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Abstract. We de�ne a new primitive that we call a somewhere statis-

tically binding (SSB) commitment scheme, which is a generalization of
dual-mode commitments but has similarities with SSB hash functions
(Hubacek and Wichs, ITCS 2015) without local opening. In (existing)
SSB hash functions, one can compute a hash of a vector v that is statis-
tically binding in one coordinate of v. Meanwhile, in SSB commitment
schemes, a commitment of a vector v is statistically binding in some co-
ordinates of v and is statistically hiding in the other coordinates. The set
of indices where binding holds is predetermined but known only to the
commitment key generator. We show that the primitive can be instanti-
ated by generalizing the succinct Extended Multi-Pedersen commitment
scheme (González et al., Asiacrypt 2015). We further introduce the no-
tion of functional SSB commitment schemes and, importantly, use it to
get an e�cient quasi-adaptive NIZK for arithmetic circuits and e�cient
oblivious database queries.
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1 Introduction

By relying on non-falsi�able assumptions, it is known how to construct very e�-
cient zero-knowledge succinct arguments of knowledge (zk-SNARKs) for all NP-
languages [Gro10, Lip12,GGPR13,Gro16]. Recently, zk-SNARKs have become
extremely popular due to applications in veri�able computation and cryptocur-
rencies. Unfortunately, their reliance on non-falsi�able assumptions is inevitable
due to Gentry and Wichs' impossibility result [GW11]. In the soundness proof
of most known zk-SNARKs (e.g., [Gro10,Lip12,GGPR13,DFGK14,Lip19]), one
uses a non-falsi�able knowledge assumption to e�ciently recover the whole wit-
ness w of the prover P, and based on that establishes where exactly P cheated;
based on the knowledge of w one then breaks a computational assumption.

On the other hand, quasi-adaptive NIZKs (QA-NIZKs, [JR13]) are based
on falsi�able assumptions and result in very e�cient, succinct, arguments for a
limited class of subspace languages, [LPJY14, JR14,KW15,LPJY15]. González
et al. [GHR15,GR16,DGP+19] introduced an interesting technique to construct
argument-succinct QA-NIZK arguments (i.e., QA-NIZK arguments that have



a long commitment but otherwise are succinct) for a larger class of languages,
including NP-complete problems [DGP+19]. They essentially extract only the
minimal amount of information, needed to establish that the malicious prover
cheated (e.g., by showing that one concrete gate in the circuit was wrongly
computed), and then use this information to break a computational assumption.
Importantly, their QA-NIZK argument is based on falsi�able assumptions.

For the simplicity of exposition, consider the succinct pairing-based QA-
NIZK argument from González et al. [GHR15] that a committed string is a
bit-string. It implicitly uses a succinct commitment scheme (named Extended
Multi-Pedersen (EMP) in [GR16]) that enables one to make at most one coor-
dinate of the committed n-dimensional vector statistically binding (SB), while
other coordinates stay statistically hiding (SH). Since Booleanity is a quadratic
relation, bi ∈ {0, 1} i� bi(bi − 1) = 0, one commits to the bit-string twice in
di�erent pairing groups so that the quadratic relation can be veri�ed using
asymmetric pairings. In [GHR15], a commitment C is given by using an SB
commitment scheme and another succinct commitment D given by using EMP.
One can unequivocally extract the whole witness from C while one can extract
only a succinct guilt witness (a single non-bit coe�cient) from D; the latter
will be however su�cient. Then, [GHR15] gives (1) a QA-NIZK subspace argu-
ment to show that both commitments are to the same vector, and (2) a succinct
QA-NIZK argument for quadratic relations that only uses the succinct EMP
commitment. Both QA-NIZK arguments are succinct.

González et al. [GHR15] used the following reduction of the soundness to
falsi�able assumptions. Let A be an adversary that succeeds in breaking the bit-
string argument by constructing the following adversary B. B picks a random
coordinate i and extracts (an exponentiation of) the coe�cient xi of the com-
mitted vector x from C. If the coe�cient is Boolean, then B aborts; otherwise,
with probability ≥ 1/n, B has extracted a succinct guilt witness showing that
A cheated. One then de�nes a new game, where the commitment key of EMP
is changed so that the chosen coordinate is also SB in the EMP commitment.
Assuming that distinguishing two commitment keys is hard (we will call this the
index-set hiding (ISH) assumption), A will also succeed in the new game.

In the new game, the succinct commitment D, which is SB in one coor-
dinate, witnesses the fact that A successfully cheated. One uses D as a suc-
cinct guilt witness that A has broken an underlying falsi�able assumption (e.g.,
KerMDH [MRV16]). Since D is succinct, the resulting QA-NIZK argument is
argument-succinct, and thus one obtains an argument-succinct non-interactive
zero-knowledge argument under a falsi�able assumption (note that this does not
contradict [GW11]). One additional cost of this approach is the n-times security
loss in the reduction.

The described construction is very interesting but does not formalize the
properties needed from the EMP commitment scheme. Using terminology in-
troduced in the current paper, in the above construction, we need a succinct
somewhere statistically binding (SSB) property that guarantees that the chosen
coordinate is SB while the remaining coordinates can be computationally bind-
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ing (CB). On the other hand, to get zero-knowledge, the commitment needs to be
almost-everywhere statistically hiding (AESH), that is, computationally hiding
(CH) at the chosen coordinate, and statistically hiding at any other coordinates.
We also need index-set hiding (ISH), which means the attacker does not know
which particular coordinate is SB.

Quadratic Equations and Circuit-SAT. The same technique is used in
the context of Circuit-SAT, e.g., in Daza et al. [DGP+19] (and later improved
by González and Ràfols [GR19]) where instead of proving quadratic equations
corresponding to bi ∈ {0, 1}, the proof is for quadratic equations in Zp. They
use a long ElGamal commitment to all n wire values of the circuit that in the
soundness setting is PB in all n coordinates. Again, they randomly pick one
of the gates to guess which equation does not hold and use the properties of
ElGamal encryption to extract (exponentiations of) all the wire values to check
if the guessed equation holds, otherwise abort. Moreover, in this construction,
there is another commitment of the witness that is similar to SSB commitment.
The size of the latter commitment is q + 1, where q is the number of elements
they need to extract in the security proof. The q extracted elements are linear
functions evaluated on the witness and they are used to break an underlying
assumption. We later show in Corollary 1 that algebraic commitments of size
q+1 are optimal to extract q functions. The Daza et al. technique, in this sense,
uses a functional variant of the EMP commitment.

Our Contributions. Formalizing the properties of EMP [GHR15, GR16],
we de�ne a somewhere statistically binding (SSB) commitment scheme to n-
dimensional vectors. In the commitment key generation phase of an SSB com-
mitment scheme one chooses an index-set S ⊆ [1 .. n] of size at most q ≤ n and
de�nes a commitment key ck that depends on n, q and S. A commitment to an
n-dimensional vector x will be statistically binding and extractable at coordi-
nates indexed by S and perfectly hiding and trapdoor at all other coordinates.
Moreover, commitment keys corresponding to any two index-sets S1 and S2 of
size at most q must be computationally indistinguishable. Thus, an SSB commit-
ment scheme is required to be SSB, somewhere statistically extractable (SSE), al-
most everywhere statistically hiding (AESH), almost everywhere statistical trap-
door (AEST), and index-set hiding (ISH). An SSB commitment scheme gen-
eralizes dual-mode commitment schemes [DN02, CV05, GS08, DFL+09] (where
n = 1 and q ∈ {0, 1} determines the mode) and the EMP commitment scheme
of [GHR15,GR16] (where q = 1 and n is arbitrary).

In Section 4, we de�ne algebraic commitment schemes (ACS), where the
commitments keys are matrices. We prove that some basic properties of SSB
commitments hold for ACSs and show that these commitments are what we call
QA-NIZK friendly, i.e., suitable for working with QA-NIZK arguments. This is
because they behave like linear maps and the properties of SSB commitments can
be expressed in terms of membership to linear subspaces. Next, we generalize
the Extended Multi-Pedersen (EMP) commitment scheme of [GHR15, GR16].
Importantly, a single EMP commitment consists of q + 1 group elements and is
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thus succinct given small q. We prove that EMP satis�es most of the mentioned
security requirements under a standard MDDH assumption [EHK+13].

In Section 5, we de�ne functional SSB commitments, which are statistically
binding on some components that are outputs of some functions S = {fi}i
where |S| ≤ q. It is a generalization of SSB commitments, where the extracted
values are the result of some linear functions of the committed values, instead
of the values itself. We show that results that hold for SSB commitments also
naturally hold for functional SSB commitments. The notion of functional SSB
commitments for families of linear functions was already used indirectly in some
constructions such as [DGP+19]; however, they were not formally de�ned and
their security properties were not analyzed. We also see that a minor modi�ca-
tion of EMP works as a functional SSB commitment if we consider only linear
functions.

Application: Oblivious database queries.We consider a novel (but natural)
application that we call oblivious database queries (ODQ). In an ODQ protocol,
a sender has a private database x and a receiver wants to query the database to
learn f1(x), . . . , fq(x) without revealing the functions fi. This can be directly
realized with linear EMP if we restrict fi to be linear functions. The receiver
sends a commitment key (which encodes S = {fi}i) to the sender who responds
with a commitment to the database x. The receiver can then extract the query
results with an extraction key (SSE property). Unfortunately, linear EMP only
has F -extractability [BCKL08] (more precisely, one can only extract the message
as a vector of group elements, not a vector of integers), and thus we are only able
to extract {gfi(x)}i where g is a generator of some cyclic group. The protocol is
secure in the semi-honest model. In particular, the receiver's privacy follows from
the function set hiding property (analog to ISH in functional SSB commitments),
which holds under the DDH assumption. Sender's privacy holds information-
theoretically since using AESH property, we are able to perfectly simulate the
commitment. We also achieve near-optimal download rate (the ratio between
output size and sender's message size) which is q/(q + 1) ≈ 1 but sub-optimal
total rate (ratio between output size and total transcript size) of approximately
1/(n+ q).

A similar approach also gives us oblivious linear function evaluation
(OLE) [DKM12,GNN17,DGN+17] where sender has a private linear function f
and receiver wants to learn f(x) of his private input x. However, in this case,
both download rate and total rate are sub-optimal.

Recently, Döttling et al. [DGI+19] proposed an oblivious matrix-vector prod-
uct protocol in the semi-honest model using trapdoor hash functions. In their
case, the receiver has x, the sender has a matrix M , and the receiver wants
to learn Mx. If we interpret linear functions {fi}i as a matrix M , then ODQ
can be seen as an OMV protocol where the roles of sender and receiver are
switched. They gave a construction under the Learning with Errors (LWE) and
the Quadratic Residuosity (QR) problem, which work over �elds with small
characteristic or rings modulo a smooth integer. Interestingly, they also achieve
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download rate 1 but sub-optimal total rate. Thus our work can be viewed as
complementary to their result.

We give a more technical explanation of ODQ and OLE protocols in Section 6.

Application: Shorter QA-NIZK for arithmetic circuits. Recently, Daza
et al. [DGP+19] constructed an e�cient commit-and-prove QA-NIZK argument
for Square Span Programs (SSP, [DFGK14]) under falsi�able assumptions, which
can be used to prove Boolean circuit satis�ability. We present a QA-NIZK for
Square Arithmetic Programs (SAP, [GM17]) in Section 7 that follows a similar
strategy but can be used for arithmetic circuit satis�ability with comparable
e�ciency and also proven under falsi�able assumptions. Both constructions use
a linear-length perfectly binding commitment of the witness, but are otherwise
succinct arguments; the arguments also contain perfectly hiding commitments
that come from zk-SNARK techniques for proving satis�ability of quadratic
equations and a functional SSB commitment to extract certain linear functions
of the witness in the security reduction.

We note that the construction in [DGP+19] uses linear EMP commitment
schemes indirectly. We formalize and generalize them in our framework as func-
tional SSB commitments and then use them as a black box in our QA-NIZK
application. This signi�cantly simpli�es the understanding of the scheme in two
ways. Firstly, the techniques used in the security proof are natural functionali-
ties of algebraic commitment schemes that we present in the paper, e.g., using
a commitment key consisting of two orthogonal matrices to enable extraction.
Secondly, the notation of our commitments is more compact, which helps to
see that soundness is guaranteed by the SSB, [·]-SSE, and FSH properties of
functional SSB and zero-knowledge is guaranteed by AESH.

We give an intuition of the proof and soundness strategy in the following.
The proof consists of two subarguments: one based on SNARK techniques where
many quadratic equations are proved to be satis�ed using a single polynomial
divisibility relation with polynomials evaluated at a secret point s, and a proof of
subspace membership showing that all the commitments in the argument open
to the same witness. We have one linear perfectly binding commitment C, which
is an ElGamal encryption of the witness. Similarly to zk-SNARKs, the witness
is extracted in the security proof and used to detect which quadratic equation
of the language does not hold. However, our commitment is only F -extractable,
which is not enough to break the underlying falsi�able assumption. Note that
zk-SNARKs typically use a non-falsi�able assumption at this point to avoid this
issue. We instead use a linear EMP commitment D in pairing group G2 that
perfectly hides the witness in the honest proof (setting S = ∅).

In the security proof, we change to an indistinguishable game (by the FSH
property) where the commitment key now encodes some linear functions that
depend on the secret point s. This will allow us to F -extract linear combinations
of the form

∑
i wiαi(s) where {wi}i is the witness and αi(s) are coe�cients of

the function we choose. Essentially it allows us to trick the prover into comput-
ing some secret linear function of the witness. We see that the extra knowledge
from the commitment D allows us to break a variant of the target strong Di�e-
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Hellman (TSDH) assumption [BB04]. We also prove that the new assumption is
falsi�able and equivalent to the TSDH assumption under a knowledge assump-
tion in Appendix D.

Relation to SSB hash functions. The SSB requirement makes the EMP com-
mitment scheme look similar to SSB hash functions [HW15,OPWW15], in which
one can compute a hash of a vector v such that the computed hash is statisti-
cally binding in one coordinate of v. However, there are also obvious di�erences.
First, to obtain zero-knowledge, we need hiding (AESH) that is not required
from hash functions. This is, intuitively, a natural distinction and corresponds
to the di�erence between collision-resistant hash families and statistically hiding
commitment schemes.

Second, [HW15,OPWW15] require that an SSB hash has the local opening
property, meaning that the committer can e�ciently open just one coordinate
of the committed vector. In the QA-NIZK application, we do not need this
property: in the described QA-NIZK for bit-string (and related QA-NIZKs for
other languages from [GR16,DGP+19]), the commitment key ck is created by
a trusted third party, and there is no need for the honest parties to ever open
the commitment. Instead, in the soundness proof, we need somewhere statistical
extractability (SSE), stating that the creator of ck (e.g., the adversary B) must
be able to extract the succinct guilt witness. SSE is not needed in the case of
SSB hashes. Although not needed in our concrete applications, it is also desirable
to have the almost everywhere statistical trapdoor (AEST) property, where the
creator of ck is able to replace non-SB coordinates with anything she wishes.
Finally, we allow ck to be long, but require commitments to be succinct.

The properties of SSB and local opening are orthogonal: it is possible to
construct e�cient SSB hashes without local opening [OPWW15] and e�cient
vector commitments [LY10,CF13] (which have a local opening) without the SSB
property.

Connection to OT. SSB commitments are directly related to two-message
OT protocols as de�ned in [AIR01]. Essentially, SSB commitments are non-
interactive analogs of such protocols, the commitment key corresponding to the
�rst OT message ot1, and the commitment corresponding to the second OT
message ot2. Importantly, while in OT, the ot1 generator is always untrusted, in
our applications, it is su�cient to consider a trusted ck generator. This allows
for more e�cient constructions.

Thus, all secure two-message OT protocols such as [Lip05, GR05] are also
secure SSB commitment schemes. Unfortunately, none of the known e�cient
two-message OT protocols are QA-NIZK-friendly, and thus they are unsuitable
for our main application.

Relation to PCP-Based SNARKs. The QA-NIZK application of SSB com-
mitments is based on the observation that the language of bit-strings (resp.,
CircuitSAT) has a local veri�ability property, similar to PCP [AS92,ALM+92]:
one can establish, by checking one random coordinate of the bit-string (resp., all
adjacent wires of a random gate), whether an input belongs to the language or
not. Typical PCP-based zero-knowledge arguments like [Kil94] use PCPs with
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small soundness error; as a drawback, such PCPs have a long proof and an inef-
�cient reduction from CircuitSAT. Daza et al. [DGP+19] and the current paper
use a trivial PCP with a large soundness error but with a trivial reduction from
CircuitSAT. The use of SSB commitments means that the e�ciency loss is log-
arithmic in n (one needs to use ≈ 2 log n-bit longer group elements) while in the
case of earlier PCP-based arguments the e�ciency loss is much larger. Never-
theless, the use of SSB commitments is not limited to trivial PCP; one can use
them together with any PCP that has a small number of queries and short proof
length.

2 Preliminaries

For a set S, let P(S) denote the power set (i.e., the set of subsets) of S, and
let P(S, q) denote the set of q-size subsets of S. For an n-dimensional vector
α and i ∈ [1 .. n], let αi be its ith coe�cient. Let ei be the ith unit vector of
implicitly understood dimension. For a tuple S = (σ1, . . . , σq) with σi < σi+1,
let αS = (ασ1 , . . . , ασq ). Let α∅ be the empty string.

Let PPT denote probabilistic polynomial-time and let λ ∈ N be the security
parameter. All adversaries will be stateful. Let RNDλ(A) denote the random tape
of the algorithm A for a �xed λ. We denote by negl(λ) an arbitrary negligible
function, and by poly(λ) an arbitrary polynomial function. Functions f, g are
negligibly close, denoted f ≈λ g, if |f − g| = negl(λ).

2.1 Bilinear groups

In the case of groups, we will use additive notation together with the bracket
notation [EHK+13], that is, for ι ∈ {1, 2, T} we de�ne [a]ι := a[1]ι, where [1]ι is
a �xed generator of the group Gι. A bilinear group generator Pgen(1λ) returns
(p,G1,G2,GT , ê, [1]1, [1]2), where p (a large prime) is the order of cyclic Abelian
groups G1, G2, and GT . Moreover, ê : G1 × G2 → GT is an e�cient non-
degenerate bilinear pairing, such that ê([a]1, [b]2) = [ab]T . Denote [a]1[b]2 :=
ê([a]1, [b]2), and [1]T := [1]1[1]2. We use matrix-vector notation freely, writing
say [M1]1[M2]2 = [M1M2]T for any compatible matrices M1 and M2.

We use F -extraction notation to mean extraction of the function F . For
example if F is exponentiation then we have [·]ι-extraction, where we extract
elements in the group Gι.

Several of our cryptographic primitives have their own parameter generator
Pgen. In all concrete instantiations of the primitives, we instantiate Pgen with
the bilinear group generator, which is then denoted Pgenbg.

Distribution families D0 = {D0
λ}λ and D1 = {D1

λ}λ are computationally
indistinguishable, if ∀ PPT A, |Pr[x←$D0

λ : A(x) = 1] − Pr[x←$D1
λ : A(x) =

1]| ≈λ 0.

Let `, k ∈ N, with ` ≥ k, be small constants. Let p be a large prime. Fol-
lowing [EHK+13], we call D`k a matrix distribution if it outputs, in polynomial
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time, matrices A in Z`×kp of full rank k. We denote Dk+1,k by Dk. Let U`k denote
the uniform distribution over Z`×kp .

Let Pgen be as before, and let ι ∈ {1, 2}. D`k-MDDHGι [EHK+13] holds
relative to Pgen, if ∀ PPT A, Advmddh

A,D`k,ι,Pgen(λ) := |ε0A(λ)− ε1A(λ)| ≈λ 0, where

εβA(λ) := Pr

[
p← Pgen(1λ);A←$D`k; w←$Zkp;

y0←$Z`p;y1 ← Aw : A(p, [A,yβ ]ι) = 1

]
.

Common distributions for the MDDH assumption are Uk := Uk+1,k and the
linear distribution Lk over A =

(
A′

1 ... 1

)
, whereA′ ∈ Zk×kp is a diagonal matrix

with a′ii←$Zp.

2.2 Quasi-adaptive NIZK

A quasi-adaptive non-interactive zero-knowledge (QA-NIZK) proof [JR13] en-
ables one to prove membership in a language de�ned by a relation Rρ, which is
determined by some parameter ρ sampled from a distribution Dgk. A distribu-
tion Dgk is witness-sampleable if there exists an e�cient algorithm that samples
(ρ, ωρ) from a distribution Dpar

gk such that ρ is distributed according to Dgk, and
membership of ρ in the parameter language Lpar can be e�ciently veri�ed by
using this witness ωρ.

A tuple of algorithms (K0,K1,P,V) is called a QA-NIZK proof system for
witness-relations Rgk = {Rρ}ρ∈sup(Dgk) with parameters sampled from a distri-
bution Dgk over associated parameter language Lpar, if there exists a probabilistic
polynomial time simulator (S1,S2), such that for all non-uniform PPT adver-
saries A1, A2, A3 we have:
Quasi-Adaptive Completeness:

Pr

[
gk← K0(1λ); ρ← Dgk; crs← K1(gk, ρ); (x,w)← A1(gk, crs);
π ← P(crs, x, w) : V(crs, x, π) = 1 if Rρ(x,w)

]
= 1.

Computational Quasi-Adaptive Soundness:

Pr

[
gk← K0(1λ); ρ← Dgk;
crs← K1(gk, ρ); (x, π)← A2(gk, crs)

:
V(crs, x, π) = 1 and
¬(∃w : Rρ(x,w))

]
≈ 0.

Computational Strong Quasi-Adaptive Soundness:

Pr

[
gk← K0(1λ); (ρ, ωρ)← Dpar

gk ; crs← K1(gk, ρ);

(x, π)← A2(gk, crs, ωρ) : V(crs, x, π) = 1 and ¬(∃w : Rρ(x,w))

]
≈ 0.

Perfect Quasi-Adaptive Zero-Knowledge:

Pr[gk← K0(1λ); ρ← Dgk; crs← K1(gk, ρ) : AP(crs,·,·)
3 (gk, crs) = 1] =

Pr[gk← K0(1λ); ρ← Dgk; (crs, τ)← S1(gk, ρ) : AS(crs,τ,·,·)
3 (gk, crs) = 1]

where (i) P(crs, ·, ·) emulates the actual prover. It takes input (x,w) and
outputs a proof π if (x,w) ∈ Rρ. Otherwise, it outputs ⊥. (ii) S(crs, τ, ·, ·)
is an oracle that takes input (x,w). It outputs a simulated proof S2(crs, τ, x)
if (x,w) ∈ Rρ and ⊥ if (x,w) /∈ Rρ.

We assume that crs contains an encoding of ρ, which is thus available to V.
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3 SSB Commitment Schemes

Next, we will generalize and formalize the vector commitment scheme of
González et al. [GHR15,GR16] as an SSB commitment scheme. An SSB com-
mitment scheme generalizes dual-mode commitment schemes [DFL+09] akin to
the Groth-Sahai commitment scheme for scalars [GS08]. They are also related to
mixed commitment schemes [DN02] and hybrid commitment schemes [CV05].

In an SSB commitment scheme, the commitment key (that is, the CRS)
depends on n, q, and an index-set S ⊆ [1 .. n] of cardinality ≤ q (in the case of
Groth-Sahai commitments [GS08], n = q = 1 while in the current paper n =
poly(λ) and q ≥ 1 is a small constant). At coordinates described by S, an SSB
commitment scheme must be statistically binding and F -extractable [BCKL08]
for a well-chosen function F , while at all other coordinates it must be statistically
hiding and trapdoor. Moreover, it must be index-set hiding, i.e., commitment keys
corresponding to any two index-sets S1 and S2 of size ≤ q are required to be
computationally indistinguishable.

Note that Groth-Sahai commitments correspond to a bimodal setting where
either all coe�cients are statistically hiding or statistically binding, and these
two extremes are indistinguishable. SSB commitments correspond to a more �ne-
grained multimodal setting where some ≤ q coe�cients are statistically binding
and other coe�cients are statistically hiding, and all possible selections of sta-
tistically binding coe�cients are mutually indistinguishable. Our terminology
is inspired by [HW15,OPWW15] who de�ned somewhere statistically binding
hashing; however, the consideration of the hiding property makes the case of
SSB commitments su�ciently di�erent.

3.1 Formalization and De�nitions

An F -extractable SSB commitment scheme COM = (Pgen,KC,
Com, tdOpen,ExtF ) consists of the following polynomial-time algorithms:

Parameter generation: Pgen(1λ) returns parameters p (e.g., description of a
bilinear group).

Commitment key generation: for parameters p, a positive integer n ∈
poly (λ), an integer q ∈ [1 .. n], and a tuple S ⊆ [1 .. n] with |S| ≤ q,
KC(p, n, q,S) outputs a commitment key ck and a trapdoor td = (ek, tk)
consisting of an extraction key ek, and a trapdoor key tk. Also, ck implic-
itly speci�es p, n, q, the message space MSP, the randomizer space RSP, and
the commitment space CSP, such that F (MSP) ⊆ ESP. For invalid input, KC
outputs (ck, td) = (⊥,⊥).

Commitment: for p ∈ Pgen(1λ), a commitment key ck 6= ⊥, a message x ∈
MSPn, and a randomizer r ∈ RSP, Com(ck;x; r) outputs a commitment c ∈
CSP.

Trapdoor opening: for p ∈ Pgen(1λ), S ⊆ [1 .. n] with |S| ≤ q, (ck, (ek, tk)) ∈
KC(p, n, q,S), two messages x,x∗ ∈ MSPn, and a randomizer r ∈ RSP,
tdOpen(p, tk;x, r,x∗) returns a randomizer r∗ ∈ RSP.
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Abbreviation Property De�nition

ISH Index-set hiding The commitment key reveals nothing about
the index-set S

SSB Somewhere statistically binding A commitment to x statistically binds the
values xS

AESH Almost everywhere statistically
hiding

The commitment is statistically hiding in
the indices outside the set S

F -SSE Somewhere statistical F -
extractability

Given a commitment to x and the extraction
key, one can extract the values F (xS)

Table 1. Properties of an SBB commitment scheme

Extraction: for p ∈ Pgen(1λ), S = (σ1, . . . , σ|S|) ⊆ [1 .. n] with 1 ≤ |S| ≤ q,
(ck, (ek, tk)) ∈ KC(p, n, q,S), F : MSP → ESP and c ∈ CSP, ExtF (p, ek; c)
returns a tuple (yσ1

, . . . , yσ|S|) ∈ ESP|S|. We allow F to depend on p.
Note that SSB commitment schemes are non-interactive and work in the CRS

model; the latter is needed to achieve trapdoor opening and extractability. With
the current de�nition, perfect completeness is straightforward: to verify that C is
a commitment of x with randomizer r, one just recomputes C ′ ← Com(ck;x; r)
and checks whether C = C ′.

An F -extractable SSB commitment scheme COM is secure if it satis�es the
following security requirements. (See Table 1 for a brief summary.)
Index-Set Hiding (ISH): ∀λ, PPT A, n ∈ poly (λ), q ∈ [1 .. n],

AdvishA,COM,n,q(λ) := 2 · |εishA,COM,n,q(λ)− 1/2| ≈λ 0, where εishA,COM,n,q(λ) :=

Pr

[
p← Pgen(1λ); (S0,S1)← A(p, n, q) s.t. ∀i ∈ {0, 1},Si ⊆ [1 .. n] ∧ |Si| ≤ q;
β←$ {0, 1} ; (ckβ , tdβ)← KC(p, n, q,Sβ) : A(ckβ) = β

]
.

Somewhere Statistically Binding (SSB): ∀λ, unbounded A, n ∈ poly(λ),
q ∈ [1 .. n], AdvssbA,COM,n,q(λ) ≈λ 0, where AdvssbA,COM,n,q(λ) :=

Pr

p← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ [1 .. n] ∧ |S| ≤ q;
(ck, td)← KC(p, n, q,S); (x0,x1, r0, r1)← A(ck) s.t. x0S 6= x1S ;

Com(ck;x0; r0) = Com(ck;x1; r1)

 .

COM is somewhere perfectly binding (SPB) if AdvssbA,COM,n,q(λ) = 0.
Almost Everywhere Statistically Hiding (AESH): ∀λ, unbounded adversary
A, n ∈ poly(λ), q ∈ [1 .. n], AdvaeshA,COM,n,q(λ) := 2 · |εaeshA,COM,n,q(λ)−1/2| ≈λ 0,

where εaeshA,COM,n,q(λ) :=

Pr

p← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ [1 .. n] ∧ |S| ≤ q;
(ck, td)← KC(p, n, q,S); (x0,x1)← A(ck) s.t. x0S = x1S ;

β←$ {0, 1} ; r←$ RSP : A(Com(ck;xβ ; r)) = β

 .

COM is almost everywhere perfectly hiding (AEPH) if AdvaeshA,COM,n,q(λ) = 0. If
A is PPT instead of unbounded, COM is almost everywhere computationally
hiding (AECH).
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Somewhere Statistical F -Extractability (F -SSE): ∀λ, n ∈ poly (λ), q ∈
[1 .. n], S = (σ1, . . . , σ|S|) with |S| ≤ q, (ck, (ek, tk)) ← KC(p, n, q,S), and
PPT A, AdvsseA,F,COM,n,q(λ) :=

Pr
[
x, r ← A(ck) : ExtF (p, ek;Com(ck;x; r)) 6= (F (xσ1

), . . . , F (xσ|S|))
]
≈λ 0 .

Additionally, an SSB commitment scheme can but does not have to be trapdoor.
Almost Everywhere Statistical Trapdoor (AEST): ∀λ, n ∈ poly(λ), q ∈

[1 .. n], and unbounded A, AdvaestA,COM,n,q(λ) ≈λ 0, where AdvaestA,COM,n,q(λ) =

Pr

p← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ [1 .. n] ∧ |S| ≤ q;
(ck, td = (ek, tk))← KC(p, n, q,S); (x0, r0,x1)← A(ck) s.t. x0S = x1S ;

r1 ← tdOpen(p, tk;x0, r0,x1) : Com(ck;x0; r0) 6= Com(ck;x1; r1)

 .

It is almost everywhere perfect trapdoor (AEPT) if AdvaestCOM,n,q(λ) = 0.
It is important to consider the case |S| ≤ q instead of only |S| = q. For example,
when q = n, the PB commitment key (|S| = n) has to be indistinguishable from
the PH commitment key (|S| = 0). Moreover, in the applications to construct
QA-NIZK argument systems [GHR15,GR16,DGP+19], one should not be able
to distinguish between the cases |S| = 0 and |S| = q.

F -extractability [BCKL08] allows one to model the situation where xi ∈ Zp
but we can only extract the corresponding bracketed value [xi]ι ∈ Gι; similar
limited extractability is satis�ed say by the Groth-Sahai commitment scheme for
scalars [GS08]. Note that in this case, F depends on p. Interestingly, extractabil-
ity implies SSB, see Appendix B.1 for a proof.

Lemma 1 (F -SSE & F is injective ⇒ SSB). Let COM be an SSB commit-
ment scheme. Fix n and q. Assume F is injective. For all PPT A, there exists
a PPT B such that AdvssbA,COM,n,q(λ) ≤ 2 · AdvsseB,F,COM,n,q(λ).

If q = 0 then AESH is equal to the standard statistical hiding (SH) require-
ment, and AEST is equal to the standard statistical trapdoor requirement. If
q = n then SSB is equal to the standard statistical binding (SB) requirement,
and F -SSE is equal to the standard statistical F -extractability requirement. We
will show that any secure SSB commitment scheme must also be computationally
hiding and binding in the following sense.
Computational Binding (CB): ∀ PPT A, n ∈ poly(λ), q ∈ [1 .. n], where

AdvcbA,COM,n,q(λ) :=

Pr

p← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ [1 .. n] ∧ |S| ≤ q;
(ck, td)← KC(p, n, q,S); (x0,x1, r0, r1)← A(ck)

s.t. x0 6= x1;Com(ck;x0; r0) = Com(ck;x1; r1)

 ≈λ 0 .

Computational Hiding (CH): ∀ PPT A, n ∈ poly (λ), q ∈ [1 .. n],
AdvchA,COM,n,q(λ) := 2 · |εchA,COM,n,q(λ)− 1/2| ≈λ 0, where εchA,COM,n,q(λ) :=

Pr

p← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ [1 .. n] ∧ |S| ≤ q;
(ck, td)← KC(p, n, q,S); (x0,x1)← A(ck);β←$ {0, 1} ;

r←$ RSP : A(Com(ck;xβ ; r)) = β

 .
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Theorem 1. Let COM be an SSB commitment scheme. Fix n and q.
(i) (ISH + SSB⇒ CB) For all PPT A, there exist PPT B1 and unbounded B2,

such that AdvcbA,COM,n,q(λ) ≤ AdvishB1,COM,n,q(λ)+n/(q−4·AdvishB1,COM,n,q(λ))·
AdvssbB2,COM,n,q(λ).

(ii) (ISH + AESH ⇒ CH) For all PPT A, there exist PPT B1 and unbounded
B2, such that AdvchA,COM,n,q(λ) ≤ AdvishB1,COM,n,q(λ) + AdvaeshB2,COM,n,q(λ).

Proof. Let Pr[Gamei(A) = 1] denote the probability A wins in Gamei.
(i: ISH + SSB ⇒ CB) We prove the theorem using a sequence of hybrid

games, de�ned as follows, where εi := Pr[Gamei(A) = 1].
Game1: The original computational binding game. For given n and q, by

de�nition A can break CB with probability ε1 = AdvcbA,COM,n,q(λ).
Game2: Game1, but instead of ck, A gets ck′ where (ck′, td′) ←

KC(p, n, q,S1) for S1←$P([1 .. n], q). Note that a distinguisher B1 for Game1
and Game2 can be used to break the ISH game with advantage εish =
AdvishB1,COM,n,q(λ). Hence |ε1 − ε2| ≤ εish, which implies that ε2 ≥ ε1 − εish.

We now require the following lemma.

Lemma 2. Assume A outputs (x0, r0,x1, r1) with x0 6= x1. Then Pr[(x0)S1 6=
(x1)S1 in Game2] ≥ q/n− 4 · εish.

Proof. Assume for any S1 of size q sampled uniformly at random, A can output
distinct x0,x1 such that Pr[(x0)S1 6= (x1)S1 in Game2] = ε.

We construct an adversary B that uses A to break ISH as follows.
1. Given p, n, q, B sets S1←$P([1 .. n], q) and receives S0 ← A(p, n, q).
2. B sends (S0,S1) to the ISH challenger, and receives ck corresponding to Sβ .
3. B gets (x0, r0,x1, r1)← A(ck).

� If A doesn't win, abort.
� If (x0)S1 6= (x1)S1 return β′←$ {0, 1}.
� Else return 1.

Note that β = 0 corresponds to Game1, and β = 1 corresponds to Game2.
Moreover, for β = 0, A's output (x0, r0,x1, r1) is independent of S1, in which
case Pr[(x0)S1 6= (x1)S1 ] ≥ |S1|/n = q/n. Hence we get that if A wins,

Pr[GameISH(B) = 1] =
1

2
Pr[GameISH(B) = 1|β = 0] +

1

2
Pr[GameISH(B) = 1|β = 1]

=
1

2
Pr[(x0)S1 6= (x1)S1 in Game1 ∧ β′ = 0]

+
1

2
Pr[(x0)S1 = (x1)S1 in Game2]

+
1

2
Pr[(x0)S1 6= (x1)S1 in Game2 ∧ β′ = 1]

≥ q

4n
+

1− ε
2

+
ε

4

=
1

2
+
q − nε

4n
.

Hence 4 · εish ≥ q/n− ε, as required. ut
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It is easy to see that an adversary that wins Game2 with (x0)S1 6= (x1)S1
also wins the SSB game. Hence there exists an adversary B2 such that

AdvssbB2,COM,n,q(λ) ≥ ε2 · Pr[(x0)S1 6= (x1)S1 in Game2|x0 6= x1]

≥ (ε1 − εish)(q/n− 4 · εish) (due to Lemma 2).

This is equivalent to ε1 ≤ εish + n
q−4·n·εish · Adv

ssb
B2,COM,n,q(λ).

(ii: ISH + AESH ⇒ CH) Assume that for given n and q, A can break
CH with probability AdvchA,COM,n,q(λ). Consider the following sequence of games
with εi := Pr[Gamei(A) = 1].

Game1: In this game, A breaks CH with probability ε1. That is, given p,
A(p, n, q) outputs S0 such that |S0| ≤ q, and for (ck0, td0) ← KC(p, n, q,S0),
A(ck0) outputs (x0,x1), s.t. Pr[β←$ {0, 1} : A(Com(ck0;xβ ; r)) = β] = ε1.

Game2: In this game, instead of ck0, A obtains ck1 where (ck1, td1) ←
KC(p, n, q,S1) for S1 = ∅. Clearly, for any PPT A that tries to distinguish Game1
and Game2, there exists a PPT B1, such that |ε2 − ε1| ≤ AdvishB1,COM,n,q(λ).

Let us consider the following AESH adversary B2 in Game2.
1. Given p, n, q, B2 sets S1 ← ∅ and receives S0 ← A(p, n, q).
2. B2 computes (ck1, td1)← KC(p, n, q,S1) and receives (x0,x1)← A(ck).
3. B2 forwards (x0,x1) to the AESH challenger, and receives c ←

Com(ck1,xβ ; r) for some β←$ {0, 1}, r←$ RSP.
4. B gets and outputs β′ ← A(c).
If A returns the correct β′ then clearly also B2 returns the correct β′. For

the success of B2, it is also needed that x0S1 = x1S1 , which clearly holds since
S1 = ∅. Thus, AdvaeshB2,COM,n,q(λ) = ε2. Hence, Adv

ch
A,COM,n,q(λ) ≤ |ε2 − ε1|+ ε2 ≤

AdvishB1,COM,n,q(λ) + AdvaeshB2,COM,n,q(λ). ut

4 QA-NIZK-Friendly and EMP Commitments

Recall that the main driving application of the current paper is QA-NIZK, specif-
ically the way González et al. [GHR15,GR16,DGP+19] constructed QA-NIZKs
for quadratic equations (including SSP, [DFGK14]). To be useful in this applica-
tion, one will need an SSB commitment that satis�es some additional algebraic
properties.

4.1 QA-NIZK-friendly Commitments

González et al. [GHR15, GR16, DGP+19] implicitly use an SSB commitment
scheme COM to construct e�cient QA-NIZK argument systems based on falsi-
�able assumptions. We will show that the soundness of their QA-NIZK system
depends on the ISH, SSB, and SSE properties, while the zero-knowledge prop-
erty depends on the AESH and CH properties. On the other hand, honest parties
never need to actually open the commitment; the opening (more precisely, ex-
traction) is only done inside the security proof by using the SSE property. (In
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this sense, one could also call them trapdoor hash functions [DGI+19] with the
SSB and AESH properties.)

The notion of algebraic commitment schemes (ACSs), where the commitment
keys are matrices, was already de�ned in [RS20] and used implicitly in other
works ( [CGM16], [CFS17]). Since ACSs behave like linear maps, they are very
natural to work with. We give a more general de�nition in the following where
the matrices are sampled from general distributions.

De�nition 1. Let ι ∈ {1, 2}, and let n,m, k be small integers. Let D1 be a
distribution of matrices from Gk×nι and let D2 be a distribution of matrices from
Gk×mι . A commitment scheme COM is a (D1,D2)-algebraic commitment scheme
(ACS) for vectors in Znp , if for commitment key ck = [U1,U2]ι←$D1 ×D2 the
commitment of a vector x ∈ Znp is computed as a linear map of x and randomness

r←$Zmp , i.e., Comck(x, r) := [U1]ιx+ [U2]ιr ∈ Gkι .

We will see that given di�erent commitment key matrices, their distributions
are computationally indistinguishable under the MDDH assumption, and each
concrete distribution de�nes which coordinates of the commitments are SB or
SH.

ACS are SSB commitment schemes. We will show that algebraic commit-
ments are computationally hiding under MDDH. They are also perfectly binding
in those components that correspond to the linearly independent columns of U1.
If they are also pair-wise to columns of U2, the system of equations has maxi-
mum rank and unique solution.

Moreover, for extraction assume that span{U1} ∩ span{U2} = {0}. Intu-
itively, U1 de�nes the space of the opening x, while U2 de�nes the randomness
space. To extract in q positions, we hence need ek is such that ek[U2]ι = 0 and
ek[U1]ι = (bi)

n
i=1, where bi is ei in q positions and 0 elsewhere. Then by the

linearity of ACS, ek · Comck(x, r) = ek · [U1]ιx = [x]ι.

Lemma 3. Let n ≥ 1 and q ≤ n . Let COM be an ACS with commitment key
ck = [U1,U2]ι sampled from D1 ×D2 as de�ned in De�nition 1.
(i) COM is AECH under D2-MDDHGι .
(ii) COM is ISH under D1,D2-MDDHGι .
(iii) COM is SPB if U1 has rank q and span{U1} ∩ span{U2} = {0}.
(iv) COM is [·]ι-SPE if U1 has rank q and span{U1} ∩ span{U2} = {0}.

The full proof of Lemma 3 is deferred to Appendix B.2. The proof shows
how to extract q elements from a ACS; we also show that the optimal size for
an ACS COM to be extractable in q components is q + 1 and the optimal size
for the commitment key U2 is (q + 1)× 1.

Corollary 1. The minimum size of the k×m matrix to guarantee [·]ι-extraction
of n ≥ 1 elements is k = n+ 1, m = 1.

Proof. Information theoretically the commitment size should be no less than
the dimension of the opening in order to extract it completely, so k ≥ n. The
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orthogonal space has to be at least of dimension 1 in order to provide extraction,
so the minimal di�erence is k−m ≥ 1. We have k ≥ n+m directly by the linear
independence of the columns in matrices U1,U2. Hence, the minimal constants
are m = 1, k = n+ 1. ut

Application of algebraic commitments. The motivation behind algebraic
commitments is that most of their properties can be expressed in terms of
membership or non-membership to certain linear subspaces. We consider such
commitment schemes QA-NIZK-friendly, since they perfectly combine with QA-
NIZK arguments for linear spaces.

Several QA-NIZK arguments in the literature describe the same structure
that we describe in the following, given a relation RL for a language L ∈ NP:
1. An algebraic perfectly binding commitment COM of some vector w.
2. An [·]ι-extractable, SB and ISH algebraic commitment scheme COM′ of w.
3. An e�cient QA-NIZK argument scheme Π ′ for the opening of COM′ is valid

witness of some statement x such that RL(x,w) = 1.
4. An e�cient QA-NIZK argument system Π of same opening of COM and

COM′ ( [KW15,GHR15]).
The �rst commitment COM is linear in n and uniquely de�nes the witness

vector. On the other hand, COM′ provides extraction of q values of the witness
in the security proof of the argument Π ′. Finally, once Π ′ is proven, Π implies
that the opening of COM also satis�es the relation RL.

Properties 1, 2, 4 can be proven using a single QA-NIZK argument of constant
size with an adequate matrix, which is more e�cient since QA-NIZK arguments
are constant proofs. Furthermore, extra linear conditions can be aggregated using
the same argument by adding necessary rows to the parametrized matrix that
de�nes the linear space of the language.

4.2 The EMP Commitment Scheme

González et al. [GHR15] proposed a variant of the standard vector Pedersen com-
mitment scheme [Ped92], calling it Extended Multi-Pedersen (EMP) in [GR16].
In this section, we will depict a general version of the EMP commitment scheme
(González et al. [GR16] mostly considered the case q = 1; they also did not
formalize its security by using notions like ISH) in group G. We rede�ne EMP
by using a division of the generator matrix g as a product of two matrices R and
M ; this representation results in very short security proofs for EMP. To simplify
notation, we will write Ext instead of Ext[·]. We use a distribution Dp,n,Sq+1 that

outputs n+1 vectors g(i), such that if i ∈ S ′ = S∪{n+1} then g(i) is distributed
uniformly over Zq+1

p , and otherwise g(i) is a random element from the span of

g(n+1).4

De�nition 2. Let p = p(λ), n = poly(λ), and let q ≤ n be a small positive

integer. Let S ⊆ [1 .. n] with |S| ≤ q. Then the distribution Dp,n,Sq+1 is de�ned

4 We use dimensions with +1 like q + 1 and n + 1 since in later uses of EMP, +1
corresponds to the randomizer.
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as the �rst part of Dgen(p, n,S, q) in Fig. 1 (i.e., just g, without the associated
extraction key or trapdoor).

We note that [GR16] uses a distribution Dq+1,k instead of the uniform distri-
bution Uq+1 over Zq+1

p . This means that taking a larger k gives a weaker security
assumption in return of worse e�ciency. Our version of EMP also works with
a general distribution, but for ease of presentation we only use the distribution
Uq+1.

Dgen(p, n,S, q)
S ′ ← S ∪ {n+ 1}; // S′ = {σ1, . . . , σq+1}

R←$Z(q+1)×(q+1)
p ;M ← 0(q+1)×(n+1);Mq+1,n+1 ← 1;

for j = 1 to n do
if j 6∈ S ′ then Mq+1,j = δj ←$Zp; else let i be such that j = σi;Mi,σi ← 1;

endfor
g ← RM ; tk← (δj)j∈[1 .. n]\S ; // g ∈ Z(q+1)×(n+1)

p ;
return (g,R, tk);

Fig. 1. The algorithm generating Dp,n,Sq+1 , with associated extraction key R and trap-
door tk

Example 1. In the Groth-Sahai commitment scheme, n = q = 1, so Dgen �rst
samples R = ( r11 r12r21 r22 )←$Z2×2

p . If S = {1} then M = ( 1 0
0 1 ) and g = RM =

( r11 r12r21 r22 ). On the other hand, if S = ∅, then M =
(

0 0
δ1 1

)
and g = RM =(

δ1r12 r12
δ1r22 r22

)
, for δ1←$Zp.

Consider the case n = 3, q = 2, and S = {3}. Then

M =
(

0 0 1 0
0 0 0 0
δ1 δ2 0 1

)
, g = RM =

(
δ1r13 δ2r13 r11 r13
δ1r23 δ2r23 r21 r23
δ1r33 δ2r33 r31 r33

)
,

for δ1, δ2←$Zp, R←$Z3×3
p .

The following lemma shows that distributions [Dp,n,Sq+1 ] for di�erent sets S are
indistinguishable under the MDDH assumption. See Appendix B.3 for a proof.

Lemma 4. Let ι ∈ {1, 2}. Let p = p(λ) be created by Pgen(1λ), n = poly(λ),
and let q ≤ n be a positive integer. Let S ⊆ [1 .. n] with |S| ≤ q. The distribution
families D0 := {[Dp,n,Sq+1 ]}λ and D1 := {[Dp,n,∅q+1 ]}λ are computationally indistin-
guishable under the Uq+1-MDDHGι assumption relative to Pgen: for any PPT

A, there exists a PPT B, such that AdvindistA,D0,D1(λ) ≤ |S| · Advmddh
B,Uq+1,Pgen(λ).

We de�ne EMP in Fig. 2. We show that it is indeed an SSB commitment
scheme.

Theorem 2. Let Pgenbg be a bilinear group generator. Fix λ, n, and q. The
EMP commitment scheme is (i) ISH under the U(q+1)×(n+1)-MDDHGι assump-
tion, (ii) F -SSE for F = [·] (thus, F depends on p), (iii) AEPT, (iv) SPB,
(v) AEPH, (vi) CB and CH under the U(q+1)×(n+1)-MDDHGι assumption.
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KC(p, n, q,S): // S ⊆ {1, 2, . . . , n} with |S| ≤ q
Sample (g,R, tkι)←$Dgen(p, n,S, q) s.t. R has full rank;
ck← [g]; ek← R; // g ∈ Z(q+1)×(n+1)

p , R ∈ Z(q+1)×(q+1)
p

td← (ek, tk); return (ck, td);

tdOpen(p, tkι;x, r,x
∗)

r∗ ←
∑
i∈[1 .. n]\S(xi − x

∗
i )δi + r;

return r∗;

Ext(p, ek; [c])

[x′]← R−1[c];

return [xS ]← [x′[1 .. |S|]];

Com(ck;x ∈ Znp ; r ∈ Zp)

return [g]( x
r ); // =

∑n
j=1 xj [g

(j)] + r[g(n+1)] ∈ Gq+1

Fig. 2. The EMP commitment scheme COM

Proof. (i: ISH) Due to the properties of Dp,n,Sq+1 , g(S∪{n+1}) has columns dis-

tributed uniformly over Zq+1
p and hence by the Schwartz-Zippel lemma has

full rank with probability ≥ 1 − (q + 1)/p. It follows from Lemma 4 that
for any PPT A, there exists a PPT B, such that AdvishA,COM,n,q(λ) ≤ q ·
Advmddh

B,U(q+1)×(n+1),ι,Pgen
(λ) + (q + 1)/p.

(ii: [·]-SSE) We have [c] = [g]( x
r ) = [RM ]( x

r ) for some ( x
r ), where R has

full rank. But then [x′] = R−1[c] = [M ]( x
r ). Let S = {σi}. By the de�nition of

M , clearly x′i = M i(
x
r ) = xσi for i ≤ |S|.

(iii: AEPT) Let x 6= x∗ but xS = x∗S . Then Com(ck;x; r) −
Com(ck;x∗; r∗) = RM

(
x−x∗
r−r∗

)
= R

(
0q∑

i∈[1 .. n]\S(xi−x
∗
i )δi+(r−r∗)

)
= 0q+1, since

from tdOpen, r∗ =
∑
i∈[1 .. n]\S(xi − x∗i )δi + r.

(iv: SPB) Since F = [·] is injective (because the bilinear group has a prime
order), this follows from Item ii and Lemma 1.

(v: AEPH) Let x,x∗ be such that xS = x∗S . Then
M( x

r ) = (x>S , 0, . . . , 0, r +
∑
i∈[1 .. n]\S xiσi)

> and similarly M
(
x∗

r∗
)

=

((x∗S)>, 0, . . . , 0, r∗ +
∑
i∈[1 .. n]\S x

∗
i σi)

>. Thus, both have �rst q ele-
ments equal and the last element is uniformly random. Clearly then also
Com(ck;x; r) = RM( x

r ) and Com(ck;x∗; r∗) = RM
(
x∗

r∗
)
are indistinguish-

able.
(vi: CB and CH): Follows from Theorem 1, Item i, SPB and AEPH. ut

5 Functional SSB Commitments

In this section we generalize the notion of SSB commitment from being sta-
tistically binding on an index-set S ⊆ [1 .. n] to being statistically binding on
outputs of the functions {fi}qi=1 from some function family F . We construct a
functional SSB commitment for the case when F is the set of linear functions. In
particular, this covers functions fj(x) = xj and hence we also have the index-set
functionality of EMP commitment. We show this can be straight-forwardly used
to get oblivious linear function evaluation (OLE) [DKM12, GNN17, DGN+17]
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KCι(p, n, q,M ∈ Zq×np ):

Set implicitly MSP = RSP = Znp and CSP = Gq+1
ι ;

Sample R←$Z(q+1)×(q+1)
p so that it has full rank;

Sample r←$Znp ;
Set M ′ ←

(
M 0
rᵀ 1

)
∈ Z(q+1)×(n+1)

p ;

ck← [RM ′]ι ∈ G(q+1)×(n+1)
ι ;

td← (ek← R−1, tk← r); return (ck, td);

Com(ck;x ∈ Znp ; r ∈ Zp)

return ck( x
r );

tdOpen(p, tkι;x, r,x
∗) // Mx = Mx∗

r∗ ←
∑
i∈[1 .. n](xi − x

∗
i )tki + r;

return r∗;

CKV(n, q, ck = [g]ι)

return ck ∈? G(q+1)×(n+1)
ι

∧ [g(n+1)]ι 6= [0]ι;

Ext(p, ek; [c]ι)

return ek[c]ι without the last element;

Fig. 3. Functional SSB commitment for linear functions

and oblivious database query (ODQ). OLE allows the receiver to learn f(x)
where x is the receiver's private vector and f is the sender's private linear func-
tion. ODQ essentially switches the roles of receiver and sender: the receiver wants
to learn f(x) where x is the sender's private database and f is the receiver's
linear query function. Moreover, we allow batch evaluation of queries in ODQ.
In Section 7, we construct a QA-NIZK with a linear SSB commitment.

In our de�nition, given a family of functions F we require that the com-
mitment key ck will hide the functions {fi}qi=1 ⊂ F and given a commitment
Com(ck;x; r) and an extraction key ek it is possible to F -extract fi(x) for
i ∈ [1 .. q]. The commitment uniquely determines the outputs of the functions
(due to the SSB property) and commitments to messages which produce equal
function outputs are statistically indistinguishable (due to the AESH property).
Our de�nition is similar to Döttling et al.'s [DGI+19] de�nition for trapdoor
hash functions for a family of predicates F .
De�nition of functional SSB. An F -extractable functional SSB commitment
scheme COM = (Pgen,KC,CKV,Com, tdOpen,ExtF ) for a function family F fol-
lows the de�nitions of SSB commitments in Section 3.1, but with the following
changes: (i) S is now a set of functions rather than a set of indices. (ISH then
becomes function set hiding (FSH)). (ii) For S = {fi}qi=1 ⊆ F and vector x we
rede�ne xS := (f1(x), . . . , fq(x)). The full de�nitions are given in Appendix C.1.
Relations that hold between properties of SSB commitments also hold for func-
tional SSB commitments; the proofs are very similar.

Linear EMP.We construct a functional SSB commitment for a family of linear
functions F . Our construction follows the ideas in [DGP+19] although they
never formalized it as a commitment scheme and only dealt with some concrete
functions.
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We represent q linear functions by a matrix M ∈ Zq×np where each row of
the matrix contains coe�cients of one function. From a commitment to vector
x ∈ Znp , our construction allows to extract [Mx]ι. In particular, if we take

M = (ei1 | . . . |eiq )> where eij ∈ Znp is the ijth unit vector, then [Mx]ι =

(xi1 , . . . , xiq )
>. A detailed construction is given in Fig. 3. Moreover, if we take

an ACSP, the commitment key is ck = [U1,U2]ι ∈ G(q+1)×n
ι ×G(q+1)×1

ι , which
is optimal size for extraction in q coordinates.

There are only two di�erences with the EMP construction in Section 4.2:
(i) in EMPM is a matrix in reduced row echelon form (with multiples of the

column vector (0, . . . , 0, 1)T possibly inserted in between), and
(ii) functional SSB also has a key veri�cation algorithm CKV which guaran-

tees security even if the commitment key generators are untrusted (see
Theorem 6).

Key veri�cation is not possible with EMP precisely because we would need to
show that M is a matrix with a very speci�c structure. For functional SSB we
only need to know that ck = [g]ι has the correct size and non-zero last column.
This turns out to be su�cient to show that the commitment key is well-formed
and an unbounded extractor can extract some suitable matrix M which will
de�ne the linear functions. We prove security of linear EMP in Appendix C.2.

6 Application of Functional SSB Commitments: ODQ &

OLE

A very straight-forward application of linear EMP is oblivious database queries
(ODQ). We consider a scenario where the sender knows a private database x
and the receiver knows a set of private linear functions fi(X1, . . . , Xn) = bi +∑n
j=1 ai,jXj for i ∈ [1 .. q] that he wants to evaluate on that database.
Our ODQ protocol works as follows:

� Receiver de�nes matrices A = (aij) ∈ Zq×np , B = diag(b1, . . . , bq) ∈ Zq×qp ,

and constructs a matrix M = (A | B) ∈ Zq×(n+q)p . Following the KC algo-
rithm it creates the commitment key ck, the extraction key ek, and sends
ck to the sender.

� Sender has x ∈ Znp and ck as input. It sets x′ = ( x
1q ), picks random r←$Zp

and sends COM = ck
(
x′

r

)
to the receiver.

� Receiver extracts [M · x′] from COM using the Ext algorithm with ek.

Privacy and Correctness. We follow privacy and correctness de�nitions pro-
posed by Döttling et al. [DGI+19] (see Section 5.1 of their paper for full
de�nitions). From the SSE property we know that the receiver can recover
[M ( x

1q )]ι = [Ax + b]ι and thus correctness holds. Receiver's (computational)
privacy follows directly from the FSH property, that is, any two function sets of
size at most q are indistinguishable. Sender's privacy is de�ned through simu-
latability of the protocol transcript given only receiver's inputM and receiver's
output [Mx′] to the simulator. Simulatability is slightly stronger than the AEPH
property but still holds for linear EMP commitments. As a �rst message, the
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simulator can generate ck with M and store R. An honestly computed second
message has the form

[R
(
M 0
rᵀ 1

)
]
(
x′

r

)
= R

[
Mx′

x′r>+r

]
and therefore we can simulate it by sampling r∗←$Zp and computing

R
(

[Mx′]
r∗

)
. Thus sender's privacy also holds.

E�ciency. We de�ne download rate as the ratio between output size and
sender's message and total rate as the ratio between output size and total tran-
script size. The total rate of our protocol is |[Mx′]|/(|ck| + |COM|) = q/((n +
q + 2)(q + 1)). However, we achieve very good download rate |[Mx′]|/|COM| =
q/(q + 1) which tends to 1. This is similar to Döttling et al. [DGI+19] where
they achieve an optimal download rate but sub-optimal total rate.

OLE. We can achieve OLE in a very similar way. Suppose that now the sender
has a function f(X1, . . . , Xn) = b+

∑n
i=1 aiXi and the receiver has x. Then the

receiver can send a commitment key with M = (x1, . . . , xn, 1) and the sender
responds with a commitment to (a1, . . . , an, b). The receiver extracts to obtain
[f(x)]ι. The proof is identical to the ODQ case. However, the resulting OLE is
less e�cient with download rate 1/2 and total rate 1/(2n+ 4).

7 Application: QA-NIZK Argument for Quadratic

Equations

We present a QA-NIZK argument which uses functional SSB commitments
as an important technical tool in the security proof. Daza et al. [DGP+19]
presented a commit-and-prove QA-NIZK argument for square span programs
(SSP, [DFGK14]) which can be used to encode the Boolean circuit satis�ability
language. Their construction uses a speci�c setting of linear EMP commitments
without explicitly formalizing it. Our QA-NIZK is for square arithmetic pro-
grams (SAP) [GM17] which can be used to encode the arithmetic circuit sat-
is�ability language and follows a similar overall strategy. However, we use the
linear EMP commitment scheme as a black-box and thus have a more compact
and clear presentation. Our argument has roughly the same complexity as the
argument in [DGP+19]: both have a linear-length perfectly binding commitment
of the witness, a succinct argument, and a security proof based on falsi�able as-
sumptions. The proof size in the original construction in [DGP+19] is 4 elements
in G1 and 6 elements in G2, while our construction's proof size is 5 elements in
G1 and 7 elements in G2.

A rough intuition of our commit-and-prove QA-NIZK is as follows. The
statement of our language contains a linear-length perfectly binding (and [·]1-
extractable) commitment [c]1 of the SAP witness. For simplicity, we use ElGamal
encryption in this role. As is usual for commit-and-prove arguments, [c]1 can be
reused for many di�erent SAP relations. The commitment key is going to be
a parameter for the QA-NIZK language. The argument itself is succinct and
contains the following elements:
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� A succinct SNARK-type argument [V,H,W ]1, [V ]2 for the SAP relation that
would typically be only secure under some knowledge assumption.

� A succinct linear EMP commitment [c̃]2 that commits to the SAP witness
and to the randomness of the SNARK proof.

� A succinct linear subspace argument [GHR15] that shows that commitments
open to consistent values. In particular, it guarantees that the opening of
the perfectly binding commitment [c]1 is also used in the SNARK proof and
in [c̃]2.

We use extractability of [c]1 and [c̃]2 to avoid non-falsi�able assumptions. The
linear EMP commitment is in perfectly hiding mode in the honest proof (S = ∅).
Intuitively, in the security reduction we need to compute some elements of the
form [

∑
i aiyi]2 where (a1, . . . , an) is the witness and [y1, . . . , yn]2 are elements

that can be computed from the challenge of some falsi�able assumption. Since
our perfectly binding commitment is only [·]1-extractable, we can at best extract
[ai]1 which is not enough to break the assumption. Instead, in the security games
we switch the EMP commitment key from the perfectly hiding mode to the mode
that encodes the function f(a1, . . . , an) =

∑
i ai[yi]2 (the commitment keys are

indistinguishable due to the FSH property) and thus we can extract [
∑
i aiyi]2

from [c̃]2. As we will see, the actual reduction requires us to extract multiple
such linear combinations.

7.1 Preliminaries

Perfectly binding commitment. We are going to use ElGamal encryption as
our perfectly binding commitment. In particular, the commitment key is ck =
[u]1 = [1, u]>1 where u←$Zp and Comck(a ∈ Znp ; r ∈ Znp ) = ([c1]1, . . . , [cn]1)

where [ci]1 = ([ri]1, [ai]1+ri[u]1)> and r←$Znp . In matrix form [ci]1 = ai[e2]1+

ri[u]1 where e2 = (0, 1)>. To extract the message, we can simply decrypt each
individual ciphertext, that is [ai]1 = [ci,2]1 − u[ci,1]1 where [ci]1 = [ci,1, ci,2]>1 .
Note that we can only [·]1-extract and cannot recover ai itself.

Square Arithmetic Program (SAP). A square arithmetic program is a tuple
SAP = (p, n, d,V ∈ Zn×dp ,W ∈ Zn×dp ). We de�ne a commit-and-prove language
for SAP as the following language with n variables and d quadratic equations

LSAP,ck =

 [c]1 ∈ G2n
1

∃a, r ∈ Znp : [c]1 = Comck(a, r)∧{(
a>vj

)2 − a>wj = 0
}d
j=1


where Comck is a perfectly binding commitment scheme, vj is j-th column of the
matrix V and wj is the j-th column of the matrixW . We note that satis�ability
of any arithmetic circuit can be encoded in this form [GM17].

SNARK for SAP. Let χ1, . . . , χd ∈ Zp be unique interpolation points. We
de�ne

v(X) =

n∑
i=1

aivi(X), w(X) =

n∑
i=1

aiwi(X) (1)
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where vi(X), wi(X) are polynomials of degree less than d such that vi(χj) = vij
and wi(χj) = −wij . Moreover, let us de�ne p(X) = v(X)2 − w(X) and t(X) =∏d
j=1(X − χj). We have that p(χj) = (a>vj)

2 − a>wj and thus the j-th SAP
equation is sati�ed exactly when χj is a root of p(X). In particular, when all
interpolation points are roots of p(X), then t(X) divides p(X) and all the SAP
equations are satis�ed.

We can use these polynomial representations to construct a SNARK. Our
CRS will contain {

[
si
]
1,2
}di=1 where s←$Zp is a secret point. The prover will

compute [V ]1,2 = [V (s)]1,2, [W ]1 = [W (s)]1 and [H]1 = [H(s)]1 where V (X) =

v(X) + δvt(X), W (X) = w(X) + δwt(X), and H(X) = (V (X)2 −W (X))/t(X).
Elements δv and δw are picked randomly to hide the witness. The veri�er checks
that the equation [V ]1[V ]2 − [W ]1[1]2 = [H]1[t(s)]2 is satis�ed. Intuitively, we
can use this to show that t(X) divides P (X) := V (X)2−W (X). It is easy to see
that if t(X) | P (X) then also t(X) | p(X) and thus the SAP relation is satis�ed.

BLS argument. As a subargument, we use a QA-NIZK argument
(Kbls,Pbls,Vbls) de�ned in [GHR15] for the bilateral linear subspace (BLS) lan-
guage L[M ]1,[N ]2 := {([x]1, [y]2) | ∃w ∈ Ztp : x = Mw ∧ y = Nw} for
M ∈ Zn×tp , N ∈ Zm×tp , to prove that commitments open to the same value.
It has perfect completeness, strong quasi-adaptive soundness under the SKer-
MDH assumption, and perfect zero-knowledge. The proof size is 2 elements in
G1 and 2 elements in G2. We refer the reader to the original paper for more
details. We leave it as an open question if the slightly more e�cient construction
by Rafols and Silva [RS20] can be used.

New target assumption. The q-target strong Di�e-Hellman assump-
tion [BB04] says that given {

[
si
]
1,2
}qi=1 for a random s, it is computationally

hard to �nd [ν]T = [1/(s − r)]T for any r ∈ Zp. We generalize this assumption
and intuitively say that it is hard to compute [ν]T = [c/(s− r)]T where r ∈ Zp
and c is a constant independent of s. In order to satisfy the latter requirement,
we include a challenge value [z]2 and let the adversary additionally output [c]1
and [c′]2 such that zc = c′. Intuitively, then c cannot depend on si since other-
wise c′ should depend on zsi which is not a part of the challenge. For technical
reasons, c in our assumption has a slightly more structured form β2

1 − β2.

De�nition 3 (q-SATSDH). The q-Square Arithmetic Target Strong Di�e-
Hellman assumption holds relative to Pgen, if ∀ PPT adversaries A,

Pr

p← Pgen(1λ); s, z←$Zp;(
r, [β1, β2]1, [β̃1, β̃2]2, [ν]T

)
← A

(
p, {
[
si
]
1,2
}qi=1, [z]2

)
:

β̃1 = zβ1 ∧ β̃2 = zβ2 ∧ β2
1 6= β2 ∧ ν =

β2
1−β2

s−r

 ≈λ 0.

We prove in Appendix D that our new assumption is falsi�able and equivalent
to TSDH assumption under a knowledge assumption.
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7.2 Using the SSB functionality in the soundness proof

In the security proof, the soundness game is �rst changed by randomly picking

one of the SAP equations
(
a>vj∗

)2 − a>wj∗ = 0 for some j∗ ∈ [1 .. d]; with
probability ≥ 1/d this equation does not hold, assuming that the adversary is
successful. By the characterization of the SAP, if the j∗-th equation does not
hold, thenX−χj∗ - P (X). In particular, let qv(X), qw(X) be unique polynomials
and βv, βw ∈ Zp be unique values such that V (X) = qv(X)(X − χj∗) + βv and
W (X) = qw(X)(X − χj∗) + βw. Then we can express the division of P (X) =
V (X)2 −W (X) by X − χj∗ as follows,

P (X) =V (X)(qv(X)(X − χj∗) + βv)− qw(X)(X − χj∗)− βw
=(X − χj∗) (V (X)qv(X)− qw(X)) + V (X)βv − βw
=(X − χj∗) (V (X)qv(X)− qw(X)) + (qv(X)(X − χj∗) + βv)βv − βw
=(X − χj∗) (qv(X) (V (X) + βv)− qw(X)) + (β2

v − βw) .

(2)

Since, X − χj∗ - P (X) we get that (β2
v − βw) 6= 0.

We denote by αi(X) and βv,i the quotient and the remainder of the polyno-
mial division of vi(X) by X−χj∗ , i.e., vi(X) = αi(X)(X−χj∗)+βv,i. Similarly,
we can also express wi(X) = α̂i(X)(X−χj∗) +βw,i. As a special case, we de�ne
t(X) = αt(X)(X − χj∗) + βt. The de�nition of V (X) and Eq. (1) give us

V (X) =

(
n∑
i=1

aiαi(X) + δvαt

)
(X − χj∗) +

n∑
i=1

aiβv,i + δvβt,

and thus

qv(X) =

n∑
i=1

aiαi(X) + δvαt, βv =

n∑
i=1

aiβv,i + δvβt. (3)

Similarly, we get that

qw(X) =

n∑
i=1

aiα̂i(X) + δwβt, βw =

n∑
i=1

aiβw,i + δwβt. (4)

The security proof extracts the following functions of the witness a and δv, δw:
� [qv(s)]2 = [

∑n
i=1 aiαi(s) + δvβt]2,

� [βvz]2 = [
∑n
i=1 aizβv,i + δvzβt]2, and [βwz]2 = [

∑n
i=1 aizβw,i + δwzβt]2,

where z, s ∈ Zp are secrets of SATSDH assumption. The idea is that we can
break the d-SATSDH assumption by computing [βv]1 =

∑n
i=1 βv,i[ai]1 + βt[δv]1

(note that [ai]1 and [δv]1 are extractable from the PB commitment and [V ]1),
[βw]1 =

∑n
i=1 βw,i[ai]1 + βt[δw]1 and moreover by Eq. (2),[
β2
v − βw
s− χj∗

]
=

[
P (s)

s− χj∗

]
T

− ([V ]1 + [βv]1)[qv(s)]2 + [qw(s)]T ,
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where [ P (s)
s−χj∗

]T can be computed from the veri�cation equation. Together with

other extracted elements, this is now enough to break the SATSDH assumption.
We refer to Theorem 4 for more precise details of the reduction.

7.3 QA-NIZK Argument for Arithmetic Quadratic Equations

Given n, d ∈ N we construct a QA-NIZK argument for LSAP,ck.
� K0(λ) returns p← Pgen(1λ).
� Dp(n, d) returns a commitment key ck = [u]1 = [1, u]>1 where u←$Zp.
� K1(p, n, d, ck) picks s←$Zp, then sets qv = 3, n′ = n + 1, Mv = 0 ∈

Zqv×n′p (i.e., Sv = ∅) and generates a linear EMP key ck′ = [K]2 ←
KC2(p, n′, qv,Mv) ∈ G4×(n+2)

2 . Finally, it runs (crsbls, tdbls) ← Kbls([M ]1 ∈
G(2n+2)×(2n+3)

1 , [N ]2 ∈ G5×(2n+3)
2 ) for

[M]1 =


e2

. . .

e2

u
. . .

u

0

v1(s) . . . vn(s)
w1(s) . . . wn(s)

0
t(s) 0 0
0 t(s) 0


1

,

[N]2 =

[
v1(s) . . . vn(s)
K(1) . . . K(n) 0

t(s) 0 0
K(n+1) 0 K(n+2)

]
2

.

Return the CRS crs = (p, ck, ck′, {
[
si
]
1,2
}di=1, crsbls) with trapdoor (s, tdbls).

� The prover P receives an input (crs, ([c]1,V,W), (a, r)). Let vi(X) and
wi(X) be the interpolation polynomials for the i-th column of V and W

respectively for i ∈ [1 .. n], and set t(X) =
∏d
i=j(X − χj) where {χj}j are

distinct interpolation points. The prover picks δv, δw, rv ←$Zp and de�nes
polynomials:

V (X) :=
∑n
i=1 aivi(X) + δvt(X), W (X) :=

∑n
i=1 aiwi(X) + δwt(X)

P (X) := V (X)2 −W (X) H(X) := P (X)/t(X)
(5)

The prover computes group elements [V ]1,2 = [V (s)]1,2, [W ]1 = [W (s)]1,
[H]1 = [H(s)]1 and a linear EMP commitment [c̃]2 = Com(ck′; (a, δv), rv).
All of the above can be computed as a linear combination of the CRS ele-
ments, in particular, H(X) is a polynomial of degree ≤ d. The prover also
computes a bls argument ψ for the statement

xbls := ([c]1, [V ]1, [W ]1, [V ]2, [c̃]2)
> ∈ Im

(
[M]1
[N]2

)
with witness (a, r, δv, δw, rv)

> ∈ Z2n+3
p . Finally, it outputs the argument

π :=
(

[H]1 , [V ]1,2 , [W ]1 , [c̃]2, ψ
)
.

� The veri�er V with input (crs, [c]1,V,W, π) returns 1 if the equation

[V ]1[V ]2 − [W ]1[1]2 = [H]1[t(s)]2

holds and Vbls(crsbls, xbls, ψ) = 1. Otherwise it returns 0.
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7.4 Security Proof

The security proof of the argument uses similar techniques as [DGP+19] but it
is simpli�ed since we can rely on the properties of SSB commitment. Namely,
in the soundness proof we randomly guess j∗ ∈ [1 .. d] such that the adversary
cheats in the the j∗-th SAP equation, and embed several functions related to this
equation to the SSB commitment key. The FSH property guarantees that the
prover cannot learn the index j∗ and thus the j∗-th SAP equation is not satis�ed
with probability ≥ 1/d. The [·]2-SSE property allows us to extract some linear
combinations of the claimed witness and break the SATSDH assumption. Zero-
knowledge is straightforwardly guaranteed by the AEPH property.

The following two theorems prove the completeness, zero-knowledge, and
soundness properties of our QA-NIZK construction.

Theorem 3. The QA-NIZK argument has perfect completeness and perfect
zero-knowledge.

Proof. Completeness. Since the BLS argument is perfectly complete, we only
need to check the last veri�cation equation: the left hand side is [V ]1[V ]2 −
[W ]1[1]2 =

[
V 2 −W

]
T

= [P (s)]T , and the right hand side is [H]1[t(s)]2 =
[H(s)]1[t(s)]2 = [P (s)]T .

Zero-knowledge. We prove it by showing that the proof can be e�ciently
simulated given the BLS trapdoor tdbls. Since we set Sv = ∅, then the SSB com-
mitments are perfectly hiding by the AEPH property. Thus we may simulate [c̃]2
by committing to 0. Next, V and W are uniformly random and independently
distributed in the honest proof. Hence, the simulator can pick µ1, µ2←$Zp and
de�ne [V ]1,2 = µ1[t(s)]1,2, [W ]1 = µ2[t(s)]1. Then, [H]1 = µ2

1[t(s)]1 − [µ2]1 and
the veri�cation equation will be satis�ed. Finally, the BLS proof ψ can be per-
fectly simulated (see [GHR15]) using the trapdoor tdbls. ut

Theorem 4. Let Advsnd(A) be the advantage of any PPT adversary A against
the soundness of the QA-NIZK argument. There exist PPT adversaries B1
against the DDH assumption in G2, B2 against strong soundness of the BLS
argument, and B3 against the d-SATSDH assumption such that

AdvSnd(A) ≤ d
(
2AdvDDH,G2(B1) + Advbls(B2) + Advd-SATSDH(B3)

)
.

Proof. In order to prove soundness we will prove indistinguishability of the fol-
lowing games.
� Real: This is the real soundness game. The output is 1 if the adversary pro-

duces a false accepting proof, i.e., if there is some equation
(
a>vi

)2−a>wi 6=
0 and the veri�er accepts the proof. Note that a is uniquely determined since
commitment [c]1 is perfectly binding.

� Game0: This game is identical to the previous one, except instead of gen-
erating the commitment key as ck ← Dp(n, d), the game samples u←$Zp
himself, sets ck = [1, u]>1 , and stores u. Clearly, A's advantage is the same
in Real and Game0.
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� Game1: This game is identical to the previous one, except that some
j∗←$ [1 .. d] is chosen and the game aborts if a satis�es the j∗-th equation,

i.e.,
(
a>vj∗

)2 − a>wj∗ = 0. Note this statement is well-de�ned since a is
uniquely determined by the commitment [c]1.

� Game2: This game is identical to the previous one except that we change
the commitment key ck′ by using a di�erent matrix Mv 6= 0 during its
generation. For each i ∈ [1 .. n], let us express

vi(X) = αi(X)(X − χj∗) + βv,i

wi(X) = α̂i(X)(X − χj∗) + βw,i

and t(X) = αt(X)(X −χj∗) + βt. We will pick [z]2←$G2 that is part of the
SATSDH challenge and change the EMP commitment key ck′ by setting

Mv =

α1(s) . . . αn(s) αn+1(s)
βv,1z . . . βv,nz 0
βw,1z . . . βw,nz 0

 .

It is important to note that from {
[
si
]
1,2
}di=1 and [z]2 we can only compute

[Mv]2. However, looking at the KC algorithm in Fig. 3, it is clear that ck′

can be computed even if only [Mv]2 is known.
Let us now analyze the games. Obviously, the games Real and Game0 are

indistinguishable.

Lemma 5. Pr[Game0(A) = 1] ≤ d · Pr[Game1(A) = 1].

Proof. If A breaks soundness, at least one equation j does not hold. Thus the
challenger can guess j with probability at least 1

d . ut

Lemma 6. There exists an adversary B1 against DDH in G2 such that
|Pr[Game1(A) = 1]− Pr[Game2(A) = 1]| ≤ 2AdvDDH,G2

(B1).

Proof. Game1 and Game2 di�er only in the linear EMP commitment key that
encode di�erent functions, but these keys are indistinguishable due to the FSH
property. In particular, we can bound the advantage of an adversary B1 against
the DDHG2 assumption as in Theorem 6: AdvfshA,COM,n,q(λ) ≤ dlog2(q + 1)e ·
AdvddhB1,2,Pgen(λ) where in this case q = 3. ut

Lemma 7. There exists an adversary B2 against the strong soundness of the bls
proof and a d-SATSDH adversary B3 such that

Pr[Game2(A) = 1] ≤ Abls(B2) +Ad-SATSDH(B3).

Proof. For any adversary A which breaks soundness, let E be the event that

([c]1, [V ]1, [W ]1, [V ]2, [c̃]2)
> ∈ Im

(
[M]1
[N]2

)
and E be the complementary event.

Obviously,

Pr[Game3(A) = 1] ≤ Pr[Game3(A) = 1|E] + Pr[Game3(A) = 1|E]. (6)
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For the latter event, we can easily construct from A a PPT adversary B2 that
breaks strong quasi-adaptive soundness of the BLS argument. Such an adversary
receives as an input (crsbls, % = ([M]1, [N]2), ωρ = (M,N)) sampled according
to the distribution speci�ed by Game3. In particular, N contains t(s) and thus
B2 can e�ciently recover s by �nding roots of the polynomial t(X)−t(s). This is
su�cient to construct the rest of the CRS chosen in the usual way. Now adversary
B2 can use the output of A to break the soundness of bls in a straightforward
way. Thus, Pr[Game3(A) = 1|E] ≤ Advbls(B2).

In the following, we bound the �rst term of the sum in Eq. (6) by construct-
ing an adversary B3 which breaks the d-SATSDH assumption in the case that
E happens. Note that in this case there exists a witness (a, r, δv, δw, rv)

>
for

membership in Im

(
[M]1
[N]2

)
. Furthermore, this witness is unique since

� [c]1 is perfectly binding and thus uniquely �xes a and r,
� [V ]1 and a uniquely �x δv,
� [W ]1 and a uniquely �x δw, and
� [a]1 and δv uniquely �x rv.

In particular, this uniquely determines the polynomial P (X) = (v(X) +
δvt(X))2 − w(X) + δwt(X).

We now describe the full reduction. Adversary B3 receives the d-SATSDH
assumption challenge

(
p, {
[
si
]
1,2
}qi=1, [z]2

)
and uses this to construct the CRS

just as is speci�ed in Game2. The CRS is then sent to the soundness adversary
A that returns [c]1 and π.

The adversary B3 extracts [a]1, [δv]1, [δw]1 ∈ G1 from [c]1 by using the secret
key u and aborts if the j∗-th equation is satis�ed. Since veri�cation succeeds,
[V ]1[V ]2 − [W ]T = [H(s)]1[t(s)]2. By the de�nition of P (X), we have that the
left hand side is [V 2 −W ]T = [P (s)]T .

If we divide both sides of the veri�cation equation by s− χj∗ , then[
P (s)

s− χj∗

]
T

= [H]1 ·
[

t(s)

s− χj∗

]
2

= [H]1 ·

∏
i 6=j∗

(s− χi)


2

,

so the adversary B3 can compute

[
P (s)

s− χj∗

]
T

from [H]1 and the powers of [s]2

in the CRS. On the other hand, if we use equation (2) on P (X), then[
P (s)

s− χj∗

]
T

=

[
(V (s) + βv)qv(s)− qw(s) +

β2
v − βw
s− χj∗

]
T

, (7)

and we have β2
v−βw 6= 0 (otherwise the j∗-th equation is satis�ed, in which case

the game aborts). We describe in the following how B3 can compute the right
hand side of Eq. (7) and the elements to break the d-SATSDH Assumption.

According to Eq. (3) and Eq. (4), B3 can compute [βv]1 =
∑n
i=0[ai]1βv,i +

[δv]1βt, [βw]1 =
∑n
i=0[ai]1βw,i + [δw]1βt and also [V (s) + βv]1 = [V ]1 + [βv]1,
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because it knows [V ]1 from the proof π and the extracted values [ai]1, and βi
are the reminders of dividing Vi(X) by X − χj∗ .

Since B3 sampled ck′ itself, it knows the extraction key of the commitment
[c̃]2 and can extract the elements [qv(s)]2 = [

∑n+1
i=1 aiαi(s) + δvαn+1(s)]2, [βvz]2

and [βwz]2.
From these values and [V (s) + βv]2, computed above, B3 can derive

[(V (s) + βv)qv(s)]T as [V (s) + βv]1 · [qv(s)]2. Finally, it can directly compute
[qw(s)]T from extracted elements [ai]1 for i ∈ [1 .. n] and [δw]1, and public α̂i(s):

[
∑n
i=1 aiα̂i(s) + δwβt]1. Thus, from equation (7) B3 recovers

[
β2
v − βw
s− χj∗

]
T

and

returns (
χj∗ , [βv]1, [βw]1, [zβv]2, [zβw]2,

[
β2
v − βw
s− χj∗

]
T

)
,

breaking the d-SATSDH assumption. ut

Hence by Lemmas 5 to 7 and the triangle inequality we get that

1/d · AdvSnd(A) ≤
(
2AdvDDH,G2(B2) + Advbls(B3) + Advd-SATSDH(B4)

)
.

ut

Acknowledgments.We would like to thank Carla Ràfols and Janno Veeorg for
useful discussions. The authors were supported by the Estonian Research Coun-
cil grant (PRG49) and by Dora Plus Grant funded by the European Regional
Development Fund, Republic of Estonia and Archimedes Foundation.

References

ABLZ17. Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Zajac.
A subversion-resistant SNARK. In Tsuyoshi Takagi and Thomas Peyrin,
editors, ASIACRYPT 2017, Part III, volume 10626 of LNCS, pages 3�33.
Springer, Heidelberg, December 2017. doi:10.1007/978-3-319-70700-6_
1.

AIR01. William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer:
How to sell digital goods. In Birgit P�tzmann, editor, EUROCRYPT 2001,
volume 2045 of LNCS, pages 119�135. Springer, Heidelberg, May 2001.
doi:10.1007/3-540-44987-6_8.

ALM+92. Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof veri�cation and hardness of approximation problems. In
33rd FOCS, pages 14�23. IEEE Computer Society Press, October 1992.
doi:10.1109/SFCS.1992.267823.

AS92. Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs; A new
characterization of NP. In 33rd FOCS, pages 2�13. IEEE Computer Society
Press, October 1992. doi:10.1109/SFCS.1992.267824.

BB04. Dan Boneh and Xavier Boyen. Secure identity based encryption without
random oracles. In Matthew Franklin, editor, CRYPTO 2004, volume
3152 of LNCS, pages 443�459. Springer, Heidelberg, August 2004. doi:

10.1007/978-3-540-28628-8_27.

28

https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/3-540-44987-6_8
https://doi.org/10.1109/SFCS.1992.267823
https://doi.org/10.1109/SFCS.1992.267824
https://doi.org/10.1007/978-3-540-28628-8_27
https://doi.org/10.1007/978-3-540-28628-8_27


BCKL08. Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya.
P-signatures and noninteractive anonymous credentials. In Ran Canetti,
editor, TCC 2008, volume 4948 of LNCS, pages 356�374. Springer, Heidel-
berg, March 2008. doi:10.1007/978-3-540-78524-8_20.

CF13. Dario Catalano and Dario Fiore. Vector commitments and their applica-
tions. In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013, vol-
ume 7778 of LNCS, pages 55�72. Springer, Heidelberg, February / March
2013. doi:10.1007/978-3-642-36362-7_5.

CFS17. Alessandro Chiesa, Michael A. Forbes, and Nicholas Spooner. A zero
knowledge sumcheck and its applications. Cryptology ePrint Archive, Re-
port 2017/305, 2017. http://eprint.iacr.org/2017/305.

CGM16. Melissa Chase, Chaya Ganesh, and Payman Mohassel. E�cient zero-
knowledge proof of algebraic and non-algebraic statements with ap-
plications to privacy preserving credentials. In Matthew Robshaw
and Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of
LNCS, pages 499�530. Springer, Heidelberg, August 2016. doi:10.1007/

978-3-662-53015-3_18.
CV05. Dario Catalano and Ivan Visconti. Hybrid trapdoor commitments and

their applications. In Luís Caires, Giuseppe F. Italiano, Luís Monteiro,
Catuscia Palamidessi, and Moti Yung, editors, ICALP 2005, volume 3580
of LNCS, pages 298�310. Springer, Heidelberg, July 2005. doi:10.1007/

11523468_25.
DFGK14. George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss.

Square span programs with applications to succinct NIZK arguments. In
Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I, vol-
ume 8873 of LNCS, pages 532�550. Springer, Heidelberg, December 2014.
doi:10.1007/978-3-662-45611-8_28.

DFL+09. Ivan Damgård, Serge Fehr, Carolin Lunemann, Louis Salvail, and Chris-
tian Scha�ner. Improving the security of quantum protocols via commit-
and-open. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of
LNCS, pages 408�427. Springer, Heidelberg, August 2009. doi:10.1007/

978-3-642-03356-8_24.
DGI+19. Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour,

and Rafail Ostrovsky. Trapdoor hash functions and their applications.
In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,

Part III, volume 11694 of LNCS, pages 3�32. Springer, Heidelberg, August
2019. doi:10.1007/978-3-030-26954-8_1.

DGN+17. Nico Döttling, Satrajit Ghosh, Jesper Buus Nielsen, Tobias Nilges, and
Roberto Tri�letti. TinyOLE: E�cient actively secure two-party compu-
tation from oblivious linear function evaluation. In Bhavani M. Thu-
raisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM
CCS 2017, pages 2263�2276. ACM Press, October / November 2017.
doi:10.1145/3133956.3134024.

DGP+19. Vanesa Daza, Alonso González, Zaira Pindado, Carla Ràfols, and Javier
Silva. Shorter quadratic QA-NIZK proofs. In Dongdai Lin and Kazue
Sako, editors, PKC 2019, Part I, volume 11442 of LNCS, pages 314�343.
Springer, Heidelberg, April 2019. doi:10.1007/978-3-030-17253-4_11.

DKM12. Nico Döttling, Daniel Kraschewski, and Jörn Müller-Quade. Statisti-
cally secure linear-rate dimension extension for oblivious a�ne func-
tion evaluation. In Adam Smith, editor, ICITS 12, volume 7412 of

29

https://doi.org/10.1007/978-3-540-78524-8_20
https://doi.org/10.1007/978-3-642-36362-7_5
http://eprint.iacr.org/2017/305
https://doi.org/10.1007/978-3-662-53015-3_18
https://doi.org/10.1007/978-3-662-53015-3_18
https://doi.org/10.1007/11523468_25
https://doi.org/10.1007/11523468_25
https://doi.org/10.1007/978-3-662-45611-8_28
https://doi.org/10.1007/978-3-642-03356-8_24
https://doi.org/10.1007/978-3-642-03356-8_24
https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1145/3133956.3134024
https://doi.org/10.1007/978-3-030-17253-4_11


LNCS, pages 111�128. Springer, Heidelberg, August 2012. doi:10.1007/

978-3-642-32284-6_7.
DN02. Ivan Damgård and Jesper Buus Nielsen. Perfect hiding and perfect

binding universally composable commitment schemes with constant ex-
pansion factor. In Moti Yung, editor, CRYPTO 2002, volume 2442 of
LNCS, pages 581�596. Springer, Heidelberg, August 2002. doi:10.1007/

3-540-45708-9_37.
EHK+13. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Vil-

lar. An algebraic framework for Di�e-Hellman assumptions. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume
8043 of LNCS, pages 129�147. Springer, Heidelberg, August 2013. doi:

10.1007/978-3-642-40084-1_8.
GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.

Quadratic span programs and succinct NIZKs without PCPs. In Thomas
Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, pages 626�645. Springer, Heidelberg, May 2013. doi:

10.1007/978-3-642-38348-9_37.
GHR15. Alonso González, Alejandro Hevia, and Carla Ràfols. QA-NIZK arguments

in asymmetric groups: New tools and new constructions. In Tetsu Iwata
and Jung Hee Cheon, editors, ASIACRYPT 2015, Part I, volume 9452 of
LNCS, pages 605�629. Springer, Heidelberg, November / December 2015.
doi:10.1007/978-3-662-48797-6_25.

GM17. Jens Groth and Mary Maller. Snarky signatures: Minimal signatures
of knowledge from simulation-extractable SNARKs. In Jonathan Katz
and Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402 of
LNCS, pages 581�612. Springer, Heidelberg, August 2017. doi:10.1007/

978-3-319-63715-0_20.
GNN17. Satrajit Ghosh, Jesper Buus Nielsen, and Tobias Nilges. Maliciously secure

oblivious linear function evaluation with constant overhead. In Tsuyoshi
Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part I, volume
10624 of LNCS, pages 629�659. Springer, Heidelberg, December 2017. doi:
10.1007/978-3-319-70694-8_22.

GR05. Craig Gentry and Zul�kar Ramzan. Single-database private information
retrieval with constant communication rate. In Luís Caires, Giuseppe F.
Italiano, Luís Monteiro, Catuscia Palamidessi, and Moti Yung, editors,
ICALP 2005, volume 3580 of LNCS, pages 803�815. Springer, Heidelberg,
July 2005. doi:10.1007/11523468_65.

GR16. Alonso González and Carla Ràfols. New techniques for non-interactive
shu�e and range arguments. In Mark Manulis, Ahmad-Reza Sadeghi, and
Steve Schneider, editors, ACNS 16, volume 9696 of LNCS, pages 427�444.
Springer, Heidelberg, June 2016. doi:10.1007/978-3-319-39555-5_23.

GR19. Alonso González and Carla Ràfols. Shorter pairing-based arguments un-
der standard assumptions. In Steven D. Galbraith and Shiho Moriai, edi-
tors, ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 728�757.
Springer, Heidelberg, December 2019. doi:10.1007/978-3-030-34618-8_
25.

Gro10. Jens Groth. Short pairing-based non-interactive zero-knowledge argu-
ments. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of
LNCS, pages 321�340. Springer, Heidelberg, December 2010. doi:10.

1007/978-3-642-17373-8_19.

30

https://doi.org/10.1007/978-3-642-32284-6_7
https://doi.org/10.1007/978-3-642-32284-6_7
https://doi.org/10.1007/3-540-45708-9_37
https://doi.org/10.1007/3-540-45708-9_37
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-662-48797-6_25
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-319-70694-8_22
https://doi.org/10.1007/978-3-319-70694-8_22
https://doi.org/10.1007/11523468_65
https://doi.org/10.1007/978-3-319-39555-5_23
https://doi.org/10.1007/978-3-030-34618-8_25
https://doi.org/10.1007/978-3-030-34618-8_25
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-642-17373-8_19


Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In
Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,

Part II, volume 9666 of LNCS, pages 305�326. Springer, Heidelberg, May
2016. doi:10.1007/978-3-662-49896-5_11.

GS08. Jens Groth and Amit Sahai. E�cient non-interactive proof systems for
bilinear groups. In Nigel P. Smart, editor, EUROCRYPT 2008, volume
4965 of LNCS, pages 415�432. Springer, Heidelberg, April 2008. doi:

10.1007/978-3-540-78967-3_24.

GW11. Craig Gentry and Daniel Wichs. Separating succinct non-interactive ar-
guments from all falsi�able assumptions. In Lance Fortnow and Salil P.
Vadhan, editors, 43rd ACM STOC, pages 99�108. ACM Press, June 2011.
doi:10.1145/1993636.1993651.

HW15. Pavel Hubacek and Daniel Wichs. On the communication complexity of
secure function evaluation with long output. In Tim Roughgarden, editor,
ITCS 2015, pages 163�172. ACM, January 2015. doi:10.1145/2688073.

2688105.

JR13. Charanjit S. Jutla and Arnab Roy. Shorter quasi-adaptive NIZK proofs
for linear subspaces. In Kazue Sako and Palash Sarkar, editors, ASI-
ACRYPT 2013, Part I, volume 8269 of LNCS, pages 1�20. Springer, Hei-
delberg, December 2013. doi:10.1007/978-3-642-42033-7_1.

JR14. Charanjit S. Jutla and Arnab Roy. Switching lemma for bilinear tests
and constant-size NIZK proofs for linear subspaces. In Juan A. Garay
and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of
LNCS, pages 295�312. Springer, Heidelberg, August 2014. doi:10.1007/

978-3-662-44381-1_17.

Kil94. Joe Kilian. On the complexity of bounded-interaction and noninteractive
zero-knowledge proofs. In 35th FOCS, pages 466�477. IEEE Computer
Society Press, November 1994. doi:10.1109/SFCS.1994.365744.

KW15. Eike Kiltz and Hoeteck Wee. Quasi-adaptive NIZK for linear sub-
spaces revisited. In Elisabeth Oswald and Marc Fischlin, editors, EU-
ROCRYPT 2015, Part II, volume 9057 of LNCS, pages 101�128. Springer,
Heidelberg, April 2015. doi:10.1007/978-3-662-46803-6_4.

Lip05. Helger Lipmaa. An oblivious transfer protocol with log-squared commu-
nication. In Jianying Zhou, Javier Lopez, Robert H. Deng, and Feng Bao,
editors, ISC 2005, volume 3650 of LNCS, pages 314�328. Springer, Heidel-
berg, September 2005.

Lip12. Helger Lipmaa. Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In Ronald Cramer, editor,
TCC 2012, volume 7194 of LNCS, pages 169�189. Springer, Heidelberg,
March 2012. doi:10.1007/978-3-642-28914-9_10.

Lip19. Helger Lipmaa. Simulation-Extractable ZK-SNARKs Revisited. Technical
Report 2019/612, IACR, May 31, 2019. https://eprint.iacr.org/2019/
612, updated on 8 Feb 2020.

LPJY14. Benoît Libert, Thomas Peters, Marc Joye, and Moti Yung. Non-
malleability from malleability: Simulation-sound quasi-adaptive NIZK
proofs and CCA2-secure encryption from homomorphic signatures. In
Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014,
volume 8441 of LNCS, pages 514�532. Springer, Heidelberg, May 2014.
doi:10.1007/978-3-642-55220-5_29.

31

https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1145/2688073.2688105
https://doi.org/10.1145/2688073.2688105
https://doi.org/10.1007/978-3-642-42033-7_1
https://doi.org/10.1007/978-3-662-44381-1_17
https://doi.org/10.1007/978-3-662-44381-1_17
https://doi.org/10.1109/SFCS.1994.365744
https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/978-3-642-28914-9_10
https://eprint.iacr.org/2019/612
https://eprint.iacr.org/2019/612
https://doi.org/10.1007/978-3-642-55220-5_29


LPJY15. Benoît Libert, Thomas Peters, Marc Joye, and Moti Yung. Compactly
hiding linear spans - tightly secure constant-size simulation-sound QA-
NIZK proofs and applications. In Tetsu Iwata and Jung Hee Cheon,
editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages 681�
707. Springer, Heidelberg, November / December 2015. doi:10.1007/

978-3-662-48797-6_28.
LY10. Benoît Libert and Moti Yung. Concise mercurial vector commitments and

independent zero-knowledge sets with short proofs. In Daniele Miccian-
cio, editor, TCC 2010, volume 5978 of LNCS, pages 499�517. Springer,
Heidelberg, February 2010. doi:10.1007/978-3-642-11799-2_30.

MRV16. Paz Morillo, Carla Ràfols, and Jorge Luis Villar. The kernel matrix
Di�e-Hellman assumption. In Jung Hee Cheon and Tsuyoshi Takagi, ed-
itors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 729�758.
Springer, Heidelberg, December 2016. doi:10.1007/978-3-662-53887-6_
27.

OPWW15. Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs.
New realizations of somewhere statistically binding hashing and po-
sitional accumulators. In Tetsu Iwata and Jung Hee Cheon, edi-
tors, ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages 121�
145. Springer, Heidelberg, November / December 2015. doi:10.1007/

978-3-662-48797-6_6.
Ped92. Torben P. Pedersen. Non-interactive and information-theoretic secure ver-

i�able secret sharing. In Joan Feigenbaum, editor, CRYPTO'91, vol-
ume 576 of LNCS, pages 129�140. Springer, Heidelberg, August 1992.
doi:10.1007/3-540-46766-1_9.

RS20. Carla R`afols and Javier Silva. QA-NIZK Arguments of SameOpening for
Bilateral Commitments. Preprint. Available from
https://eprint.iacr.org/2020/569.pdf, May 2020, 2020.

Vil12. Jorge Luis Villar. Optimal reductions of some decisional problems to
the rank problem. In Xiaoyun Wang and Kazue Sako, editors, ASI-
ACRYPT 2012, volume 7658 of LNCS, pages 80�97. Springer, Heidelberg,
December 2012. doi:10.1007/978-3-642-34961-4_7.

A Analysis of Existing QA-NIZK Constructions

In this section, we show that some of the existing QA-NIZK arguments implic-
itly use QA-NIZK-friendly commitments. These constructions rely on falsi�able
assumptions; in particular, the commitment has to contain the necessary amount
of information for extraction to be possible. More precisely, to extract q group
elements from a commitment, the commitment has to contain at least q+1 group
elements as proved in Corollary 1.

In the following we explain two constructions in detail, the argument for
proving bit-strings in [GHR15] and the argument for proving satis�ability of
n quadratic equations of d variables in [DGP+19]. As we will see, the second
approach uses similar techniques to the �rst one. Both have the same structure
described in Section 4.1 and use QA-NIZK-friendly commitments.

There exist two versions of bit-string arguments, but we focus on the one
in [GHR15] because the idea is very similar. In [GHR15] the COM is perfectly
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binding while in [GR16] it is computationally binding, so in the second case
another witness can open the commitment.

The argument for bit-strings in [GHR15]. The argument for bit-strings in
[GHR15] guarantees that a commitment COM opens to a bit-vector b ∈ {0, 1}n.
COM is perfectly binding and, since it is based on standard assumptions, its
length is linear in n. Proving b is a bit-vector is equivalent to proving equations
bi(bi − 1) = 0 for all i ∈ [1 .. n], which in turn is equivalent to proving that
vectors b, b̄ satisfy (i) bi − bi = 0 and (ii) bi(bi − 1) = 0 for all i ∈ [1 .. n]. The
argument [GHR15] consists of the following building blocks:
1. The prover uses a perfectly binding ACS COM with U1 = (g(1), . . . , g(n)),
U2 = g(n+1), where g(i)←$Z2

p, to commit b ∈ Znp : [c]1 = [U1]1b + r[U2]1,
for r←$Zp.

2. The prover computes another commitment of the witness, by using an SSB
ACS COM′, with U ′1 = (h(1), . . . ,h(n)), U ′2 = h(n+1). Here, h(n+1) ← Z2

p,

and {h(i)}i∈[1 .. n] are sampled uniformly from the span of h(n+1) (q′ = 0,

h(i) = εih
(n+1) where εi ← Zp uniformly sampled. Thus, [d]2 ← [U1]2b +

s[U2]2 for s←$Zp.
3. The prover computes an argument Π ′ with additional commitments [Ω1]1

and [Ω2]2 of the witness and the randomness used in COM,COM′, together
with a QA-NIZK argument for subspace sum [GHR15] used to prove mem-
bership of Ω1 +Ω2. This is a trick for proving all equations in condition (ii)
together by the e�cient QA-NIZK argument for Sum in [GHR15].

4. The prover computes a succinct QA-NIZK argument Π for Equal Opening
in Asymmetric Groups [GHR15] to show that [c]1 and [d]2 open to the same
value, which proves condition (i).
In the proof of soundness, one uses the game hopping technique as follows.

Assume that an adversary A succeeds in breaking the soundness; thus the veri�er
accepts, but bi∗ 6∈ {0, 1} for at least one index i∗ ∈ [1 .. n]. First, one changes the
distribution of U1 to be SSB with q′ = 1, hence for some i the column h(i) is lin-
early independent to the others; the resulting COM′ commitment is statistically
binding and [·]2-extractable in a single component. Then, the reduction guesses
an index i← [1 .. n] for which bi is not a bit, and aborts if bi ∈ {0, 1}. In the next
game, the reduction itself samples a vector h(i∗) uniformly at random. With an
overwhelming probability h(i∗) is linearly independent of {h(i)}ni=1. This allows
one to extract the element bi∗ from the commitment [d]2 and use it to break ei-
ther the equal opening argument, the subspace sum argument or the split kernel
assumption de�ned as follows.
D`k-SKerMDH [GHR15] holds relative to Pgen, if ∀ PPT A,

Advskermdh
A,D`k,Pgen(λ) :=

Pr

[
p← Pgen(1λ);A←$D`k; ([c1]1, [c2]2)← A(p, [A]1, [A]2) :

A>(c1 − c2) = 0k ∧ c1 − c2 6= 0`

]
≈λ 0 .

The Argument for Quadratic Equations in [DGP+19]. The argument
in [DGP+19] guarantees that the opening of a perfectly binding commitment
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COM = [c]1 satis�es a set of n quadratic equations in d variables. We use a
constant QA-NIZK for proving the equations based on SNARK techniques and
the constant QA-NIZK for same opening [GHR15].

1. The prover computes a commitment [c]1 of the witness using a perfectly
binding commitment scheme COM. that is a concatenation of n Lifted El-
Gamal commitments [ci]1. In particular, [c]1 = ([c1]1, . . . , [cn]1) computed
as [ci]1 = bi[g1]1 + ri[g2]2 for ri ← Zp. Here the commitment key is
ck = ([g1]1, [g2]2) where the vectors gi are sampled uniformly random from
Z2
p. Hence, using our terminology, U1 = g1I, U2 = g2I.

2. For the divisibility argument the prover computes a functional SSB commit-
ment [q2]2 and two perfectly hiding commitments [V ]1, [V ]2 of the witness.
Concretely, the commitment [q2]2 = [H]2b + [Q]2r ∈ Gq+1 with commit-
ment key ck = ([H]2, [Q]2) where the columns of H and Q are sampled
uniformly random from Zq+1

p .
3. The divisibility argument Π ′ uses SNARKs to prove satis�ability of

quadratic equations.
4. Finally, the prover computes a QA-NIZK argument Π for Equal Opening

in Asymmetric Groups [GHR15] to prove that [c]1, [V ]1, [V ]2, [q2]2 open to
the same value.

In the security proof, the soundness game is changed to another game that
chooses g1, g2 itself in order to open the commitment [c]1 and [·]ι-extract the
whole witness. By the same technique as in previous example, in the latter
game, we guess the index i∗ where the i∗th equation does not hold. Next, we
change to another game where the matrix H is constructed to de�ne some
linear functions in their rows. Both distributions are indistinguishable because
some randomness is added to each column (h(i) ← f (i)(w) + ri[Q]2). Hence,
each column is indistinguishable from a uniformly sampled vector in Zq+1

p but
the reduction knows the structure. Moving to another indistinguishable game,

the matrix Q is sampled uniformly at random from Z(q+1)×(q+1)
p conditioned

on having rank 1, i.e., there exists an extractable key. The functions of the
witness de�ned inH can then be extracted without the randomness, because the
extraction key is in the orthogonal space of Q. Soundness follows because from
the i∗th equation we can either break soundness of the same opening argument or
the divisibility relation of polynomials. In the second case, we use the functional
commitment to extract linear functions of the witness that allow to break a
falsi�able assumption derived from the Target Strong DH assumption.

These special properties of perfectly binding and extractability of q functions
of the committed value are explained in detail when we present functional SSB
commitments in Appendix C.

Required properties of SSB. In both constructions soundness depends on
the ISH, SSB, and SSE properties of SSB commitments, while zero-knowledge
depends on AESH. In the second example, all the commitments are PH, even
the commitment [c]1 that, as in GS proofs, use commitment keys g1, g2 which
in the zero-knowledge setting are two linear dependent vectors. More details can
be seen in the analogous construction in Section 7.
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B Missing Proofs in Section 3 and Section 4

B.1 Proof of Lemma 1

Proof. Assume that for given n and q, A breaks SSB with probability
AdvssbA,COM,n,q(λ). This means that for some S of cardinality ≤ q and honestly
generated ck (w.r.t. S), A outputs (x0,x1, r0, r1) such that x0S 6= x1S and
C := Com(ck;x0; r0) = Com(ck;x1; r1).

Since x0S 6= x1S and F is injective, we get that F 0 :=
(F (x0σ1

), . . . , F (x0σ|S|)) 6= (F (x1σ1
), . . . , F (x1σ|S|)) =: F 1. Therefore, there

exists β ∈ {0, 1}, such that ExtF (p, ek;C) 6= F β . Thus, if B outputs

(xβ , rβ) for β←$ {0, 1}, Advsseβ,F,COM,n,q(λ) ≥ AdvssbA,COM,n,q(λ)/2 and hence

AdvssbA,COM,n,q(λ) ≤ 2 · Advsseβ,F,COM,n,q(λ). ut

B.2 Proof of Lemma 3

Proof. Let S ⊆ [1 .. n], |S| ≤ q be the indices of x one can extract during open-
ing. (i: AECH) Let A be an adversary that breaks AECH with non-negligible

probability, say εA. Consider the following Gι-MDDH adversary B. B receives
a challenge [A,yβ ]ι where A←$D2, y0←$Zkp, and y1 ← Ar for r←$Zmp .
B sets [U2]ι ← [A]ι, and generates U1 from the distribution D1. B sends
ck = [U1,U2]ι to A who replies with two messages x0,x1, such that x0,S ,x1,S .
B computes c0 ← [U1]ιx0 + [U2]ιr, for r←$Zmp , and c1 ← [U1]ιx1 + [yβ ]ι. B
picks β′ ← {0, 1} and sends cβ′ to A. A guesses which message was committed
by returning βA ∈ {0, 1} to B. B sends βA to the MDDH challenger. Clearly,

Pr[βA = β] = Pr[βA = 0|β = 0]/2 + Pr[βA = 1|β = 1]/2

=εA/2 + (Pr[βA = 1|β = 1, β′ = 0]/2 + Pr[βA = 1|β = 1, β′ = 1]/2)/2

=εA/2 + εA/4 + εA/8 = 7/8 · εA .

Thus if A succeeded with non-negligible probability, then so did B.
(ii: ISH) Firstly we prove that for any S0 with |S0| ≤ n, if S1 = S0 ∪ {i∗}

for some i∗ /∈ S0 and S0,S1 ⊆ [1 .. n], then D0,q
1,2 := ([Dn,kS0 ]ι, [Dm,kS0 ]ι) and D1,q

1,2 :=

([Dn,kS1 ]ι, [Dm,kS1 ]ι) are computationally indistinguishable under MDDH. Let A be

an adversary that can distinguish D0
1,2 and D1

1,2. We construct the following
MDDH adversary B that receives a challenge [A,yβ ]ι where A1,A2←$D0

1,2,

y0←$Zkp, and y1 ← (A>1 |A>2 )r for r←$Zmp . B sets [U1]ι ← [A1]ι, and [U2]ι ←
([A2]ι|[yβ ]ι). B computes cβ ← [U1]ιx+ [U2]ιr, for r←$Zmp and sends cβ to A
who replies with βA. Thus, B has the same advantage in breaking MDDH as A
has in distinguishing D0,q

1,2 and D1,q
1,2.

Now, for any sets S0 and S1 it holds that AdvindistA,D0
1,2,D1

1,2
(λ) ≤ (|S0 ∪ S1| −

|S0 ∩ S1|) · Advmddh
B,Dn,q1,2 ,Pgen

(λ).

(iii: SPB) Assume that all columns of U1 and U2 are pairwise linearly
independent. Consider the matrix system of equations de�ned by (U1,U2)( x

r ) =
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Comck(x, r). This system has a unique solution because the matrix has full
rank. Hence, each commitment corresponds to a unique vector ( x

r ). Now, if U1

has q columns pair-wise linear independent and columns of U2 pair-wise linear
independent to all of them, consider the system that has a matrix with those q
columns of U1 and the whole U2. Its rank is maximum as well and the result
follows.

(iv: [·]-SPE) Since k > m, for any matrix U2 of size k × m there exist
matrices ek ∈ U⊥2 that de�ne orthogonal spaces of U2 of size k

′×k for k′ ≥ k−m

such that ek · U2 =

(
0(k−m)×m

a

)
where a ∈ Z(k′−k+m)×m

p . This space has at

least dimension 1 because k > m. Moreover, there exists an appropriate change

of basis of the space such that ek ·U1 =

(
Iq
b1
b2

)
where b1 ∈ Z(k′−q)×q

p , b2 ∈

Zk
′×(n−q)
p . This is well-de�ned since k−m ≥ q and if q columns of the matrices

are pair-wise linear independent then k′ − q ≥ k −m− q ≥ 0. ut

B.3 Proof of Lemma 4

Proof. Fix λ. We �rst prove that for any S0 with |S0| ≤ q−1, if S1 = S0∪{i∗} for
i∗ > maxi{i ∈ S0} and S0,S1 ⊆ [1 .. n], then D0 := [Dp,n,S0q+1 ] and D1 := [Dp,n,S1q+1 ]
are computationally indistinguishable.

Let A be an adversary that can distinguish D0 and D1. We construct the
following MDDH adversary B. The challenger C of the MDDH game samples
A←$Zq+1

p and w←$Zp. If β = 0 then C samples y←$Zq+1
p , otherwise C sets

y ← Aw. C sends (p, [A,y]ι) to B. B does the following:

B(p, [A,y])

[g(n+1)]← [A];
for i in [1 .. n] do

if i = i∗ then [g(i)]← [y];

elseif i ∈ S0 then g(i) ←$Zq+1
p ;

else δi ←$Zp; [g(i)]← [g(n+1)]δi; fi endfor
return β ← A(p, [g]);

Clearly, [g] is distributed according to Dβ . Thus, B has the same advantage
in breaking MDDH as A has in distinguishing D0 from D1. By using a standard
hybrid argument, AdvindistA,D0,D1(λ) ≤ |S| · Advmddh

B,Uq+1,Pgen(λ). ut

As a simple generalization of Lemma 4, for any S0,S1 ⊆ [1 .. n] with Si ≤ q,
AdvindistA,[Dp,n,S0q+1 ],[Dp,n,S1q+1 ]

(λ) ≤ |S1 4S2| · Advmddh
B,Uq+1,Pgen(λ).

C Details of Functional SSB Commitments

C.1 De�nitions

Essentially the only di�erence between an SSB commitment and a functional
SSB commitment is that in the former S is a subset of [1 .. q] and in the latter
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S is a subset of some function set F . For the sake of completeness we provide
the formal de�nition below.

De�nition 4. An F -extractable functional SSB commitment scheme COM =
(Pgen,KC,CKV,Com, tdOpen,ExtF ) for a function family F consists of the fol-
lowing polynomial-time algorithms:

Parameter generation: Pgen(1λ) returns parameters p (for example, group
description). We allow F to depend on p.

Commitment key generation: for parameters p, a positive integer n ∈
poly (λ), an integer q ∈ [1 .. n], and a tuple S = (f1, . . . , f|S|) ⊆ F
with |S| ≤ q, KC(p, n, q,S) outputs a commitment key ck and a trapdoor
td = (ek, tk). Here, ck implicitly speci�es p, the message space MSP, the ran-
domizer space RSP, and the commitment space CSP, such that F (MSP) ⊆ CSP,
ek is the extraction key, and tk is the trapdoor key. For any other input,
KC outputs (ck, td) = (⊥,⊥).

Commitment key veri�cation: for a positive integer n ∈ poly(λ), an integer
q ∈ [1 .. n], and a commitment key ck, CKV(n, q, ck) outputs 1 (accept, ck
was formed correctly) or 0 (reject).

Commitment: for p ∈ Pgen(1λ), a commitment key ck 6= ⊥, a message x ∈
MSPn, and a randomizer r ∈ RSP, Com(ck;x; r) outputs a commitment c ∈
CSP.

Trapdoor opening: for p ∈ Pgen(1λ), S ⊆ F with |S| ≤ q, (ck, (ek, tk)) ∈
KC(p, n, q,S), two messages x,x∗ ∈ MSPn, and a randomizer r ∈ RSP,
tdOpen(p, tk;x, r,x∗) returns a randomizer r∗ ∈ RSP.

Extraction: for p ∈ Pgen(1λ), S = (f1, . . . , f|S|) ⊆ F with 1 ≤ |S| ≤ q,
(ck, (ek, tk)) ∈ KC(p, n, q,S), and c ∈ CSP, ExtF (p, ek; c) returns a tuple(
F (f1(x)), . . . , F (f|S|(x))

)
∈ MSP|S|;

For {fi}qi=1 ⊆ F and vector x let us denote xS = (f1(x), . . . , fq(x)).

De�nition 5. An F -extractable functional SSB commitment scheme COM for
function family F is secure if it satis�es the following security requirements.

Perfect Key-Correctness (PKC): There exists a computationally un-
bounded extractor Ext such that ∀λ, n ∈ poly(λ), q ∈ [1 .. n], and subverter
Sub, AdvkcCOM,n,q,S,Ext(λ) = 0, where AdvkcCOM,n,q,S(λ) :=

Pr

[
p← Pgen(1λ); ck← Sub(p, n, q);S ← Ext(ck) : S ⊆ F∧
|S| ≤ q ∧ CKV(n, q, ck) = 1 ∧ ∀td : (ck, td) 6∈ range(KC(p, n, q,S))

]
.

Perfect Key-Veri�ability (PKV): ∀λ, n ∈ poly(λ), q ∈ [1 .. n], and S ⊆ F
with |S| ≤ q, AdvkvCOM,n,q,S(λ) = 0, where AdvkvCOM,n,q,S(λ) :=

Pr
[
p← Pgen(1λ); (ck, td)← KC(p, n, q,S) : CKV(n, q, ck) = 0

]
.
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Function-Set Hiding (FSH): ∀ PPT A, n ∈ poly (λ), q ∈ [1 .. n],
AdvfshA,COM,n,q(λ) := 2·|εfshA,COM,n,q(λ)−1/2| = negl(λ), where εfshA,COM,n,q(λ) :=

Pr

p← Pgen(1λ);

(S0,S1)← A(p, n, q) s.t. ∀i ∈ {0, 1},Si ⊆ F ∧ |Si| ≤ q;
β←$ {0, 1} ; (ckβ , tdβ)← KC(p, n, q,Sβ) : A(ckβ) = β

 .

Somewhere Statistically Binding (SSB): ∀λ, unbounded A, n ∈ poly(λ),
q ∈ [1 .. n], AdvssbA,COM,n,q(λ) ≈λ 0, where AdvssbA,COM,n,q(λ) :=

Pr

p← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ F ∧ |S| ≤ q;
(ck, td)← KC(p, n, q,S); (x0,x1, r0, r1)← A(ck) s.t. x0S 6= x1S :

Com(ck;x0; r0) = Com(ck;x1; r1)

 .

We say that COM is somewhere perfectly binding (SPB) if
AdvssbA,COM,n,q(λ) = 0.

Almost Everywhere Statistically Hiding (AESH): ∀λ, unbounded A,
n ∈ poly(λ), q ∈ [1 .. n], AdvaeshA,COM,n,q(λ) := 2 · |εaeshA,COM,n,q(λ) − 1/2| ≈λ 0,

where εaeshA,COM,n,q(λ) :=

Pr

p← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ F ∧ |S| ≤ q;
(ck, td)← KC(p, n, q,S); (x0,x1)← A(ck) s.t. x0S = x1S ;

β←$ {0, 1} ; r←$ RSP : A(Com(ck;xβ ; r)) = β

 .

COM is almost everywhere perfectly hiding (AEPH) if AdvaeshA,COM,n,q(λ) = 0.
Composable Sub-AESH: there exists a PPT simulator Sim, such that for any

unbounded subverter Sub there exists an unbounded extractor ExtSub such
that ∀λ, n ∈ poly(λ), q ∈ [1 .. n], p ∈ range(Pgen(1λ)), and unbounded A,
Advcompsubaesh

COM,Sub,ExtSub,Sim,A,n,q(λ) := 2·|εsubaeshcomp (λ)−1/2| ≈λ 0, where εsubaeshcomp (λ) :=

Pr


r←$RNDλ(Sub); (ck, auxSub‖S)← (Sub‖ExtSub)(p, n, q; r);β←$ {0, 1} ;

x← A(p, ck, auxSub); if β = 0 then r′ ← RNDλ(Com);

C ← Com(ck;x; r′); else r′←$RNDλ(Sim); C ← Sim(ck,xS ,S; r′) :

CKV(n, q, ck) = 1 ∧ A(C) = β

 .

COM is composable sub-AEPH if Advcompsubaesh
COM,Sub,ExtSub,Sim,A,n,q(λ) = 0.

Somewhere Statistical F -Extractability (F -SSE): ∀λ, p ∈ Pgen(1λ),
n ∈ poly (λ), q ∈ [1 .. n], S = (f1, . . . , f|S|) ⊆ F with |S| ≤ q,
(ck, (ek, tk)) ← KC(p, n, q,S), and PPT A, AdvsseA,F,COM,n,q(λ) ≈λ 0, where
AdvsseA,F,COM,n,q(λ) :=

Pr
[
x, r ← A(ck) : ExtF (p, ek;Com(ck;x; r)) 6=

(
F (f1(x)), . . . , F (f|S|(x))

)]
.

It is somewhere perfect extractable if AdvsseA,F,COM,n,q(λ) = 0.
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Almost Everywhere Statistical Trapdoor (AEST): ∀λ, n ∈ poly (λ),
q ∈ [1 .. n] and unbounded A, AdvaestA,COM,n,q(λ)(λ) ≈λ 0, where

AdvaestA,COM,n,q(λ)(λ) =

Pr

p ∈ Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ F ∧ |S| ≤ q;
(ck, td)← KC(p, n, q,S); (x0,x1, r0)← A(ck) s.t. x0S = x1S :

r∗ ← tdOpen(p, tk;x, r,x∗) : Com(ck;x; r) 6= Com(ck;x∗; r∗)

 .

It is AEPT (almost everywhere perfect trapdoor) if AdvaestA,COM,n,q(λ)(λ) = 1.
Computational Binding (CB): ∀ PPT A, n ∈ poly (λ), q ∈ [1 .. n],

AdvcbA,COM,n,q(λ) = negl(λ), where AdvcbA,COM,n,q(λ) :=

Pr

p← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ F ∧ |S| ≤ q;
(ck, td)← KC(p, n, q,S); (x0,x1, r0, r1)← A(ck) s.t. x0 6= x1 :

Com(ck;x0; r0) = Com(ck;x1; r1)

 .

Computational Hiding (CH): ∀ PPT A, n ∈ poly (λ), q ∈ [1 .. n],
AdvchA,COM,n,q(λ) := 2·|εchA,COM,n,q(λ)−1/2| = negl(λ), where εchA,COM,n,q(λ) :=

Pr

p← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ F ∧ |S| ≤ q;
(ck, td)← KC(p, n, q,S); (x0,x1)← A(ck);β←$ {0, 1} ;

r←$ RSP : A(Com(ck;xβ ; r)) = β

 .

C.2 Security proofs

Before proving the security of linear EMP, let us recall some well-known deci-
sional assumptions.
Decisional Di�e-Hellman (DDH) Assumption. Let ι ∈ {1, 2}. DDHGι

holds relative to Pgen, if ∀ PPT A, AdvddhA,ι,Pgen(λ) := |ε0A(λ) − ε1A(λ)| =
negl(λ), where

εβA(λ) := Pr
[
p← Pgen(1λ);x, y, z←$Zp : A(p, [x, y, xy + βz]ι) = 1

]
.

Rank Assumption. Let ι ∈ {1, 2}. (`, k, r0, r1)-Rank assumption for 1 ≤ r0 <
r1 ≤ min(`, k) holds relative to Pgen, if ∀ PPT A, AdvrankA,`,k,r0,r1,ι,Pgen(λ) :=
|ε0A(λ)− ε1A(λ)| = negl(λ), if

εβA(λ) := Pr
[
p← Pgen(1λ);A←$U (rβ)

`k : A(p, [A]ι) = 1
]
,

where U (rβ)
`k is the uniform distribution over rank rβ matrices Z`×kp .

Theorem 5 ( [Vil12]). Let ι ∈ {1, 2}. For any `, k, r0, r1 ∈ Z such that
1 ≤ r0 < r1 ≤ min(`, k), any PPT A, and any Pgen,

AdvrankA,`,k,r0,r1,ι,Pgen(λ) ≤ dlog2(r1/r0)e · AdvddhA,ι,Pgen(λ) .
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Theorem 6. Let Pgenbg be a bilinear group generator. Fix n and q. The com-
mitment scheme in Fig. 3 is

(i) PKC,
(ii) PKV,
(iii) FSH relative to Pgenbg under the DDHGι assumption: for each PPT

A, there exists a PPT B, such that AdvfshA,COM,n,q(λ) ≤ dlog2(q + 1)e ·
AdvddhB,ι,Pgen(λ).

(iv) F -SSE for F = [·]ι (thus, F depends on p),
(v) SPB,
(vi) Sub-AEPH,
(vii) AEPT,
(viii) CB and CH.

Proof. (i: PKC) Given a commitment key ck = [g] ∈ G(q+1)×(n+1) with
[g(n+1)] 6= [0], an unbounded extractor can compute g. Let us pick some matrix

R ∈ Z(q+1)×(q+1)
p such that R(q+1) = g(q+1) and R is full rank. This is always

possible since gn+1 6= 0. Now we can uniquely express g(j) =
∑q+1
i=1 M

′
i,jR

(i) for

j ∈ [1 .. n+ 1] and in particularM ′(n+1) = (0, . . . , 0, 1)>. ThereforeM ′ has the
form

(
M 0
rᵀ 1

)
for some matrix M ∈ Zq×np and r ∈ ZnN . Extractor can output M

and moreover ck is well-formed.
(ii: PKV) Honestly generated ck = [g] is by de�nition from the set

G(q+1)×(n+1). Considering that R is full rank and that g(n+1) = R(q+1) by
construction, we may conclude that g(n+1) 6= 0. Thus, honest ck is accepted by
CKV.

(iii: FSH) Since given a matrixM ′ of rank r ∈ [1 .. q+ 1], the matrix RM ′

is a random matrix of rank r with an overwhelming probability. Then, distin-
guishing commitment keys ck1 = [R1M

′
1]ι and ck2 = [R2M

′
2]ι is equivalent

to breaking the rank assumption. Now, considering Theorem 5 we get that for
each adversary A against FSH, there exists an adversary B against the DDH
in Gι such that the bound AdvfshA,COM,n,q(λ) ' AdvrankB,ι,Pgen(λ) ≤ dlog2(r1/r0)e ·
AdvddhB,ι,Pgen(λ) holds. In the worst case one matrix has rank r0 = 1 and the other

has rank r1 = q + 1, so the worst bound is dlog2(q + 1)e · AdvddhB,ι,Pgen(λ) .
(iv: F -SSE) For any x ∈ Znp and r ∈ Zq+1

p , we have Com(ck;x; r) =
[RM ′( x

r )]ι = [c]ι =. Then, Ext(p, ek = R−1; [c]ι) computes R−1[c]ι =

[M ′( x
r )]ι =

[
Mx

r>x+r

]
ι
and outputs [Mx]ι which is exatly what we wanted to

extract.
(v: SPB) Clearly, there are no x0,x1 ∈ Znp such that Mx0 6= Mx1 and

[c]ι := Com(ck;x0; r0) = Com(ck;x1; r1) since by the F -SSE property we have
that Ext(p, ek = R−1; [c]ι) = [Mx0]ι = [Mx1]ι.

(vi: Sub-AEPH) Suppose a subverter Sub on input (p, n, q) outputs (ck =
[g], auxSub) such that CKV(n, q, ck) = 1. We know from PKC property that there
exists an extractor ExtSub that on the same input outputs S = M ∈ Zq×np such

that g = R ·M ′ whereM ′ =
(
M 0
r> 1

)
, R ∈ Z(q+1)(q+1)

p is some full rank matrix,
and r ∈ Znp . Let adversary A output x0 on input (p, ck, auxSub).
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In order to prove Sub-AEPH we need to construct a simulator Sim that
on input (ck,xS = Mx0,S = M) outputs a simulated commitment which is
indistinguishable from C0 = Com(ck,x, r0) where r0←$Zp. Our simulator works
as follows. Given y := Mx0 and M it solves a linear system of equations to
�nd some solution x1 such that y = Mx1 and then outputs a commitment
C1 = Com(ck,x1; r1) with r1←$Zp.

Let us analyze distributions of C0 and C1. We know that x0,x1 ∈ Znp are

such that Mx0 = Mx1. For β ∈ {0, 1}, we can de�ne [uβ ] := [M ′(
xβ
rβ )] =[

Mxβ

r>xβ+rβ

]
. We see that top q elements of u0 and u1 are equal and the last

element is uniformly random. Thus, u0 and u1 are indistinguishable. Since Cβ =
Com(ck;xβ ; rβ) = R[uβ ], then also C1 and C2 are indistinguishable.

(vii: AEPT) Let r0 ∈ Zp and x0,x1 ∈ Znp such that Mx0 = Mx1. In

tdOpen, we de�ne r1 =
∑
i∈[1 .. n](x0,i−x1,i)ri+r0. Then, r>x1+r1 = r>x0+r0.

Using, the de�nition of ub from the previous property, we see that u0 = u1 and
then also Com(ck;x0; r0) = Com(ck;x1; r1).

(viii: CB and CH) Follows directly from analog of Theorem 1. ut

D On the q-SATSDH assumption

Let us �rst see that q-SATSDH is falsi�able. Observe that the challenger knows
z, s ∈ Zp. Thus, upon receiving (r, [β1, β2]1, [β̃1, β̃2]2, [ν]T ) it veri�es that: (a)

[1]1[β̃1]2 = [β1]1[z]2, (b) [1]1[β̃2]2 = [β2]1[z]2, (c)
1
z [β1]1[β̃1]2 6= [β2]1[1]2, and (d)

(s− r)[ν]T = 1
z [β1]1[β̃1]2 − [β2]1[1]2.

We prove that if the Knowledge of Exponent Assumption in bilinear groups
holds, then both q-TSDH and q-SATSDH assumptions are equivalent. We recall
in the following the de�nition of the Bilinear Bilinear Di�e-Hellman Knowledge
of Exponent assumption.

De�nition 6 (Bilinear Di�e-Hellman Knowledge of Exponent As-
sumption, BDH-KE [ABLZ17]). For all non-uniform PPT adversaries A:

Pr [([α1]1 , [α2]2 ‖a)← (A‖XA)(gk) : e ([α1]1 , [1]2) = e ([1]1, [α2]2) ∧ a 6= α1] ≈ 0,

where the probability is taken over gk← Pgen(1λ) and the coin tosses of adver-
sary A.

Lemma 8. Given a bilinear group gk = (q,G1,G2,GT ), if the q-SATSDH as-
sumption holds then the q-TSDH assumption holds.

Proof. Assume that A is an adversary against the q-TSDH assumption, we con-
struct another adversary B against q-SATSDH assumption that receives a chal-
lenge tuple (gk, {[si]1,2}qi=1, [z]2) and sends the elements (gk, {[si]1,2}qi=1) to A. A
then returns (r, [ν]T ) that breaks q-TSDH. The adversary B chooses β1, β2 ← Zp
such that β2

1 6= β2 and returns
(
r, [β1, β2]1, β1[z]2, β2[z]2, (β

2
1 − β2)[ν]T

)
which

breaks the q-SATSDH assumption. ut
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Lemma 9. Given a bilinear group gk = (q,G1,G2,GT ) where BDHKE assump-
tion holds, if the q-TSDH assumption holds then the q-SATSDH assumption
holds.

Proof. Assume that A is an adversary against the q-SATSDH assumption,
we construct an another adversary B against the q-TSDH assumption that
receives a challenge tuple (gk, {[si]1,2}qi=1). B chooses z ← Zp and sends
the elements (gk, {[si]1,2}qi=1, [z]2) to A. The adversary A then returns

(r, [β1, β2]1, [β3, β4]2, [ν]T ) that breaks q-SATSDH. Now B computes [β̂1]2 =
1
z [β3]2 and [β̂2]2 = 1

z [β4]2 which satisfy e([βi]1, [1]2) = e([1]1, [β̂i]2) for i = 1, 2.
By the BDHKE assumption there exists and extractor of β1, β2 that solves the

q-TSDH assumption with
(
r, 1
β2
1−β2

[ν]T

)
. ut
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