
About Blockchain Interoperability

Pascal Lafourcade1 and Marius Lombard-Platet2,3

1Université Clermont-Auvergne, LIMOS CNRS UMR 6158,
Aubière, France

2Département d’informatique de l’ENS, École normale supérieure,
CNRS, PSL Research University, Paris, France

3Be-Studys, Geneva, Switzerland

Abstract

A blockchain is designed to be a self-sufficient decentralised ledger: a
peer verifying the validity of past transactions only needs to download
the blockchain (the ledger) and nothing else. However, it might be of
interest to make two different blockchains interoperable, i.e., to allow one
to transmit information from one blockchain to another blockchain. In
this paper, we give a formalisation of this problem, and we prove that
blockchain interoperability is impossible according to the classical defini-
tion of a blockchain. Under a weaker definition of blockchain, we demon-
strate that two blockchains are interoperable is equivalent to creating a
‘2-in-1’ blockchain containing both ledgers, thus limiting the theoretical
interest of making interoperable blockchains in the first place. We also ob-
serve that all practical existing interoperable blockchain frameworks work
indeed by exchanging already created tokens between two blockchains and
not by offering the possibility to transfer tokens from one blockchain to
another one, which implies a modification of the balance of total created
tokens on both blockchains. It confirms that having interoperability is
only possible by creating a ‘2-in-1’ blockchain containing both ledgers.

Keywords: Decentralized ledger, interoperability

1 Introduction

Blockchain was first introduced in 2008 by Nakamoto in [1]. In their paper,
the anonymous author(s) described the first decentralised ledger: a database in
which anyone can write, and that is not controlled by a single or a conglomerate
of identities. Since then, many other blockchains have been described: Ethereum
[2], Ripple [3] and many others. In May 2019, 248 active blockchains were listed
on [4].

While many different blockchains exist, there is no direct way of reaching
interoperability, at least without a trusted third party. Consider for instance a

1

client willing to convert their Bitcoins to Ether: they would need to consume the
amount of Bitcoins they wants to convert and to generate the equivalent amount
of Ether. While Bitcoin consumption may be reachable (by sending coins to a
non-existing address, such as the address 0), it is impossible to spontaneously
generate Ether (or any other kind of cryptocurrency). For now, the problem is
solved with the help of trusted brokers (also called escrows), even though other
solutions are on their way [5, 6].

The issue of interoperability is solved in some cases, like ”atomic exchanges”
and hash-locking [7], in which game theory ensures that a broker only benefits
when following the protocol. However the question of trustless interoperability
in the general context remains open.

Contributions We introduce a theoretical background to blockchain inter-
operability, providing a formal definition of a blockchain and of interoperabil-
ity. We then prove that, by definition, interoperability between two public
blockchains is impossible. However, we contend that there may be special con-
ditions under which two blockchains can be interoperable. This leads us to prove
the equivalence between two interoperable public blockchains and a ledger em-
ulating both blockchains on two separate registries.

Related Work The concept of sidechains (a sidechain is a blockchain attached
to another blockchain, with exchanges possible between the two blockchains) has
been explored in [8]. The authors describe a two-way peg in which a sidechain is
fed with an SPV proof, a short proof of the transaction allowing for lightweight
clients. The sidechain plays the role of a lightweight client, and can thus allow
subsequent operations following the SPV proof. However, this pegging system
requires a contest period, during which it is assumed that people will verify
that the SPV proof does not come from a fork. Hence, additional trust is
required in this model. In a paper from 2016 [7], Buterin lists ways of reaching
interoperability, and focuses on trusted inter-chains exchanges, where one sends
money on blockchain A and receives some in blockchain B.

Similarly, the Interledger protocol [6] (ILP) allows one to automatize money
transfers while leveraging the risk of fraud, thanks to micro-transactions. Yet,
ILP is more about escrow synchronization than interoperability as we define
it later on. In an ILP transaction from blockchain A to blockchain B, one
must find an escrow having enough money on B (or several escrows having in
total enough money), so the transfer can occur. More generally, we consider
that interoperability can for instance allow money to ‘disappear’ from A and to
‘reappear’ on B, without the need for trusted escrows.

Interoperability has been notably implemented in the blockchain network
Kadena [9], in which transfers from one blockchain of the network to another
is possible. The money is destroyed on one side and generated on the other.
Kadena also uses smart contracts for securing escrow transfer. However, there
is no indication that Kadena can operate with chains outside of their specific
network. So in our terminology, we say that Kadena is a ”N-in-1 blockchain”,

2

which is to say one blockchain, with several ledgers.
To the best of our knowledge, no theoretical work on interoperability has

been done to date. Our work, rather than giving a practical implementation
of an interoperable blockchain, gives a theoretical background to the topic, and
explores the conceptual meaning of having interoperable blockchains.

Outline In the next section, we formally define a blockchain and interoperabil-
ity. In Section 3, we prove that it is impossible by design to have interoperability
between blockchains. In Section 4, we show that interoperability is possible with
a weaker definition of the blockchain. Before concluding, in Section 5, we prove
that interoperability is equivalent to having a blockchain with two ledgers.

2 Preliminaries

Sets and tuples are noted in calligraphic font: A, algorithms in serif: Mine.
When a deterministic algorithm, say Algorithm, returns some value x from some
input i, we use the notation x ← Algorithm(i). If Algorithm is randomised, we

use the notation x
$←− Algorithm(i). A list of elements e1, . . . , en (in this order)

is represented by [e1, . . . , en]. We denote concatenation of two lists a and b with
a‖b. The set of elements belonging to A but not to B is noted A\B (this set is
also called the difference of A and B.)

2.1 Blockchain Definition

Various definitions of blockchain have already been given [10, 11]. In this work,
we rather give a formalization of blockchains, which we believe is easier to use
for proving theoretical results such as the one in this paper.

Intuitively, a blockchain is a chain of transactions. More precisely, each
element of the chain (each block) contains several transactions (or one or none),
as well a proof needed for consensus to take place. For instance in Bitcoin [1]
or similar Proof of Work blockchains, the proof is a nonce (a random number
such that the hash of the block is below a threshold value); in a Proof-of-Stake
such as the Casper version for Ethereum [2] the proof consists of the successive
bets on what the next block will be; in a Proof-of-Elapsed-Time as designed by
Intel [12], the proof is instead a certificate obtained from the SGX (a trusted
enclave). Note that it exists blockchains not requiring proofs (for instance,
one can argue that PBFT consensus does not require proof), in which case we
consider the proof is empty.

Definition 1 (Blockchain). Let T be a set of transactions and P be a set of
proofs. A blockchain is a tuple of elements B = (L,W, Emit,Mine), where:

• A ledger L is a list of transactions with their proofs defined by: L =
[([t1,1, t1,2, . . .], p1), . . . , [([tn,1, tn,2, . . .], pn)] with ti,j ∈ T and pi ∈ P.

• W is such that W ⊂ T , W is called the pool of waiting transactions.

3

• Emit is a deterministic algorithm taking one transaction t ∈ T and W as
input, and returning an updated pool Emit(t,W) = W ∪ t.

• Mine is an algorithm taking L,W and returning a new ledger L′, a new

pool W ′, where for any W ⊂ T , and for (L′,W ′) $←− Mine(L,W), we have
that L′ is of the form L‖[(transacs, p)], where transacs is a list containing
all elements from W\W ′, and p ∈ P a proof.

Furthermore, after a call to Emit or Mine, the ledger L and the waiting pool
W of B are updated with the values returned by said algorithms. In other words,
Mine and Emit are not pure functions [13], as they have side effects on the
blockchain.

At this point, transactions are appended (or not) to the blockchain after a
call to Mine. We hereby give a formal definition of what a valid transaction is.

Definition 2 (Valid Transaction). Let B = (L,W,Emit,Mine) be a blockchain,
and let t be a transaction (t ∈ W), t is a valid transaction for B (currently
in state L) if and only if there exists a block in the ledger returned by Mine
containing t.

As we can see, the validity of a transaction depends on the state of the
ledger; if a transaction is valid at one point, it may not be valid forever, and
reciprocally. For instance, a transaction from user U to user V is valid only as
long as U has enough funds. Yet, after the emission and the insertion of the
transaction in the blockchain, U may issue other transactions, emptying their
wallet. This is the classical issue of double spending.

The same is true for smart contracts: here, they are seen as a special subset
of transactions, and they affect the state of the ledger. Because Mine has access
to the whole ledger, it can take into account the smart contract’s side effects.

Note that Mine is a randomized algorithm, and as such, there is no guar-
antee that all users will agree on the same ledger. Because blockchain is a
decentralised ledger, state synchronisation must be ensured. For this, we intro-
duce a synchronisation algorithm, called Consensus.

Definition 3 (Decentralised Blockchain). A decentralised blockchain is a tuple
B′ = (L,W,Emit,Mine,Consensus) where:

• B = (L,W,Emit,Mine) is a blockchain,

• Consensus is a deterministic algorithm, taking as input B, a set S of tu-
ples (Li,Wi) such that ∀(Li,Wi) ∈ S, we have that (Li,Wi,Emit,Mine)
is a blockchain. Furthermore, for (L∗,W∗) ← Consensus(B,S), then
(L∗,W∗) ∈ S ∪ (L,W). In other words, from a list of potential new
blocks, Consensus chooses (or accepts) one of them, or rejects them all
(and returns (L,W)).

• After a call to Consensus, B′’s ledger and waiting pool components are
replaced with the values returned by said algorithms.

4

The idea of Consensus is that when a peer updates their local version of
the blockchain, they first receive possibly more than one new version (i.e., new
blocks) from peers. However only one of these new blocks will be accepted, and
all the network must agree on this block.

Definition 4 (Secure Blockchain). We say that a decentralised blockchain (L,W,
Emit, Mine, Consensus) is secure if it is computationally hard for a user to craft
a new ledger L′ and a new transaction pool W ′ such that for all S such that
(L′,W ′) ∈ S, we have both that Consensus(B,S) = (L′,W ′) and L is not a prefix
of L′.

This definition makes a blockchain immune against history rewriting (and
double spending), as it is computationally hard to rewrite old blocks.

2.2 Interoperability Definition

The concept of interoperability is to enable two blockchains to work together.
A classic blockchain A accepts transactions because given the current state of
A’s ledger, the transaction does not violate A’s rules. Similarly, we say that
a blockchain A that is interoperable with blockchain B accepts transactions
because, given the current state of A and B’s ledgers, the transaction does
not violate A’s rules. Furthermore, if the rules for said transaction only imply
conditions on A’s ledger, then the transaction does not require B to be valid,
and as such does not make use of the interoperability. So an interoperable
transaction on A must be dependent on B’s ledger: if B’s ledger is equal to
some values, then the transaction is valid; otherwise it is invalid.

We now give a formalization of this definition.

Definition 5 (Blockchain Interoperability). Let A = (LA,WA,EmitA,
MineA, ConsensusA) and B = (LB ,WB ,EmitB ,MineB ,ConsensusB) be two de-
centralised blockchains. Let ΩA (resp. ΩB) be the set of all possible values for
A’s ledger LA (resp. LB). A is interoperable with B if there exists:

• a transaction t ∈ T ,

• a non-empty subset ωA ⊂ ΩA,

• a non-empty proper subset ωB ΩB

such that there exists a block containing t that is accepted by ConsensusA if
LA × LB ∈ ωA × ωB, and rejected otherwise.
A and B are interoperable if they are both interoperable with each other.

3 General Impossibility of Interoperability

Our first result is to show that it is impossible to have interoperability between
two blockchains in general.

5

Theorem 1. Under the definitions 3 and 5, blockchain interoperability is im-
possible.

Proof. Assume that an interoperable transaction t exists. Then there is a set
ωB of possible ledger values of B for which a block containing t is accepted by
ConsensusA, if LB ∈ ωB . Moreover, if LB ∈ ΩB\ωB , then ConsensusA will refuse
any block containing t.

However, ConsensusA only takes A, S as arguments, where S is a set of tuples
(Li,Wi) (see Definition 3). As a consequence, ConsensusA is independent from
B, and especially from LB . Then, if t is accepted by ConsensusA when LB ∈ ωB ,
then t is also accepted by ConsensusA when LB ∈ ΩB\ωB ; this implies that
ΩB\ωB = ∅, i.e., ωB = ΩB , which is a contradiction with the hypothesis of
Definition 5, namely that ωB is a proper subset of ΩB .

This result is actually quite straightforward if we remember that a blockchain
is, by construction, made to be self-sufficient: no blockchain can rely on external
data. Especially, no blockchain can rely on another blockchain for asserting the
validity of a transaction. Hence, interoperability is a contradiction of one of the
intrinsic characteristics of blockchain.

The interpretation of the result is as follows: without additional assumptions,
interoperability between two blockchains is impossible. Therefore, to achieve
interoperability further assumptions need to be made. For instance, in the
two-way pegged blockchain mechanism, a dispute period is required for each
interoperabilty operation; as the blockchain cannot know by itself whether the
proposed SPV proof is the one of the latest block.

4 Interoperability with a Weaker Definition

Even though blockchain is not suited for interoperability stricto sensu, we can
generalise our blockchain definition, in order to make a blockchain interoperable.

Hypothesis 1. We assume that for two blockchains A = (LA,WA,EmitA,MineA,
ConsensusA) and B, with A both MineA and ConsensusA have access to both A
and B: ConsensusA is of the form ConsensusA(A,B,S), and MineA is of the
form MineA(LA,LB ,WA,WB).

We now use the notation ConsensusA(A,B, ·) to note the new consensus
algorithm. Hence, the ‘version’ of Consensus in the previous definition, is now
noted ConsensusA(A, ∅, ·). Similarly, the non-interoperable version of Mine is
now noted as MineA(LA, ∅,WA, ∅).

Definition 6 (Interoperable transaction). Under the assumption hypothesis 1,
a transaction t on the blockchain A is said to be interoperable with B if t can be
accepted by ConsensusA(A,B, ·) but cannot be accepted by
ConsensusA(A, ∅, ·).

In this context, we have the following result.

6

Theorem 2. Under Hypothesis 1, it is possible to build interoperable blockchains.

Proof. Note that we already know that interoperable blockchains exist, such
as Kadena [9] or other blockchains listed in [5], but we give an example of
interoperable blockchain in our own theoretical framework.

Consider two decentralised blockchainsA = (LA,WA,EmitA,MineA, ConsensusA)
and B. On the blockchains we define accounts. An account ownership is defined
by the knowledge of a private key, and for simplicity the public key is assimi-
lated to the account itself. A transaction t ∈ TA (resp. TB) specifies the sender’s
public key, the receiver’s public key, an amount and a signature of the previous
fields by the sender’s private key. An account i on blockchain A (resp. B) is
designed by iA (resp iB).

We build blockchain B so that it is interoperable with blockchain A in the
following sense: a user can ‘create’ money on B if and only if at least the same
amount of money has been consumed on A, by sending it to a ‘bin’ account.

We first note that accounts owned by nobody exist. In our scheme, in most
cryptosystems the public key 0 (consisting of only zeroes) is not linked to any
private key. Thus, while the account 0A exists and money can be transferred
on this account, it cannot be claimed by anyone.

Let us construct B in order to fulfil the previous requirements. First, let us
define the interoperability transactions t∗(mB , pkB), which sends some amount
of money mB from 0B to the account pkB on B. t∗(mB , pkB) is only valid
if1 there is at least one transaction on LA sending m to the account 0A, with
m > mB .

Then, let us construct MineB : a transaction t is valid for MineB(LB ,LA,WB ,WA)
if and only if t is valid for MineA(LA, ∅,WA, ∅), or if both statements are true:

• t is an interoperability transaction transferring some amount of money m
from 0B to an account on B,

• LA contains a transaction sending at least m on the zero-address 0A.

Similarly, ConsensusB(B,A, ·) is conceived to accept new ledgers that would
have been accepted by ConsensusA(B, ∅, ·), as well as ledgers where the new
blocks are constituted solely of transactions that are accepted by ConsensusA(B, ∅, ·)
and valid interoperability transactions (valid in the meaning that at the time
of their incorporation in the ledger, the sender has enough funds to emit the
transaction).

With this construction, we immediately get that B is interoperable with A:
a user can transfer assets from A to B, which is shown by the fact that some
transactions (here denoted t∗) are only valid on B if the sender has enough funds
on A.

1Note that for a real cryptocurrency more checks would be needed for any practical use,
notably because of the fact that in the current setting, anyone can withdraw m from 0B as
many times as they want. However, for the sake of simplicity, we only describe a simple, naive
interoperability operation here, so these checks are omitted.

7

5 Equivalence of Interoperable Blockchains with
a Single Blockchain

Even though interoperable blockchains can be tweaked into existence, we argue
that they are conceptually equivalent to a single blockchain. More precisely,
we argue that they are equivalent to one blockchain, composed of two ledgers.
Such a blockchain can be easily implemented: if the first bit of the transaction
is 0, then apply the transaction to the first ledger, and if 1 to the second.

We say that two blockchains are equivalent if any valid transaction on one
blockchain corresponds to one valid transaction on the other blockchain. This
definition implies that two equivalent blockchains will have very similar evolu-
tions of their ledgers. As Mine is not deterministic, we cannot ensure that the
two ledgers will be identical, but the definition we give is enough for practical
uses.

Definition 7 (Blockchain equivalence). Let there be two blockchains A = (LA,
WA,EmitA,MineA) and B = (LB ,WB ,EmitB ,MineB) accepting transactions
from TA and TB, respectively. A and B are said to be equivalent if there exists
a bijection ϕ : TA → TB such that, if both ledgers are equivalent, then there is
an equivalence of the valid transactions. In mathematical terms, ϕ(LA) = LB ⇒
∀tA ∈ TA, tA is a valid transaction for A ⇔ ϕ(tA) is a valid transaction for B).

Note that ϕ(LA) is the generalization of ϕ to ledgers: if LA = [[t1,1, t1,2, . . .] ,
. . . , [tn,1, tn,2, . . .]], then ϕ(LA) = [[ϕ(t1,1), ϕ(t1,2), . . .], . . . , [ϕ(tn,1),
ϕ(tn,2), . . .]], in the case of a ledger without proofs. If the ledger has proofs (see
Definition 1), ϕ would need to work on a projection of the ledger: a projection in
which every poof is removed. This subtlety has been removed from the definition
for the sake of simplicity.

For instance, let us assume that two blockchains are equivalent, and two
smart contracts being the reciprocal image of each other. This means that
whatever transaction triggers one smart contract, the effects on the state of the
blockchain will be equivalent to the effects on the state of the image blockchain:
in both cases, the acceptable elements after the transaction are the same (up
to a bijection). This definition does not guarantee that the smart contract will
behave identically: for instance, one could image a smart contract updating a
useless write-only variable, which by definition does not affect the set of fu-
ture acceptable transactions as it is write-only. However, it ensures that the
behaviour of the blockchain is strictly the same in both cases.

Theorem 3. A decentralised blockchain A interoperable with a blockchain B is
equivalent to a decentralised blockchain C containing both A and B’s ledgers.

Proof. LetA = (LA,WA,EmitA,MineA,ConsensusA) and B be two decentralised
blockchains, with A being interoperable with B. A being interoperable with
B, we have MineA of the form MineA(LA,LB , ·), and ConsensusA of the form
ConsensusA(A,B, ·).

8

Let TA (resp. TB) be the set of transactions for A (resp. B). Note that TA
contains interoperability transactions. Let C be the tuple C = (LC ,WC ,EmitC ,
MineC , ConsensusC).

We define the set of transactions for C, TC = (TA × ∅) ∪ (∅ × TB). Let cA
(resp. cB) be the canonical projector of TC on TA (resp. TB).

For (LA‖[(transacsA, pA)],W ′A) = MineA(LA,LB , cA(WC)) and
(LB‖[(transacsB , pB)],W ′B) = MineB(LB , cB(WC)), we define: MineC(LC ,WC) =
(LC‖ [(transacsA × ∅‖∅ × transacsB , pA × pB), (W ′A × ∅) ∪ (∅ ×W ′B)])

Simply put, MineC is a parallelisation of MineA and MineB : a block proposed
by MineC is a block comprised of the transactions accepted by MineA and MineB .

Similarly, ConsensusC is built as a parallelisation of ConsensusA and ConsensusB .
If ConsensusA(A,B, cA(SC)) = (L∗A,W∗A) and ConsensusB(B, cB(SB)) = (L∗B ,W∗B),
then we define ConsensusC = (LA × ∅‖∅ × LB ,WA × ∅ ∪ ∅ ×WB).

By construction, we see that C is a decentralised blockchain. Furthermore, by
construction each transaction accepted by MineC is either accepted by MineA or
MineB and, conversely, each transaction accepted by MineA or MineB is accepted
by MineC , hence the equivalence of the blockchains.

In practice, Theorem 3 means that creating two interoperable blockchains is
equivalent to creating one blockchain, with a ledger divided into two separate
registries: a ‘2-in-1‘ blockchain. So while creating interoperable blockchains
(with a lax definition of a blockchain) is possible, we argue that the conceptual
interest of doing so is limited. However, it may be interesting to create an
interoperable blockchain on top of an already existing blockchain. Doing so
allows both blockchains to fully operate, without the older blockchain being
affected by anything. Nonetheless the obvious restriction is that only one of the
two blockchains will be interoperable with the other, with all the limits implied
by this fact.

6 Conclusion

In this paper, we explored the possibility of making two blockchains interop-
erable. We showed that, under classical definitions, it is impossible to make a
blockchain interact with anything other than itself. If we relax the definition,
we do get the possibility of interoperable blockchains, but doing so is equivalent
to creating a ‘2-in-1‘ blockchain, i.e., a blockchain with two ledgers.

References

[1] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system (2009).
URL http://www.bitcoin.org/bitcoin.pdf

9

[2] V. Buterin, Ethereum: A next-generation smart contract and decentralized
application platform (2014).
URL https://github.com/ethereum/wiki/wiki/White-Paper

[3] D. Schwartz, N. Youngs, A. Britto, The ripple protocol consensus algorithm
(2014).
URL https://ripple.com/files/ripple_consensus_whitepaper.pdf

[4] CryptoID, Crypto-currency blockchain explorers (2019).
URL https://chainz.cryptoid.info/

[5] S. Johnson, P. Robinson, J. Brainard, Sidechains and interoperability,
arXiv e-prints (2019). arXiv:1903.04077.

[6] S. Thomas, E. Schwartz, A protocol for interledger payments (2015).
URL https://interledger.org/interledger.pdf

[7] V. Buterin, Chain interoperability (2016).
URL https://www.r3.com/wp-content/uploads/2017/06/chain_

interoperability_r3.pdf

[8] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller,
A. Poelstra, J. Timón, P. Wuille, Enabling blockchain innovations with
pegged sidechains (2014).
URL http://www.opensciencereview.com/papers/123/

enablingblockchain-innovations-with-pegged-sidechains

[9] W. Martino, M. Quaintance, S. Popejoy, Chainweb whitepaper (2018).
URL http://kadena2.novadesign.io/wp-content/uploads/2018/08/

chainweb-v15.pdf

[10] J. Garay, A. Kiayias, N. Leonardos, The bitcoin backbone protocol: Anal-
ysis and applications, in: Advances in Cryptology - EUROCRYPT, 2015.

[11] A. F. Anta, K. Konwar, C. Georgiou, N. Nicolaou, Formalizing and imple-
menting distributed ledger objects, SIGACT News (2018).

[12] IBM Hyperledger Consortium, Hyperledger sawtooth (2017).
URL https://sawtooth.hyperledger.org/docs/core/releases/

latest/index.html

[13] B. Milewski, Pure functions, laziness, i/o, and monads (2014).
URL https://www.schoolofhaskell.com/school/starting-with-

haskell/basics-of-haskell/3-pure-functions-laziness-io

10

