NIZK from SNARG

Fuyuki Kitagawa!, Takahiro Matsuda?, Takashi Yamakawa!'

INTT Secure Platform Laboratories, Tokyo, Japan
{fuyuki.kitagawa.yh, takashi.yamakawa.ga}@hco.ntt.co.jp
2National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
t-matsuda@aist.go.jp

May 26, 2020

Abstract

We give a construction of a non-interactive zero-knowledge (NIZK) argument for all NP
languages based on a succinct non-interactive argument (SNARG) for all NP languages and
a one-way function. The succinctness requirement for the SNARG is rather mild: We only
require that the proof size be |7| = poly(\)(|z|+|w|)¢ for some constant ¢ < 1/2, where |z| is
the statement length, |w| is the witness length, and A is the security parameter. Especially,
we do not require anything about the efficiency of the verification.

Based on this result, we also give a generic conversion from a SNARG to a zero-knowledge
SNARG assuming the existence of CPA secure public-key encryption. For this conversion,
we require a SNARG to have efficient verification, i.e., the computational complexity of the
verification algorithm is poly(\)(|z| + [w])°™). Before this work, such a conversion was only
known if we additionally assume the existence of a NIZK.

Along the way of obtaining our result, we give a generic compiler to upgrade a NIZK for
all NP languages with non-adaptive zero-knowledge to one with adaptive zero-knowledge.
Though this can be shown by carefully combining known results, to the best of our knowl-
edge, no explicit proof of this generic conversion has been presented.

1 Introduction

A non-interactive zero-knowledge (NIZK) argument [BFMS88] is a non-interactive argument
system that enables a prover to convince a verifier of the truth of an NP statement without
revealing any information about its witness. Since it is known that a NIZK in the plain model
where no setup is needed exists only for trivial languages [GO94], NIZKs are typically con-
structed in the common reference string (CRS) model where a trusted party generates a CRS
and provides it to both the prover and verifier. In the following, we refer to NIZKs in the CRS
model simply as NIZKs. Thus far, NIZKs for all NP languages have been constructed based
on various standard assumptions including factoring [FLS99], pairings [CHK07, GOS12|, and
lattices [PS19]. Besides the theoretical importance on its own, NIZKs have found numerous ap-
plications in cryptography including chosen-ciphertext security [NY90, DDNO00], leakage- and
tamper-resilient cryptography [KV09, DHLW 10, DFMV13], advanced types of digital signatures
[Cv91, RST01, BMWO03], multi-party computation [GMW&7], to name a few.

A succinet non-interactive argument (SNARG) is another notion of a non-interactive ar-
gument, which satisfies succinctness, i.e., the proof size is (asymptotically) smaller than the
statement size and the witness size. Micali [Mic00] gave a construction of SNARGs for all NP

languages in the random oracle model. On the other hand, Gentry and Wichs [GW11] ruled out
a black-box reduction proving the adaptive soundness of a SNARG from any falsifiable assump-
tion in the standard model. Since then, there have been proposed constructions of SNARGs
for all NP languages based on non-falsifiable assumptions on pairings [Grol0, GGPR13, Grol6],
lattices [BISW17, BISW18]!, or hash functions [BCC*17]. On the application side, SNARGs
have natural applications in the context of verifiable computation. They also have been gaining
a renewed attention in the context of blockchains (e.g., [BCGT 14, BBBF18]).2

As mentioned above, there are constructions of NIZKs based on various standard assump-
tions while there is no known construction of SNARGs based on a standard assumption and
there is even a strong impossibility for that. Given this situation, we may think that a SNARG
is a stronger primitive than a NIZK. However, it is not known if a SNARG implies a NIZK,
and they have been treated as incomparable primitives. For example, Bitansky et al. [BCCT17]
gave a generic conversion from a SNARG to a zero-knowledge SNARG by additionally assuming
the existence of NIZKs. If a SNARG implies a NIZK, we could drop the additional assumption
of the NIZK. Besides, since both NIZKs and SNARGs are important and fundamental primi-
tives that have been well-studied, we believe that it is interesting on its own if we find a new
relationship between them.

1.1 Owur Results

We give a construction of a NIZK for all NP languages based on a SNARG for all NP languages
and a one-way function (OWF). The succinctness requirement for the SNARG is rather mild:
We only require that its proof size be |7| = poly(\)(|x| + |w|)¢ for some constant ¢ < 1/2, where
|z| is the statement length, |w| is the witness length, and A is the security parameter. Especially,
we do not require anything about the efficiency of the verification.

Based on this result, we also give a generic conversion from a SNARG to a zero-knowledge
SNARG assuming the existence of CPA secure public-key encryption. For this conversion,
we require a SNARG to have efficient verification, i.e., the computational complexity of the
verification algorithm is poly(\)(|z|+ |w])°™) (and thus the proof size is also |7| = poly(X\)(|z]| +
lw|)°M). Before this work, such a conversion was only known if we additionally assume the
existence of a NIZK [BCCT17].

Along the way of obtaining our result, we give a generic compiler to upgrade a NIZK for all
NP languages with non-adaptive zero-knowledge to one with adaptive zero-knowledge. Though
this can be shown by carefully combining known results, to the best of our knowledge, no explicit
proof of this generic conversion has been presented.® 4

We note that we use the adaptive computational soundness as a default notion of soundness
for non-interactive arguments in this paper, and our results are proven in this setting. We leave
it as an interesting open problem to study if similar implications hold for NIZKs and SNARGs
with non-adaptive computational soundness.

To the best of our knowledge, all known constructions of a SNARG in the CRS model
satisfies zero-knowledge property from the beginning. Therefore, we do not obtain a concrete

!The lattice based constructions are in the designated verifier model where a designated party that holds a
verification key can verify proofs.

% Actually, what is often used in blockchains is a SNARK [BCC™17], which is a stronger variant of a SNARG
that satisfies extractability. We often refer to a SNARK as a SNARG since we do not discuss extractability in
this paper.

3Dwork and Naor [DN07] showed a similar compiler for a NIZK proof in the common random string. But
their compiler does not work for a NIZK argument in the common reference string model.

4A recent work by Couteau, Katsumata, and Ursu [CKU20] implicitly relies on a similar observation. However,
they do not state it in a general form, and they only analyze their specific instantiations.

construction of a NIZK from an assumption that was not known to imply NIZKs by using our
result. Nonetheless, it is in general important to stydy generic relationships between differ-
ent primitives from a theoretical point of view, and we believe that our results contribute to
deepening our understanding on the two important and fundamental primitives of NIZKs and

SNARGS.

1.2 Technical Overview

In this section, we give an overview for the construction of a NIZK from a SNARG. Once this
is done, it is straightforward to obtain a generic conversion from a SNARG to a zero-knowledge
SNARG by combining it with the result of [BCC™17].

First, we observe that the succinctness of a SNARG implies that a SNARG proof at least
“loses” some information about the witness though it may leak some partial information. Based
on this observation, our basic idea is to combine a SNARG with a leakage-resilient primitive
[AGV09] whose security holds even if a certain fraction of a secret key is leaked. If the SNARG
proof size is small enough, then we may be able to use the security of the leakage-resilient prim-
itive to fully hide the witness considering a SNARG proof as a leakage. For example, suppose
that we have a leakage-resilient secret-key encryption (LR-SKE) scheme whose semantic security
holds as long as the amount of leakage from the secret key is at most a half of the secret key size.
Then, a naive (failed) idea to construct a NIZK is to let a NIZK proof consist of an encryption
ct of the witness by the LR-SKE scheme and a SNARG proof proving that there exists a secret
key of the LR-SKE scheme that decrypts ct to a valid witness. Soundness of this construction
is easy to reduce to the soundness of the SNARG. In addition, if the SNARG is fully succinct,
then we can show that the SNARG proof size is at most a half of the secret key size if we
set the secret key size of LR-SKE to be sufficiently large. Then, it seems possible to argue
that the information of the witness is completely hidden by the security of LR-SKE. However,
there is a flaw in the above idea: The security of a LR-SKE scheme holds only if the leakage
does not depend on the challenge ciphertext. On the other hand, in the above construction,
the SNARG proof clearly depends on the challenge ciphertext ct, and thus we cannot use the
security of a LR-SKE scheme. Though the above naive idea fails, this highlights a potential idea
of combining a SNARG with a leakage-resilient primitive to obtain a NIZK. Indeed, we imple-
ment this idea by modifying the NIZK construction based on the hidden-bits paradigm [FLS99].

NIZK via the Hidden-Bits Paradigm. First, we recall the construction of a NIZK based
on the hidden-bits paradigm [FLS99] following the formalization by Quach, Rothblum, and
Wichs [QRW19]. Readers familiar with their formalization can safely skip this paragraph. The
construction uses two building blocks: a NIZK in the hidden-bit model (HBM-NIZK) and a
hidden-bits generator (HBG).

In an HBM-NIZK, a trusted party picks a random string p € {0,1}* and gives it to the
prover. Then a prover, who holds a statement x and a witness w, generates a proof m along
with a subset I C [k], which specifies which bits of p to be revealed to the verifier. Then, the
verifier is given a statement x, a proof 7, a subset I, and a string py that is the substring of p on
the positions corresponding to I, and accepts or rejects. We require an HBM-NIZK to satisfy
two security requirements: soundness and zero-knowledge. Intuitively, soundness requires that
no cheating prover can convince the verifier of a false statement x with non-negligible probability,
and the zero-knowledge property requires that the verifier learns nothing beyond that x is a
true statement. Feige, Lapidot, and Shamir [FLS99] constructed an HBM-NIZK for all NP
languages that satisfies these security requirements (without relying on any assumption).

An HBG is a primitive introduced in [QRW19], which consists of the following algorithms:

e HBG.Setup(1*, 1%) generates a CRS crs where k denotes the length of hidden-bits to be
generated.

e HBG.GenBits(crs) generates a succinct commitment com whose length is much shorter
than k, “hidden-bits” r € {0,1}*, and a tuple of proofs {7i}ticp- Intuitively, each m; can
be thought of a certificate of the i-th bit of r.

e HBG.Verify(crs,com, i, r;, m;) verifies the proof m; to ensure that the i-th hidden-bit is r;.

We require an HBG to satisfy two security requirements: binding and hiding. The binding
property requires that for any fixed commitment com, there exist “committed bits” 7* € {0,1}*
and no PPT adversary can generate a proof m; such that HBG.Verify(crs, com, i, 7:;‘, ;) accepts,
where r_;k denotes the negation of r} .5 Combined with the succinctness of com, this implies that
there should be a “sparse” set V= € {0,1}* (dependent on crs) of size much smaller than 2%
such that no PPT adversary can generate a set of proofs {m;};cs for bits that are not consistent
with any element of V' even if it can control the value of com. The hiding property requires
that for any subset I C [k], no PPT adversary given {(r;, m;) }ier can distinguish r7 from a fresh
random string 7”7 & {0, 1}” |, where r7 denotes the substring of r on the positions corresponding
to I =[k]\I

Combining the above two primitives, Quach et al. [QRW19] constructed a NIZK as follows:
The setup algorithm generates a CRS crs & HBG.Setup(1*, 1%) of the HBG and a random

string s <~ {0,1}* and outputs them as a CRS of the NIZK where k = poly()) is a parameter

that is set appropriately as explained later. Then the prover generates (com,r, {m;};c(y]) &

HBG.GenBits(crs), sets p := r @ s, runs the prover of the underlying HBM-NIZK w.r.t. the
hidden-bits p to generate (I, Thpm), and outputs (I, Thpm,com,rr, {m;}icr) as a proof of the
NIZK. Then the verifier runs the verification of the underlying HBG to check the validity of
rr and the verification algorithm of the underlying HBM-NIZK under the revealed hidden-bits
pr:=1rydsyr.

The security of the above NIZK is argued as follows: For each fixed r, any cheating prover
against the above NIZK can be easily converted into a cheating prover against the underlying
HBM-NIZK. Moreover, by the binding property of the underlying HBG, the prover has to use r
in the subset V' to pass the verification. Then, by taking the union bound, the success proba-
bility of a cheating prover against the above NIZK is at most [V"s| < 2* times larger than that
of a cheating prover against the underlying HBM-NIZK. Thus, by setting k£ to be sufficiently
large so that the success probability of a cheating prover against the underlying HBM-NIZK
is at most [V"*|"'negl(\), we can prove the soundness. Intuitively, the zero-knowledge prop-
erty of the above NIZK is easy to reduce to that of the underlying HBM-NIZK by observing
that the hiding property of the underlying HBG ensures that the verifier obtains no informa-
tion about 7. We note that this simple reduction works only for non-adaptive zero-knowledge
where an adversary declares a challenge statement before seeing a CRS. Roughly speaking, this
is because in the definition of the hiding property of a HBG, the subset I is fixed before the
CRS is chosen whereas an adversary against adaptive zero-knowledge may choose I depending
on the CRS. Quach et al. [QRW19] showed that adaptive zero-knowledge can be also proven
assuming that the underlying HBM-NIZK satisfies a stronger notion of zero-knowledge called
special zero-knowledge. We omit to explain the details since we will show a generic compiler
from non-adaptive to adaptive zero-knowledge.

®The original definition in [QRW19] required a stronger requirement of statistical binding where the property
should hold against all computationally unbounded adversaries.

HBG from a SNARG? Our first attempt is to construct an HBG from a SNARG com-
bined with a leakage-resilient weak pseudorandom function (LR-wPRF) [HLWW16]. A (one-
bit-output) LR-wPRF is a function family 7 = {Ff : {0,1}"" — {0,1}}keqo,1}= such that
(z*, F (%)) for z* < {0, 1}™ looks pseudorandom from an adversary that is given an arbitrary
polynomial number of input-output pairs (z, Fx(z)) for # < {0,1}™ and a leakage from K
(that does not depend on z*) of at most ¢-bit for a certain leakage bound ¢ < k. Hazay et
al. [HLWW16] constructed an LR-wPRF for any polynomial ¢ = poly(\) based solely on the
existence of a OWF.

Then, our first (failed) attempt for constructing an HBG from a SNARG and an LR-wPRF
is as follows:

e HBG.Setup(1*, 1%) samples (1, ..., 21) € {0,1}™*¥ and outputs it as a CRS crs.

e HBG.GenBits(crs) randomly picks a key K < {0,1}* of the LR-wPRF, and outputs a
commitment com of K by a statistically binding commiement scheme, hidden-bits r :=
(Fi(21), .., Fi (7)), and proofs {;};c[x that are generated by the SNARG to certify r.

e HBG.Verify(crs,com, i,r;, ;) verifies the proof m; by the verification algorithm of the
SNARG.

The binding property easily follows from the statistical binding property of the underlying
commitment scheme and the soundness of the underlying SNARG. For the hiding property, we
would like to rely on the security of the underlying LR-wPRF by viewing the SNARG proofs
as a leakage. However, there are the following two problems:

1. An adversary against the hiding property can obtain all proofs {m;};cs corresponding to
the subset I whose size may be linear in k. On the other hand, for ensuring the succinctness
of the commitment, we have to set k > k. Thus, the total size of {m;};c; may be larger
than k, in which case it is impossible to rely on the security of the LR-wPRF.

2. Even if the above problem is resolved, we still cannot apply the security of the LR-wPRF
since com also depends on K and its size must be larger than that of K.

To resolve these issues, our idea is to drop the commitment com from the output of HBG.GenBits(crs),
and generate a single SNARG proof 7 that proves that “there exists K € {0,1}" such that

r; = Fg(z;) for all i € I” in one-shot instead of generating 7; for each i € I separately. Then,
the only leakage of K given to an adversary against the hiding property is the SNARG proof

m, whose size is sublinear in || by the succinctness of the SNARG. Thus, it seems possible to
apply the security of the LR-wPRF if we set parameters appropriately. However, this idea is
not compatible with the syntax of an HBG. This is why we modify the syntax of an HBG to
introduce what we call an HBG with subset-dependent proofs (SDP-HBG).

HBG with Subset-Dependent Proofs. Roughly speaking, an SDP-HBG is a (weaker)
variant of an HBG with the following modifications:

1. A proof is generated depending on a subset I, which specifies positions of bits to be re-
vealed. This is in contrast to the original definition of an HBG where proofs are generated
for each position i € [k]. To formalize this, we introduce the proving algorithm separated
from the bits generation algorithm.

2. The bits generation algorithm does not output a commitment, and we require a relaxed
version of the binding property that we call the somewhat binding property as explained
later.

More precisely, an SDP-HBG consists of the following algorithms:

e HBG* Setup(1*,1%) generates a CRS crs.

o HBG*P.GenBits(crs) generates “hidden-bits” r € {0,1}* and a state st.
° HBGSdp.Prove(st, I) generates a proof m that certifies the sub-string r;.

o HBG Verify(crs, I,ry,) verifies the proof m to ensure that the substring of r on the
positions corresponding to the subset I is indeed rj.

We require an SDP-HBG to satisfy the somewhat binding property and the hiding property.
The somewhat binding property requires that there exists a “sparse” subset Vs € {0, l}k
(dependent on crs) of size much smaller than 2* such that no PPT malicious prover can generate
a proof for bits that are not consistent with any element of V*. As mentioned earlier, a
similar property easily follows by combining the succinctness of the commitment and the binding
property in the original HBG, and this was the essential property to prove soundness in the
construction of a NIZK from an HBG. The hiding property is similar to that for an HBG except
that an adversary is given a single proof 7 corresponding to the subset I instead of {m;}ic;s.
Namely, it requires that for any subset I € [k], no PPT adversary given {r;};c; and 7 that
certifies {r;};cr can distinguish r; from a fresh random string T'/T & {0, 1}M1, where r; denotes

the sub-string of r on the positions corresponding to I = [k] \ 1.
To see that an SDP-HBG is a weaker primitive than an HBG, in Section 4.2, we formally
show that an original HBG indeed implies an SDP-HBG.

SDP-HBG from a SNARG and an LR-wPRF. Next, we construct an SDP-HBG from a
SNARG and an LR-wPRF. Since the idea is already explained, we directly give the construction
below:

e HBG* Setup(1*, 1%) samples (1, ..., z) € {0,1}™** and outputs it as a CRS crs.

e HBG* GenBits(crs) randomly picks a key K < {0,1}* of the LR-wPRF and outputs
hidden-bits r := (Fk (1), ..., Fx (xx)) and a state st := K.

e HBG* Prove(st, I) outputs a SNARG proof 7 that proves that there exists K € {0,1}*
such that r; = Fi(x;) for all i € I.

. HBGSdp.Verify(crs, I,ry,m) verifies the proof 7 by the verification algorithm of the SNARG.

The somewhat binding property is easy to reduce to the soundness of the underlying SNARG
if kK <« k. The hiding property is easy to reduce to the security of the underlying LR-PRF if
|| < ¢ where ¢ is the leakage bound by noting that the proof 7 corresponding to the subset
I does not depend on w7, and thus we can think of x7 as challenge inputs and 7 as a leakage.
Therefore, what remains is to show that we can appropriately set the parameters to satisfy these
two inequalities. Here, for simplicity we assume that the SNARG is fully succinct, i.e., || =
poly(\) independently of the statement/witness size.® Especially, || can be upper bounded by
a polynomial in A that does not depend on k. Then, we first set £ = poly(\) so that || < £.
According to this choice of ¢, k = poly()) is determined. Here, we emphasize that x does not
depend on k. Thus, for sufficiently large k& = poly()\), we have k < k as desired.” The crucial

®Though the full succinctness just says || = poly(A)(|z| + |w|)°™"), this implies |7| = poly(\) as long as we
have |z| = poly(A) and |w| = poly(}).

"It suffices that we have this for sufficiently large k since we can take k = poly(A) arbitrarily largely in the
construction of a NIZK.

point is that no matter how large k is, this does not affect |7| thanks to the full succinctness
of the SNARG. We note that we assume nothing about the leakage-rate (i.e., /k) of the LR-
wPRF, and thus we can use the LR-wPRF based on a OWF in [HLWW16], which achieves
a relatively poor leakage-rate of O(%). For the case of slightly-succinct SNARGs, a more
careful analysis is needed, but we can extend the above proof as long as |r| = poly(\)(|z| +|w|)®
holds for some constant ¢ < 1/2.

As seen above, the underlying SNARG in fact needs to prove only a statement of an NP
language with a specific form that is dependent on the LR-wPRF (which is in turn based on
a OWF). Thus, if the latter is determined beforehand, the SNARG is required to support this
particular language (and not all NP languages).®

NIZK from an SDP-HBG. Then, we show that an SDP-HBG suffices for constructing a
NIZK. In fact, the construction and security proof are essentially the same as that from an

HBG in [QRW19]: The setup algorithm generates a CRS crs <~ HBG*P Setup(1*,1¥) of the
SDP-HBG and a random string s & {0, 1}’“, and outputs them as a CRS of the NIZK; The prover
generates (1, st) < HBG¥ GenBits(crs), sets p := r® s, runs the prover of the underlying HBM-

NIZK w.r.t. the hidden-bits p to generate (I, 7Thpm), generates mpgen & HBGSdp.Prove(st,I),
and outputs (I, Thbm, 71, Thgen) as a proof of the NIZK; The verifier runs the verification of
the underlying SDP-HBG to check the validity of r; and the verification of the underlying
HBM-NIZK under the revealed hidden-bits p; := r; @ s;.

It is easy to see that essentially the same proofs as the NIZK from an HBG work for
soundness and non-adaptive zero-knowledge. However, it is not clear how to prove the adaptive
zero-knowledge for this construction. As mentioned earlier, for the construction of a NIZK from
an HBG, Quach et al. [QRW19] proved its adaptive zero-knowledge assuming that the under-
lying HBM-NIZK satisfies a stronger notion of zero-knowledge called special zero-knowledge.
However, their proof does not extend to the proof of adaptive zero-knowledge for the above
NIZK from an SDP-HBG even if we rely on the special zero-knowledge for the underlying
HBM-NIZK. Roughly speaking, the problem comes from the fact that the SDP-HBG enables
us to generate a proof mpgen corresponding to a subset I only after I is fixed. This is in contrast
to an HBG where we can generate m; that certifies the i-th hidden bit for each i € [k] before I
is fixed. Specifically, the proof of adaptive zero-knowledge from an HBG in [QRW19] crucially
relies on the fact that if I C I*, then a set of proofs {m;};c;r can be derived from {m;};er+
in a trivial manner. On the other hand, we do not have a similar property in SDP-HBG
since it generates a proof for a subset I in one-shot instead of generating a proof in a bit-by-bit
manner. Thus, we have to come up with an alternative way to achieve adaptive zero-knowledge.

Non-adaptive to Adaptive Zero-Knowledge. Based on existing works, we give a generic
compiler from non-adaptive to adaptive zero-knowledge. First, we observe that we can construct
an HBG by combining a commitment, a pseudorandom generator (PRG), and a NIZK in a
straightforward manner. We note that essentially the same construction was already mentioned
by Dwork and Naor [DN07] where they constructed a verifiable PRG, which is a similar but
slightly different primitive from an HBG. Our crucial observation is that non-adaptive zero-
knowledge is sufficient for this construction of an HBG. Then, we can apply the construction of
[QRW19] instantiated with the above HBG and an HBM-NIZK with special zero-knowledge to
obtain a NIZK with adaptive zero-knowledge.

8 A similar remark applies to the underlying NIZK with non-adaptive zero-knowledge used in the non-adaptive-
to-adaptive conversion for a NIZK.

1.3 Related Work

Known Constructions of NIZKs. Here, we review known constructions of a NIZK for
all NP languages. Below, we just write NIZK to mean NIZK for all NP languages for sim-
plicity. In this paragraph, we omit a NIZK that is also a SNARG since such schemes are
mentioned in the next paragraph. Blum, Feldman, and Micali [BFMS88] introduced the con-
cept of NIZK and constructed a NIZK based on the quadratic residuosity assumption. Feige,
Lapidot, and Shamir [FLS99] established the hidden-bits paradigm and constructed a NIZK
based on trapdoor permutations. The requirements on trapdoor permutations for realizing a
NIZK have been revisited and refined in a series of works [Golll, GR13, CL18]. Canetti,
Halevi, and Katz [CHKO07] constructed a NIZK based on pairing by instantiating the hidden-
bits paradigm. Groth, Ostrovsky, and Sahai [GOS12] constructed a pairing-based NIZK based
on a completely different approach, which yields the first NIZK with perfect zero-knowledge.
Sahai and Waters [SW14] constructed the first NIZK with a deterministic proving algorithm
and perfect zero-knowledge based on indistinguishability obfuscation and a OWF. Recently,
there has been a line of researches [KRR17, CCRR18, CCH"19] aiming at realizing the Fiat-
Shamir transform [F'S87] in the standard model. Peikert and Shiehian [PS19] constructed a
NIZK based on a standard lattice-based assumption following this approach. Very recently,
Couteau, Katsumata, and Ursu [CKU20] constructed a NIZK based on a certain exponential
hardness assumption on pairing-free groups. We note that it still remains open to construct a
NIZK from polynomial hardness assumption on pairing-free groups.

We omit NIZKs in a different model than the CRS model including preprocessing, desig-
nated prover, and designated verifier models since our focus in this paper is constructions in
the CRS model. We refer to [KW18, KNYY19] for a survey on NIZKs in these models.

Known Constructions of SNARGs. Here, we review known constructions of a SNARG for
all NP languages. Below, we just write SNARG to mean SNARG for all NP languages. We
note that some of the following constructions are actually a SNARK, which satisfies a stronger
notion of soundness called extractability, but we just call them a SNARG since we do not
discuss extractability in this paper. Also, other than [Mic00, CMS19], here we only mention
works that do not rely on random oracles. For the recent advances on practical SNARGs
(SNARKS) including those in the random oracle model, see, e.g., the recent papers [BFS20,
CHM ™20, COS20, EFKP20] and references therein.

Micali [Mic00] constructed a zero-knowledge SNARG in the random oracle model. Chiesa,
Manohar, and Spooner [CMS19] proved that the Micali’s construction is also secure in the
quantum random oracle model. Groth [Grol0, Grol6] and Gennaro, Gentry, Perno, and
Raykova [GGPR13] proposed zero-knowledge SNARGs in the CRS model based on non-falsifiable
assumptions on pairing groups. There are several constructions of (zero-knowledge) SNARGs in
the designated-verifier model where verification can be done only by a designated verifier who
possesses a secret verification key. These include constructions based on an extractable collision-
resistant hash function [BCC'17], homomorphism-extractable encryption [BC12], linear-only
encryption [BCIT13, BISW17, BISW18], etc.

NIZKs/SNARGs and OWFs. Pass and shelat [Ps05] showed that a NIZK for a hard-on-
average language implies the existence of (non-uniform) OWFs. On the other hand, Wee [Wee05]
gave an evidence that a SNARG for a hard-on-average language is unlikely to imply the existence
of OWFs. Therefore, it is considered reasonable to additionally assume the existence of OWFs
for constructing a NIZK from a SNARG.

2 Preliminaries

In this section, we review the basic notation and definitions of cryptographic primitives.

Basic Notation. For a natural number n > 0, we define [n] := {1,...,n}. Furthermore, for
I C [n], we define I := [n] \ I.

For a string z, |z| denotes the bit-length of x. For bits b,0' € {0,1}, (¥ Z b) is defined to
be 1 if ¥’ = b holds and 0 otherwise.

For a set S, |S| denotes its size, and x & S denotes sampling « uniformly at random from
S. Furthermore, for natural numbers i, k such that ¢ € [k] and a sequence z € Sk z; denotes
the i-th entry in z. Also, for I C [k], we define z; := (z;);er, namely the subsequence of z in
the positions I.

For a probabilistic (resp. deterministic) algorithm A, y <~ A(z) (resp. y + A(z)) denotes
A on input = outputs y. If we need to specify a randomness r used in A, we write y < A(z;7)
(in which case the computation is deterministic). If O is a function or an algorithm, then A®
means that A has oracle access to O.

Throughout the paper, we use A to denote the security parameter, and a “PPT adversary” is
a non-uniform PPT adversary (equivalently, a family of polynomial-sized circuits). A function
e(\) with range [0, 1] is said to be negligible if e(A) = A=“(1) and negl()\) denotes an unspecified
negligible function of A. poly(\) denotes an unspecified (constant-degree) polynomial of A.

2.1 PRG

Definition 1 (Pseudorandom Generator). Let PRG : {0,1}* — {0,1}* be an efficiently com-
putable function where k = k(\) > X is some polynomial. We say that PRG is a pseudorandom
generator (PRG) if for all PPT adversaries A, we have

Pr[A(1*,PRG(s)) = 1: s & {0,1}"] — PrlA(1Y, 7) = 1: r < {0,1}*]| = negl()\).
It is known that a PRG exists if and only if a OWF exists [HILL99].

2.2 Non-interactive Commitment

Here, we review the definition of a statistically binding non-interactive commitment scheme.
We will use one that uses a CRS, which is sufficient for our purpose.

Definition 2 (Non-interactive Commitment). A statistically binding non-interactive commit-
ment scheme (in the CRS model) consists of the two algorithms (Com.Setup, Com.Commit):

Com.Setu p(l)‘) > crs: The setup algorithm takes the security parameter 1* as input, and outputs
a CRS crs.

Com.Commit(crs, m) > com: The commitment generation algorithm takes a CRS crs and a mes-
sage m as input, and outputs a commitment com.

We require the statistical binding and computational hiding properties defined below:

Statistical Binding: We have

A(m,m’,r,r') s.t.
Pr | Com.Commit(crs, m;r) = Com.Commit(crs, m’;7') : crs < Com.Setup(1*) | = negl(\).
A m #m/

Computational Hiding: For all PPT adversaries A = (A1, .As), we have

crs < Com.Setup(1*);

s
; 1

Pr | Az(com®,st) =b: (W;O’ml’St) < Aufers); — —| = negl(A).
b+ {0,1}; 2

$.
com™* <~ Com.Commit(crs, my)

It is known that a statistically binding non-interactive commitment in the CRS model exists
if and only if a OWF exists [Nao91, HILL99].

2.3 Public Key Encryption
Here, we review the definition of public key encryption (PKE).

Definition 3 (Public Key Encryption). A public key encryption (PKE) scheme consists of the
three algorithms (PKE.KeyGen, PKE.Enc, PKE.Dec):

PKE.KeyGen(1*) 5 (pk,sk): The key generation algorithm takes the security parameter 1 as
mnput, and outputs a public key pk and a secret key sk.

PKE.Enc(pk,m) 2 ct: The encryption algorithm takes a public key pk and a message m as
input, and outputs a ciphertext ct.

PKE.Dec(sk,ct) — m: The decryption algorithm takes a secret key sk and a ciphertext ct as
mput, and outputs a message m.

We require the following properties:

Correctness: For all messages m, we have

(pk, sk) <= PKE.KeyGen(1*);

Pr | PKE.Dec(sk,ct) =m : 5 =1.
ct < PKE.Enc(pk,m)
CPA Security: For all PPT adversaries A = (A1, As), we have
(pk, sk) <= PKE.KeyGen(1*);
$
: 1
Pr | Ag(ct*,st) = b: %must) < Ai(pk); — 2| = negl(\).
b {01} 2

ct* < PKE.Enc(pk, my)

2.4 NIZK and SNARG

Here, we define several notions of a non-interactive argument for an NP language £. Throughout
this paper, for an NP language £, we denote by R C {0,1}*x{0, 1}* the corresponding efficiently
computable binary relation. For (z,w) € R, we call z a statement and w a witness.

Definition 4 (Non-interactive Arguments). A non-interactive argument for an NP language £
consists of the three PPT algorithms (Setup, Prove, Verify):

Setup(1%) 2 crs: The setup algorithm takes the security parameter 1% as input, and outputs a
CRS crs.

10

Prove(crs, z, w) S q: The prover’s algorithm takes a CRS crs, a statement x, and a witness w
as input, and outputs a proof .

Verify(crs,x,m) — T or L: The verifier’s algorithm takes a CRS crs, a statement x, and a proof
m as input, and outputs T to indicate acceptance of the proof or L otherwise.

A non-interactive argument must satisfy the following requirements:

Completeness: For all pairs (z,w) € R, we have

$ AY.
Pr [Verify(crs,x,ﬂ) —T. B Setup(1%);)] =1.

$
7 < Prove(crs, z, w

Soundness: We define the following four variants of soundness.

Adaptive Computational Soundness: For all PPT adversaries A, we have

crs <& Setup(17);

Pr 4
(x,m) < Alcrs)

x & L A\ Verify(crs,z,m) =T

] = negl(\).

Adaptive Statistical Soundness: This is defined similarly to adaptive computational
soundness, except that A can be any computationally unbounded adversary.

Non-adaptive Computational (resp. Statistical) Soundness: This is defined sim-
ilarly to adaptive computational (resp. statistical) soundness, except that A must
declare x ¢ L before it is given crs.

If we only require completeness and soundness as defined above, a non-interactive argument
trivially exists for all NP languages, since a witness itself can be used as a proof. Thus, we
consider two other properties that make non-interactive arguments non-trivial. First, we define
non-interactive zero-knowledge arguments (NIZKs).

Definition 5 (NIZK). A non-interactive argument (Setup, Prove, Verify) for an NP language L
is a non-interactive zero-knowledge argument (NIZK) if it satisfies the following property in
addition to completeness and soundness.

(Computational) Zero-Knowledge: We define the following four variants of zero-knowledge

property.

Adaptive Multi-theorem Zero-Knowledge: There exists a PPT simulator S = (S1,S2)
that satisfies the following. For all PPT adversaries A, we have

Pr[Exptif<real(\) = 1] — Pr[Exptff}fg'Sim()\) = 1]| = negl(}),

where the experiments Expti’jk'rea|()\) and Exptfffg'gm()\) are defined as follows, and in
the experiments, A’s queries (x,w) must satisfy (z,w) € R.

Exptf‘fk'real()\) : EXptiﬁIESim ()\) :
crs <& Setup(1?) (crs, st) < S; (1)
b <& A% (crs) b & A9 (crs)
where Oy(x,w) returns Prove(crs, z, w) where O1(x,w) returns Sa(st,)
Return ¥'. Return b'.

11

Though we treat adaptive multi-theorem zero-knowledge as defined above as a default no-
tion of zero-knowledge, we also define weaker notions of zero-knowledge.

Adaptive Single-Theorem Zero-Knowledge: This is defined similarly to adaptive
multi-theorem zero-knowledge, except that A is allowed to make only a single query.

Non-adaptive Multi-theorem Zero-Knowledge: There exists a PPT simulator S
that satisfies the following. For all PPT adversaries A = (A1, As) we have

Pr[Expt72?<rea()) = 1] — Pr[Exptfffgk'Sim()\) = 1]| = negl()),
where the experiments Expt?2<e(\) and Expt?ffSk’SEm()\) are defined below. In the
experiments, ¢ (the number of statement/witness pairs) is arbitrarily chosen by A,
and A1 ’s output must satisfy (z;,w;) € R for all i € [{].

Exptigzkreal()) Exptff7fg'"5im(A) :
({(@i, wi) bieqgs st) < Ar(1%) ({(@i,wi) bieggs st) < Ar(1%)
crs < Setup(1*) (crs, {miier) < SO {witiepy)
i < Prove(crs, z;, w;) for i € [{]
v <i As (CI’S, {Wi}ie[é]a St) b & Ao (CFS, {Wi}ie[é]a St)
Return b'. Return b'.

Non-adaptive Single-Theorem Zero-Knowledge: This is defined similarly to non-
adaptive multi-theorem zero-knowledge, except that £ must be 1.

It is well-known that a NIZK with adaptive single-theorem zero-knowledge can be generically
converted into a NIZK with adaptive multi-theorem zero-knowledge using a PRG [FLS99]. It
is easy to see that the same construction works in the non-adaptive setting. Thus, we have the
following lemma.

Lemma 1. If there exist a OWF and a NIZK for all NP languages with adaptive (resp. non-
adaptive) single-theorem zero-knowledge, then there exists a NIZK for all NP languages with
adaptive (resp. non-adaptive) multi-theorem zero-knowledge. The resulting NIZK satisfies the
same notion of soundness (which is either of adaptive/non-adaptive statistical/computational
soundness) as the building-block NIZK.

Remark 1. Pass and shelat [Ps05] showed that a NIZK for a hard-on-average language im-
plies the existence of a (non-uniform) OWF. Therefore, we can weaken the assumption of the
existence of a OWEF to the existence of a hard-on-average NP language. We just assume the
existence of a OWF for simplicity. A similar remark also applies to Theorem 2 and Lemmata 3
and 4.

Next, we define SNARGs. The following definition is taken from [GW11] with a minor
modification in the definition of slight succinctness (see Remark 2).

Definition 6 ((Fully/Slightly Succinct) SNARG). A non-interactive argument (Setup, Prove,
Verify) for an NP language L is a fully (resp. &-slightly) succinct non-interactive argument
(SNARG) if it satisfies full (resp. §-slight) succinctness defined as follows in addition to com-
pleteness and soundness.

Succinctness: We define the following two variants of succinctness.

Full Succinctness: For all (z,w) € R, crs < Setup(1}), and 7 < Prove(crs, z, w), we
have |rt| = poly(\)(|z| + |w])°™).

12

d-Slight Succinctness: For all (z,w) € R, crs & Setup(1?), and 7 & Prove(crs, z,w),
we have || = poly(\)(|z| + |w])®.

Remark 2. The notion of 6-slight succinctness is meaningful only when § < 1 since otherwise
we can use a witness itself as a proof. We note that our definition of d-slight succinctness
for any § < 1 is stronger than slight succinctness defined in [GW11] where they require || =
poly(\) (|| + [w])? + o(|z| + |w|) for some § < 1. Namely, they allow the proof size to grow
according to any function dominated by |z| + |w| asymptotically as long as that is independent
of the security parameter A.

We define an additional property for SNARG.

Definition 7 (Efficient Verification of SNARG). A SNARG (Setup, Prove, Verify) for an NP
language L has efficient verification if the following is satisfied.

Efficient Verification: For all (x,w) € R, crs & Setup(1*), and m & Prove(crs, z,w), the
running time of Verify(crs, z,) is poly(A)(|z| + [w])°™M.

Remark 3. The efficient verification property immediately implies full succinctness.

Remark 4. The efficient verification property is usually a default requirement for SNARGS.
On the other hand, we do not assume a SNARG to have efficient verification unless otherwise
mentioned. This is because efficient verification is not needed for the construction of a NIZK
in this paper.

2.5 NIZK in the Hidden-Bits Model

Here, we define a NIZK in the hidden-bits model introduced in [FLS99]. The following definition
is taken from [QRW19].

Definition 8 (NIZK in the Hidden-Bits Model). Let £ be an NP language and R be its asso-
ciated relation. A non-interactive zero-knowledge proof in the hidden-bits model (HBM-NIZK)
for L consists of the pair of PPT algorithms (NIZK'™ Prove, NIZK"®™ Verify) and a polynomial
k = k(\,n), which specifies the hidden-bits length.

NIZKhbm.Prove(l’\,p,x,w) S (I,7): The prover’s algorithm takes the security parameter 1, a
string p € {0, 1Y¥O™) g statement z € {0,1}", and a witness w as input, and outputs a
subset of indices I C [k] and a proof m.

NIZKPP™ Verify (1}, I, pr,z,7) — T or L: The verifier’s algorithm takes the security parameter
1%, a subset I C [k], a string pr, a statement x, and a proof w as input, and outputs T to
indicate acceptance of the proof or L otherwise.

An HBM-NIZK must satisfy the following requirements.

Completeness: For all pairs (z,w) € R, we have

i k(A lzl).
Pr [NIZK™™ Verify(1*, I, pr,z,m) = T: P {0; 1} o = 1.
(I,7) < NIZK"™™ Prove(1*, p, z, w)
e-Soundness: For all polynomials n = n(\) and computationally unbounded adversaries A, we
have

8 k(An).
_ . p A0 A

Pr 5
(x,I,m) < A(p)

z € {0,1}"\ £ A NIZK'™ Verify(1*, I, p, x,)

] < e(A).

13

Zero-Knowledge: There exists a PPT simulator NIZK'™™ Sim that satisfies the following. For
all computationally unbounded adversaries A = (A, Az), we have

PrExpthP™ () = 1] — PY[EXPth\r;igm_Sim()‘) = 1]| = negl()),

where the experiments Expt'P™2ke(\) and Expt"Pmzicsim

A,NIZKhbm.SimO\) are defined as follows, and

Ai’s output must satisfy (x,w) € R.
Expttl{)mzk—real(A) .
(z,w, st) < A; (1Y)
p & {0, 13RI
(I,7) <& NIZKP™ Prove(1*, p, 2, w)
V& Ay(I, pr,m,st)
Return b'.

hbmzk-sim .
EXpt) Nizkhom Sim (A) :

(iL’,’lU,St) <i -/41(1)\)
(I, pr,7) < NIZK"™ Sim(1*, 2)

y & As(I, pr,m,st)
Return ¥'.

Quach et al. [QRW19] defined a stronger variant of zero-knowledge called special zero-
knowledge as follows.

Special Zero-Knowledge: There exists a PPT simulator NIZK"™™.Sim = (NIZKhbm.Siml,
NIZK"P™ Simy) such that the following properties hold:

1. For any (z,w) € R and p € {0,1}F%=Dif we let p/ & NIZKP™ Simy(p) and
(I,) < NIZK™ Prove(1*, p, z, w), then o = pr.

2. For all computationally unbounded adversaries A = (A1, A2) and all polynomials
n =n(\), we have

Pr[EXpthbmszk—real

hbmszk-si
A,NIZKhb"‘.Sim()‘) = 1] = Pr[Expt) {17 icbm

DNizKeem sim (A) = 1]1 = negl(A),

hbmszk-real

where the experiments Expt (\) and ExpthPmszksim (N} are defined as

A,NIZKPP™ Sim A,NIZKPP™ Sim

follows, and A;’s output must satisfy (x,w) € R and x € {0,1}".
hbmszk-real . hbmszk-sim .
Expt] Nizkrom. sim (A) - Expt) Nizkom sim (M)

p < {0, 1} p <& {0, 1}FO™

p' & NIZK'®™ Simy (p)
(z,w,st) <& AL (p)
(I,7) <& NIZKP™ Prove(1*, p, 2, w)

o & NIZKP®™ Simy (p)
(wivst) & ”41(:0/)
(I,7) < NIZK"™™ Simy(p, z)

W <& Ay(I, ,st)
Return ¢'.

V& Ay(I, 7, st)
Return b'.

Lemma 2 ([QRW19]). For any NP language L, there exists an HBM-NIZK satisfying com-
pleteness, 2~k _soundness, zero-knowledge, and special zero-knowledge.

Remark 5. As mentioned in [QRW19], it is easy to see that special zero-knowledge implies zero-
knowledge. We state them separately for convenience in subsequent sections. Specifically, we use
zero-knowledge in Section 5 where we construct a NIZK with non-adaptive zero-knowledge from
a primitive that we call an HBG with subset-dependent proofs (SDP-HBG) (see Section 4.1 for
its formal definition), and special zero-knowledge in Appendiz A.2 where we construct a NIZK
with adaptive zero-knowledge from a HBG.

14

Expti R4 R (A,) - C Fg(8): © Chal($) :

L+ 0 L 2 & {0,100 L2t & {0, 1m0

K < {0, 1< - _Retwm (2, F(2). 1 [y =Fg@h) ifb=0
st & ./4{71[{(5)7Leak(-)(1)\7 16) ! Leak(f) : y* & {0’ 1}n(/\7g) ifh=1
b/ (i Aghal($)(5t) : L+ L + |f(K)’ ‘ Return ($*7y*)

Return b'. Return f(K) ifL<{

otherwise

Figure 1: The experiment for defining the leakage-resilience for a wPRF.

2.6 Leakage-Resilient Weak Pseudorandom Function

Here, we review the definition of a leakage-resilient weak pseudorandom function (LR-wPRF) [HLWW16].
Though the definition is essentially the same as that in [HLWW16], we make it more explicit

that we can arbitrarily set the leakage bound ¢ = ¢()) instead of treating ¢ as a fixed parameter
hardwired in a scheme.? Specifically, we define parameters of an LR-wPRF including the key

length, input length, and output length as polynomials of A and ¢. This implicitly means that

an evaluation of an LR-wPRF also depends on £ since it is given a key and an input whose

length depends on /.

Definition 9 (Leakage-Resilient Weak Pseudorandom Function). Let k = k(A, £), m = m(\, {),
and n = n(\,£) be polynomials. A leakage-resilient weak PRF (LR-wPRF) with the key length
K, input length m, and output length n, is a family of efficiently computable functions F =
{Fr : {0,1}™ — {0,1}"} keqo,13= such that for all polynomials = {(X\) and PPT adversaries
A = (A1, A2), we have

PrExptEqrRFO(N, £) = 1] — PrExptig " (A, £) = 1]| = negl(N),

where the experiment Expt'j;'?ﬁPRF’b(A,E) (with b € {0,1}) is described in Figure 1.

Hazay et al. [HLWW16] showed how to construct an LR-wPRF from a OWF. Their result
can be stated in the following form that is convenient for our purpose.

Theorem 1 ([HLWW16)). If there exists a OWF, then there exists an LR-wPRF with the key
length k = £ - poly()), input length m = £ - poly(X), and output length n = 1.

Remark 6. Actually, Hazay et al. showed that we can set kK = O({X\/log\), m = O(¢N), and
n to be any polynomial in \. We state the theorem in the above form since this is sufficient for
our purpose.

2.7 Hidden-Bits Generator

A hidden-bits generator (HBG) is a primitive proposed by Quach, Rothblum, and Wichs [QRW19].
Our definition here is slightly different from the original one since we require a slightly stronger
requirement of the succinct commitment property and we define both computational and sta-
tistical binding whereas the original definition only considered statistical one.'”

9Syntactically, this treatment of the leakage bound £ is similar to a cryptographic primitive in the bounded
retrieval model (BRM). Unlike the BRM, however, we do not pose any efficiency requirement on the scheme
regarding the dependency on the given leakage bound /.

0We note that Libert et al. [LPWW20] also introduced a computational binding property for an HBG, but
their definition is slightly different from ours since they focus on an HBG that satisfies a stronger form of hiding
property called statistical simulation property.

15

Definition 10 (Hidden-Bits Generator [QRW19]). A hidden-bits generator (HBG) consists of
the three PPT algorithms (HBG.Setup, HBG.GenBits, HBG.Verify):

HBG.Setup(1*, 1) > crs: The setup algorithm takes the security parameter 1* and the length
parameter 1% as input, and outputs a CRS crs.

HBG.GenBits(crs) - (com, 7, {mi}iepw)): The bits generation algorithm takes a CRS crs as input,
and outputs a commitment com, a string r € {0,1}*, and a tuple of proofs {mitiem-

HBG.Verify(crs,com, i, 7, m;) — T or L: The verification algorithm takes a CRS crs, a commit-
ment com, a position i € [k], a bit r; € {0,1}, and a proof m; as input, and outputs T
indicating acceptance or L otherwise.

We require an HBG to satisfy the following properties:

Correctness: For all natural numbers k and i € [k], we have

crs <~ HBG.Setup(1*, 1%);

=1.
(com, 7, {7 }icin) & HBG.GenBits(crs)

Pr |HBG.Verify(crs,com,i,r;,m;) = T :

Succinct Commitment: There exists a constant v < 1 such that the bit-length of a commit-
ment com is at most k7poly(\) where crs < HBG.Setup(1*,1%) and (com,r, {mitiem) &
HBG.GenBits(crs).!!

Computational (resp. Statistical) Binding: There exists a possibly inefficient determinis-
tic algorithm Open such that for any polynomial k = k(\) and PPT (resp. computationally
unbounded) adversary A, we have

crs <~ HBG.Setup(1*, 1%);
Pr |r} # r; AHBG.Verify(crs,com, i, r},m;) = T : (com, i, 7, ;) & Alcrs); | = negl(A).
7 < Open(1%, crs, com)

Computational Hiding: For any polynomial k = k(X\), I C [k], and PPT adversary A, we
have

Pr[A(crs, I,com, 7y, mr,r7) = 1] — Pr[Aa(crs, I,com,rl,m,r%) = 1]| = negl()),

where crs < HBG.Setup(1*, 1%), (com, 7, {mitiem) & HBG.GenBits(crs), and ' < {0, 1}*.

3 Non-Adaptive to Adaptive Zero-Knowledge for NIZK

In this section, we show the following theorem.

Theorem 2. If there exist a OWF and a NIZK for all NP languages that satisfies adaptive com-
putational (resp. statistical) soundness and non-adaptive single-theorem zero-knowledge, then
there exists a NIZK for all NP languages that satisfies adaptive computational (resp. statistical)
soundness and adaptive multi-theorem zero-knowledge.

1We note that the requirement of the succinct commitment property given here is slightly stronger than that
in the original definition in [QRW19]. We use this definition since it is simpler and our construction satisfies this

property.

16

Remark 7. The theorem remains true even if we start from a NIZK with non-adaptive statistical
soundness since we can convert it into one with adaptive statistical soundness while preserving
the zero-knowledge property by a simple parallel repetition. On the other hand, we do not know
whether the theorem remains true if we start from a NIZK with non-adaptive computational
soundness.

HBG from Non-adaptive NIZK. First, we show that we can construct an HBG by com-
bining a non-interactive commitment scheme, a PRG, and a NIZK in a straightforward manner.
We note that Dwork and Naor [DN07] already mentioned a similar construction.'? Our crucial
observation is that non-adaptive multi-theorem zero-knowledge is sufficient for this purpose.
Moreover, as stated in Lemma 1, we can generically upgrade non-adaptive single-theorem zero-
knowledge to non-adaptive multi-theorem zero-knowledge. Therefore, we obtain the following
lemma.

Lemma 3. If there exist a OWF and a NIZK for all NP languages that satisfies adaptive
computational (resp. statistical) soundness and non-adaptive single-theorem zero-knowledge,
then there exists an HBG that satisfies succinct commitment, computational (resp. statistical)
binding, and computational hiding.

Since the construction and security proof are straightforward, we give them in Appendix A.1.

Adaptive NIZK from HBG. Quach et al. [QRW19] gave a construction of a NIZK with
adaptive statistical soundness and adaptive multi-theorem zero-knowledge based on an HBG
with statistical binding and computational hiding. It is easy to see that the same construction
works for a computationally binding HBG to construct an adaptively computationally sound
NIZK. Namely, we have the following lemma.

Lemma 4. If there exist a OWF and an HBG that satisfies succinct commitment, computa-
tional (resp. statistical) binding, and computational hiding, then there exists a NIZK for all
NP languages that satisfies adaptive computational (resp. statistical) soundness and adaptive
multi-theorem zero-knowledge.

Though the construction and proof are essentially the same as those in [QRW19], we give
them in Appendix A.2 for completeness.
Theorem 2 can be obtained by combining Lemmata 3 and 4.

4 Hidden-Bits Generator with Subset-Dependent Proofs

In this section, we introduce a weaker variant of an HBG that we call an HBG with subset-
dependent proofs (SDP-HBG). We also give a construction of an SDP-HBG from the combina-
tion of a SNARG and an LR-wPRF (and thus, from a SNARG and a OWF).

4.1 Definition

Here, we define an SDP-HBG.

Definition 11 (SDP-HBG). A hidden-bits generator with subset dependent proofs (SDP-HBG)
consists of the four PPT algorithms (HBG*.Setup, HBG*?.GenBits, HBG*I .Prove, HBGIP Verify):

2Dwork and Naor [DN07] constructed what they call a verifiable pseudorandom generator from a NIZK, which
is a similar primitive to an HBG.

17

HBGS Setup(1*, 1) > crs: The setup algorithm takes the security parameter 1* and the length
parameter 1% as input, and outputs a CRS crs.

HBG¥ GenBits(crs) — (r,st): The bits generation algorithm takes a CRS crs as input, and
outputs a string r € {0,1}* and a state st.

HBG Prove(st, I) = 7: The proving algorithm takes a state st and a subset I C [k] as input,
and outputs a proof .

HBGSdp.Verify(crs,I, rr,m) — T or L: The verification algorithm takes a CRS crs, a subset I C
k], a string r1 € {0,1}1, and a proof © as input, and outputs T indicating acceptance or
1 otherwise.

We require an SDP-HBG to satisfy the following properties:
Correctness: For any natural number k and I C [k], we have
crs <~ HBGS Setup(1*, 1%);

Pr |HBGSP Verify(crs, I,r7,7) = T : (r,st) <~ HBG*¥.GenBits(crs); | = 1.
7 < HBG*P Prove(st, I)

Somewhat Computational Binding: There exists a constant v < 1 such that (1) for any

polynomial k = k()\) and CRS crs generated by HBGI Setup(1*,1%), there exists a subset
Vers € {0,1}F such that VS| < 28PN and (2) for any PPT adversary A, we have

crs < HBG Setup(1*, 1%);

Pr $
(I,rp,m) < A(crs)

rr ¢ V&' A HBGSP Verify(crs, I, 77, m) = T :] = negl()),

where V5™ := {r; : r € V"°}.

Computational Hiding: For any polynomial k = k(\), I C [k], and PPT adversary A, we
have

)Pr[A(crs,I,rl,w,rj) = 1] — Pr[A(crs, I, rp, m, %) = 1]‘ = negl(\),

where crs < HBGP Setup(1*, 1%), (r,st) < HBG*.GenBits(crs), 7 < HBG*.Prove(st, I),
and r' & {0,1}F.

An SDP-HBG can be seen as a weaker variant of an ordinary HBG, in the sense that the
former can be naturally constructed from the latter.

Lemma 5. If there exists an HBG, then there exists an SDP-HBG.

Proof. Given an ordinary HBG (HBG.Setup, HBG.GenBits, HBG.Verify), we can construct an
SDP-HBG (HBG Setup, HBG*P.GenBits, HBG*¥ .Prove, HBG*I Verify) as described in Fig. 2.

For the above construction of an SDP-HBG, it is straightforward to see that correctness
and computational hiding follow from those of the underlying HBG, respectively. In particular,
for computational hiding, the input of an adversary for the above SDP-HBG and an adversary
for the underlying HBG take the same set of information, and thus constructing a reduction is
trivial.

It remains to see the somewhat computational binding of the above SDP-HBG. By the suc-
cinct commitment property of the underlying HBG, there exist a constant v < 1 and a polyno-
mial p = p(\) = poly()\) such that |com| < k7-p holds for all com generated by HBG.GenBits(crs)
where crs is in turn generated from HBG.Setup(1*, 1%).

18

HBG* Setup(1*, 1%) : HBG*.GenBits(crs) :
crs <& HBG.Setup(1*, 1%) (com, 7, {m; }iepr) <~ HBG.GenBits(crs)
Return crs. Return (r,st = (com, {7 }icx]))-
HBG*®.Prove(st, I) : HBG*® Verify(crs, I,ry,) :
(com, {7 }iepk)) st (com, {m;}icr) < 7
Return 7" = (com, {m; }ier). T ifVieI:HBGVerify(crs,com,i,ry,m) =T
Return . .
otherwise

Figure 2: The construction of an SDP-HBG from an HBG.

We will show that this constant = satisfies the two required properties of the somewhat
computational binding. For the first property, for a fixed crs generated from HBG.Setup(1*, 1),
we define the set V" by

Ve = {r e {0, 1}k|r = Open(1¥, crs,com) A com € {0, 1}’“7"’},

where Open is the inefficient deterministic algorithm regarding the binding property of the
underlying HBG. Then, |Ves| < 2K = 2k7poly(A) holds by the definition of .

To see that the second property is satisfied, consider a PPT adversary A against the
somewhat computational binding of the SDP-HBG that on input a CRS crs (output from
HBG.Setup(1*, 1¥)) outputs (I, 77,7’ = (com, {m;}ic7)) satisfying the success condition, namely,
r; ¢ Vs and HBG.Verify(crs, com, i, r;, m;) = T for all i € I. Let r' := Open(1¥, crs,com). Then,
note that the condition “r; ¢ V§” implies that there exists ¢ € I for which r; # r, holds.
Although the index i is not guaranteed to be efficiently computable, it can be simply guessed,
which is correct with probability at least 1/|I| > 1/k. Hence, we can straightforwardly con-
struct a reduction algorithm B (attacking the binding property of the underlying HBG) that on
input crs runs (1,77, 7 = (com{m;}ier)) < A(crs), picks i € I uniformly at random, and out-
puts (com, i, r;, 7;). Then, B is PPT, and its advantage in breaking the binding property of the
underlying HBG is at least 1/k times A’s advantage in breaking the somewhat computational
binding property of the SDP-HBG. a

4.2 Construction

Here, we give a construction of an SDP-HBG from a SNARG and a OWF.

Theorem 3. If there exist a OWF and a -slightly succinct SNARG for all NP languages for
some 6 < 1/2 that satisfies adaptive computational soundness, then there exists an SDP-HBG
that satisfies somewhat computational binding and computational hiding.

Our construction of an SDP-HBG uses the following ingredients.

e An LR-wPRF F = {Fk : {0,1}"" — {0,1}} kef0,1}~, built from a OWF via Theorem 1,
with the key length k = k(A,¢) = £ - poly()), input length m = m(\,¢) = £ poly(\), and
output length 1.

e A §-slightly succinct SNARG (SNARG.Setup, SNARG.Prove, SNARG.Verify) for some ¢ <
1/2 for the language £ associated with the relation R defined as follows:

((k',{:ci}ie[k/],{ri}ie[k/]), K) ER = ;= Fy(z;) foralliec [k].

19

HBG*¥® Setup(1*, 1F) : HBG* GenBits(crs) :

Cl'Ssnarg (i SNARG.Setup(l’\) (Crssnarg7 {xi}ie[k]) crs

Vie k] a; & {0,1)™ K & {0,1}"

Return crs = (Crssnarg, {%i }icir])- Vi € [k] i i < Fr ()

Return (r = {ri}ie, st = (crs, K, 7)).

HBG*® Prove(st, I) : HBG™ Verify(crs, I, 77,) :

(CFS7 K, ’/‘) < st (Crssnarg7 {xi}ie[k]) < crs

(CrSenarg, 1 pi[k)) <= crs Return SNARG.Verify(crsenarg, (|I|, z1,71), 7).

& SNARG.Prove(crssnarg, (|11, z1,71), K)

Return 7.

Figure 3: The construction of an SDP-HBG based on an LR-wPRF and a SNARG.

In our construction of an SDP-HBG, the leakage bound ¢ of the underlying LR-wPRF is
chosen depending on the length parameter k input to the setup algorithm of the SDP-HBG, so
that

(a) kK < k7 -poly(A) holds for some constant v < 1, and

(b) for any k' < k, 2; € {0,1}™ for i € [K], r; € {0,1} for i € [K'], and K € {0,1}", if
We generate Crssnarg & SNARG.Setup(1*) and 7 & SNARG.Prove(crssnarg, (K, {Zi }icin,
{ri}iep), K), then we have |r| < /.

Below we explain how we choose such /.

Recall that the §-slight succinctness of the SNARG ensures that the size of a proof 7 gener-
ated from a statement/witness pair (z,w) € R satisfies || < (|z| + |w|)? - poly()). In our case,
the bit-length of a statement x = (K, {x; }icp), {7 }icp)) is bounded by logk + k- (m + 1) <
k- (m+2) =kl poly(\), and the bit-length of a witness w = K is just K = £ - poly()A). Hence,
the size of a proof 7 generated by SNARG.Prove for (z,w) is bounded by

7| < (k€ - poly(X) + £ - poly())® - poly(\) < (k€)° - p,

for some polynomial p = poly(A) that is independent of k& and ¢.
Then we set the leakage bound ¢ = £(\, k) as

1

{ .= k:% -pT-s,

Since we assume § < 1/2, we have 1‘%5 < 1. Thus the property (a) is satisfied with v := %.

Furthermore, we have

1

| < (k0)° -p = kT3 pTT = €.

|

Hence, the property (b) is also satisfied, as desired.
Using the above ingredients, our construction of an SDP-HBG (HBG Setup, HBG*P.GenBits,
HBG* .Prove, HBG* Verify) is described in Fig. 3. In the description, z; is a short hand for

{zitier
It is easy to see that the construction satisfies correctness. The security properties of the
SDP-HBG are guaranteed by the following theorem.

Theorem 4. The above SDP-HBG satisfies somewhat computational binding and computational
hiding.

20

Proof. We start by showing somewhat computational binding, then computational hiding.

Somewhat Computational Binding. For a CRS crs = (Crssnarg, {Zi}ic[r]) output from
HBG Setup(1*, 1¥), we define V' := {(Fk (z1), ..., Fx (1)) | K € {0,1}*}. Then, since |K| =
r < k7poly()), we have |Vrs| < 2K7PolY(N) | Furthermore, it is straightforward to see that by the
soundness of the underlying SNARG, no PPT adversary can generate a valid proof for (I,rr)
that is inconsistent with any element of V. More specifically, any PPT adversary that given crs =
(CrSsnarg; {Ti}ic[r)) outputs a tuple (1,77,) satisfying SNARG.Verify(crssnarg, (1], 21,71),7) = T
and r; ¢ V§™, can be straightforwardly turned into a PPT adversary that breaks the adaptive
soundness of the underlying SNARG, since r; ¢ V5™ implies (||, z1,77) ¢ L.

Computational Hiding. It is easy to reduce the computational hiding of our SDP-HBG to
the security of the underlying LR-wPRF in which the leakage bound is ¢, by noting that the
leakage from K is m whose size is at most ¢. Formally, given any polynomial k = k(\), I C [k],
and PPT adversary A, consider the following PPT adversary B = (B;,B2) that attacks the
security of the underlying LR-wPRF with the leakage bound £.

BfK($)’Leak(')(l)‘): (where K < {0,1}*) By makes |I| queries to the oracle Fk($), and re-
gards the returned values from the oracle as {(z;,7; = Fk(2i))}icr- Next, By com-

putes CrSsnarg & SNARG.Setup(1*), and defines the circuit f : {0,1}* — {0,1}¢ by
f() := SNARG.Prove(crses, (|I],21,77),-). Then, By submits f(-) to the oracle Leak(-),
and receives w. Finally, B; sets stz as all the information known to Bj, and terminates
with output stg.

Bg hal($) (stp): Ba submits k—|I| queries to the challenge oracle Chal($), and regards the returned

values from the oracle as {(z;,7;)},c7. Note that r; = F(2;) if b = 0 and r; & {0,1}
if b = 1, where b is B’s challenge bit. Now, By sets crs := (CrSsnarg, {%i}ic[r), and runs
A(ers, I,rr,m,77). When A terminates with output b, By outputs b’ and terminates.

Since | f(+)| = ¢, B complies with the rule of the LR-wPRF security experiment with the leak-
age bound /. Furthermore, it is straightforward to see that if b = 0, then the pairs {(zi,7:)},c7
that Bs receives from the challenge oracle satisfy Fi(x;) = r;, and B simulates the computa-
tional hiding experiment in the case 77 is the real randomness generated by HBGS'P.GenBits(crs),
perfectly for A. On the other hand, if b = 1, then {r;},.; are random bits, and By simulates
the experiment of the opposite case (i.e. r; = {r;},.7 is random) perfectly for A. Hence, B’s
advantage in breaking the security of the underlying LR-wPRF is exactly the same as A’s ad-
vantage in breaking the computational hiding property of our SDP-HBG. ad

5 NIZK from SDP-HBG

In this section, we show the following theorem.

Theorem 5. If there exists an SDP-HBG, then there exists a NIZK for all NP languages that
satisfies adaptive computational soundness and non-adaptive single-theorem zero-knowledge.

Combining Theorems 2, 3 and 5, we obtain the following theorem.

Theorem 6. If there exist a OWF and a -slightly succinct SNARG for all NP languages for
some 0 < 1/2 that satisfies adaptive computational soundness, then there exists a NIZK for all
NP languages that satisfies adaptive soundness and adaptive multi-theorem zero-knowledge.

In the following, we prove Theorem 5. The construction of our NIZK is almost the same
as the scheme by Quach, Rothblum, and Wichs [QRW19], except that we use an SDP-HBG
instead of an HBG.

21

NIZK.Setup(1*) : NIZK.Prove(crs, z, w) :

CrSpgen & HBGS‘dp.Setup(P‘7 1%) (Crspgen, §) < crs
5 <& {0,1}* (r, st) & HBGSdP.GenBits(crsbgen)
Return crs := (CrSpgen; S)- psor

(I, Thom) < NIZK™™ Prove(p, z, w)
Thgen - HBG™P Prove(st,)
Return 7 := (I, Thbm, 71, Thgen)-

NIZK Verify(crs, z,) :
(CrSbgen, S) <— crs
(L Thbm, T'T, ngen) T
pr < Ssrdry
If (a) A (b) then return T else return L:
— (a) NIZK"™™ Verify(I, pr,, Thom) = T
— (b) HBG** Verify(crspgen, I, 77, Thgen) = T

Figure 4: The construction of a NIZK based on an SDP-HBG and an HBM-NIZK.

Construction. Our NIZK uses the following ingredients:
e An SDP-HBG (HBG Setup, HBG*®P.GenBits, HBG*!? .Prove, HBG*P Verify).
e An HBM-NIZK (NIZK"®™ Prove, NIZK"™™ Verify) for an NP language £ with e-soundness.

Let v < 1 be the constant regarding the somewhat computational binding of the SDP-HBG,
which satisfies [Veen| < 28PN for all crspge, generated by HBG®P.Setup(1*,1%). When
we use an HBM-NIZK with the random-string length k, we can make ¢ = 272(*) ag stated in
Lemma 2. Therefore, we can take k = k(\) = poly(\) so that |V"s| - € = negl()\) holds. We fix
such k in the following.

Then, our construction of a NIZK for £ is described in Figure 4.

It is easy to see that the construction satisfies completeness. The security properties of the
NIZK is guaranteed by the following theorem.

Theorem 7. The above NIZK satisfies adaptive computational soundness and non-adaptive
single-theorem zero-knowledge.

Proof. We start by showing soundness, and then zero-knowledge.

Adaptive Computational Soundness. Let A be any PPT adversary that attacks the adap-
tive soundness of our NIZK. Let Win be the event that A succeeds in breaking the adaptive
soundness (i.e. NIZK.Verify(crs,z,m) = T and & ¢ L£). Suppose A on input crs = (crspgen, 5)
outputs a pair (x,m = (I, Thbm, 7T, Tbgen)). Let Ve C {0, 1}* be the set with which the
somewhat computational binding of the underlying SDP-HBG is considered. We have

Pr[Win] = Pr[Win Arp & Vi) + Pr[Win A rp € Vy).

It is straightforward to see that Pr[Win A r; ¢ V;rsbge"] = negl(A) holds by the somewhat com-
putational binding of the underlying SDP-HBG.

Hence, it remains to show P := Pr[Win A r; € V; **"] = negl()\). Fix CrSpgen i the
image of HBG*P Setup(1*,1%) and A’s randomness r% that maximize the above probabil-
ity P. Let V* := Ve Let F(-) be the function that on input s € {0,1}*, computes
(,m = (I, Thbm, 71, Thgen)) < A(crs = (crsﬁgen,s);rj), and outputs (z, I, Thpm, 7). (Looking

22

S(1*z):
(I, p1, Thom) <= NIZK"™™ Sim ()
CrSbgen - HBG* Setup(1*, 1)
(r,st) < HBG*.GenBits(crspgen)
Tbgen & HBGSdp.Prove(st, I
Sri=prdrr
sp < {0, 1)+ 11
crs := (CrSpgen, S)
™= (Ia Thbm, 7T, ngen)
Return (crs, 7).

Figure 5: The simulator for showing non-adaptive single-theorem zero-knowledge in the proof
of Theorem 7.

ahead, F' is essentially an adversary against the e-soundness of the underlying HBM-NIZK.) Let
P’ be the following probability:

NIZK"™ Verify (I, s; @ 1,2, Thom) = T . s ¢ {0,1}*;

P =P :
g NrreViNz ¢ L (x, I, Thbm, 1) F(s)

Clearly, we have P < P’. We also have

P’:ZPr

r'ep*

NIZK"™ Verify (I, s; @ rp, 2, mom) = T s <& {0,1}F;
ANrp=riANe¢ L (@, I, Thom, 71) < F(s)

< V|- ma pr | NIZKTVerify (L5 @ mom) = T s {0, 1)
= eV ANrr=rfAzé¢L (2,1, Thom, 1) F(s)

hbm . _ $ k.
_ V*|- max Pr NIZK ;Verlfy(l,pl,:v,ﬂ'hbm) =T RS {0,1}7%;
e eV ANrr=riAhe ¢l (z, 1, Thbm, 1) < F(p@®17)

hbm ; — 8 k.
< V'] max Pr NIZK™™ Verify (I, pr, &, Thom) = T p ¢ {0,1}%)
r*EV Nz ¢ L (@, I, Thom, 1) = F(p & 17*)

<|V*| - e(k) = negl(N),

where the last inequality uses the e-soundness of the underlying HBM-NIZK which we consider
for the adversary B(p) that outputs F(p @ r*) other than r;, and the last equality is due to our
choice of k. Hence, we have P = Pr[Win A7 € V;"*"] = negl()\) as well.

Combined together, we have seen that A’s advantage in breaking the adaptive soundness of
our NIZK is negligible. This implies that our NIZK satisfies adaptive soundness.

Non-Adaptive Single-Theorem Zero-Knowledge. Let NIZK™™ Sim be the simulator that
is guaranteed to exist by the zero-knowledge of the underlying HBM-NIZK. Using NIZK"®™ Sim,
we first give the description of the simulator S in Figure 5 for showing the non-adaptive single-
theorem zero-knowledge of our NIZK.

We prove the non-adaptive single-theorem zero-knowledge of the above NIZK via a sequence
of games argument using four games, among which the first game Game; (resp. the final game
Gamey) is exactly the real (resp. simulated) experiment. Let A = (A;,.A3) be any PPT
adversary that attacks the non-adaptive single-theorem zero-knowledge of the above NIZK. For
J € [4], let T; be the event that Ay finally outputs 1 in Game;. The description of the games is
as follows.

23

Game;: This is exactly the real experiment Expt’#?<™!. We have Pr[T;] = Pr[Expt’fzkreal()\) =
1].

Gamesy: We change the ordering of the steps of Game;, and furthermore “program” s by first
choosing p & {0,1}* and then setting s := p@r, without changing the distribution of A’s
view. Specifically, this game proceeds as follows.

Run (z,w,st4) < A (1%).

Pick p < {0,1}*.

Compute (Thpm, I) < NIZK'™ Prove(p, z, w).
Compute crspgen & HBG>P Setup(1*, 1).
Compute (r,st) & HBGSdp.GenBits(crsbgen).
Compute Tpgen & HBGSdp.Prove(st,I).

Set s;:= pr dry.

Set s7:= p7 & ry.13

© ° NS gt W N

Set crs := (crspgen, s) and 7 := (I, Thom, 71, Thgen)-

Run b < Ay(crs, m,st4).

H
o

It is easy to see that the distribution of A’s view has not been changed from Game;.
Hence, we have Pr[T1] = Pr[Tq].

Games: This game is identical to the previous game, except that the 8th step “s; := p; ® r{”
is replaced with “s; & {0, 1}k,
It is straightforward to see that | Pr[Ts] — Pr[Ts]| = negl(\) holds by the computational
hiding of the underlying SDP-HBG.

Gamey: This game is identical to the previous game, except that (p,Thpm,) is generated
as (pr1, Thom, 1) <= NIZK'™®™ Sim(z), instead of picking p < {0,1}* and then executing
(Thbm, 1) <= NIZK"™®™ Prove(p, z, w).

It is immediate to see that | Pr[Ts] — Pr[T4]| = negl(\) holds by the zero-knowledge of the
underlying HBM-NIZK.

It is also straightforward to see that Gamey is identical to the simulated experiment
Expt?ffgk's'm. Hence, we have Pr[T4] = Pr[Exptff’fgk'S'm(/\) =1].

Combined together, A’s advantage against the non-adaptive single-theorem zero-knowledge
can be estimated as follows:

Pr[Expt i (\) = 1] — Pr[ExptT2-m(\) = 1]‘ - ‘Pr[Tl] - Pr[T4]‘

< ’Pr[Tj] - Pr[Tj_H]‘ = negl(\).
jefl

This proves that our NIZK is non-adaptive single-theorem zero-knowledge. a

138plitting the step “s := p@®r” into Steps 7 and 8 is to make it easier to describe the change in the next game
and also see the correspondence with the procedure of the simulator S.

24

Remark 8. (On adaptive zero-knowledge.) One may think that we can prove that the above
construction satisfies adaptive single-theorem zero-knowledge by relying on the special zero-
knowledge property of the underlying HBM-NIZK, since a similar statement is proven for the
construction of a NIZK based on an (ordinary) HBG in [QRW19]. However, we believe that this
is not possible. Roughly speaking, the problem comes from the fact that the SDP-HBG enables
us to generate a proof mpgen corresponding to a subset I only after I is fized. This is in contrast
to an HBG where we can generate ; that certifies the i-th hidden bit for each i € [k] before I
is fized. Specifically, the proof of adaptive zero-knowledge from an HBG in [QRW19] crucially
relies on the fact that if I C I*, then a set of proofs {m;}icr can be derived from {m;}icr+ in
a trivial manner. On the other hand, we do not have a similar property in SDP-HBG since it
generates a proof for a subset I in one-shot instead of generating a proof in a bit-by-bit man-
ner. We note that if SDP-HBG satisfies an adaptive version of computational hiding where an
adversary can choose a subset I depending on a CRS crspgen, then we can prove the adaptive
zero-knowledge of the above scheme relying on special zero-knowledge of HBM-NIZK. However,
such an adaptive version of computational hiding cannot be proven by a similar proof to the one
in Section 4.2 due to the fact that a leakage function cannot depend on a challenge input in the
security game of LR-wPRF. Therefore, instead of directly proving that the above scheme satis-
fies adaptive zero-knowledge, we rely on the generic conversion from non-adaptive to adaptive
zero-knowledge as stated in Theorem 2.

6 Zero-Knowledge SNARG

In this section, we consider a zero-knowledge SNARG (zkSNARG) which is a SNARG that also
satisfies the zero-knowledge property.

Bitansky et al. [BCCT17] gave a construction of a zkSNARG in the designated verifier
model based on a SNARG (with efficient verification) in the designated verifier model, a NIZK
argument of knowledge, and a circuit-private FHE scheme. As noted in [BCC*17], if we consider
a publicly verifiable SNARG (which is the default notion of a SNARG in this paper), then
we need not rely on FHE. Moreover, a NIZK argument of knowledge can be constructed by
combining any NIZK and CPA secure PKE. Thus, we obtain the following theorem:

Lemma 6. Assume that there exist a fully succinct SNARG for all NP languages with adaptive
computational soundness and efficient verification, a NIZK for all NP languages with adap-
tive computational soundness and adaptive multi-theorem zero-knowledge, and a CPA secure
PKE scheme. Then, there exists a fully succinct SNARG for all NP languages with adaptive
computational soundness, adaptive multi-theorem zero-knowledge, and efficient verification.

Though this lemma follows from a straightforward extension of existing works, we give the
construction in Appendix B for completeness.
Combining Lemma 6 and Theorem 6, we obtain the following theorem.

Theorem 8. If there exist a CPA secure PKFE scheme and a fully succinct SNARG for all NP
languages with adaptive computational soundness and efficient verification, then there exists a
fully succinct SNARG for all NP languages with adaptive computational soundness, adaptive
multi-theorem zero-knowledge, and efficient verification.

Remark 9. We cannot prove a similar statement for a SNARG without efficient verification
since efficient verification is essential in the construction of a zkSNARG in Appendix B.

25

References

[AGV09]

[BBBF18]

[BC12]

[BCC*17]

[BCG114]

[BCI*+13]

[BFMSS]

[BFS20]

[BISW17]

[BISW18]

[BMWO03]

Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hard-
core bits and cryptography against memory attacks. In Omer Reingold, editor,
TCC 2009, volume 5444 of LNCS, pages 474-495. Springer, Heidelberg, March
2009. 3

Dan Boneh, Joseph Bonneau, Benedikt Biinz, and Ben Fisch. Verifiable delay
functions. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part I, volume 10991 of LNCS, pages 757-788. Springer, Heidelberg, August 2018.
2

Nir Bitansky and Alessandro Chiesa. Succinct arguments from multi-prover in-
teractive proofs and their efficiency benefits. In Reihaneh Safavi-Naini and Ran
Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 255-272. Springer,
Heidelberg, August 2012. 8

Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad
Rubinstein, and Eran Tromer. The hunting of the SNARK. Journal of Cryptology,
30(4):989-1066, October 2017. 2, 3, 8, 25

Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In 201/ IEEE Symposium on Security and Privacy, pages 459-474.
IEEE Computer Society Press, May 2014. 2

Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.
Succinct non-interactive arguments via linear interactive proofs. In Amit Sahai,
editor, TCC 2013, volume 7785 of LNCS, pages 315-333. Springer, Heidelberg,
March 2013. 8

Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge
and its applications (extended abstract). In 20th ACM STOC, pages 103-112.
ACM Press, May 1988. 1, 8

Benedikt Biinz, Ben Fisch, and Alan Szepieniec. Transparent SNARKSs from DARK
compilers. In Vincent Rijmen and Yuval Ishai, editors, FEUROCRYPT 2020, Part I,
LNCS, pages 677-706. Springer, Heidelberg, May 2020. 8

Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Lattice-based SNARGs
and their application to more efficient obfuscation. In Jean-Sébastien Coron and
Jesper Buus Nielsen, editors, FUROCRYPT 2017, Part III, volume 10212 of LNCS,
pages 247-277. Springer, Heidelberg, April / May 2017. 2, 8

Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Quasi-optimal SNARGs
via linear multi-prover interactive proofs. In Jesper Buus Nielsen and Vincent
Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 222—
255. Springer, Heidelberg, April / May 2018. 2, 8

Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group
signatures: Formal definitions, simplified requirements, and a construction based
on general assumptions. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of
LNCS, pages 614-629. Springer, Heidelberg, May 2003. 1

26

[CCH*19]

[CCRR18]

[CHKO07]

[CEHM*+20]

[CKU20]

[CL18]

[CMS19]

[COS20]

[CvI1]

[DDNOO]

[DFMV13]

[DHLW10]

Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum,
Ron D. Rothblum, and Daniel Wichs. Fiat-Shamir: from practice to theory. In
Moses Charikar and Edith Cohen, editors, 51st ACM STOC, pages 1082—-1090.
ACM Press, June 2019. 8

Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-Shamir
and correlation intractability from strong KDM-secure encryption. In Jesper Buus
Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of
LNCS, pages 91-122. Springer, Heidelberg, April / May 2018. 8

Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryp-
tion scheme. Journal of Cryptology, 20(3):265-294, July 2007. 1, 8

Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and
Nicholas P. Ward. Marlin: Preprocessing zkSNARKSs with universal and updatable
SRS. In Vincent Rijmen and Yuval Ishai, editors, FUROCRYPT 2020, Part I,
LNCS, pages 738-768. Springer, Heidelberg, May 2020. 8

Geoffroy Couteau, Shuichi Katsumata, and Bogdan Ursu. Non-interactive zero-
knowledge in pairing-free groups from weaker assumptions. In Vincent Rijmen and
Yuval Ishai, editors, FUROCRYPT 2020, Part III, LNCS, pages 442-471. Springer,
Heidelberg, May 2020. 2, 8

Ran Canetti and Amit Lichtenberg. Certifying trapdoor permutations, revisited.
In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part I, volume 11239
of LNCS, pages 476-506. Springer, Heidelberg, November 2018. 8

Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. Succinct arguments in
the quantum random oracle model. In Dennis Hofheinz and Alon Rosen, editors,
TCC 2019, Part II, volume 11892 of LNCS, pages 1-29. Springer, Heidelberg,
December 2019. 8

Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and
transparent recursive proofs from holography. In Vincent Rijmen and Yuval Ishai,
editors, FUROCRYPT 2020, Part I, LNCS, pages 769-793. Springer, Heidelberg,
May 2020. 8

David Chaum and Eugene van Heyst. Group signatures. In Donald W. Davies, ed-
itor, FUROCRYPT’91, volume 547 of LNCS, pages 257-265. Springer, Heidelberg,
April 1991. 1

Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM
J. Comput., 30(2):391-437, 2000. 1

Ivan Damgard, Sebastian Faust, Pratyay Mukherjee, and Daniele Venturi. Bounded
tamper resilience: How to go beyond the algebraic barrier. In Kazue Sako and
Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages
140-160. Springer, Heidelberg, December 2013. 1

Yevgeniy Dodis, Kristiyan Haralambiev, Adriana Loépez-Alt, and Daniel Wichs.
Efficient public-key cryptography in the presence of key leakage. In Masayuki
Abe, editor, ASTACRYPT 2010, volume 6477 of LNCS, pages 613-631. Springer,
Heidelberg, December 2010. 1

27

[DNO7]

[EFKP20]

[FLS99]

[FS87]

[GGPR13]

[GMWS7]

(GOY4]

[Goll1]

[GOS12]

[GR13]

[Grol0]

[Grol6]

[GW11]

[HILLYY]

Cynthia Dwork and Moni Naor. Zaps and their applications. SIAM J. Comput.,
36(6):1513-1543, 2007. 2, 7, 17

Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. SPARKs:
Succinct parallelizable arguments of knowledge. In Vincent Rijmen and Yuval Ishai,
editors, FUROCRYPT 2020, Part I, LNCS, pages 707-737. Springer, Heidelberg,
May 2020. 8

Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowledge
proofs under general assumptions. SIAM J. Comput., 29(1):1-28, 1999. 1, 3, 8, 12,
13

Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86,
volume 263 of LNCS, pages 186—-194. Springer, Heidelberg, August 1987. 8

Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic
span programs and succinct NIZKs without PCPs. In Thomas Johansson and
Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 626—
645. Springer, Heidelberg, May 2013. 2, 8

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In Alfred Aho, editor,
19th ACM STOC, pages 218-229. ACM Press, May 1987. 1

Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. Journal of Cryptology, 7(1):1-32, December 1994. 1

Oded Goldreich. Basing non-interactive zero-knowledge on (enhanced) trapdoor
permutations: The state of the art. In Oded Goldreich, editor, Studies in Com-
plexity and Cryptography. Miscellanea on the Interplay between Randomness and
Computation, volume 6650 of LNCS, pages 406—421. Springer, 2011. 8

Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive
zero-knowledge. J. ACM, 59(3):11:1-11:35, 2012. 1, 8

Oded Goldreich and Ron D. Rothblum. Enhancements of trapdoor permutations.
Journal of Cryptology, 26(3):484-512, July 2013. 8

Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In
Masayuki Abe, editor, ASTACRYPT 2010, volume 6477 of LNCS, pages 321-340.
Springer, Heidelberg, December 2010. 2, 8

Jens Groth. On the size of pairing-based non-interactive arguments. In Marc
Fischlin and Jean-Sébastien Coron, editors, FUROCRYPT 2016, Part II, volume
9666 of LNCS, pages 305-326. Springer, Heidelberg, May 2016. 2, 8

Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments
from all falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors,
48rd ACM STOC, pages 99-108. ACM Press, June 2011. 2, 12, 13

Johan Hastad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudo-
random generator from any one-way function. SIAM J. Comput., 28(4):1364-1396,
1999. 9, 10

28

[HLWW16] Carmit Hazay, Adriana Lépez-Alt, Hoeteck Wee, and Daniel Wichs. Leakage-
resilient cryptography from minimal assumptions. Journal of Cryptology, 29(3):514—
551, July 2016. 5, 7, 15

[KNYY19] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. Ex-
ploring constructions of compact NIZKs from various assumptions. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I1I, volume 11694
of LNCS, pages 639-669. Springer, Heidelberg, August 2019. 8

[KRR17] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From obfuscation
to the security of Fiat-Shamir for proofs. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO 2017, Part II, volume 10402 of LNCS, pages 224-251. Springer,
Heidelberg, August 2017. 8

[KV09] Jonathan Katz and Vinod Vaikuntanathan. Signature schemes with bounded leak-
age resilience. In Mitsuru Matsui, editor, ASTACRYPT 2009, volume 5912 of LNCS,
pages 703-720. Springer, Heidelberg, December 2009. 1

[KW18] Sam Kim and David J. Wu. Multi-theorem preprocessing NIZKs from lattices. In
Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume
10992 of LNCS, pages 733-765. Springer, Heidelberg, August 2018. 8

[LPWW20] Benoit Libert, Alain Passelegue, Hoeteck Wee, and David J. Wu. New constructions
of statistical NIZKs: Dual-mode DV-NIZKs and more. In Vincent Rijmen and
Yuval Ishai, editors, FUROCRYPT 2020, Part III, LNCS, pages 410—441. Springer,
Heidelberg, May 2020. 15

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253-1298,
2000. 1, 8

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology,
4(2):151-158, January 1991. 10

[INY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against cho-
sen ciphertext attacks. In 22nd ACM STOC, pages 427-437. ACM Press, May
1990. 1

[Ps05] Rafael Pass and Abhi shelat. Unconditional characterizations of non-interactive

zero-knowledge. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS,
pages 118-134. Springer, Heidelberg, August 2005. 8, 12

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain)
learning with errors. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part I, volume 11692 of LNCS, pages 89—114. Springer, Heidelberg,
August 2019. 1, 8

[QRW19] Willy Quach, Ron D. Rothblum, and Daniel Wichs. Reusable designated-verifier
NIZKs for all NP from CDH. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part 11, volume 11477 of LNCS, pages 593—-621. Springer, Heidelberg,
May 2019. 3, 4, 7, 13, 14, 15, 16, 17, 21, 25, 33, 34

[RSTO1] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin
Boyd, editor, ASTACRYPT 2001, volume 2248 of LNCS, pages 552-565. Springer,
Heidelberg, December 2001. 1

29

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, 46th ACM STOC, pages 475—
484. ACM Press, May / June 2014. 8

[ValOg] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS,
pages 1-18. Springer, Heidelberg, March 2008.

[Wee05] Hoeteck Wee. On round-efficient argument systems. In Luis Caires, Giuseppe F.
Italiano, Luis Monteiro, Catuscia Palamidessi, and Moti Yung, editors, I[CALP
2005, volume 3580 of LNCS, pages 140-152. Springer, Heidelberg, July 2005. 8

A Omitted Contents in Section 3

A.1 HBG from Non-Adaptive NIZK

In this section, we prove Lemma 3. By Lemma 1, we can generically upgrade non-adaptive
single-theorem zero-knowledge to non-adaptive multi-theorem zero-knowledge. Therefore, we
can assume that we have a NIZK with non-adaptive multi-theorem zero-knowledge. Here, we
focus only on the computational case (adaptive computational soundness for the underlying
NIZK and computational binding for the resulting HBG). The statistical case can be proved
similarly.

We construct an HBG based on the following ingredients:

e A PRG PRG: {0,1}* — {0, 1}+.14

e A statistically binding non-interactive commitment scheme (Com.Setup, Com.Commit) in
the CRS model with the message space {0,1}*. We denote the randomness space of
Com.Commit by Recom.

e A NIZK (NIZK.Setup, NIZK.Prove, NIZK.Verify), satisfying adaptive computational sound-
ness and non-adaptive multi-theorem zero-knowledge, for a language £ associated with
the relation R defined below:

- com = Com.Commit(crscom, S; Tcom)
((crscom,com,z,rl), (s, rcom)) ER — A 7s = PRGi(s) ,
where PRG;(s) denotes the i-th bit of PRG(s).

Our construction of an HBG (HBG.Setup, HBG.GenBits, HBG.Verify) is described in Fig. 6.
The correctness of the scheme is easy to see.

Theorem 9. The above HBG satisfies succinct commitment, computational binding, and com-
putational hiding.

Proof. We show each of the properties based on the properties of the underlying primitives.

Succinct Commitment. This immediately follows from the fact that the commitment size is
poly(A), which is independent of k.

Computational Binding. We define an (inefficient) algorithm Open as follows:

“The output length k should be set to be the length parameter given as an input of HBG.Setup.

30

HBG.Setup(1*,1%) : HBG.GenBits(crs) :

CrScom <~ Com.Setup(1*) (Crscom, Crnizk) < Crs

Crsmz & NIZK.Setup(1*) s ¢ {0,1}*

Return crs := (crscom, CrSnizk)- Teom 4 Reom
com < Com.Commit(crscom, $; 7'com)
r < PRG(s).

Vi e [k] : m; & NIZK.Prove(crspiz, (CrScom, cOM, 4, 7;), (S, T'com))
Return (com, 7, { }ie[x))-

HBG.Verify(crs, com, i, 1, 7;) :
(CrScom, CrSnizk) — Crs
Return NIZK.Verify(crsnizk, (CrScom, com, i, 7;), ;).

Figure 6: The construction of an HBG from a PRG, a statistically commitment scheme, and
a NIZK.

Open(1*,crs,com): This algorithm parses (crscom, Crsnizk) < crs and finds s € {0, 1}* such that
com = Com.Commit(crscom, S; Tcom) holds for some rcom € Reom by brute-force. If there
does not exist such s or exists multiple such s, it immediately aborts. Otherwise it outputs
s.

Assume towards a contradiction that there exists a PPT adversary A that breaks the com-
putational binding of the HBG w.r.t. the above defined Open with non-negligible probability.
Then we construct a PPT adversary B that breaks the adaptive computational soundness of
the underlying NIZK as follows:

B(crspizk): This algorithm generates crscom & Com.Setup(1?), sets crs := (crscom, Crsnizk), and
runs A(crs) to obtain (com,,r},m;). Then it outputs a statement (crscom,com,,r}) and
a proof ;.

This completes the description of B. Since we are assuming that A breaks the computa-
tional binding of the HBG, we have that Pr[r} # r; A HBG.Verify(crs, com, i, r}, m;) = T] is non-
negligible where r» = Open(1¥, crs,com). Moreover, by the statistical binding of the underlying
commitment scheme, for an overwhelming fraction of crscom, any commitment com has at most
one s such that there exists rcom € Reom satisfying com = Com.Commit(crscom, S; 7com). We de-
note the event that B picks such crscom by Good. Then Pr[r} # r;AHBG.Verify(crs, com, i, r}, m;) =
T A Good] is non-negligible. In the following, we assume that the event

ri #r; N HBG.Verify(crs,com,i,r],m;) =T A Good

occurs. When this event occurs, it is clear that (crscom,com,i,7’) ¢ £ holds. This means that
B succeeds in breaking the adaptive computational soundness of the underlying NIZK, i.e., it
succeeds in generating a valid proof 7; for a statement (crscom, com, 7, 7;) ¢ £ with non-negligible

probability. This contradicts the adaptive computational soundness of the underlying NIZK,
and thus there exists no PPT adversary that can break the computational binding of the HBG.

Computational Hiding. Let S be the simulator for the non-adaptive multi-theorem zero-
knowledge of the underlying NIZK. We fix k£ and I C [k]. We consider the following sequence
of games for a PPT adversary A:

Gamej: This is the original real game. That is, the game is described as follows.

1. Generate Crscom - Com.Setup(11) and crspiz & NIZK.Setup(1*).

31

S ok w

Choose s < {0, 1}*.

Compute com <— Com.Commit(crscom, S; Tcom) Where rcom & Recom-
Compute r < PRG(s).

Generate m; & NIZK.Prove(crsniz, (Crscom,com,i,7;), (s, 7com)) for all i € I.

Output A((crscom, Crsnizk), com, I, 77,77, r7).

Games: This game is identical to the previous game except that crs,,x and 7y are generated by
the simulator.

1.

Generate crscom < Com.Setup(1*).

2. Choose s < {0,1}*.

3. Compute com < Com.Commit(crscom, ; "com) Where reom & Reom-
4.
)

Compute r <— PRG(s).

. Generate (crspizk, 1) & S(17, {(crscom,com, i, 7;) }ier)-
6.

Output A((crscom, Crsnizk), com, I, rr, 77, 7).

This game is indistinguishable from the previous one by the non-adaptive multi-theorem
zero-knowledge of the underlying NIZK. We remark that the non-adaptive zero-knowledge
is sufficient since the statements are chosen independently of crspizk.

Games: This game is identical to the previous game except that com is replaced with a com-
mitment of 0.

SNl B

Generate crscom & Com.Setup(1%).
Choose s < {0, 1}*.

Compute com & Com.Commit(crscom, 07).
Compute r < PRG(s).

Generate (crspizk, 77) & S(1>‘, {(crscom, com, i, ;) }icr)-

Output A((crscom, Crsnizk), com, I, 7,77, r7).

This game is indistinguishable from the previous one by the computational hiding of the
underlying commitment scheme.

Gamey: This game is identical to the previous game except that r is chosen uniformly at random
from {0, 1}*.

1. Generate crscom < Com.Setup(1*).
2. Choose s <~ {0,1}*.

3.
4
)

Compute com & Com.Commit(crscom, 07).

. Generate 1 < {0, 1}*.

. Generate (crspizk, 77) & S(17, {(crscom,com, i, 7;) }icr)-
6.

Output A((crscom, Crsnizk), com, I, rr, 77, 7r7)

This game is indistinguishable from the previous one by the security of the underlying
PRG, noting that the seed s is no longer used due to the change made in Games.

32

Games: This game is identical to the previous game except that A is given r’f

where 7/ is a random string independent of r.

instead of ry

Generate crseom & Com.Setup(17).
Choose s < {0, 1}*.
Compute com & Com.Commit(crscom, 07).

Generate r <~ {0,1}* and ' & {0,115,

Generate (crspizk, 77) & S, {(crscom, com, i,7;) Yier).

SNl o

Output A((crscom, crsnizk), com, I, vy, 77, %)

This game is indistinguishable from the previous one since both r and 7’ are just random
strings.

Gameg: This game is the ideal game.

1. Generate Crscom < Com.Setup(1*) and crspiz & NIZK.Setup(1*).

. Choose s < {0,1}*.

. $
. Compute com +— Com.Commit(crscom, S; Tcom) Where Tcom < Reom-

2
3
4. Compute 7 + PRG(s) and 7 & {0, 1}*.
5)

. Generate m; < NIZK.Prove(crspizk, (Crscom, com, i, 7;), (S, Tcom)) for all i € I.

6. Output A((crscom, Crsnizk),com, I, 77, 77, r7)

This game is indistinguishable from the previous one by applying similar game hops from
Game; to Gamey in the reversed order.

Now, we have proved that Game; and Gameg are computationally indistinguishable, which is
exactly the requirement of the computational hiding. ad

A.2 Adaptive NIZK from HBG

In this section, we prove Lemma 4. By Lemma 1, we can generically upgrade adaptive single-
theorem zero-knowledge to adaptive multi-theorem zero-knowledge. Therefore, we only have
to construct a NIZK with adaptive single-theorem zero-knowledge from an HBG. Here, we
focus only on the computational case (where we assume the computational binding for the
underlying HBG and prove the adaptive computational soundness for the resulting NIZK),
since the statistical case was already proven in [QRW19].

The construction shown here is exactly the same as that in [QRW19]. Namely, we construct
a NIZK based on the following ingredients.

e An HBG (HBG.Setup, HBG.GenBits, HBG.Verify).

e An HBM-NIZK (NIZK"™™ Prove, NIZK"®™ Verify) for an NP language £ with e-soundness
and special zero-knowledge.

By the succinct commitment property of the HBG, the commitment length |com| is at most
kYpoly(A) for some constant v < 1. On the other hand, when we use an HBM-NIZK with the
random-string length k, we can make ¢ = 272(%) ag stated in Lemma 2. Therefore, we can take
k = poly(\) so that 2/°™le = negl(\) holds. We fix such k.

33

NIZK.Setup(1*) : NIZK.Prove(crs, z, w) :

CrShgen & HBG.Setup(1*, 1%) (CrSbgen, 8) «— crs
s & {0,1}* (com, 7, {7 }icrk)) & HBG.GenBits(crspgen)
Return crs := (Crspgen, S)- psdr

(I, Thom) < NIZK™™ Prove(p, z, w)
Return 7 := (I, Thpm, com, 77, 7y).

NIZK.Verify(crs, x,) :
(CrSbgen, 8) <— crs
(I, Thbm, 71, T1) = T
pr < Sr@rr
If (a) A (b) then return T else return L:
— (a) NIZK"™™ Verify(I, pr, z, Thom) = T
— (b) Vi € I : HBG.Verify(crspgen, com, i, 7, m;) = T

Figure 7: The construction of a NIZK based on an HBG and an HBM-NIZK.

Then the construction of a NIZK for £ with adaptive single-theorem zero-knowledge is
described in Figure 7. It is easy to see that the scheme satisfies the completeness.

In the following, we show the adaptive computational soundness and adaptive single-theorem
zero-knowledge of the constructed NIZK.

Adaptive Computational Soundness. Let A be an adversary against the adaptive compu-
tational soundness of the constructed NIZK. We denote by Win the event that A wins, i.e., A is
given crs and returns z*, m = (I, Thom, 71, 77) such that x* ¢ £ and NIZK.Verify(crs,z*,7) = T
hold. We denote by Bad the event that r; # 77 holds where r; is output by A and 7 :=
Open(1*, CrShgen, com). Then, by the computational binding property of the underlying HBG,
the probability that HBG.Verify(crspgen, com, i, 7;, ;) = T holds for all 4 € [I] and Bad occurs,
is negligible. In particular, we have Pr[Win A Bad] = negl(\).

In the following, we prove Pr[WinABad] = negl(\). First, we show that Pr[WinABad Acom =
com] < e holds for any fixed com € {0, 1}/ and any crspgen output by HBG.Setup(1*, 1¥). This
can be seen by considering the following adversary B against the e-soundness of the underlying
HBM-NIZK:

B(p): This algorithm computes 77 := Open(1¥, crspgen, com) and s := p@7, sets crs := (Crspgen, $),

runs (z*, 7 = (I, Thpm, cOm, 71, 71)) & A(crs), and returns (x*, Thpm,).

In the above algorithm, if we assume that Bad does not occur and com = com, then we
have r; = 7. Therefore, we can see that B wins the game, i.e., 2* ¢ £ and NIZKhbm.Verify(I,
PI,T, Thom) = T, whenever the event (Win A Bad A com = com) occurs. By the e-soundness
of the underlying HBM-NIZK, this event occurs with probability at most €. By taking the
union bound over all possible com, we have Pr[Win A Bad] = negl()\) < 2/°°™¢ = negl()\) due
to our choice of k. In summary, Pr[Win] = negl(\), which completes the proof of the adaptive
computational soundness of the NIZK.

Adaptive Single-Theorem Zero-Knowledge. This can be reduced to the computational
hiding of the underlying HBG and the special zero-knowledge of the underlying HBM-NIZK.
We omit the detail since this is exactly the same as the proof in [QRW19].

34

zkSNARG.Setup(17) : zkSNARG.Prove(crsksnarg, T, W) :

CrSsnarg <~ SNARG.Setup(1*) (CrSsnargs CrSnizks PK) <= CrSzksnarg
Crsnin < NIZK Setup(1*) Tsnarg <~ SNARG.Prove(crsonarg, ,)
(pk, sk) < PKE.KeyGen(1*) ré&R

Return crszsnarg := (CrSsnarg, CrSnizk, PK)- ct < PKE.Enc(pk, Tsnarg;)

Trigk NIZK.Prove(crsniz, (€, CrSsnarg, PK, Ct), (Tsnarg, 7))
Return msnarg = (Ct, Tnizk).

zkSNARG. Verify(crsyksnarg & Tzksnarg) :
(Crssnarga CrSnizk;, Pk) <~ CISzksnarg
(Ct7 7Tnizk) — Tlzksnarg
Return NIZK.Verify(crspizk, (2, CrSsnarg, » PK; Ct), Tnizk)-

Figure 8: The construction of a zkSNARG based on a SNARG, a NIZK, and a PKE scheme.

B Proof of Lemma 6

Here, we prove that we can construct a zkSNARG from a SNARG, a NIZK, and a PKE scheme.
We construct a zkSNARG for an NP language £ based on the following building blocks:

e A SNARG (SNARG.Setup, SNARG.Prove, SNARG.Verify) for £ with adaptive computa-
tional soundness and efficient verification.

e A CPA secure PKE scheme (PKE.KeyGen, PKE.Enc, PKE.Dec). We denote the randomness
space of PKE.Enc by R.

e A NIZK (NIZK.Setup, NIZK.Prove, NIZK .Verify) for the language L,k associated with the
relation Rz defined below:

SNARG.Verify(crsSsnarg, , Tsnarg) = 1

<(x’°r55”afg’ Pk ct), (”S"a'g’r)> € Rniak A ct = PKE.Enc(pk, Tsnarg; 7)

We require that the NIZK satisfy adaptive computational soundness and adaptive multi-
theorem zero-knowledge.

Then, our construction of a zkSNARG (zkSNARG.Setup, zkSNARG.Prove, zkSNARG. Verify)
is given in Fig. 8.

Theorem 10. The above non-interactive argument satisfies efficient verification, adaptive com-
putational soundness, and adaptive multi-theorem zero-knowledge.

Proof. Efficient Verification. By the full succinctness of the underlying SNARG, for all
(z,w) € R, CrSsnarg & SNARG.Setup(1?), and Tsnarg & SNARG.Prove(crsenarg, , w), the run-
ning time of SNARG.Verify(crssnarg, T, Tsnarg) 15 poly(A)(Jz| + |w])°V). Especially, |msnarg] =
poly(\)(|z| + |w[)°™), and thus the running time of PKE.Enc(pk, Tsnarg;) is also poly(\)(|z| +
Jw|)°(M. Thus, the relation R is verifiable in time poly(\)(|z] 4 |w])°™). Since the complexity
of verification of the underlying NIZK is polynomial in the running time to verify the corre-
sponding relation and the security parameter, NIZK.Verify(crspizk, (2, CrSsnarg, » PK, Ct), Tpizk) runs
in time poly(\)(|z| + |w])°™.

Adaptive Computational Soundness. Let A be a PPT adversary against the adaptive

computational soundness of the above construction. Then we construct a PPT adversary B
against the adaptive computational soundness of the underlying SNARG as follows:

35

B(crssnarg): This algorithm generates crspiz & NIZK.Setup(1*) and (pk, sk) <~ PKE.KeyGen(1?),

$
sets CrSzksnarg = (Crssnargvcrsnizky pk), runs (x*ﬂrzksnarg = (Ct77rnizk)) — A(Crszksnarg)a com-
putes Tsnarg < PKE.Dec(sk, ct), and outputs (2*, Tsnarg)-

If A succeeds in breaking the soundness of our construction with non-negligible probability,
then
Prz* ¢ £ A NIZK.Verify(crspizk, (2", CrSsnarg, P, Ct), Thizk) = T]

is non-negligible. On the other hand, by the adaptive computational soundness of the underlying
NIZK,

Pr[NIZK Verify(crspiz, (£*, CrSsnarg, PK, Ct), Tnizk) = T A (2™, CrSsnarg, Pk, Ct) & Lnizk]
is negligible. Therefore,
PT[J:* ¢ LN (55*7 CrSsnarg, pka Ct) ¢ Enizk]

is non-negligible. Suppose that this event happens. Then by the definition of Lk, ct is an
encryption of msnarg that passes the verification of the underlying SNARG, in which case B
clearly succeeds in breaking its adaptive soundness. Therefore, there exists no PPT adversary
that breaks the adaptive computational soundness of our construction.

Adaptive Multi-theorem Zero-Knowledge. Let Spizx = (Snizk,1, Snizk,2) be the simulator
for the adaptive multi-theorem zero-knowledge of the underlying NIZK. Then we construct a
simulator Syksnarg = (Szksnarg,1, Szksnarg,2) for our construction as follows:

Szksna,&l(l’\) : This algorithm generates (crspizk, Stnizk) & Shizk, 15 ClSsnarg & SNARG.Setup(1*),
and (pk, sk) & PKE.KeyGen(1*), and outputs CrSzksnarg := (CrSsnarg, CrSnizk, PK) and Staksnarg
= (Crszksnarga Stnizk)~

Szksnarg,2 (Stzksnarg, ©): This algorithm computes ct & PKE.Enc(pk, O‘“S"afﬂ) and ik & Shizk,2 (Sthizk
(x, CrSsnarg, , Pk, ct)), and outputs mksnarg := (Ct, Tnizk)-

We can see that the CRS and proofs that are generated by the above simulator are indistin-
guishable from real ones by the zero-knowledge property of the underlying NIZK and the CPA
security of the underlying PKE scheme. Since this is easy, we just give a sketch below. Starting
from the real game, we consider a hybrid where crs,i,x and mnx are generated by Spix instead
of being honestly generated. From the view point of any PPT adversary against adaptive multi-
theorem zero-knowledge, this hybrid is indistinguishable from the real game by the adaptive
multi-theorem zero-knowledge property of the underlying NIZK. Then, since the randomness r
for an encryption of PKE is no longer used directly, we can replace ct & PKE.Enc(pk, Tsnarg)

with ct < PKE.Enc(pk,O"Tsnargl) by the CPA security of the underlying PKE scheme. At this
point, the resulting hybrid is exactly the same as the simulated experiment using Syksnarg. Thus,
the real experiment and the simulated experiment are indistinguishable, which means that the
construction satisfies adaptive multi-theorem zero-knowledge. a

36

	Introduction
	Our Results
	Technical Overview
	Related Work

	Preliminaries
	PRG
	Non-interactive Commitment
	Public Key Encryption
	NIZK and SNARG
	NIZK in the Hidden-Bits Model
	Leakage-Resilient Weak Pseudorandom Function
	Hidden-Bits Generator

	Non-Adaptive to Adaptive Zero-Knowledge for NIZK
	Hidden-Bits Generator with Subset-Dependent Proofs
	Definition
	Construction

	NIZK from SDP-HBG
	Zero-Knowledge SNARG
	Omitted Contents in sec:nonadatoadaZK
	HBG from Non-Adaptive NIZK
	Adaptive NIZK from HBG

	Proof of lem:ZKSNARGfromSNARGandNIZK

