solving the pairing equa-
tion (1). In our case, we can even directly attack the key encapsulation. In-
deed, knowing r P, we obtain r through a discrete logarithm, and then compute
k= el (6(P), Q)"

Thanks to the efficiently computable pairing, the discrete logarithm can actu-
ally be solved in Fj>, which motivates taking p, N large enough to resist discrete
logarithm computations. Obviously, this also shows that our scheme is easily bro-
ken by quantum computers. See [13], however, for a discussion of how a setup
with pseudo-random walks over [Fj2 resists quantum attacks in a world where
quantum computers are available, but much more expensive than classical ones.

Attacks on the computation do not seek to deviate from the description of the
protocol, but simply try to speed up Extract beyond the way officially prescribed
by the scheme. In this sort of attacks, the adversary may be given more resources
than the legitimate user: for example, it may be allowed a very large precompu-
tation, or it may dispose of an unbounded amount of parallelism, or it may have
access to an architecture not available to the user (e.g., a quantum computer).

These attacks are the most challenging to analyze, because standard com-
plexity-theoretical techniques are of little help here. On some level, this goal
is unachievable: given a sufficiently abstract computational model, and a suf-
ficiently powerful adversary, any scheme is broken. For example, an adversary
may precompute all possible pairs (Q, é(Q)) and store them in a O(1)-accessible
RAM, then extraction amounts to a table lookup. However, such an adversary
with exponential precomputation, exponential storage, and constant time RAM
is easily dismissed as unreasonable. More subtle trade-offs between precompu-
tation, storage and efficiency can be obtained, like, for example, RNS-based
techniques to attack group-based VDF's [19], although the real impact of these
theoretical algorithms has yet to be determined.

In practice, a pragmatic approach to address attacks on the computation is
to massively invest in highly specialized hardware development to evaluate the
“sequential and slow” function quickly, and then produce the best designs at
scale, so that they are available to anyone who wants to run the extraction. This
is the philosophy of the competitions organized by Ethereum [26] and Chia [18],
targeting, respectively, the RSA based VDF and the class group based VDF.

We explore this topic more in detail in Section 6.

4 Distributed trusted setup

Trusted setup is an obvious annoyance to distributed protocols. A way to miti-
gate this negative impact is to distribute trust over several participants, ensuring
through a multi-party computation that, if at least one participant is honest,
then the setup can be trusted.

Ethereum is notoriously investing in the RSA-based VDF with Wesolowski’s
proof [26,27], which is known to require a trusted setup. To generate parameters,
the Ethereum network will need to run a distributed RSA modulus generation,



for which all available techniques essentially trace back to the work of Boneh
and Franklin [4].

Distributed RSA modulus generation is notoriously a difficult task: the cost
is relatively high, and scales badly with the number of participants. Worse still,
specialized hardware for the delay function must be designed specifically for the
generated modulus, which means that little design can be done prior to the
distributed generation, and that if the distributed generation is then found to
be rigged, a new round of distributed-generation-then-design is needed.

On the contrary, distributed parameter generation for our Delay Encryption
candidate, or for the isogeny based VDF, is extremely easy. The participants
start from a well known supersingular curve with known endomorphism ring,
e.g., Ey : y> = 2% — x, and repeat, each at its own turn, the following steps:

1. Participant i checks all zero-knowledge proofs published by participants that
preceded them;

2. They perform a pseudorandom 1; : F;_1 — E; walk of length clog(p) in the
[F)-restricted supersingular graph;

3. They publish FE;, and a zero-knowledge proof that they know an isogeny
1/) ki1 — E;.

The constant c¢ is to be determined as a function of the expansion properties
of the isogeny graph, and is meant to be large enough to ensure nearly uniform
mixing of the walk. In practice, this constant is usually small, say ¢ < 10,
implying that each participant needs to evaluate a few thousands isogenies, a
computation that is expected to take in the order of seconds [8].

The setup is clearly secure as long as at least one participant is honest. Indeed
it is well known that computing a path from F; to Ejy is equivalent to computing
the endomorphism ring of F; [20,14], and, since E; is nearly uniformly distributed
in the supersingular graph, the dishonest participants have no advantage in
solving this problem compared to a generic attacker.

This distributed computation scales linearly with the number of participants,
each participant needing to check the proofs of the previous ones. It can be left
running for a long period of time, allowing many participants to contribute
trust without any need for prior registration. More importantly, it is updatable,
meaning that after the distributed generation is complete, the final curve E can
be used as the starting point for a new distributed trusted setup. This way the
trusted setup can be updated regularly, building upon the trust accumulated in
previous distributed generations.

Compared with the trusted setup for RSA, the outcome of the setup is much
less critical for the design of hardware. Indeed, the primes p, N can be publicly
chosen in advance, and hardware can be designed for them before the trusted
setup is performed. The trusted curve E only impacts the first few steps of the
“slow” isogeny walk ¢ : E — E’ generated by the untrusted setup, and can
easily be integrated in the hardware design at a later stage.



4.1 Proofs of isogeny knowledge

We take a closer look at the last step each participant takes in the trusted setup:
the proof of isogeny knowledge. Ignoring zero-knowledge temporarily, Eq. (1) al-
ready provides a proof of knowledge of an isogeny ¥; : E;_1 — FE;, and implicitly
of its dual 1[)1 : E; — E;_1. We can instantiate this proof as follows:

1. Hash the curves F;_ 1, E; to a pair of points P € E;_{[(N,7 —1)], Q €
E(N, 7+ 1)

Then verification consists of simply:

1. Compute P,Q « H(E;_1, FE;),
2. Check that ¢;(P) € E;[(N, 7 —1)] and 3(Q) € E;_1[(N, 7 +1)];
3. Check that e} (¢;(P), Q) = ek (P, Pi—1(Q)).

This proof is compact, requiring only two elements of IF),, and efficient because
computing m(P)Mﬁi(Q) only adds a small overhead to the computation of ;,
and verification takes essentially two pairing computations. It is not however
zero-knowledge because ¢;(P) and 1@(@), and even the pairing values, leak some
information on ;, and thus the security of the trusted setup stands on a less
firm ground.

We turn this into a zero-knowledge proof easily enough however: we need two
additional independent points P’, Q" + Hs(E;_1, E;) with P’ € E;[(N, 7 — 1))
and Q' € E;_1[(N,7 + 1)]. We now choose x,y secret and publish a NIZK for
(z,y) satisfying

en (X, Qe ' (P,Q) = et | (P.Y)ey (P, Q)"
More precisely, we publish:

— two Pedersen commitments X = zP’' 4+ ¢;(P) € E;[((N,7 —1)] and Y =
yQ' +v:(Q) € Ei 1[(N, 7 +1)], ‘

— two public keys Y/ = €'y (P, Q") and X' = e} (P',Q)", and

— two Schnorr proofs of knowledge (c, sx, sy) for z in X" and y in Y’ over the
base points eﬁv_l(P, Q') and €'y (P, Q’), respectively.

At this point, our verifier now checks

— eN(X, QY = e (PY)X,
— non-triviality X’ # e(X, Q) and Y’ # e(P,Y) of the commitments, and
— the proof

c=H(ey (P,Q")|len (P, Q)IX'|[Y[(X") ey (P, Q) > (V') el (P, Q)™).

In this, we ask verifiers to compute four parings, which only doubles the verifier
time.

We establish with the proof of knowledge that X’ and Y’ have the desired
form, assuming CDH in the target group G C F,2, and modeling H, Hy, H>



as random oracles. We then apply the non-triviality check to deduce that some
such X —xP" = ¢;(P) € E[(N,m—1)] and Y —yQ" = ¢i(Q) € E; 1 [(N, 7 +1)]
exist, thanks to the strong bilinear Diffie-Hellman assumption (SBDH) [17]. Tt
now follows from bilinearity that ek (X, Q)Y’ = e’ ' (P,Y)X’, as desired.

We learn nothing about X and Y except for this pairing equation because
Pedersen commitments are perfectly blinding and the Schnorr proof is zero-
knowledge in the ROM.

For completeness, we also mention some other tools with which one might
prove knowledge of this isogeny in zero knowledge, although none seem to be
competitive with the technique above.

First, there exists a rapidly expanding SNARK toolbox from which one could
preform F, arithmetic inside the SNARK to check the verification conditions 2
and 3 directly. As instantiating the delay function imposes restrictions on p, one
cannot necessarily select p using the Cocks-Pinch method to provide a pairing
friendly elliptic curve with group order p, like in [6]. There are optimisations for
arithmetic in arbitrary F, however, especially using polynomial commitments,
like in [15].

Second, there are well known post-quantum isogenies based proofs:

SIDH-style proofs [12] are very inconvenient, because they require primes of
a specific form, and severely limit the length of pseudo-random walks. On
top of that, they are very inefficient, and do not have perfect zero-knowledge.

SeaSign-style proofs [11] have sizes in the hundred of kilobytes, and their
generation and verification are extremely slow (dozens of hours). Note that
several of the optimizations used for signatures, including the class group
order precomputation of CSI-FiSh [1], are not available in this context. More
research on the optimization of SeaSign-style proofs for this specific context
would be welcome.

5 Watermarking

A common requirement in cryptocurrencies is to be able to reward participants
who spend resources to compute the delay function, be it in the context of a
VDF or a Delay Encryption. Wesolowski [27] introduced the concept of proof
watermarking, i.e., attaching the proof of a VDF evaluation to an identity, so
that the ownership of the proof cannot be usurped without performing essentially
the same work as evaluating the VDF normally.

In the context of isogeny based VDF's, or of extraction in Delay Encryption,
this is a meaningless concept, because there is simply no proof to watermark.
Nevertheless, it is possible to attach a watermark to the output of the delay
function, which gives evidence that the owner of the watermark spent an amount
of effort comparable to legitimately computing the output. The idea is to publish
a mid-point update on the progress of the evaluation, and attach this mid-point
to the identity of the evaluator.

Concretely, given parameters ¢ : E — E’ and (P, ¢(P)), the isogeny walk is
split into two halves of equal size ¢1 : E — FEniq and ¢o : Enjq — E’ so that



¢ = ¢2 0 @1, and ¢1(P) is added to the public parameters. Each evaluator then
generates a secret key s € Z/NZ and a public key s¢;(P). When evaluating
¢ = b1 0 ¢ at a point Q € E'[N], the evaluator:

1. Computes Qmiq = 92;2(@),
2. Computes and publishes sQumid,

3. Finishes off the computation by computing ¢(Q) = ¢1(Qmid)-

A watermark can then be verified by checking that
N(1(P), 5Quia) = e (s6(P), Q).

Interestingly, this proof is blind, meaning that it can be verified even before the
work is finished.

Given (/S(Q), a usurper wanting to claim the computation for themselves
would need to either start from Q and compute ¢o (@), or start from ngS(Q) and

compute d):i(d)(Q)) Either way, they would perform at least half as much work as
if they had legitimately evaluated the function.

As described here, it is possible, nevertheless, for a usurper to target a specific
evaluator, by generating a random w € Z/NZ, and choosing us¢; (P) as public
key. Then, any proof sQumiq for the legitimate evaluator is easily transformed to
a proof usQmiq for the usurper. This attack is easily countered by having all
evaluators publish a zero-knowledge proof of knowledge of their secret exponent
s, along with their public key s¢q(P).

6 Challenges in implementing isogeny-based delay
functions

For a delay function to be useful, there need to be convincing arguments as
to why the evaluation cannot be performed considerably better than with the
legitimate algorithm.

In this sense, repeated squaring modulo an RSA modulus is especially appeal-
ing: modular arithmetic has been studied for a long time, and we are reasonably
confident that we know all useful algorithms and hardware in this respect; and
the repeated application of the function x — 2 is so simple that one may hope
no better algorithm exists (see [19], though).

Repeated squaring in class groups, already, raises more skepticism, as the
arithmetic of class groups is a much less studied area. This clearly had an impact
on Ethereum’s choice to go with RSA-based VDFs, despite class group based
ones not needing a trusted setup.

For isogeny based delay functions, we argue that the degree of assurance
seems to be nearly as good as for RSA based ones, although more research is
certainly needed. To support this claim, we give here more details on the way
the evaluation of v is performed, that were omitted by [13].

For a start, we must choose a prime degree . Intuitively, the smaller, the
better, thus we shall fix £ = 2, although ¢ = 3 also deserves to be studied. A



2-isogeny is represented by rational maps of degree 2, thus we expect one isogeny
evaluation to require at least one multiplication modulo p. Our goal is to get as
close as possible to this lower bound, by choosing the best representation for the
elliptic curves, their points, and their isogenies.

It is customary in isogeny based cryptography to use curves in Montgomery
form, and projective points in (X : Z) coordinates, as these give the best formulas
for arithmetic operations and isogenies [10,24]. Montgomery curves satisfy the
equation

E : > =2+ A2® +x,

in particular they have a point of order two in (0,0), and two other points of
order two with z-coordinates o and 1/, where « is a root of the polynomial
22+ Ax+1, and possibly lives in IF2. These three points define the three possible
isogenies of degree 2 starting from E. Montgomery form is almost unique, there
being only six possible choices for the A coefficient for a given isomorphism class,
corresponding to the three possible choices for the point to send in (0,0) (each
taken twice).

In our case, all three points (in projective coordinates) (0 : 1), (o : 1) and
(1: @), are defined over F,,, we thus choose to distinguish one additional point
by writing the curves as

By v =x(zx—a)(z—1/a),

with a # 0, £1. We call this a semi-Montgomery form; although it is technically
equivalent to the Montgomery form, 2-isogeny formulas are expressed in it more
easily. Recovering the Montgomery form is easy via A = —a — 1/a.

Using the formula of Renes [24], we readily get the isogeny with kernel gen-

erated by (o : 1) as
¢Oé(x’y)<xma1"")’ (2)

r—«

and its image curve is the Montgomery curve defined by A = 2 — 4a2. By
comparing with the multiplication-by-2 map on F,, we obtain the dual map to

é as
ot = (LR, 3)

dax

It is clear from this formula that the kernel of ¢, is generated by (0,0).
This formula is especially interesting, as we verify that its projective version
in (X : Z) coordinates only requires 2 multiplications and 1 squaring;:

$a(X:2)= (X +2)*: 40X 2), (4)
and the squaring can be performed in parallel with one multiplication. The

analogous formulas for ¢/, are readily obtained by replacing o — 1/c in the
previous ones, and moving around projective coefficients to minimize work.



But, if we want to chain 2-isogenies, we need a way to compute the semi-
Montgomery form of the image curve. For the given A = 4a? — 2, direct calcu-
lation shows that the two possible choices are

o/:2a<oz:i:\/oz271)flz(a:t\/Ofol))Q. (5)

As we know that (0,0) generates the dual isogeny to ¢, neither choice of o’
will define a backtracking walk. Interestingly, Catryck and Decru [7] show that
when p =7 mod 8, if a € F,,, ¢, is a horizontal isogeny (see definition in [7]),

and o' is defined as
2
o = (a—|— Va2 — 1))

where va? — 1 denotes the principal square root, then o € F,, and ¢, is hor-
izontal too. This gives a very simple algorithm to perform a non-backtracking
2-isogeny walk staying in the IFp-restricted isogeny graph, i.e., a walk on the
2-crater. Alternatively, if a pseudo-random walk in the full supersingular graph
is wanted, one simply takes a random square root of a? — 1.

Using these formulas, the isogeny walk ¢ : E — E’ is simply represented by
the list of coefficients o encountered, and the evaluation of ngS using Formula (4)
costs 2 multiplications and 1 parallel squaring per isogeny.

Implementation challenges. Following the recommendations of [13], for a
128-bits security level we need to choose a prime p of around 1500 bits, which
is comparable to the 2048-bits RSA arithmetic targeted by Ethereum, although
possibly open to optimizations for special primes.

In software, the latency of multiplication modulo such a prime is today
around 1lus. The winner of the Ethereum FPGA competition [26], achieved a
latency of 25ns for 2048-bits RSA arithmetic. Assuming a pessimistic baseline of
50ns for one 2-isogeny evaluation, for a target delay of 1 hour we need an isogeny
walk of length ~ 7 - 10'°. That represents as many coefficients « to store, each
occupying = 1500 bits, i.e., =~ 16TiB of storage!

We stress that only evaluators need to store that much information, however
any FPGA design for isogeny-based delay functions must take this constraint
into account, and provide fast storage with throughputs of the order of several
GiB/s.

At present, we do not know any configuration that pushes these 2-isogeny
computations into being memory bandwidth bound. In fact, computational ad-
versaries only begin encountering current DRAM and CPU bus limits when
going an order of magnitude faster than the hypothetical high speeds above.

An isogeny-based VDF could dramatically reduce storage requirements by
doing repeated shorter evaluations, and simply hashing each output to be the
input for the next evaluation. We sacrifice verifier time by doing so, but verifiers
remain fast since they still only compute two pairings. We caution however that
this trick does not apply to Delay Encryption.



In [13], De Feo et al. describe an alternative implementation that divides the
required storage by a factor of 1244, at the cost of slowing down evaluation by a
factor of at least log,(1244). Unfortunately this trade-off seems unacceptable for
applications where the evaluator wants to get to the result as quickly as possible.

It would be very interesting to find compact representations of very long
isogeny chains which do not come at the expense of efficiently evaluating them.

Optimality Formula (4) is, intuitively, almost optimal, as we expect that a
2-isogeny in projective (X : Z) coordinates should require at least 2 multipli-
cations. And indeed we know of at least one case where a 2-isogeny can be
evaluated with 2 parallel multiplications: the isogeny of kernel (0 : 1) is given by

we) = (), (6)

x
or, in projective coordinates,
60(X : Z) = (X - 2)?: X2), (7)

which only requires one parallel multiplication and squaring.

We tried to construct elliptic curve models and isogeny formulas that could
evaluate 2-isogeny chains using only 2 parallel multiplications per step, however
any formula we could find had a coefficient similar to « intervene in it, and thus
bring the cost up by at least one multiplication.

Intuitively, this is expected: there are exponentially many isogeny walks,
and the coeflicients a must necessarily intervene in the formulas to distinguish
between them. However this is far from being a proof. Even proving a lower
bound of 2 parallel multiplications seems hard.

It would be interesting to prove that any 2-isogeny chain needs at least 2
sequential multiplications for evaluation, or alternatively find a better way to
represent and evaluate isogeny chains.

7 Conclusion

We introduced a new time delay primitive, named Delay Encryption, related to
Time-lock Puzzles and Verifiable Delay Functions. Delay Encryption has some
interesting applications such as sealed-bid auctions and electronic voting. We
gave an instantiation of Delay Encryption using isogenies of supersingular curves
and pairings, and discussed several related topics that also apply to the VDF of
De Feo, Masson, Petit and Sanso.

Several interesting questions are raised by our work. For example, while the
security definition for Delay Encryption is natural, we were not able to provide
a meaningful security reduction for our instantiation. It would be interesting to
explore modifications to the scheme that lead to a meaningful security proof.

Like the isogeny-based VDF, our Delay Encryption requires a trusted setup.
We described an efficient way to perform a distributed trusted setup, however
more research is needed for putting this into practice.



The implementation of delay functions from isogenies presents several prac-
tical challenges, such as needing very large storage for the public parameters. On
top of that, it is not evident how to prove the optimality of isogenies formulas
used for evaluating the delay function. While we gave here extremely efficient
formulas, these seem to be at least one multiplication more expensive than the
theoretical optimum. More research on the arithmetic of elliptic curves best
adapted to work with extremely long chains of isogenies is needed.

Finally, we invite the community to look for more constructions of Delay
Encryption, in particular quantum-resistant ones.
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