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Abstract. Side-channel analysis has seen rapid adoption of deep learn-
ing techniques over the past years. While many paper focus on designing
efficient architectures, some works have proposed techniques to boost
the efficiency of existing architectures. These include methods like data
augmentation, oversampling, regularization etc. In this paper, we com-
pare data augmentation and oversampling (particularly SMOTE and its
variants) on public traces of two side-channel protected AES. The tech-
niques are compared in both balanced and imbalanced classes setting,
and we show that adopting SMOTE variants can boost the attack ef-
ficiency in general. Further, we report a successful key recovery on AS-
CAD(desync=100) with 180 traces, a 50% improvement over current state
of the art.

Keywords: Oversampling technique · Side-channel analysis ·Deep learn-
ing.

1 Introduction

The security of cryptograhic algorithm has been widely investigated. One of the
possible vulnerabilities is due to the physical leakage from the implementation
of the cryptographic algorithm itself, which is commonly referred to as side-
channel analysis (SCA) [9]. Recently, many deep learning (DL) techniques have
been introduced to SCA after the renaissance of machine learning to improve
the performance of the attack. It can be naturally applied for profiled SCA, such
as template attack [5] since DL frameworks can be divided to two fold; training
and testing, similar to the framework of profiled SCA.

Related Works. The basic application of neural networks such as Multi-Layer
Perceptron (MLP), Convolutional Neural Network (CNN), Recurrent Neural
Network (RNN), Autoencoder were investigated by H. Maghrebi et al. [15] to
enhance profiled SCA. More improvements have been proposed in later works.
By applying the data augmentation (DA) techniques, E. Cagli et al. [4] demon-
strated that it can overcome the jitter and noise countermeasures. In the same
manner, by adding the artificial noise to original traces, with application of VGG
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architecture and blurring technique, J. Kim et al. [10] proposed the general ar-
chitecture for open datasets of SCA and improvement of the attack performance.
G. Zaid et al. [7] recently suggested the efficient methodology on how to con-
struct the neural network structure for open dataset of SCA and reported most
efficient attacks in the current state of the art.
One of the recent work showed that, by adjusting the imbalanced data on Ham-
ming weight (HW) model, the distribution of the HW classes can be balanced [16]
and since the biased data is solved by oversampling technique from data analysis,
it can outperform the previous works, in particular Synthetic minority oversam-
pling technique (SMOTE). However, there are some restriction in [16] owing to
the fact that they only handled two oversampling techniques and considered HW
assumption. In other words, there are still open problems on how to expand the
oversampling techniques for improving the performance in the SCA context.

Our Contributions. In this paper, we conduct in-depth investigation for over-
sampling techniques to enhance SCA. The main contributions of this work are
as follows. We conduct a comparative study of previously proposed DA [4] and
SMOTE [16] (and its variant) in context of SCA. The performance of DA and
various SMOTE variants are compared in both balanced (256 classes) and im-
balanced (9 classes) setting. Experimental validation is performed on two pub-
lic databases with side-channel countermeasure (AES RD and ASCAD). Finally,
with optimised architectures as proposed in [7] and further adoption of SMOTE
variants, we break ASCAD(desync=100) dataset in as low as 180 traces, which
is a 50% improvements over the state of the art [7].

Paper Organization. This paper is organised as follows. Section 2 provides
brief background on profiled SCA and security metric for adequately measuring
the improvement. Afterwards, we explain the relationship between the oversam-
pling technique and DA, and how imbalanced/balanced models for oversampling
technique can affect SCA evaluation in Section 3. In Section 4, we highlight the
experimental results for our suggestions and compared with the previous works.
Finally, we provide the conclusion and further works in Section 5.

2 Preliminaries

2.1 Profiled Side-Channel Analysis

Profiled SCA [5] assumes a strong adversary with access to a clone of the target
device. Adversary can query the clone device with known plaintext and key pairs
while recording side-channel signature. These side-channel signature along with
plaintext, key pair help to characterize a model for device leakage. Further, on
the target device where key is unknown, the adversary queries a known plaintext
to capture side-channel signature, which when queried with the characterized
model can reveal the secret key. Ideally more than one query to target device
might be needed to confidently recover the key due to presence of measurement
noise and countermeasures.
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In the following, we target side-channel protected software implementation
of AES. The target operation is S-Box look up, which for a given plaintext t and
secret key k∗, can be written as:

y(t, k∗) = Model(Sbox[t⊕ k∗]) (1)

where Sbox[·] indicates S-box operation and Model(·) means the assumption
for leakage model of side-channel information. We consider Hamming weight
(HW) [1] and Identity as models, leading to 9 and 256 classes for y respectively.
Classical profiled attacks use Gaussian templates [5], which are built for all values
of y(t, k∗).

2.1.1 Deep Learning based Profiled Side-Channel Analysis Novel pro-
filed SCA have seen the adoption of deep neural networks (DNN [4, 15]). The
most commonly used algorithms are MLP and CNN. The use of DNN in side-
channel evaluation has shown several advantages over classical templates. For
example, they can overcome traditional SCA countermeasure, such as jitter [4]
and masking [15], and they are also naturally incorporating feature selection.
Owing to these advantages, a line of research has focused on improving the per-
formance of SCA by techniques like DA [4], training set class balancing [16],
noise regularization, [10], finding optimised network architectures [7, 10] etc.

2.2 Security Metric

In order to quantify the effectiveness of profiled SCA with a security metric, the
guessing entropy (GE) [12] is generally employed. Intuitively, the GE indicates
the average number of key candidates needed for successful evaluation after
the SCA has been performed. For measuring the GE, we repeat 100 times on
randomly chosen test set in this paper. Additionally, NtGE [7] which implies the
minimum number of traces when the GE reaches 1 is also utilized to compare
the improvement.

3 Oversampling versus Data Augmentation

In this section, we briefly discuss the oversampling and data augmentation tech-
niques used in this paper.

3.1 Oversampling Techniques

Oversampling and undersampling are common data analysis techniques used to
adjust the class distribution of a data set (i.e. the ratio between samples in dif-
ferent classes). Oversampling is deployed more often than undersampling due
to scarcity of training data in a general context. Oversampling and undersam-
pling are contrasted and roughly equivalent techniques. Oversampling is done
through applying transformation to existing data instances to generate new data
instances, in order to adjust the class imbalance.
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3.1.1 Synthetic Minority Oversampling Technique

One of the main solution to adjust the balance for biased data is the synthetic
minority oversampling technique (SMOTE) [3]. The core idea is that the arti-
ficial instance for minority instances is generated using k-nearest neighbors of
sample. In the minority instance, k-nearest samples are selected from sample X.
Afterward, the SMOTE algorithm selects n samples randomly and save them as
Xi. Lastly, the new sample X ′ is generated based on the below equation.

X ′ = X + rand× (Xi −X), i = 1, 2, ..., n (2)

where rand follows a random number uniformly distributed in the range (0, 1).
By obtaining minority instances using SMOTE, the class imbalance is reduced
thus allowing machine learning and deep learning algorithms to learn better.
Naturally, it has been applied and shown working for SCA [16]. Picek et al. [16]
study a very common case of SCA literature, i.e. the HW model. HW model is
naturally biased. Considering one byte, the ratio of majority and minority class
population for HW model is 70:1. In such cases, SMOTE balances the dataset
improving the effectiveness of the DL based attack algorithm. In [16], authors
study SMOTE and SMOTE-ENN, where SMOTE was shown to work better on
the tested datasets. Recently, the candidates for SMOTE has increased quite a
lot [8].

3.2 Data Augmentation

Data augmentation (DA [13]) is well-known in the field of DL and applied to
overcome the overfitting issue while training phase. By applying artificial trans-
formation to training data, the overfitting factor can be reduced and learning
can be improved. In context of SCA, DA was applied as a solution to break jitter
based countermeasures. Jitter causes horizontal shifts in side-channel trace re-
sulting in misalignment which in turn reduces the attack efficiency. In [4], Cagli
et al. used the translational invariance property of CNN to counter jitter based
misalignment. Further, authors show that DA by applying small, random shift
to existing traces can avoid overfitting, resulting in a better training of CNN.
As S. Picek et al. [16] mentioned beforehand, this scheme can be considered as
one of oversampling techniques.

While [4] use dedicated code to apply shifts to datasets and thus implement
DA, we utilize the ImageDataGenerator1 class in the Keras DL library to provide
DA. Moreover, width shift range is only regarded as the variable for argument of
ImageDataGenerator, due to the unidimensionality for side channel leakage.

1 Refer to the Keras API description in https://www.tensorflow.org/api_docs/

python/tf/keras/preprocessing/image/ImageDataGenerator
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3.3 Case Study: Balanced (256) classes versus Imbalanced (9)
classes

Hamming weight (and distance) models are some of the most popular leakage
models in side-channel literature, which are practically validated on range of
devices including microcontroller, FPGA, GPU, ASIC etc. However, as stated
earlier, this model follows a Binomial distribution and is highly imbalanced.
It was shown in [16], how imbalanced model can negatively affect SCA evalua-
tions [16]. As a result, most of DL based SCA consider the identity model. When
considering a byte as in AES, HW and identity model result in 9 and 256 classes
respectively.

While the main objective of SMOTE is minority class oversampling and DA
is to reduce overfitting. Thus SMOTE is ideal for imbalanced setting (9 classes),
however, balanced dataset should not have a negative impact. On the other hand,
DA does not consider class imbalance as a parameter. This can help overcoming
overfitting, however, augmentation preserve original distribution and does not
improve any imbalance. Thus, DA is expected to work better in balanced dataset
(256 classes). Note that, with limited size dataset even 256 classes might have
minor imbalances and SMOTE may improve the imbalance.

In the following, we study the performance of different SMOTE variants and
DA under 9 and 256 classes setting. The study is performed on two publicly
available datasets of side-channel protected AES implementation.

4 Experimental Validation

In this section, we describe the experimental setting and target datasets. Further,
experimental results on AES RD and ASCAD datasets are reported in 256 and 9
classes setting.

4.1 Target Datasets & Network

We use two popular datasets, AES RD2 and ASCAD3 containing side-channel
measurements of protected AES implementations running on a 8-bit AVR mi-
crocontroller. The AES RD contains traces for the software implementation AES
with random delay countermeasure as described by J.-S. Coron et al. [6]. R. Be-
nadjila et al. [2] introduced the open dataset ASCAD with traces corresponding
to first order masking protected AES with artificially introduced random jitter.
In particular we use the worst case setting with jitter up to 100 sample points
(ASCAD(desync=100)).

The main motivation of this work is to investigate the effect of oversampling
techniques on best known attacks so for. The work of G. Zaid et al. [7] recently
published at CHES 2020, presents the best performing attacks and corresponding
network choices to achieve those result. The following experiments takes the

2 https://github.com/ikizhvatov/randomdelays-traces
3 https://github.com/ANSSI-FR/ASCAD
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result of G. Zaid et al. [7] as a benchmarking case to compare the affect of
oversampling and DA techniques.

For the following experiments, the number of training traces used are 5, 000
and 45, 000 for AES RD and ASCAD respectively. Moreover, 5, 000 traces are
used as validation set for all results and the number of epochs used are set as 20
(AES RD) and 50 (ASCAD).

Furthermore, we investigate the effect of 256 and 9 classes for the open
dataset. In the 256 classes, we accept the underlying network which is sug-
gested by [7]. On the other hand, for the 9 classes, the only modification is the
number of output layers. As all oversampling techniques in Appendix A and DA
can be regarded as pre-processing scheme, the modification to neural network
parameters is not required as we can use the networks proposed in [7] (except for
output layer modification in case of 9 classes). For parameter setting of SMOTE
variants, we employ the default setting because there are many SMOTE and
setting value for each techniques. According to previous claim in [16], we do not
provide the MCC, kappa, and G-mean results, since these values are not critical
information in the context of SCA. Moreover, we only represent the best result
in overall sampling techniques to definitely compare with the previous results.
All results can be referred to Appendix A and B.

4.2 Result for AES RD

As shown in Figure 1, some variant SMOTE [8] and DA scheme [4] are outper-
forming the previous work [7], proposed in CHES 2020. DA(0.3)4 which has the
shift ratio 0.3 is best result in 256 classes. The attack needs only 11 traces to
recover the correct key, although it is not enough to find the correct key in orig-
inal scheme [7] where 15 traces are needed. CURE-SMOTE and Gaussian-based
SMOTE also outperform original scheme by a small margin. The main purpose
of data augmentation and SMOTE schemes is to concentrate on noise removal.
As mentioned earlier, this effect works well to AES RD countermeasure. Unlike
[7], the number of profiling traces is reduced to 5, 000 for our experiments and
thus our reported NtGE is more than what was reported in the original scheme.
However, lower training set size allows us to evaluate the impact of data aug-
mentation and oversampling.

In case of HW model (9 classes), we can observe that the performance of
the method proposed by [7], is degrading. As such, several SMOTE techniques
are now outperforming it because the difference between majority and minority
is more distinguishable than 256 classes. In this case, more traces will be also
required in general (> 20× the traces required for 256 classes), since in HW
model, the adversary cannot directly infer the actual value of sensitive interme-
diate variables.

As shown in Table 1 for 256 and 9 classes, CURE-SMOTE and Gaussian-
based SMOTE are useful oversampling techniques against AES RD. Depending

4 DA(x) indicates that x×100% of the whole points is randomly shifted while training
phase, which was suggested in [4]
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Fig. 1: Result for the best variant SMOTEs and DA against AES RD

on the oversampling technique, the amount of traces added in the training set
is variable. More precisely, the training dataset size is increased to 5, 013(5, 125)
from 5, 000 for 256 classes (9 cases) in most of the oversampling techniques,
which does not critically impact the learning time.

4.3 Result for ASCAD(desync=100)

In Figure 2, the results are plotted for ASCAD dataset. In this case, the bench-
marking attack of [7] performs better than the DA schemes. However, several
SMOTE variants are performing better. As shown in Table 1, ASMOBD and
SDSMOTE are especially ranked in top 10 results for all classes of ASCAD
dataset. In the case of 256 classes, ASMOBD can recover the key in under 200
traces while the original scheme needs over 256 traces.

The size of training dataset is increased from 45000 traces by 10 and 400
traces when applying the oversampling techniques to 256 and 9 classes, respec-
tively. When employing the HW model (9 classes), some oversampling techniques
such as MOT2LD and Borderline SMOTE2 have low GE, compared to original
scheme.

4.4 Analysis and Discussion

We tested 85 variants of SMOTE and 3 variants of DA under 4 experiments. We
have reported the best results in Table 1 for each datasets. In all the 4 cases, we
were able to report results better than best benchmarking results. However, it
was not possible to identify one single oversampling method which would work
best in all the cases. This is not surprising and in accordance with No Free
Lunch theorems [18]. In general, we can make the following observations from
the previously performed experiments.
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Fig. 2: Result for the best variant SMOTEs and DA against ASCAD(desync=100)

No.
AES RD (256 classes) AES RD (9 classes) ASCAD (256 classes) ASCAD (9 classes)
Scheme NtGE Scheme NtGE Scheme NtGE Scheme NtGE

- Original
> 15

(1.34)
Original

> 300

(36)
Original 267 Original

> 400

(7)

1 DA(0.3) 11 MCT 228 ASMOBD 190 MOT2LD
> 400

(2)

2
CURE

SMOTE
14

CURE

SMOTE
243 MDO 193

Borderline

SMOTE2

> 400

(4)

3
Gaussian

SMOTE
15

Gaussian

SMOTE
265 DEAGO 212 MSMOTE

> 400

(5)

4 DA(0.2) 15
SMOTE

OUT
276 MSMOTE 224

Supervised

SMOTE

> 400

(5)

5
distance

SMOTE
15

LLE

SMOTE
281

SMOTE

Cosine
234

LLE

SMOTE

> 400

(6)

6 NoSMOTE 15
polynom fit

SMOTE
283 SMOBD 242

polynom fit

SMOTE

> 400

(6)

7 SOI CJ 15
Borderline

SMOTE1
285 SDSMOTE 242 ASMOBD

> 400

(6)

8 SOMO 15 V SYNTH 285 Stefanowski 245 SDSMOTE
> 400

(6)

9
SMOTE

OUT
15

SMOTE

Cosine
286

SMOTE

RSB
248 SPY

> 400

(6)

10 MCT 15 ASMOBD 295
SL graph

SMOTE
249

cluster

SMOTE

> 400

(6)

Table 1: Top 10 results for AES RD and ASCAD(desync=100) datasets against
variant SMOTEs and DA techniques, (∗): GE when the maximum number of
traces is used

– In general, SMOTE variants led to attack improvements in all the cases
as compared to DA which only outperforms in one case. DA also shows
negative impact in case of ASCAD, where the attack is worse than baseline
benchmarking attack of G. Zaid et al.

– Dataset imbalance is a difficult problem for deep learning as already stated
in [16] which results in better performance of SMOTE variants when used
in 256 classes as compared to 9 class setting. The discrepancy is better
highlighted in ASCAD dataset, as there are > 20 variants which recovers the
secret for 256 classes (though there are also a lot of methods which perform
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significantly worse) and only around 2 or 3 which have the correct key in
top 5 rank candidates.

– Secondly, certain methods work better for a given dataset. For example,
on AES RD, CURE-SMOTE and Gaussian-based SMOTE are in top 3 in
terms of performance for both 256 and 9 classes. For ASCAD, ASMOBD,
polynom fit SMOTE and SDSMOTE are in top 10. However, there are no
consistents techniques which work for all the dataset and the scenarios.

– Some SMOTE variants has a negative impact on training datasets repre-
sented to Appendix A. For example, in case of SMOTE-ENN, the training
dataset is shrunk from 5000 to 38. Not to surprise, the technique performs
much worse than benchmark case of CHES 2020, leave alone any improve-
ment. SMOTE-ENN also reported training set shrinking in other 3 experi-
ments as well. Similar observations were seen in other experiments too but
not necessarily for all experiments. We hypothesize that oversampling con-
siders some traces as noise and filters them out, resulting in shrinking of
datasets. Note that SMOTE-ENN was also shown to perform worse in [16].

5 Conclusion and Further works

In this paper, we investigate the effect of various SMOTE variants and previously
proposed data augmentation against previously best known results. We outper-
form previous results with a decent margin. While DA improves the result in
one case, different variants of SMOTE resulted in a general improvement across
experiments. However, it was not possible to identify a single favorable SMOTE
variant, it varied by experiments. We also reported that some oversampling tech-
niques result in training set shrinking and thus lead to poor performance. Note
that we tested various SMOTE variants in their default settings and there are
other parameters to play with. Thus, a deeper investigations might help identify
few candidates better suited for SCA application. Moreover, testing oversam-
pling with more datasets could lead to better insights.

Acknowledgements. We gratefully acknowledge the support of NVIDIA Cor-
poration with the donation of the Titan Xp GPU used for this research.

A Variants of Oversampling Techniques (SMOTE
Variants)

Two approaches were already introduced in [16] (SMOTE and SMOTE-ENN).
However, there are currently 85 variant of SMOTEs referring to [8]. To the best
of our knowledge, the investigation for effectiveness of these schemes has not
been properly conducted in terms of SCA.

The variant SMOTEs in Table 2 have developed to overcome the bias for
imbalanced data for DL context. As mentioned previously, only SMOTE and
SMOTE-ENN are utilized in [16]. Although the performance of SMOTE in [16]
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is better, many variant SMOTEs have not been utilized. Moreover, they men-
tioned that the role of SMOTE and SMOTE-ENN is to only increase the number
of minority instance. However, in general, the oversampling techniques can be
further used as compared to previous suggestion. Naturally, these techniques
can be used beyond HW/HD model, because the data might be biased in prac-
tice. As such, variant SMOTEs provide benefit as preprocessing tool, which help
smoothing the distribution of the data.

Scheme #Training Scheme #Training Scheme #Training Scheme #Training Scheme #Training

SMOTE TomekLinks

2787

MSYN

5013

RWO sampling

5013

Edge Det SMOTE

5013

GASMOTE

-

3342 5126 5126 5126 -

26568 - 45010 45010 -

31897 - 46257 46257 -

SMOTE ENN

38

SVM balance

5013

NEATER

9985

CBSO

5013

A SUWO

5000

1142 5126 10072 5126 5000

204 45010 - 45010 1001

9569 46257 - 46257 30133

Borderline SMOTE1

5013

TRIM SMOTE

5000

DEAGO

5013

E SMOTE

-

SMOTE FRST 2T

55

5000 5000 5126 - 330

45010 45010 45010 - 322

46257 46257 46257 - 50

Borderline SMOTE2

5013

SMOTE RSB

5017

Gazzah

28

DBSMOTE

5000

AND SMOTE

5000

5000 5145 228 5000 5000

45010 45020 238 45010 45010

46257 47514 1939 46257 50

ADASYN

9972

ProWSyn

5013

MCT

5013

ASMOBD

5013

NRAS

5000

9946 5126 5126 5126 5000

89698 45010 45010 45000 45000

89698 46257 46257 45000 45000

AHC

54

SL graph SMOTE

5013

ADG

41

Assembled SMOTE

5013

AMSCO

72

206 5000 180 5126 684

462 45010 323 45010 326

1709 46257 3567 46257 2713

LLE SMOTE

5013

NRSBoundary SMOTE

5000

SMOTE IPF

27

SDSMOTE

5013

SSO

-

5126 5126 289 5126 -

45010 - 170 45010 -

46257 - 2688 46257 -

distance SMOTE

5013

LVQ SMOTE

5013

KernelADASYN

5000

DSMOTE

54

NDO sampling

5013

5126 5126 5000 306 5126

45010 45010 45010 322 45010

46257 46257 46257 2816 46257

SMMO

5000

SOI CJ

5000

MOT2LD

5000

G SMOTE

5013

DSRBF

-

5126 5000 5000 5126 -

45010 45000 44870 45010 -

46257 45000 46115 46257 -

polynom fit SMOTE

5013

ROSE

5013

V SYNTH

5013

NT SMOTE

5013

Gaussian SMOTE

5013

5135 5126 5126 5126 5126

45151 45010 45010 45010 45010

46208 46257 46257 46257 46257

Stefanowski

4973

SMOTE OUT

5013

OUPS

5014

Lee

5013

kmeans SMOTE

-

4857 5126 5129 5126 -

44845 45010 45010 45010 -

43722 46257 46263 46257 -

ADOMS

5013

SMOTE Cosine

5013

SMOTE D

5009

SPY

5013

Supervised SMOTE

5013

5126 5126 5127 5000 5126

45010 45010 45014 45000 45010

46257 46257 46245 45000 46257

Safe Level SMOTE

5001

Selected SMOTE

5013

SMOTE PSO

-

SMOTE PSOBAT

-

SN SMOTE

5013

5006 5126 - - 5126

45001 45010 - - 45010

45036 46257 - - 46257

MSMOTE

5000

LN SMOTE

5000

CURE SMOTE

5013

MDO

5000

CCR

5014

5000 5126 5126 5000 5135

45010 45000 45010 45000 45000

4257 45000 46257 45000 46208

DE oversampling

5013

MWMOTE

5000

SOMO

5000

Random SMOTE

5013

ANS

5014

5065 5000 5000 5126 5126

45010 45010 45000 45010 45000

46257 46257 45000 46257 46257

SMOBD

5013

PDFOS

5013

ISOMAP Hybrid

-

ISMOTE

41

cluster SMOTE

5014

5126 5126 - 180 5126

45010 45010 - 312 45010

46257 46257 - 1559 46257

SUNDO

2501

IPADE ID

-

CE SMOTE

5013

VIS RST

5013

NoSMOTE

5000

2515 - 5126 5126 5000

22502 - 45010 45010 45000

22548 - 46257 46257 45000

Table 2: API function list for variant SMOTEs in [8]. Table reports the number
of training set for AES RD(256 classes), AES RD(9 classes), ASCAD(256 classes),
and ASCAD(9 classes), respectively after applying each oversampling techniques.
‘-’ indicates that we do not perform its oversampling techniques due to the time
limit.

Moreover, as mentioned earlier, these techniques are worth investigated in
the context of SCA, because there are several advantages offered by SMOTE
variants, such as the change of majority and noise removal. Among 85 variant
SMOTEs, we have conducted preliminary investigation on their effectiveness and
only reported those who are quite successful for SCA.
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B Results for all oversampling techniques against
AES RD and ASCAD(desync=100)

The legend of Figures 3 and 4 is referred to Figure 5.
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Fig. 3: Result for variant SMOTEs and DA against AES RD
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Fig. 4: Result for variant SMOTEs and DA against ASCAD(desync=100)
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Fig. 5: The legend of Figures 3 and 4
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