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Abstract Many attribute-based anonymous credential (ABC) schemes have been proposed al-
lowing a user to prove the possession of some attributes, anonymously. They became more and
more practical with, for the most recent papers, a constant-size credential to show a subset of
attributes issued by a unique credential issuer. However, proving possession of attributes coming
from K different credential issuers usually requires K independent credentials to be shown. Only
attribute-based credential schemes from aggregatable signatures can overcome this issue.
In this paper, we propose new ABC schemes from aggregatable signatures with randomizable tags.
We consider malicious credential issuers, with adaptive corruptions and collusions with malicious
users. Whereas our constructions only support selective disclosures of attributes, to remain compact,
our approach significantly improves the complexity in both time and memory of the showing of
multiple attributes: for the first time, the cost for the prover is (almost) independent of the number
of attributes and the number of credential issuers.
Whereas anonymous credentials require privacy of the user, we propose the first schemes allowing
traceability.
We formally define an aggregatable signature scheme with (traceable) randomizable tags, which is of
independent interest. We build concrete schemes from the recent linearly homomorphic signature
scheme of PKC 20. As all the recent ABC schemes, our construction relies on signatures which
unforgeability is proven in the bilinear generic group model.
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1 Introduction

In an anonymous credential scheme, a user asks to an organization (a credential issuer) a
credential on an attribute, so that he can later claim its possession, even multiple times, but in
an anonymous and unlinkable way.

Usually, a credential on one attribute is not enough and the user needs credentials on multiple
attributes. Hence, the interest of an attribute-based anonymous credential scheme (ABC in
short): depending on the construction, the user receives one credential per attribute or directly
for a set of attributes. One goal is to be able to express relations between attributes (or at least
selective disclosure), with one showing. As different attributes may have different meanings
(e.g. a university delivers diploma while a city hall delivers a birth certification), there should
be several credential issuers. Besides multi credential issuers, it can be useful to have a multi-
show credential system to allow a user to prove an arbitrary number of times one credential
still without breaking anonymity. For that, the showings are required to be unlinkable to each
other.

Classically, a credential is a signature by the credential issuer of the attribute with the
public key of the user. The latter is thus the only one able to prove the ownership with an
interactive zero-knowledge proof of knowledge of the secret key. Anonymity is provided by the
probabilistic encryption of the signature As many signature schemes with various interesting
properties have been proposed, many ABC schemes have been designed with quite different
approaches. We can gather them into two families: the ABC schemes where a credential is ob-
tained on a set of attributes and then, according to the properties of the signature, it is possible
either to prove the knowledge of a subset of the attributes (CL-signatures [CL03, CL04], blind
signatures [BL13, FHS15]), or to modify some of the attributes to default values (sanitizable sig-
natures [CL13]), or simply to remove them (unlinkable redactable signatures [CDHK15, San20],
SPS-EQ with set commitments [FHS19]); and the ABC schemes where the user receives one
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credential per attribute and then combines them (aggregatable signatures [CL11]). In the former
family, whereas it is possible to efficiently show a subset of attributes issued in a unique cre-
dential, showing attributes coming from K different credential issuers requires K independent
credentials to be proven. On the other hand, with aggregatable signatures, credentials on dif-
ferent attributes can be combined together even if they have been issued by different credential
issuers. This leads to more compact schemes and this paper follows this latter approach.

Moreover, except some constructions based on blind signatures where the credentials can
be shown only once, all ABC schemes allow multi-shows, exploiting randomizability properties
of the signatures for anonymity and unlinkability of the showings. This avoids the need of
encryption and heavy zero-knowledge proofs.

1.1 Our Contributions

Following the path of aggregatable signatures [CL11], our first contribution is the formalization
of an aggregatable signature scheme with randomizable tags (ART-Sign) for which we propose
a practical construction. With such a primitive, two signatures of different messages under
different keys can be aggregated only if they are associated to the same tag. In our case,
tags will eventually be like pseudonyms, but with some properties for being ephemeral (hence
EphemerId scheme) and randomizable, even when they are associated to the same user.

However our goal is a compact ABC system, which is our second contribution: the EphemerId
scheme generates keys for users, they will use for authentication. Public keys being randomizable,
still for a same secret key, multiple authentications will remain unlinkable. In addition, these
public keys will be used as (randomizable) tags with the above ART-Sign scheme when the
credential issuer signs an attribute. Thanks to aggregation, multiple credentials for multiple
attributes and from multiple credential issuers but under the same tag, and thus the same user,
can be combined into a unique compact (constant-size) credential.

We achieve the optimal goal of constant-size multi-show credentials even for multiple at-
tributes from multiple credential issuers and we stress that aggregation can be done on-the-fly,
for any selection of attributes issued by multiple credential issuers: our scheme allows multi-show
of any selective disclosure of attributes.

About security, whereas there exists a scheme proven in the universal composability (UC)
framework [CDHK15], for our constructions, we consider a game-based security model for ABC
inspired from [FHS19]. As we support different credentials issuers, we additionally consider mali-
cious credential issuers, with adaptive corruptions, and collusion with malicious users. However,
the keys need to be honestly generated, thus our proofs hold in the certified key setting. This is
quite realistic, as this is enough to wait for a valid proof of knowledge of the secret key before
certifying the public key. As all the recent ABC schemes, our constructions will rely on signature
schemes proven in the bilinear generic group model.

Our last contribution is traceability, in the same vein as group signatures: whereas showings
are anonymous, a tracing authority owns tracing keys for being able to link a credential to its
owner. In such a case, we also consider malicious tracing authorities, with the non-frameability
guarantee. As in [CL13] we thus define trace and judge algorithms to trace the defrauder and
prove its identity to a judge. This excludes malicious behavior of the tracing authority.

1.2 Related Work

The most recent papers on attribute-based anonymous credential schemes are [FHS19, San20].
The former proposes the first constant-size credential to prove k-of-N attributes, with compu-
tational complexity in O(N − k) for the prover and in O(k) for the verifier. However, it only
works for one credential issuer (K = 1). The latter one improves this result enabling multiple
showings of relations (r) of attributes. All the other known constructions allow, at best, selective
(s) disclosures of attributes.
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In [CL11], Canard and Lescuyer use aggregatable signatures to construct an ABC system.
It is thus the closest to our approach. Instead of having tags, their signatures take indices as
input. We follow a similar path but, we completely formalize this notion of tag/index with
an EphemerId scheme. To our knowledge, aggregatable signatures are the only way to deal
with multiple credential issuers but still showing a unique compact credential for the proof of
possession of attributes coming from different credential issuers. However, the time-complexity
of a prover during a verification depends on the number k of shown attributes. We solve this issue
at the cost of a larger key for the credential issuers (but still in the same order as [FHS19, San20])
and a significantly better showing cost for the prover (also better than [FHS19, San20]). We
can also note their tags/indices are 3 elements of G1, plus 2 elements of G2 and one element of
Zp which is much larger than our tags: only 3 elements in G1.

Scheme P T
k-of-N attributes from K = 1 credential issuer

|CI key| |Show| Prover Verifier
G1,G2 G1,G2, (GT ),Zp exp., pairings exp., pairings

[CL11] s 7 1, 1 16, 2, (4), 7 16G1 + 2G2 + 10GT , 12G1 + 20GT ,
18 + k 18 + k

[FHS19] s 7 0, N 8, 1, 2 9G1 + 1G2, 0 4G1, k + 4
[San20] r 7 0, 2N + 1 2, 2, (1), 2 (2(N −k)+2)G1 + 2G2, 1 (k+1)G1 + 1GT , 5
Sec. 6.1 s 3 0, 2k + 3 3, 0, 1 6G1, 0 4G1 + kG2, 3
Sec. 6.2 s 3 0, 2N + 2 3, 0, 1 6G1, 0 4G1 + 2NG2, 3

Scheme
k = 1-of-N attribute from K credential issuers

Scheme |CI key| |Show| Prover Verifier
G1,G2 G1,G2, (GT ),Zp exp., pairings exp., pairings

[CL11] K × (1, 1) 16, 2, (4), 7 16G1 + 2G2 + 10GT , 12G1 + 20GT ,
18 + k 18 + k

[FHS19] K × (0, N) K × (8, 1, 2) K × (9G1 + 1G2, 0) K × (4G1, k + 4)
[San20] K × (0, 2N + 1) K × (2, 2, (1), 2) K × ((2(N −k)+2)G1 K × ((k+1)G1+

+2G2, 1) 1GT , 5)
Sec. 6.1 K × (0, 2k + 3) 3, 0, 1 6G1, 0 4G1 + kG2, 3
Sec. 6.2 K × (0, 2N + 2) 3, 0, 1 6G1, 0 4G1 + 2KNG2, 3

Figure 1. Comparison of different ABC systems.

On Figure 1, we provide some comparisons with the most efficient ABC schemes, where
the column “P” (for policy) precises whether the scheme just allows selective disclosure of
attributes (s) or relations between attributes (r). The column “T” (for traceability) checks
whether traceability is possible or not. Then, “|CI key|” gives the size of the keys (public keys
of the credential issuers) required to verify the credentials, “|Show|” is the communication
bandwidth during a show, while “Prover” and “Verifier” are the computational cost during a
show, for the prover and the verifier respectively. Bandwidths are in number of elements G1, G2,
GT and Zp. Computations are in number of exponentiations in G1, G2 and GT , and of pairings.
We ignore multiplications. We denote N the global number of attributes owned by a user, k
the number of attributes he wants to show and K the number of credential issuers involved
in the issuing of the credentials. In the first table, we focus on the particular case of proving
a credential with k attributes, among N attributes issued from 1 credential issuer. Our first
scheme, from Section 6.1, is already the most efficient, but this is even better for a larger K, as
shown in the second table. But this is for a limited number of attributes. Our second scheme,
from Section 6.2 has similar efficiency, but with less limitations on the attributes. Note that
both schemes have a constant-size communication for the showing of any number of attributes,
and the computation cost for the prover is almost constant too (as we ignore multiplications).
Our two instantiations are derived from the second linearly homomorphic signature scheme
of [HPP20].
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Very few papers deal with traceability: the first one [CL13] exploits sanitizable signatures,
where the sanitizer can be traced back, but a closer look shows privacy weaknesses (see the
Appendix A) and a more recent one [KL16] that has thereafter been broken [Ver17]. As a
consequence, our scheme is the first traceable attribute-based anonymous credential scheme,
hence the only one in the tables.

1.3 Organization

After precising some notations and reviewing classical definitions in Section 2, we informally
describe, in Section 3, the two important primitives that we will use in our construction of
anonymous credentials: the EphemerId and ART-Sign schemes. In Section 4, we provide the full
definitions and a concrete instantiation. From that, we will be able to define and construct, in
Section 5, our ABC scheme from EphemerId and ART-Sign schemes. The full instantiation is
given in Section 6. Finally, traceability is defined and instantiated in Section 7.

2 Preliminaries

In this section, we recall the asymmetric pairing setting and some classical computational as-
sumptions.

2.1 Notations

All along this paper, κ is the security parameter. We will consider an asymmetric bilinear setting
(G1,G2,GT , p, g, g, e), where G1, G2 and GT are cyclic groups of prime order p (of length 2κ).
The elements g and g are generators of G1 and G2, respectively and e is a bilinear map from
G1 ×G2 into GT , that is non-degenerated and efficiently computable. This is usually named a
pairing.

For the sake of clarity, elements of G2 will be in Fraktur font. In addition, in all the public-
key cryptographic primitives, keys will implicitly include the global parameters and secret keys
will include the public keys.

Vectors will be denoted between brackets [. . .] and unions will be concatenations: [a, b] ∪
[a, c] = [a, b, a, c], keeping the ordering. On the other hand, sets will be denoted between paren-
theses {. . .}, with possible repetitions: {a, b} ∪ {a, c} = {a, a, b, c} as in [San20], but without
ordering.

2.2 Classical Assumptions and Useful Result

In an asymmetric bilinear setting (G1,G2,GT , p, g, g, e), or just in a simple group G, we can
define the following assumptions.

Definition 1 (Discrete Logarithm (DL) Assumption). In a group G of prime order p, it
states that for any generator g, given y = gx, it is computationally hard to recover x.

Definition 2 (Decisional Diffie-Hellman (DDH) Assumption). In a group G of prime
order p, it states that for any generator g, the two following distributions are computationally
indistinguishable:

Ddh(g) = {(g, gx, h, hx);h $← G, x, $← Zp}

D4
$(g) = {(g, gx, h, hy);h $← G, x, y, $← Zp}.

Definition 3 (Square Discrete Logarithm (SDL) Assumption). In a group G of prime
order p, it states that for any generator g, given y = gx and z = gx

2 , it is computationally hard
to recover x.
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Definition 4 (Decisional Square Diffie-Hellman (DSqDH) Assumption). In a group
G of prime order p, it states that for any generator g, the two following distributions are
computationally indistinguishable:

Dsqdh(g) = {(g, gx, gx2), x $← Zp} D3
$(g) = {(g, gx, gy), x, y $← Zp}.

It is worth noticing that the DSqDH Assumption implies the SDL Assumption: if one can
break SDL, from g, gx, gx

2 , one can compute x and thus break DSqDH. A fortiori, this implies
indistinguishability between the two distributions

Dsqdh(G) = {(g, gx, gx2), g $← G, x $← Zp} D3
$(G) = {(g1, g2, g3) $← G3}.

In our construction we will use the following theorem on Square Diffie-Hellman tuples, stated
and proven in [HPP20]:

Theorem 5. Given n valid Square Diffie-Hellman tuples (gi, ai = gwii , bi = awii ), together with
wi, for random gi

$← G∗ and wi
$← Z∗p, outputting (αi)i=1,...,n such that (G =

∏
gαii , A =∏

aαii , B =
∏
bαii ) is a valid Square Diffie-Hellman, with at least two non-zero coefficients αi,

is computationally hard under the DL assumption.

Intuitively, from Square Diffie-Hellman tuples where the exponents are known but random and
the bases are also known and random, it is impossible to construct a new Square Diffie-Hellman
tuple melting the exponents. We refer to [HPP20] for the proof.

3 Overview of our New Primitives

The usual way to perform authentication is by presenting a certified public key and proving
ownership, with a zero-knowledge proof of knowledge of the associated private key. The certified
public key is essentially the signature by a Certification Authority (CA) on a public key and
an identity pair, with a standard signature scheme. In case of attribute-based authentication,
the attribute is signed together with the public key in the certificate. The latter thus signs two
objects, with different goals, the public key associated to a private key, and the identity or an
attribute.

In the same vein as labelled encryption schemes, we define tag-based signatures to dissociate
the user-key which will be a provable tag and Attr which will be the signed message (attribute
or identity). This flexibility will allow randomizability of one without affecting the other, leading
to anonymous credentials.

3.1 Tag-based Signatures

For a pair (τ̃ , τ), where τ is a tag and τ̃ corresponds to the secret part of the tag, one can
define a new primitive called tag-based signature, where we assume all the used tags τ to be
valid (either because they are all valid, or their validity can be checked):

Setup(1κ): Given a security parameter κ, it outputs the global parameter param, which
includes the message spaceM and the tag space T ;

Keygen(param): Given a public parameter param, it outputs a key pair (sk, vk);
GenTag(param): Given a public parameter param, it generates a witness-word pair (τ̃ , τ);
Sign(sk, τ,m): Given a signing key sk, a tag τ , and a message m, it outputs the signature σ

under the tag τ ;
VerifSign(vk, τ,m, σ): Given a verification key vk, a tag τ , a message m and a signature σ,

it outputs 1 if σ is valid relative to vk and τ , and 0 otherwise.
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The security notion would expect no adversary able to forge, for any honest pair (sk, vk), a new
signature for a pair (τ,m), for a valid tag τ , if the signature has not been generated using sk
and the tag τ on the message m. Generically, τ̃ can be sk and τ can be vk, then this is just
a classical signature of m. Another case is when τ̃ = τ , and then this can just be a classical
signature of the message-pair (τ,m).

However more subtil situations can be handled: in our use-cases, τ will be a word for some
language L representing the authorized users and τ̃ a witness (for τ ∈ L). According to the
language L, which can be a strict subset of the whole set T , one may have to prove the actual
membership τ ∈ L (the validity of the tag) for the validity of the signature. It might be
important in the unforgeability security notion. On the other hand, one may also have to prove
the knowledge of the witness τ̃ , in an interactive and zero-knowledge way for authentication.

The latter can be performed, using the interactive protocol (ProveKTag(τ̃),VerifKTag(τ)).
This will be useful for the freshness in the authentication process. The former can also be proven
using an interactive protocol (ProveVTag(τ̃),VerifVTag(τ)). However this verification can also
be non-interactive or even public, without needing any private witness. The only requirement
is that this proof or verification of membership should not reveal the private witness involved
in the proof of knowledge, as the witness will be used for authentication.

Now the tag and the message are two distinct elements in the signature, we will introduce
new properties for each of them:

– randomizable tags: if τ can be randomized, but still with an appropriate zero-knowledge
proof of knowledge of τ̃ , one can get anonymous credentials, where τ is a randomizable
public key and an attribute is signed;

– aggregatable signatures: one can aggregate signatures generated for different messages (at-
tributes), even different keys (multi-authority) but all on the same tag τ .

By combining both properties, we will provide a compact scheme of attribute-based anonymous
credentials. When a trapdoor allows to link randomized tags, one gets traceability.

3.2 Signatures with Randomizable Tags

As tags are seen as words in some language L, randomizable tags will make sense for random-self
reducible languages [TW87]: the word τ defined by a witness τ̃ and some additional randomness
r can be derived into another word τ̃ ′ associated to τ̃ ′ and r′ (either r′ only or both τ̃ ′ and
r′ are uniformly random). When randomizing τ into τ ′, one must be able to keep track of the
change from to update τ̃ to τ̃ ′ and the signatures. Formally, we will require to have the three
algorithms:

RandTag(τ): Given a tag τ as input, it outputs a new tag τ ′ and the randomization link
ρτ→τ ′ ;

DerivWitness(τ̃ , ρτ→τ ′): Given a witness τ̃ (associated to the tag τ) and a randomization link
between τ and a tag τ ′ as input, it outputs a witness τ̃ ′ for the tag τ ′;

DerivSign(vk, τ,m, σ, ρτ→τ ′): Given a valid signature σ on tag τ and message m, and ρτ→τ ′
the randomization link between τ and another tag τ ′, it outputs a new signature σ′ on
the message m and the new tag τ ′. Both signatures are under the same key vk.

From a valid witness-word pair (τ̃ , τ) ← GenTag(param), if (τ ′, ρ) ← RandTag(τ) and τ̃ ′ ←
DerivWitness(τ̃ , ρ) then (τ̃ ′, τ ′) should also be a valid witness-word pair.

In addition, for compatibility with the tag and correctness of the signature scheme, we require
that for all honestly generated keys (sk, vk)← Keygen(param), all tags (τ̃ , τ)← GenTag(param),
and all messagesm, if σ ← Sign(sk, τ,m), (τ ′, ρ)← RandTag(τ) and σ′ ← DerivSign(vk, τ,m, σ, ρ),
then the algorithm VerifSign(vk, τ ′,m, σ′) should output 1.

For privacy reasons, in case of probabilistic signatures, it will not be enough to just randomize
the tag, but the random coins too:
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RandSign(vk, τ,m, σ): Given a valid signature σ on tag τ and message m, it outputs a new
signature σ′ on the same message m and tag τ .

Correctness extends the above one, where the algorithm VerifSign(vk, τ ′,m, σ′′) should output 1
with σ′′ ← RandSign(vk, τ ′,m, σ′). One additionally expects unlinkability: the following distri-
butions are (computationally) indistinguishable, for any vk and m (possibly chosen by the ad-
versary), where for i = 0, 1, (τ̃i, τi)← GenTag(1κ), σi ← Sign(sk, τi,m), (τ ′i , ρi)← RandTag(τi),
σ′i ← DerivSign(vk, τi,m, σi, ρi) and σ′′i ← RandSign(vk, τ ′i ,m, σ′i):

D0 = {(m, vk, τ0, σ0, τ
′
0, σ
′′
0 , τ1, σ1, τ

′
1, σ
′′
1)} D1 = {(m, vk, τ0, σ0, τ

′
1, σ
′′
1 , τ1, σ1, τ

′
0, σ
′′
0)}.

3.3 Aggregatable Signatures

Boneh et al. [BGLS03] remarked it was possible to aggregate the BLS signature [BLS01], we will
follow this path, but for tag-based signatures, with possible aggregation only between signatures
with the same tag, in a similar way as the indexed aggregated signatures [CL11]. We will even
consider aggregation of public keys, which can either be a simple concatenation or a more evolved
combination as in [BDN18]. Hence, an aggregatable (tag-based) signature scheme (Aggr-Sign)
is a signature scheme with the algorithms:

AggrKey({vkj}`j=1): Given ` verification keys vkj , it outputs an aggregated verification key
avk;

AggrSign(τ, (vkj ,mj , σj)`j=1): Given ` signed messagesmj in σj under vkj and the same tag τ ,
it outputs a signature σ on the message-set ~M = {mj}`j=1 under the tag τ and aggregated
verification key avk.

We remark that keys can evolve (either in a simple concatenation or a more compact way) but
messages also become sets. While we will still focus on signing algorithm of a single message
with a single key, we have to consider verification algorithms on message-sets and for aggregated
verification keys. In the next section, we combine aggregation with randomizable tags, and we
will handle verification for message-sets.

Correctness of an aggregatable (tag-based) signature scheme requires that for any valid tag-
pair (τ̃ , τ) and honestly generated keys (skj , vkj)← Keygen(param), if σj = Sign(skj , τ,mj) are
valid signatures for j = 1, · · · , `, then for both key avk ← AggrKey({vkj}`j=1) and signature
σ = AggrSign(τ, (vkj ,mj , σj)`j=1), the verification VerifSign(avk, τ, {mj}`j=1, σ) should output 1.

4 Aggregatable Signatures with Randomizable Tags

After the informal presentation of our new primitive, we describe the full definition of aggre-
gatable signature scheme with randomizable tags. We will then provide a concrete construction
that we will extend to attribute-based anonymous credentials. While the compactness of the
credentials will exploit the aggregation of signature, as in [CL11], privacy will rely on the
randomizability of the tags. But their specific format will allow more compact anonymous cre-
dentials.

4.1 Anonymous Ephemeral Identities

As our randomizable tags will be used as ephemeral identities (ephemeral key pairs), we denote
them EphemerId:

Definition 6 (EphemerId). An EphemerId scheme consists of the algorithms:

Setup(1κ): Given a security parameter κ, it outputs the global parameter param, which
includes the tag space T ;
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GenTag(param): Given a public parameter param, it outputs a tag τ and its secret part τ̃ ;
(ProveVTag(τ̃),VerifVTag(τ)): This (possibly interactive) protocol corresponds to the verifi-

cation of the tag τ . At the end of the protocol, the verifier outputs 1 if it accepts τ as a
valid tag and 0 otherwise;

RandTag(τ): Given a tag τ as input, it outputs a new tag τ ′ and the randomization link
ρτ→τ ′ between τ and τ ′;

DerivWitness(τ̃ , ρτ→τ ′): Given a witness τ̃ (associated to the tag τ) and a link between the
tags τ and τ ′ as input, it outputs a witness τ̃ ′ for the tag τ ′;

(ProveKTag(τ̃),VerifKTag(τ)): This optional interactive protocol corresponds to the proof of
knowledge of τ̃ . At the end of the protocol, the verifier outputs 1 if it accepts the proof
and 0 otherwise.

The security notions are the usual properties of zero-knowledge proofs for the two proto-
cols (ProveKTag(τ̃),VerifKTag(τ)) and (ProveVTag(τ̃),VerifVTag(τ)), with zero-knowledge and
soundness. But the RandTag must also randomize the tag τ within an equivalence class, in an
unlinkable way:

– Correctness: the language L ⊂ T might be split in equivalence classes (denoted ∼, with
possibly a unique huge class), then for any τ issued from GenTag and τ ′ ← RandTag(τ), we
must have τ ′ ∼ τ ;

– Soundness: the verification process for the validity of the tag should not accept an invalid
tag (not in the language);

– Knowledge Soundness: in case of the optional proof of knowledge, extraction of the witness
should be possible when the verifier accepts the proof with non-negligible probability;

– Zero-knowledge: the proof of validity and the proof of knowledge should not reveal any
information about the witness;

– Unlinkability: for any pair (τ1, τ2) issued from GenTag, the two distributions {(τ1, τ2, τ
′
1, τ
′
2)}

and {(τ1, τ2, τ
′
2, τ
′
1)}, where τ ′1 ← RandTag(τ1) and τ ′2 ← RandTag(τ2), must be (computa-

tionally) indistinguishable.

In the case of unique equivalence class for τ , one can expect perfect unlinkability. In case of
multiple equivalence classes for τ , these classes should be computationally indistinguishable to
provide unlinkability.

4.2 Aggregatable Signatures with Randomizable Tags

We can now provide the formal definition of an aggregatable signature scheme with randomiz-
able tags, where some algorithms exploit compatibility between the EphemerId scheme and the
signature scheme:

Definition 7 (Aggregatable Signatures with randomizable tags (ART-Sign)). An ART-
Sign scheme, associated to an EphemerId scheme E = (Setup, GenTag, (ProveVTag, VerifVTag),
RandTag, DerivWitness) consists of the algorithms (Setup, Keygen, Sign, AggrKey, AggrSign,
DerivSign, RandSign, VerifSign):

Setup(1κ): Given a security parameter κ, it runs E .Setup and outputs the global parameter
param, which includes E .param with the tag space T , and extends it with the message
spaceM;

Keygen(param): Given a public parameter param, it outputs a key-pair (sk,vk);
Sign(sk, τ,m): Given a signing key, a valid tag τ , and a message m ∈ M, it outputs the

signature σ;
AggrKey({vkj}`j=1): Given ` verification keys vkj , it outputs an aggregated verification key

avk;



9

AggrSign(τ, (vkj ,mj , σj)`j=1): Given ` signed messages mj in σj under vkj and the same valid
tag τ , it outputs a signature σ on the message-set ~M = {mj}`j=1 under the tag τ and
aggregated verification key avk;

VerifSign(avk, τ, ~M, σ): Given a verification key avk, a valid tag τ, a message-set ~M and a
signature σ, it outputs 1 if σ is valid relative to avk and τ , and 0 otherwise;

DerivSign(avk, τ, ~M, σ, ρτ→τ ′): Given a signature σ on a message-set ~M under a valid tag
τ and aggregated verification key avk, and the randomization link ρτ→τ ′ between τ and
another tag τ ′, it outputs a signature σ′ on the message-set ~M under the new tag τ ′ and
the same key avk;

RandSign(avk, τ, ~M, σ): Given a signature σ on a message-set ~M under a valid tag τ and
aggregated verification key avk, it outputs a new signature σ′ on the message-set ~M and
the same tag τ .

We stress that all the tags must be valid.

Note that using algorithms from E , tags are randomizable at any time, and signatures adapted
and randomized, even after an aggregation: avk and ~M can either be single key and message or
aggregations of keys and messages. One can remark that only protocol (ProveVTag,VerifVTag)
from E is involved in the ART-Sign scheme, as one just needs to check the validity of the tag, not
the ownership. The latter will be useful in anonymous credentials with fresh proof of ownership.

Unforgeability. In the Chosen-Message Unforgeability security game, the adversary has un-
limited access to the following oracles, with lists KList and TList initially empty:

– OGenTag() outputs the tag τ and keeps track of the associated witness τ̃ , with (τ̃ , τ)
appended to TList;

– OKeygen() outputs the verification key vk and keeps track of the associated signing key sk,
with (sk, vk) appended to KList;

– OSign(τ, vk,m), for (τ̃, τ)∈TList and (sk, vk)∈KList, outputs Sign(sk, τ,m).

It should not be possible to generate a signature that falls outside the range of DerivSign,
RandSign, or AggrSign:

Definition 8 (Unforgeability for ART-Sign). An ART-Sign scheme is said unforgeable if,
for any adversary A that, given signatures σi for tuples (τi,vki,mi) of its choice but for τi and
vki issued from the GenTag and Keygen algorithms respectively (for Chosen-Message Attacks),
outputs a tuple (avk, τ, ~M, σ) where both τ is a valid tag and σ is a valid signature w.r.t.
(avk, τ, ~M), there exists a subset J of the signing queries with a common tag τ ′ ∈ {τi}i such
that τ ∼ τ ′, ∀j ∈ J, τj = τ ′, avk is an aggregated key of {vkj}j∈J , and ~M = {mj}j∈J , with
overwhelming probability.

Since there are multiple secrets, we can consider corruptions of some of them:

– OCorruptTag(τ), for (τ̃ , τ) ∈ TList, outputs τ̃ ;
– OCorrupt(vk), for (sk, vk) ∈ KList, outputs sk.

The forgery should not involve a corrupted key (but corrupted tags are allowed). Note again
that all the tags are valid (either issued from GenTag or verified). In the unforgeability security
notion, some limitations might be applied to the signing queries: one-time queries (for a given
tag-key pair) or a bounded number of queries.

Unlinkability. Randomizability of both the tag and the signature are expected to provide
anonymity, with some unlinkability property:
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Definition 9 (Unlinkability for ART-Sign). An ART-Sign scheme is said unlinkable if, for
any avk and ~M , no adversary A can distinguish the distributions D0 and D1, where for i = 0, 1,
we have (τ̃i, τi) ← GenTag(1κ), (τ ′i , ρi) ← RandTag(τi), σi is any valid signature of ~M under τi
and vk, σ′i ← DerivSign(avk, τi, ~M, σi, ρi) and σ′′i ← RandSign(avk, τ ′i , ~M, σ′i):

D0 = {( ~M, avk, τ0, σ0, τ
′
0, σ
′′
0 , τ1, σ1, τ

′
1, σ
′′
1)} D1 = {( ~M, avk, τ0, σ0, τ

′
1, σ
′′
1 , τ1, σ1, τ

′
0, σ
′′
0)}.

4.3 One-Time ART-Sign Scheme with Square Diffie-Hellman Tags (SqDH)

Our construction will provide an aggregatable signature with randomizable tags based on the
second linearly homomorphic signature scheme of [HPP20].

Description of the EphemerId Scheme. With tags in T = G3
1, in an asymmetric bilinear

setting (G1,G2,GT , p, g, g, e), and τ is a Square Diffie-Hellman tuple (h, hτ̃ , hτ̃2), one can define
the SqDH EphemerId scheme:

Setup(1κ): Given a security parameter κ, let (G1,G2,GT , p, g, g, e) be an asymmetric bilinear
setting, where g and g are random generators of G1 and G2 respectively. The set of tags
is T = G3

1. We then define param = (G1,G2,GT , p, g, g, e; T );
GenTag(param): Given a public parameter param, it randomly chooses a generator h $← G∗1

and outputs τ̃ $← Z∗p and τ = (h, hτ̃ , hτ̃2) ∈ G3
1.

ProveVTag(τ̃),VerifVTag(τ): The prover constructs the proof π = proof(τ̃ : τ = (h, hτ̃ , hτ̃2))
(see the Appendix C.2 for the Groth-Sahai [GS08] proof). The verifier outputs 1 if it
accepts the proof and 0 otherwise.

RandTag(τ): Given a tag τ as input, it chooses ρτ→τ ′ $← Zp and constructs τ ′ = τρτ→τ ′ the
derived tag. It outputs (τ ′, ρτ→τ ′).

DerivWitness(τ̃ , ρτ→τ ′): The derived witness remains unchanged: τ̃ ′ = τ̃ .

Valid tags are Square Diffie-Hellman pairs in G1:

L = {(h, hx, hx2), h ∈ G∗1, x ∈ Z∗p} = ∪x∈Z∗pLx Lx = {(h, hx, hx2), h ∈ G∗1}

The randomization does not affect the exponents, hence there are p − 1 different equivalence
classes Lx, for all the non-zero exponents x ∈ Z∗p, and correctness is clearly satisfied within
equivalence classes. The validity check (see the Appendix C.2) is sound as the Groth-Sahai
commitment is in the perfectly binding setting. Such tags also admit an interactive Schnorr-like
zero-knowledge proof of knowledge of the exponent τ̃ for (ProveKTag(τ̃),VerifKTag(τ)) which
also provides extractability (knowledge soundness). Under the DSqDH and DL assumptions,
given the tag τ , it is hard to recover the exponent τ̃ = x. The tags, after randomization, are
uniformly distributed in the equivalence class, and under the DSqDH-assumption, each class is
indistinguishable from G3

1, and thus one has unlinkability.

Description of the One-Time SqDH-based ART-Sign Scheme. The above EphemerId
scheme can be extended into an ART-Sign scheme where implicit vector messages are signed.
As the aggregation can be made on signatures of messages under the same tag but from various
signers, the description is given for signers indexed by j and one-component messages indexed
by (j, i). However, the scheme needs to be state-full as there is the limitation for a signer j not
to sign more than one message by index (j, i) for a given tag: a signer must use two different
indices to sign two messages for one tag.

Setup(1κ): It extends the above setup with the set of messagesM = Zp;
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Keygen(param): Given the public parameters param, it outputs the signing and verification
keys

skj,i = ( SKj = [ t, u, v ], SK′j,i = [ ri, si ] ) $← Z5
p,

vkj,i = ( VKj = [ gt, gu, gv ], VK′j,i = [ gri , gsi ] ) ∈ G5
2.

Note that one could dynamically add new SK′j,i and VK′j,i to sign implicit vector messages:
skj = SKj ∪ [SK′j,i]i, vkj = VKj ∪ [VK′j,i]i;

Sign(skj,i, τ,m): Given a signing key skj,i = [t, u, v, r, s], a message m ∈ Zp and a public tag
τ = (τ1, τ2, τ3), it outputs the signature

σ = τ t+r+ms1 × τu2 × τv3 .

AggrKey({vkj,i}j,i): Given verification keys vkj,i, it outputs the aggregated verification key
avk = [avkj ]j , with avkj = VKj ∪ [VK′j,i]i for each j;

AggrSign(τ, (vkj,i,mj,i, σj,i)j,i): Given tuples of verification key vkj,i, message mj,i and signa-
ture σj,i all under the same tag τ , it outputs the signature σ =

∏
j,i σj,i of the concatenation

of the messages verifiable with avk← AggrKey({vkj,i}j,i);
DerivSign(avk, τ, ~M, σ, ρτ→τ ′): Given a signature σ on tag τ and a message-set ~M , and ρτ→τ ′

the randomization link between τ and another tag τ ′, it outputs σ′ = σρτ→τ ′ ;
RandSign(avk, τ, ~M, σ): The scheme being deterministic, it returns σ;
VerifSign(avk, τ, ~M, σ): Given a valid tag τ = (τ1, τ2, τ3), an aggregated verification key avk =

[avkj ] and a message-set ~M = [mj ], with both for each j, avkj = VKj ∪ [VK′j,i]i and
mj = [mj,i]i, and a signature σ, one checks if the following equality holds or not, where
nj = #{VK′j,i}:

e(σ, g) = e

τ1,
∏
j

VKj,1nj ×
∏
i

VK′j,i,1 · VK′j,i,2
mj,i


× e

τ2,
∏
j

VKj,2nj
× e

τ3,
∏
j

VKj,3nj
 .

In case of similar public keys in the aggregation (a unique index j), avk = VK ∪ [VK′i]i and
verification becomes, where n = #{VK′i},

e(σ, g) = e

(
τ1,VK1

n ×
n∏
i=1

VK′i,1 · VK′i,2
~Mi

)
× e (τ2,VK2

n)× e (τ3,VK3
n) .

Recall that the validity of the tag has to be verified, either with a proof of knowledge of the
witness (as it will be the case in the ABC scheme, or with the proof π = proof(τ̃ : τ =
(h, hτ̃ , hτ̃2)) (see the Appendix C.2 for the Groth-Sahai [GS08] proof).

Security of the One-Time SqDH-based ART-Sign Scheme. As argued in [HPP20], the
signature scheme defined above is unforgeable in the generic group model [Sho97], if signing
queries are asked at most once per tag-index pair:

Theorem 10. The One-Time SqDH-based ART-Sign is unforgeable with one signature only per
index, for a given tag, even with adaptive corruptions of keys and tags, in the generic group
model.

Proof. As argued in [HPP20], when the bases of the tags are random, even if the exponents
are known, the signature that would have signed messages ~M = (g, gm1 , . . . , g, gmn) is an un-
forgeable linearly-homomorphic signature. This means it is only possible to linearly combine
signatures with the same tag. As issued signatures are on pairs (g, gmi), under a different pair
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of keys for each such signed pair (whether they are from the same global signing key SK or not,
as we exclude repetitions for an index), which can be seen as tuples (1, 1, . . . , g, gmi , . . . , 1, 1),
completed with 1’s, the invariant generators g imply coefficients 0 and 1 in the linear combi-
nation: all the pairs (g, gmi) have been signed under the same tag. This proves unforgeability,
even with corruptions of the tags, but without repetitions of tag-index. One can also consider
corruptions of the signing keys, as they are all independent: one just needs to guess under which
key will be generated the forgery.

About unlinkability, it relies on the DSqDH assumption, but between credentials that contain
the same messages at the same shown indices (the same message-vector ~M):

Theorem 11. The One-Time SqDH-based ART-Sign, with message-vectors, is unlinkable under
the DSqDH assumption.

Proof. As already noticed, the tags are randomizable among all the square Diffie-Hellman triples
with the same exponent, which are indistinguishable from random triples in G3

1, so for any pair of
tags (τ̃i, τi)← GenTag(1κ), for i = 0, 1, when randomized into τ ′i respectively, the distributions
(τ0, τ1, τ

′
0, τ
′
1) and (τ0, τ1, τ

′
1, τ
′
0) are indistinguishable under the DSqDH assumption. For any avk

and ~M , the signatures are deterministic and unique for a tag τ , so they are functions (even if
not efficiently computable) of (avk, τ, ~M), so the distributions ( ~M, avk, τ0, σ0, τ1, σ1, τ

′
0, σ
′
0, τ
′
1, σ1)

and ( ~M, avk, τ0, σ0, τ1, σ1, τ
′
1, σ
′
1, τ
′
0, σ0) are also indistinguishable under the DSqDH assumption.

No need of randomization of the signatures.

4.4 Bounded ART-Sign Scheme with Square Diffie-Hellman Tags (SqDH)

The above signature scheme limits to one-time signatures: only one signature can be generated
for a given tag-index, otherwise signatures can be later forged on any message for this index,
by linearity: the vector space spanned by (g, gm) (in case of just one signature issued for one
index) is just (gα, gαm) and the constraint of g for the first component implies α = 1; on the
other hand, the vector space spanned by (g, gm) and (g, gm′) (in case of two signatures issued
for one index) is G × G, and even the constraint of g for the first component does not limit
anything for the second component.

This will be enough for our ABC application, as one usually has one attribute value for a
specific kind of information (age, city, diploma, etc), but in practice this implies the signer to
either keep track of all the indices already signed for one tag or to sign all the messages at once.
We provide another kind of combinations, that could be applied on our SqDH signature scheme
that will have interesting application to an ABC scheme.

Description of the Bounded SqDH-based ART-Sign Scheme. We propose here an alter-
native where the limitation is on the total number n of messages signed for each tag by each
signer:

Setup(1κ): It extends the above EphemerId-setup with the set of messagesM = Zp;
Keygen(param, n): Given the public parameters param and a length n, it outputs the signing

and verification keys

skj = [ t, u, v, s1, . . . , s2n−1 ] $← Z2n+2
p ,

vkj = gskj = [ T, U, V, S1, . . . , S2n−1 ] ∈ G2n+2
2 .

Sign(skj , τ,m): Given a signing key skj = [t, u, v, s1, . . . , s2n−1], a message m ∈ Zp and a
public tag τ = (τ1, τ2, τ3), it outputs the signature

σ = τ
t+
∑2n−1

1 s`m
`

1 × τu2 × τv3 .
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AggrKey({vkj}j): Given verification keys vkj , it outputs the aggregated verification key avk =
[vkj ]j ;

AggrSign(τ, (vkj ,mj,i, σj,i)j,i): Given tuples of verification key vkj , message mj,i and signa-
ture σj,i all under the same tag τ , it outputs the signature σ =

∏
j,i σj,i of the concatenation

of the messages verifiable with avk← AggrKey({vkj}j);
DerivSign(avk, τ, ~M, σ, ρτ→τ ′): Given a signature σ on tag τ and a message-set ~M , and ρτ→τ ′

the randomization link between τ and another tag τ ′, it outputs σ′ = σρτ→τ ′ ;
RandSign(avk, τ, ~M, σ): The scheme being deterministic, it returns σ;
VerifSign(avk, τ, ~M, σ): Given a valid tag τ = (τ1, τ2, τ3), an aggregated verification key avk =

[vkj ]j and a message-set ~M = [mj ]j , with for each j, mj = [mj,i]i, and a signature σ, one
checks if the following equality holds or not, where nj = #{mj,i}:

e(σ, g) = e

τ1,
∏
j

T
nj
j ×

2n−1∏
`=1

S

∑
i
m`j,i

j,`

× e
τ2,

∏
j

U
nj
j

× e
τ3,

∏
j

V
nj
j


Recall that the validity of the tag has to be verified, as for the other version.

Security of the Bounded SqDH-based ART-Sign Scheme. The linear homomorphism of
the signature from [HPP20] still allows combinations. But when the number of signing queries
is at most 2n per tag, the verification of the signature implies 0/1 coefficients only:

Theorem 12. The bounded SqDH-based ART-Sign is unforgeable with a bounded number of
signing queries per tag, even with adaptive corruptions of keys and tags, in both the generic
group model and the random oracle model.

Proof. As argued in [HPP20] and recalled in Theorem 5, when the bases of the tags are
random, even if the exponents are known, the signature that would have signed messages
~M = (gm1

, . . . , gm
2n−1), for m ∈ Zp, is an unforgeable linearly-homomorphic signature. This

means it is only possible to linearly combine signatures with the same tag. We fix the limit
to n signatures σi queried on distinct messages mi, for i = 1, . . . , n under vkj : one can derive
the signature σ =

∏
σαii on

(
g
∑

i
αim

1
i , . . . , g

∑
i
αim

2n−1
i

)
. Whereas the forger claims this is a

signature on
(
g
∑

i
a1
i , . . . , g

∑
i
αia

n
i

)
, on nj ≤ n values a1, . . . , anj , as one cannot combine more

than n attributes. Because of the constraint on τ2, we additionally have
∑
αi = nj mod p:

n∑
i=1

αim
`
i =

nj∑
i=1

a`i mod p for ` = 0, . . . , 2n− 1

Let us first move on the left hand side the elements ak ∈ {mi}, with only n′ ≤ nj new elements,
we assume to be the first ones, and we note βi = αi if mi 6∈ {ak} and βi = αi − 1 if mi ∈ {ak}:

n∑
i=1

βim
`
i =

n′∑
i=1

a`i mod p for ` = 0, . . . , 2n− 1

We thus have the system

n∑
i=1

βim
`
i +

n′∑
i=1

γia
`
i = 0 mod p for ` = 0, . . . , 2n− 1, with γi = −1

This is a system of 2n equations with at most n + n′ ≤ 2n unknown values βi’s and γi’s, and
the Vandermonde matrix is invertible: βi = 0 and γi = 0 for all index i. As a consequence, the
vector (αi)i only contains 0 or 1 components.
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This proves unforgeability, even with corruptions of the tags, but with a number of signed
messages bounded by n. One can also consider corruptions of the signing keys, as they are all
independent: one just needs to guess under which key will be generated the forgery.

About unlinkability, it relies on the DSqDH assumption, with the same proof as the previous
one-time scheme, except we can consider un-ordered message-sets ~M :

Theorem 13. The bounded SqDH-based ART-Sign, with message-sets, is unlinkable.

A slightly more compact scheme is described in the Appendix B.

5 Multi-Authority Anonymous Crendentials

In this section, we first define an anonymous attribute-based credential scheme, in the certified
key setting (we assume a Certification Authority that first checks the knowledge of the secret
keys before certifying public keys. The latter are then always checked before used by any players
in the system). We assume that an identity id is associated (and included) to any vk, which is
in turn included in sk. Then, we will show how to construct such a scheme based on EphemerId
and ART-Sign schemes.

5.1 Definition

Our general definition supports multiple users (Ui)i and multiple credential issuers (CIj)j :

Definition 14 (Anonymous Credential). An anonymous credential system is defined by
the following algorithms:

Setup(1κ): It takes as input a security parameter and outputs the public parameters param;
CIKeyGen(ID): It generates the key pair (sk, vk) for the credential issuer with identity ID;
UKeyGen(id): It generates the key pair (usk, uvk) for the user with identity id;
(CredObtain(usk, vk, a),CredIssue(uvk, sk, a)): A user with identity id (associated to (usk, uvk))

runs CredObtain to obtain a credential on the attribute a from the credential issuer ID
(associated to (sk, vk)) running CredIssue. At the end of the protocol, the user receives a
credential σ;

CredAggr(usk, {(vkj , aj , σj)}j): It takes as input a secret key usk of a user and a list of
credentials (vkj , aj , σj) and outputs a credential σ of the aggregation of the attributes;

(CredShow(usk, {(vkj ,aj)}j , σ),CredVerify({(vkj ,aj)}j): In this two-party protocol, a user with
identity id (associated to (usk, uvk)) runs CredShow and interacts with a verifier running
CredVerify to prove that he owns a valid credential σ on {aj}j issued respectively by
credential issuers IDj (associated to (skj , vkj)).

5.2 Security Model

The security model of anonymous credentials was already defined in various papers. We fol-
low [FHS19, San20], with multi-show unlinkable credentials, but considering multiple credential
issuers. Informally, the scheme needs to have the three properties:

– Correctness: the verifier must accept any credential obtained by an aggregation of honestly
issued credentials on attributes;

– Unforgeability: the verifier should not accept a credential on a set of attributes for which
the user did not obtain all the individual credentials for himself;

– Anonymity: credentials shown multiple times by a user should be unlinkable, even for
the credential issuers. This furthermore implies that credentials cannot be linked to their
owners.
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For the two above security notions of unforgeability and anonymity, one can consider malicious
adversaries able to corrupt some parties. We thus define the following lists: HU the list of
honest user identities, CU the list of corrupted user identities, similarly we define HCI and CCI
for the honest/corrupted credential issuers. For a user identity id, we define Att[id] the list of the
attributes of id and Cred[id] the list of his individual credentials obtained from the credential
issuers. All these lists are initialized to the empty set. For both unforgeability and anonymity,
the adversary has unlimited access to the oracles:

– OHCI(ID) corresponds to the creation of an honest credential issuer with identity ID. If he
already exists (i.e. ID ∈ HCI ∪ CCI), it outputs ⊥. Otherwise, it adds ID ∈ HCI and runs
(sk, vk)← CIKeyGen(ID) and returns vk;

– OCCI(ID, vk) corresponds to the corruption of a credential issuer with identity ID and op-
tionally public key vk. If he does not exist yet (i.e. ID /∈ HCI ∪ CCI), it creates a new
corrupted credential issuer with public key vk by adding ID to CCI. Otherwise, if ID ∈ HCI,
it removes ID from HCI and adds it to CCI and outputs sk;

– OHU(id) corresponds to the creation of an honest user with identity id. If the user already
exists (i.e. id ∈ HU∪CU), it outputs ⊥. Otherwise, it creates a new user by adding id ∈ HU
and running (usk, uvk) ← UKeyGen(id). It initializes Att[id] = {} and Cred[id] = {} and
returns uvk;

– OCU(id, uvk) corresponds to the corruption of a user with identity id and optionally public
key uvk. If the user does not exist yet (i.e. id /∈ HU ∪ CU), it creates a new corrupted user
with public key uvk by adding id to CU. Otherwise, if id ∈ HU, it removes id from HU and
adds it to CU and outputs usk and all the associated credentials Cred[id];

– OObtIss(id, ID, a) corresponds to the issuing of a credential from a credential issuer with
identity ID (associated to (sk, vk)) to a user with identity id (associated to (usk, uvk))
on the attribute a. If id /∈ HU or ID /∈ HCI, it outputs ⊥. Otherwise, it runs σ ←
(CredObtain(usk, id),CredIssue(uvk, sk, a)) and adds (ID, a) to Att[id] and (ID, a, σ) to Cred[id];

– OObtain(id, ID, a) corresponds to the issuing of a credential from the adversary playing the
role of a malicious credential issuer with identity ID (associated to vk) to an honest user
with identity id (associated to (usk, uvk)) on the attribute a. If id /∈ HU or ID /∈ CCI, it
outputs ⊥. Otherwise, it runs CredObtain(usk, a) and adds (ID, a) to Att[id] and (ID, a, σ)
to Cred[id];

– OIssue(id, ID, a) corresponds to the issuing of a credential from an honest credential issuer
with identity ID (associated to (sk, vk)) to the adversary playing the role of a malicious user
with identity id (associated to uvk) on the attribute a. If id /∈ CU or ID /∈ HCI, it outputs ⊥.
Otherwise, it runs CredIssue(uvk, sk, a) and adds (ID, a) to Att[id] and (ID, a, σ) to Cred[id];

– OShow(id, {(IDj , aj)}j) corresponds to the showing by an honest user with identity id (as-
sociated to (usk,uvk)) of a credential on the set {(IDj , aj)}j⊂Att[id]. If id /∈ HU, it outputs
⊥. Otherwise, it runs CredShow(usk,{(vkj , aj)}j, σ) with the adversary playing the role of a
malicious verifier.

Definition 15 (Unforgeability). An anonymous credential scheme is said unforgeable if, for
any polynomial time adversary adversary A having access to O = {OHCI, OCCI, OHU, OCU,
OObtIss, OIssue, OShow}, Advunf(A) = |Pr[Expunf

A (1κ) = 1]| is negligible where

Expunf
A (1κ) :
param← Setup(1κ)
{(IDj , aj)}j ← AO(param)
b← (A(),CredVerify({(vkj , aj)}j))
If ∃id ∈ CU, ∀j, either IDj ∈ CCI, or IDj ∈ HCI and (IDj , aj) ∈ Att[id],

then return 0
Return b
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Intuitively, the adversary wins the security game if it manages to prove its ownership of a
credential, on behalf of a corrupted user id ∈ CU whereas this user did not ask the attributes
to the honest credential issuers. Note that attributes from the corrupted credential issuers can
be generated by the adversary itself, using the secret keys.

Definition 16 (Anonymity). An anonymous credential scheme is said anonymous if, for
any polynomial time adversary A having access to O = {OHCI, OCCI, OHU, OCU, OObtain,
OShow}, Advano(A) = |Pr[Expano−1

A (1κ) = 1]− Pr[Expano−0
A (1κ) = 1]| is negligible where

Expano−b
A (1κ) :
param← Setup(1κ)
(id0, id1, {(IDj , aj)}j)← AO(param)
If for some IDj , (IDj , aj) 6∈ Att[id0] ∩ Att[id1], then return 0
(CredShow(uskb, {aj}j , σ),A())
b∗ ← AO()
If id0 ∈ CU or id1 ∈ CU, then return 0
Return b∗

First, note that we do not hide the attributes nor the issuers during the showing, but just the
user, as we want to prove their ownership by the anonymous user. Intuitively, the adversary
wins the security game if it can distinguish showings from users id0 and id1 of its choice, on the
same set of attributes {(IDj , aj)}j , even after having verified credentials from the two identities,
as it has access to the oracle OShow. Note that contrarily to [San20], unless the attributes
contain explicit ordering (as it will be the case with our first construction), we are dealing with
unlinkability as soon as the sets of attributes are the same for the two players (with the second
construction).

5.3 Anonymous Credential from EphemerId and ART-Sign Scheme

Let E be an EphemerId scheme and Sart an ART-Sign scheme, one can construct an anonymous
attribute-based credential scheme. The user’s keys will be tag pairs and the credentials will be
ART-Sign signatures on both the tags and the attributes. Since the signature is aggregatable
and the tag is randomizable, the user can anonymously show any aggregation of credentials:

Setup(1κ): Given a security parameter κ, it runs Sart.Setup and outputs the public parame-
ters param which includes all the parameters;

CIKeyGen(ID): Credential issuer CI with identity ID, runs Sart.Keygen(param) to obtain his
key pair (sk, vk);

UKeyGen(id): User U with identity id, runs E .GenTag(param) to obtain his key pair (usk, uvk).
In the case witnesses are required for the signatures, (usk, uvk) are provided to the cre-
dential issuers;

(CredObtain(usk, a),CredIssue(uvk, sk, a)): User U with identity id and key-pair (usk, uvk) asks
the credential issuer CI for a credential on attribute a: σ = Sart.Sign(sk, uvk, a);

CredAggr(usk, {(vkj , aj , σj)}j): Given credentials σj on attributes (IDj , aj) under the same
user key uvk, it outputs the signature σ = Sart.AggrSign(uvk, {(vkj , aj , σj)}j) on the set
of attributes {aj}j under uvk and the aggregated verification key avk of all the vkj ;

(CredShow(usk, {(vkj , aj)}j , σ),CredVerify({(vkj , aj)}j): User U randomizes his public key
(uvk′, ρ) = E .RandTag(uvk) and computes the aggregated key avk = Sart.AggrKey({vkj}j).
Then, it adapts the secret key usk′ = E .DerivWitness(usk, ρ) as well as the aggregated sig-
nature σ′ = Sart.DerivSign(avk, uvk, {aj}j , σ, ρ) and randomizes it:
σ′′ = Sart.RandSign(avk, uvk′, {aj}j , σ′). Finally, it sends to the verifier V the anonymous
credential (avk, {aj}j , uvk′, σ′′). The verifier first checks the freshness of the credential
with a proof of ownership of uvk′ using the interactive protocol (E .ProveKTag(usk′),
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E .VerifKTag(uvk′)) and then verifies the validity of the credential with
Sart.VerifSign(avk, uvk′, {aj}j , σ′′).

If one considers corruptions, when one corrupts a user, his secret key is provided, when one
corrupts a credential issuer, his secret key is provided.

By replacing all the algorithms by their instantiations for the proposed constructions of
EphemerId and ART-Sign schemes, we obtain our constructions of anonymous attribute-based
credential schemes. The SqDH construction uses an aggregatable signature with (public) ran-
domizable tag, and unforgeability holds even if the witnesses are known. As a consequence, this
construction allows corruption of the Credential Issuers and of the users.

Theorem 17. Assuming EphemerId achieves knowledge soundness and ART-Sign is unforge-
able, the generic construction is an unforgeable attribute-based credential scheme, in the certified
key model.

Proof. Let A be an adversary against the unforgeability of our anonymous credential scheme.
We build an adversary B against the unforgeability of the ART-Sign. As we are in the certified
key model, even for the corrupted players, the simulator knows the secret keys, as they can be
extracted at the certification time. Our adversary B runs the unforgeability security game of
the ART-Sign, and answers the oracle queries asked by A as follows:

– OHCI(ID): If ID ∈ HCI ∪ CCI, B outputs ⊥. Otherwise, it adds ID ∈ HCI, asks the query
OKeygen() and forwards the answer to A;

– OCCI(ID, vk): If ID /∈ HCI∪CCI, B adds ID ∈ CCI. Otherwise, if ID ∈ HCI with keys (sk, vk),
it moves ID from HCI to CCI. It then asks the query OCorrupt(vk) and forwards the answer
to A;

– OHU(id): If id ∈ HU ∪ CU, B outputs ⊥. Otherwise, it adds id ∈ HU, asks the query
OGenTag() and forwards the answer to A;

– OCU(id, uvk): If id /∈ HU ∪ CU, B adds id ∈ CU. Otherwise, if id ∈ HU with keys (usk, uvk),
it moves id from HU to CU, asks the query OCorruptTag(uvk) and forwards the answer to
A;

– OObtIss(id, ID, a): If id /∈ HU or ID /∈ HCI, B outputs ⊥. Otherwise, id is associated to
(usk, uvk) and ID is associated to (sk, vk). Then B asks the query OSign(vk, uvk, a), adds
(ID, a) to Att[id] and (ID, a, σ) to Cred[id] and outputs σ.

– OObtain(id, ID, a): If id /∈ HU or ID /∈ CCI, B outputs ⊥. Otherwise, id is associated to
(usk, uvk) and ID is associated to (sk, vk). Then B runs σ = Sign(sk, uvk, a) and adds (ID, a)
to Att[id] and (ID, a, σ) to Cred[id];

– OIssue(id, ID, a): If id /∈ CU or ID /∈ HCI, B outputs ⊥. Otherwise, id is associated to
(usk, uvk) and ID is associated to (sk, vk). Then B runs σ = Sign(sk, uvk, a) and adds (ID, a)
to Att[id] and (ID, a, σ) to Cred[id];

– OShow(id, {(IDj , aj)}j): If id /∈ HU or {(IDj , aj)}j) 6⊂ Att[id], B outputs ⊥. Otherwise, id
is associated to (usk, uvk) and each IDj is associated to (skj , vkj). Furthermore, for each
(IDj , aj), there is σj such that (IDj , aj , σj) ∈ Cred[id]. Then B first randomizes the key uvk
with (uvk′, ρ) = E .RandTag(uvk), computes the aggregated key avk = Sart.AggrKey({vkj}j)
and adapts the secret key usk′ = E .DerivWitness(usk, ρ). From the obtained credentials σj ,
it computes the aggregated signature σ = Sart.AggrSign(uvk, {(vkj , aj , σj)}j), adapts it: σ′ =
Sart.DerivSign(avk, uvk, {aj}j , σ, ρ), and randomizes it: σ′′ = Sart.RandSign(avk, uvk′, {aj}j , σ′).
B outputs (avk, {aj}j , uvk′, σ′′) and makes the E .ProveKTag(usk′) part of the interactive
proof of ownership.

Eventually, the adversaryA runs a showing for {(vkj , aj)}j , with a credential (avk, {aj}j , uvk∗, σ∗)
and a proof of knowledge of usk∗ associated to uvk∗: in case of success, B outputs the signature
(avk, {aj}j , uvk∗, σ∗).

In case of validity of the showing, except with negligible probability,
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– from the knowledge soundness of the EphemerId scheme, this means there is id ∈ CU,
associated to (usk, uvk), with uvk ∼ uvk∗;

– from the unforgeability of the aggregatable signature with randomizable tags, all the tags
aj ’s have been signed for uvk and vk. These individual credentials have thus been issued
either by the adversary on behalf of a corrupted credential issuer IDj ∈ CCI or from an
oracle query to IDj for id.

This is thus a legitimate showing with overwhelming probability: B win with negligible proba-
bility. Hence, the adversary A can only win with negligible probability.

As explained above, the security relies on both the soundness of the EphemerId scheme and the
unforgeability of the aggregatable signature with randomizable tags. In our construction, the
witness is not needed for signing, and unforgeability of the ART-Sign holds even if the witnesses
are all known to the adversary. Hence, corruption of users would just help to run the proof of
knowledge of the witnesses, and corruption of credential issuers for the issuing of credentials,
which would not help for forgeries (in the above security model). Of course, we also have to
take care of the way keys are generated and the number of signatures that will be issued to
guarantee the unforgeability.

Theorem 18. Assuming EphemerId is zero-knowledge and ART-Sign is unlinkable, the generic
construction is an anonymous attribute-based credential scheme, in the certified key model.

Proof. From the unlinkability of the ART-Sign, the tuple (avk, ~M, τ ′, σ′′) does not leak any
information about the initial tag τ . Hence, a credential does not leak any information about
uvkb. In addition, if the proof of knowledge of the witness is zero-knowledge, it does not leak
any information about uvkb either.

6 SqDH-based Anonymous Credentials

Thanks to our aggregate signatures that tolerate corruptions of users and signers, we will be
able to consider corruptions of users and credential issuers, and even possible collusions. In
the first construction, we consider attributes where the index i determines the topic (age, city,
diploma) and the exact value is encoded in ai ∈ Z∗p (possibly H(m) ∈ Z∗p if the value is a large
bitstring), or 0 when empty. The second construction will not require any such ordering on the
attributes. Free text will be possible.

6.1 The Basic SqDH-based Anonymous Credential Scheme

The basic construction directly follows the instantiation of the above construction with the
SqDH-based ART-Sign:

Setup(1κ): Given a security parameter κ, let (G1,G2,GT , p, g, g, e) be an asymmetric bilinear
setting, where g and g are random generators of G1 and G2 respectively. We then define
param = (G1,G2,GT , p, g, g, e,H), where H is an hash function in G1;

CIKeyGen(ID): Credential issuer CI with identity ID, generates its keys for n kinds of at-
tributes

skj = ( SKj = [ t, u, v ], SK′j,i = [ ri, si ]i ) $← Z3+2n
p ,

vkj = ( VKj = [ gt, gu, gv ], VK′j,i = [ gri , gsi ]i ) ∈ G3+2n
2 .

More keys for new attributes can be generated on-demand: by adding the pair [r, s] $← Z2
p

to the secret key and [gr, gs] to the verification key, the keys can works on n+ 1 kinds of
attributes;

UKeyGen(id): User U with identity id, sets h = H(id) ∈ G∗1, generates its secret tag τ̃
$← Z∗p

and computes τ = (h, hτ̃ , hτ̃2) ∈ G3
1: usk = τ̃ and uvk = τ = (h, hτ̃ , hτ̃2);
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(CredObtain(usk, ai),CredIssue(uvk, sk, ai)): User U with identity id and uvk= (τ1, τ2, τ3) asks
to the credential issuer CI for a credential on the attribute ai: σ = τ t+ri+aisi1 × τu2 × τv3 .
The credential issuer uses the appropriate index i, making sure this is the first signature
for this index;

CredAggr(usk, {(VKj ,VK′j,i, aj,i, σj,i)}j,i): Given credentials σj,i on attributes (IDj , aj,i) under
the same user key uvk, it outputs the signature σ =

∏
j,i σj,i;

(CredShow(usk, {(VKj ,VK′j,i, aj,i)}j,i, σ), CredVerify({(VKj ,VK′j,i, aj,i)}j,i):
First, user U randomizes his public key with a random ρ $← Z∗p into uvk′ = (τρ1 , τ

ρ
2 , τ

ρ
3 ),

concatenates the keys avk = ∪j([VKj ] ∪ [VK′j,i]i), and adapts the signature σ′ = σρ.
Then it sends the anonymous credential (avk, {aj,i}j,i, uvk′, σ′) to the verifier. The latter
first checks the freshness of the credential with a proof of ownership and validity of uvk′
using a Schnorr-like interactive proof and then verifies the validity of the credential: with
nj = #{VK′j,i}:

e(σ, g) = e

τ1,
∏
j

VKj,1nj ×
∏
i

VK′j,i,1 · VK′j,i,2
aj,i

× e
τ2,

∏
j

VKj,2nj
× e

τ3,
∏
j

VKj,3nj
 .

We stress that for the unforgeability of the signature, generator h for each tag must be random,
and so it is generated as H(id), with a hash function H in G1. This way, the credential issuers
will automatically know the basis for each user. There is not privacy issue as this basis is
randomized when used in an anonymous credential. On the other hand, the user can choose his
secret key τ̃ , and has to prove the knowledge of the witness for the validity of the tag. This
is thus an interactive protocol. In this construction, we can consider a polynomial number n
of attributes per credential issuer, where ai is associated to key vkj,i of the Credential Issuer
CIj . Again, to keep the unforgeability of the signature, the credential issuer should provide at
most one attribute per key vkj,i for a given tag. At the showing time, for proving the ownership
of k attributes (possibly from K different credential issuers), the users has to perform k −
1 multiplications in G1 to aggregate the credentials into one, and 4 exponentiations in G1
for randomization, but just one element from G1 is sent, as anonymous credential, plus an
interactive Schnorr-like proof of SqDH-tuple with knowledge of usk (see the Appendix C.1: 2
exponentiations in G1, 2 group elements from G1, and a scalar in Zp); whereas the verifier first
has to perform 4 exponentiations and 2 multiplications in G1 for the proof of validity/knowledge
of usk, and less than 3k multiplications and k exponentiations in G2, and 3 pairings to check
the credential. While this is already better than [CL11], we can get a better construction.

6.2 A Compact SqDH-based Anonymous Credential Scheme
Instead of having a specific key VK′j,i for each family of attributes aj,i, and thus limiting to one
issuing per family of attributes for each user, we can use the bounded SqDH-based ART-Sign,
with free-text attributes: we consider 2n−1 keys, where n is the maximum number of attributes
issued for one user by a credential issuer, whatever the attributes are:

Setup(1κ): Given a security parameter κ, let (G1,G2,GT , p, g, g, e) be an asymmetric bilinear
setting, where g and g are random generators of G1 and G2 respectively. We then define
param = (G1,G2,GT , p, g, g, e,H), where H is an hash function in G1;

CIKeyGen(ID): Credential issuer CI with identity ID, generates its keys for n maximum at-
tributes per user

skj = [ t, u, v, s1, . . . , s2n−1 ] $← Z2n+2
p ,

vkj = gskj = [ T, U, V, S1, . . . , S2n−1 ] ∈ G2n+2
2 .

UKeyGen(id): User U with identity id, sets h = H(id) ∈ G∗1, is given a randomly chosen a
generator h $← G∗1, generates its secret tag τ̃ $← Z∗p and computes τ = (h, hτ̃ , hτ̃2) ∈ G3

1:
usk = τ̃ and uvk = τ = (h, hτ̃ , hτ̃2);
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(CredObtain(usk, a),CredIssue(uvk, sk, a)): User U with identity id and uvk = (τ1, τ2, τ3) asks

to the credential issuer CI for a credential on the attribute a: σ = τ
t+
∑2n−1

`=1 s`a
`

1 × τu2 × τv3 .
Note that a ∈ Z∗p, so it can be a hash value of the actual free-text attribute;

CredAggr(usk, {(vkj , aj,i, σj,i)}j,i): Given credentials σj,i on attributes (IDj , aj,i) under the
same user key uvk, it outputs the signature σ =

∏
j,i σj,i;

(CredShow(usk, {(vkj , aj,i)}j,i, σ),CredVerify({(vkj , aj,i)}j,i): First, a user U randomizes his
public key with a random ρ $← Z∗p, uvk′ = (τρ1 , τ

ρ
2 , τ

ρ
3 ), concatenates the keys avk =

∪j [vkj ], and adapts the signature σ′ = σρ. Then it sends the anonymous credential
(avk, {aj,i}j,i, uvk′, σ′) to the verifier. The latter first checks the freshness of the credential
with a proof of ownership and validity of uvk′ using a Schnorr-like interactive proof and
then verifies the validity of the credential: with nj = #{aj,i}:

e(σ, g) = e

τ1,
∏
j

T
nj
j

2n−1∏
`=1

S

∑
i
a`j,i

j,`

× e
τ2,

∏
j

U
nj
j

× e
τ3,

∏
j

V
nj
j


Again, we stress that for the unforgeability of the signature, generator h for each tag must be
random. And the credential issuer should provide at most n attributes per user, even if in this
construction, we can consider an exponential number N of attributes per credential issuer, as
aj,i is any scalar in Z∗p. More concretely, aj,i can be given as the output of a hash function into
Zp from any bitstring. At the showing time, for proving the ownership of k attributes (possibly
from K different credential issuers), the users has to perform k − 1 multiplications in G1 to
aggregate the credentials into one, and 4 exponentiations in G1 for randomization, but just one
group element for G1 is sent, as anonymous credential, plus an interactive Schnorr-like proof
of SqDH-tuple with knowledge of usk (see the Appendix C.1: 2 exponentiations in G1, 2 group
elements from G1, and a scalar in Zp); whereas the verifier first has to perform 4 exponentiations
and 2 multiplications in G1 for the proof of validity/knowledge of usk, and less than 2n ·(K+3k)
multiplications in G2, 2n · k exponentiations in G2 and 3 pairings to check the credential.

In the particular case of just one credential issuer with verification key vk = (T,U, V, [Si]2n−1
i=1 ),

the verification of the credential σ on the k attributes {ai} just consists of

e(σ, g) = e

(
τ1, T

k
2n−1∏
`=1

S

∑
i
a`i

`

)
× e

(
τ2, U

k
)
× e

(
τ3, V

k
)
.

The communication is of constant size (one group element in G1). We stress that n is just a
limit of the maximal number of attributes issued by the credential issuer for one user but the
universe of the possible attributes is exponentially large, and there is no distinction between
the families of attributes.

7 Traceable Anonymous Credentials

As the SqDH-based ART-Sign schemes provide computational unlinkability only, it opens the
door of possible traceability in case of abuse, with anonymous but traceable tags:
Definition 19 (Traceable EphemerId). This is an extension of an EphemerId scheme with a
modified GenTag algorithm and an additional TraceId one:
GenTag(1κ): Given a security parameter 1κ, it outputs the user-key pair (usk,uvk) and the

tracing key utk;
TraceId(utk, uvk′): Given the tracing key utk associated to uvk and a public key uvk′, it outputs

a proof π of whether uvk ∼ uvk′ or not.
JudgeId(uvk, uvk′, π): two public keys and a proof, the judge checks the proof π and outputs 1

if it is correct.
Providing the tracing keys to a tracing authority at the key generation time for the users will
allow traceability.
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7.1 Traceable Anonymous Credentials

For traceability, we need an additional player: the tracing authority. During the user’s key
generation, this tracing authority will either be the certification authority, or a second authority,
that also has to certify user’s key uvk once it has received the tracing key utk.

In case of abuse of a credential σ under anonymous key uvk′, a tracing algorithm outputs
the initial uvk and id, with a proof a correct tracing. A new security notion is quite important:
non-frameability, which means that the tracing authority should not be able to declare guilty
a wrong user: only correct proofs are accepted by the judge. We consider a non-interactive
proof of tracing, produced by the TraceId algorithm and verified by anybody using the JudgeId
algorithm. This proof could be interactive.

7.2 Traceable SqDH-based Anonymous Credentials

With our Square Diffie-Hellman based EphemerId scheme where uvk = τ = (h, hτ̃ , hτ̃2) in an
asymmetric bilinear setting (G1,G2,GT , p, g, g, e) where g and g are random generators of G1
and G2 respectively, usk = τ̃ and utk = gτ̃ . The latter tracing key indeed allows to check
whether τ ′ ∼ τ or not: e(τ ′1, utk) = e(τ ′2, g) and e(τ ′2, utk) = e(τ ′3, g). If one already knows the
tags are valid (SqDH tuples), this is enough to verify whether e(τ ′1, utk) = e(τ ′2, g) holds or not.
But we provide the complete proof, as it is already quite efficient: in order to prove it, the
TraceId algorithm can use a Groth-Sahai proof as shown in the Appendix C.3 that proves, in a
zero-knowledge way, the existence of utk such that

e(τ1, utk) = e(τ2, g) e(τ2, utk) = e(τ3, g)
e(τ ′1, utk) = e(τ ′2, g) e(τ ′2, utk) = e(τ ′3, g).

The first line proves that utk is the good tracing key for uvk = τ , and the second line shows it
applies to uvk′ = τ ′ too. These are the equations verified by JudgeId algorithm. This can also
be a proof of innocence of id with key uvk if the first line is satisfied while the second one is not.

With such a proof, the tracing authority cannot frame a user. We thus have a secure traceable
anonymous credential scheme. Note however that, since we let the user choose the secret key τ̃ in
GenTag, one user could decide to use the same as another user. Either the tracing authority first
checks that, using the new tracing key on all the previous tags, and reject, or this is considered
a collusion of users, and at the tracing time, both users will be accused.
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A Canard-Lescuyer Scheme

In 2013, Canard and Lescuyer proposed a traceable attribute-based anonymous credential
scheme [CL13], based on sanitizable signatures: “Protecting privacy by sanitizing personal data:
a new approach to anonymous credentials”.

The intuition consists in allowing the user to “sanitize” the global credentials issued by the
credential issuer, in order to keep visible only the required attributes. Then for unlinkability,
the signatures are encrypted under an ElGamal encryption scheme.

Unfortunately, in their scheme, the public key contains g $← G1 and g
$← G2, and the

ElGamal secret key is α $← Zp, the tracing key. The public encryption key is h = gα, but they
also need h = gα to be published for some verifications.

With this value h, anybody can break the semantic security of the ElGamal encryption, and
then break the privacy of the anonymous credential.

https://ia.cr/2019/547
https://ia.cr/2019/1201
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B Another Bounded SqDH-Based ART-Sign

We can slightly reduce the parameters of the bounded SqDH-based ART-Sign, but with some
limitations on the number of attributed to be signed. It relies on a hash function, modelled as
a random oracle in the security analysis.

Description of the Bounded SqDH-based ART-Sign Scheme 2. We thus propose here a
second version, still with the limitation on the total number of messages signed for each tag,
but the public keys are twice smaller:

Setup(1κ): It extends the above EphemerId-setup with the set of messagesM = {0, 1}∗, but
also a hash function H into Zp;

Keygen(param, n): Given the public parameters param and a length n, it outputs the signing
and verification keys

skj = [ t, u, v, s1, . . . , sn ] $← Zn+3
p ,

vkj = gskj = [ T, U, V, S1, . . . , Sn ] ∈ Gn+3
2 .

Sign(skj , τ,m): Given a signing key skj = [t, u, v, s1, . . . , sn], a message m ∈ Zp and a public
tag τ = (τ1, τ2, τ3), it outputs the signature

σ = τ
t+
∑n

`=1 s`H(m)`
1 × τu2 × τv3 .

AggrKey({vkj}j): Given verification keys vkj , it outputs the aggregated verification key avk =
[vkj ]j ;

AggrSign(τ, (vkj ,mj,i, σj,i)j,i): Given tuples of verification key vkj , message mj,i and signa-
ture σj,i all under the same tag τ , it outputs the signature σ =

∏
j,i σj,i of the concatenation

of the messages verifiable with avk← AggrKey({vkj}j);
DerivSign(avk, τ, ~M, σ, ρτ→τ ′): Given a signature σ on tag τ and a message-set ~M , and ρτ→τ ′

the randomization link between τ and another tag τ ′, it outputs σ′ = σρτ→τ ′ ;
RandSign(avk, τ, ~M, σ): The scheme being deterministic, it returns σ;
VerifSign(avk, τ, ~M, σ): Given a valid tag τ = (τ1, τ2, τ3), an aggregated verification key avk =

[vkj ]j and a message-set ~M = [mj ]j , with for each j, mj = [mj,i]i, and a signature σ, one
checks if the following equality holds or not, where nj = #{mj,i}:

e(σ, g) = e

τ1,
∏
j

T
nj
j ×

n∏
`=1

S

∑
i
H(mj,i)`

j,`

× e
τ2,

∏
j

U
nj
j,2

× e
τ3,

∏
j

V
nj
j,3


We also recall that the validity of the tag has to be verified, as before, for the signature to be
considered valid.

Security of the Bounded SqDH-based ART-Sign Scheme 2. The linear homomorphism of
the signature from [HPP20] still allows combinations. But when the number of signing queries
is at most n per tag, the verification of the signature implies 0/1 coefficients only, with over-
whelming probability:

Theorem 20. The bounded SqDH-based ART-Sign defined above is unforgeable with a bounded
number of signing queries per tag, even with adaptive corruptions of keys and tags, in both the
generic group model and the random oracle model, as soon as qnH � p, where qH is the number
of hash queries and p the order of the group (the output of the hash function).
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Proof. As argued in [HPP20], when the bases of the tags are random, even if the exponents
are known, the signature that would have signed messages ~M = (gm1

, . . . , gm
n), for m ∈ Zp,

is an unforgeable linearly-homomorphic signature. This means it is only possible to linearly
combine signatures with the same tag: from up to n signatures σi on distinct messages mi, for
i = 1, . . . , n under vkj , one can derive the signature σ =

∏
σαii on

(
g
∑

i
αim

1
i , . . . , g

∑
i
αim

n
i

)
.

Whereas the forger claims this is a signature on
(
g
∑

i
a1
i , . . . , g

∑
i
αia

n
i

)
, on nj values a1, . . . , anj .

Because of the constraint on τ2, we have
∑
αi = nj mod p:

n∑
i=1

αim
`
i =

nc∑
i=1

a`i mod p for ` = 0, . . . , n

Let us first move on the left hand side the elements ak ∈ {mi}, with only n′ ≤ nj new elements,
we assume to be the first ones, and we note βi = αi if mi 6∈ {ak} and or βi = αi−1 if mi ∈ {ak}:

n∑
i=1

βim
`
i =

n′∑
i=1

a`i mod p for ` = 0, . . . , n

Our goal is to prove that n′ = 0 and the αi’s are only 0 or 1.
So, first, let us assume that n′ = 0: there is no new element. The matrix (m`

i)i,`, for i =
1, . . . , n and ` = 0, . . . , n − 1 is a Vandermonde matrix, that is invertible: hence the unique
possible vector (βi) is the zero-vector. As a consequence, the vector (αi)i only contains 0 or 1
components.
Now, we assume n′ = 1: there is exactly one element a1 6∈ {mi}. We can move it on the left
side:

β0a
`
1 +

n∑
i=1

βm`
i = 0 mod p for ` = 0, . . . , n, with β0 = −1

Again, the matrix (m`
i)i,`, for i = 0, . . . , n where we denote m0 = a1, and ` = 0, . . . , n, is a

Vandermonde matrix, that is invertible: hence the unique possible vector (βi) is the zero-vector,
which contradicts the fact that β0 = −1.
Eventually, we assume n′ > 1: there are at least two elements ak 6∈ {mi}. We can move a1 on
the left side:

β0a
`
1 +

n∑
i=1

βm`
i =

n′∑
i=2

a`i mod p for ` = 0, . . . , n, with β0 = −1

Again, because of the invertible matrix, for the n′ − 1 elements on the right hand side, there is
a unique possible vector (βi), and the probability for β0 = −1 is negligible, as the new elements
ak are random (if they are issued from a hash value): probability 1/p for each possible choice
on the n′ − 1 < n attributes on the right hand side. Hence, as soon as qnH � p, the probability
for a combination to allow β0 = −1 is negligible.

As a conclusion, one can only combine initial messages with a weight 1 (or 0). This proves
unforgeability, even with corruptions of the tags, but with a number of signed messages bounded
by n, and random messages (issued from a hash function). One can also consider corruptions
of the signing keys, as they are all independent: one just needs to guess under which key will
be generated the forgery.

Unlinkability remains unchanged.
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C Zero-Knowledge Proofs

C.1 Zero-Knowledge Proof for Square Diffie-Hellman Tuples

During both the certification of the tag τ and the showing protocol, the user must provide
a proof of validity of the SqDH tuple, in an extractable way, as this must also be a proof of
knowledge.

As an SqDH-tuple (τ1 = h, τ2 = hτ̃ , τ3 = hτ̃
2) ∈ G3

1 is a Diffie-Hellman tuple (τ1, τ2, τ2, τ3),
one can use a Schnorr-like proof:

– The prover chooses a random scalar r $← Zp, and sets and sends U ← τ r1 , V ← τ r2 ;
– The verifier chooses a random challenge e $← {0, 1}κ;
– The prover sends back the response s = eτ̃ + r mod p;
– The verifier checks whether both τ s1 = τ e2 × U and τ s2 = τ e3 × V .

This provides an interactive zero-knowledge proof of knowledge of the witness τ̃ that (τ1, τ2, τ3)
is an SqDH-tuple.

C.2 Groth-Sahai Proof for Square Diffie-Hellman Tuples

If you just need a proof of validity of the tuple, this is possible, using the Groth-Sahai methodol-
ogy [GS08], to provide a non-interactive proof of Square Diffie-Hellman tuple: in the asymmetric
pairing setting, one sets a reference string (v1,1, v1,2, v2,1, v2,2) ∈ G4

2, such that (v1,1, v1,2, v2,1, v2,2)
is a Diffie-Hellman tuple.

Given a Square Diffie-Hellman tuple (τ1 = h, τ2 = hτ̃ , τ3 = hτ̃
2) ∈ G3

1, one first commits τ̃ :
Com = (c = vτ̃2,1v

µ
1,1, d = vτ̃2,2g

τ̃vµ1,2), for a random µ $← Zp, and one sets π1 = τµ1 and π2 = τµ2 ,
which satisfy

e(τ1, c) = e(τ2, v2,1) · e(π1, v1,1) e(τ1, d) = e(τ2, v2,2 · g) · e(π1, v1,2)
e(τ2, c) = e(τ3, v2,1) · e(π2, v1,1) e(τ2, d) = e(τ3, v2,2 · g) · e(π2, v1,2)

The proof proof = (c, d, π1, π2), when it satisfies the above relations, guarantees that (τ1, τ2, τ3)
is a Square Diffie-Hellman tuple. This proof is furthermore zero-knowledge, under the DDH
assumption in G2: by switching (v1,1, v1,2, v2,1, g × v2,2) into a Diffie-Hellman tuple, one can
simulate the proof, as the commitment is perfectly hiding.

As explained in [HPP20], one can apply a batch verification [BFI+10], and pack them in a
unique one with random scalars x1,1, x1,2, x2,1, x2,2

$← Zp:

e(τx2,1
1 τ

x2,2
2 , cx1,1dx1,2) = e(τx2,1

2 τ
x2,2
3 , v

x1,1
2,1 v

x1,2
2,2 gx1,2)× e(πx2,1

1 π
x2,2
2 , v

x1,1
1,1 v

x1,2
1,2 )

One thus just has to compute 13 exponentiations and 3 pairing evaluations for the verification,
instead of 12 pairing evaluations.

C.3 Groth-Sahai Proof for Square Diffie-Hellman Tracing

For the proof of tracing, one wants to show τ ′ ∼ τ , where τ is the reference tag for a user
(certified at the registration time). With the tracing key utk = gτ̃ , one needs to show

e(τ1, utk) = e(τ2, g) e(τ2, utk) = e(τ3, g)
e(τ ′1, utk) = e(τ ′2, g) e(τ ′2, utk) = e(τ ′3, g)

but without revealing utk ∈ G2. This is equivalent, for random α1, α2, α
′
1, α
′
2

$← Zp, to have:

e(T1, utk) = e(T2, g) with T1 = τ1
α1 · τ2

α2 · τ ′1
α′1 · τ ′2

α′2

T2 = τ2
α1 · τ3

α2 · τ ′2
α′1 · τ ′2

α′2
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One can commit utk: as above, with the reference string (v1,1, v1,2, v2,1, v2,2) ∈ G4
2, such that

(v1,1, v1,2, v2,1, v2,2) is a Diffie-Hellman tuple, one computes Com = (c = vλ2,1v
µ
1,1, d = vλ2,2v

µ
1,2 ×

utk), for random λ, µ $← Zp, and one sets π1 = T λ1 and π2 = Tµ1 , which should satisfy

e(T1, c) = e(π1, v2,1) · e(π2, v1,1) e(T1, d) = e(T2, g) · e(π1, v2,2) · e(π2, v1,2)

The random values α1, α2, α
′
1, α
′
2 can be either chosen by the verifier in case of interactive proof,

or set from H(τ1, τ2, τ3, τ
′
1, τ
′
2, τ
′
3).


